JP5872334B2 - Soft magnetic stainless steel fine wire and method for producing the same - Google Patents

Soft magnetic stainless steel fine wire and method for producing the same Download PDF

Info

Publication number
JP5872334B2
JP5872334B2 JP2012049865A JP2012049865A JP5872334B2 JP 5872334 B2 JP5872334 B2 JP 5872334B2 JP 2012049865 A JP2012049865 A JP 2012049865A JP 2012049865 A JP2012049865 A JP 2012049865A JP 5872334 B2 JP5872334 B2 JP 5872334B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
wire
fine wire
steel fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012049865A
Other languages
Japanese (ja)
Other versions
JP2013185183A (en
Inventor
光司 高野
光司 高野
雅之 木崎
雅之 木崎
史人 菅野
史人 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Suzuki Sumiden Stainless Steel Wire Co Ltd
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Suzuki Sumiden Stainless Steel Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp, Suzuki Sumiden Stainless Steel Wire Co Ltd filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2012049865A priority Critical patent/JP5872334B2/en
Publication of JP2013185183A publication Critical patent/JP2013185183A/en
Application granted granted Critical
Publication of JP5872334B2 publication Critical patent/JP5872334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、形状安定性と軟磁性に優れる安価なステンレス鋼細線製品に関し、熱処理条件により線径に対する結晶粒径を制御した高純フェライト系ステンレス鋼細線およびその製造方法に関するものである。   The present invention relates to an inexpensive stainless steel fine wire product excellent in shape stability and soft magnetism, and relates to a high purity ferritic stainless steel fine wire in which the crystal grain size is controlled with respect to the wire diameter by heat treatment conditions and a method for producing the same.

従来、磁気フィルター等に使用される耐食性に優れる軟磁性(最大比透磁率≧800)の細線(線径:0.05mm〜0.5mm)は、低炭の炭素鋼を焼鈍・伸線を繰り返し、その後、表面処理を施して製造されてきたが、焼鈍温度が700〜800℃前後と低いために磁壁となる歪みを完全に除去するために長時間熱処理を要し、また、表面処理が必要であるうえ、ダレ等の形状安定性が悪く製品歩留まりが悪いことから多大なコストが必要となっていた。また、表面処理が剥離する場合があり、耐食性が不安定であった。   Conventionally, the thin wire (wire diameter: 0.05mm to 0.5mm) of soft magnetism (maximum relative permeability ≧ 800) with excellent corrosion resistance used for magnetic filters, etc. is repeatedly annealed and drawn with low-carbon carbon steel, and then However, since the annealing temperature is as low as around 700 to 800 ° C., a long time heat treatment is required to completely remove the strain that becomes the domain wall, and the surface treatment is necessary. In addition, since the shape stability such as sagging is poor and the product yield is poor, a large cost is required. Further, the surface treatment sometimes peeled off, and the corrosion resistance was unstable.

一方、耐食性に優れるステンレス鋼では、Alを添加して磁気応答性を改善したフェライト系の電磁ステンレス鋼や極低C,N化した冷間鍛造性に優れる高純度フェライト系電磁ステンレス鋼が数多く提案されている(例えば、特許文献1,2)。但し、850℃,4hや900℃,2hの長時間熱処理が必要であり、線径が0.5mm以下の細線で製造する場合、伸線・熱処理を繰り返す必要があり、膨大なコストが発生するばかりか、ダレ等の形状安定性が悪く製品歩留まりが著しく劣化するという問題点があった。   On the other hand, as for stainless steel with excellent corrosion resistance, there are many proposals of ferritic electromagnetic stainless steel with improved magnetic response by adding Al and high purity ferritic electromagnetic stainless steel with excellent cold forgeability with ultra-low C and N. (For example, Patent Documents 1 and 2). However, long-time heat treatment at 850 ° C, 4h or 900 ° C, 2h is required. When manufacturing with a thin wire having a wire diameter of 0.5 mm or less, it is necessary to repeat wire drawing and heat treatment, resulting in enormous costs. In addition, the shape stability such as sagging is poor and the product yield is significantly deteriorated.

また、磁気フィルター用のΦ50〜200μmのフェライト系ステンレス鋼線も開示されている(特許文献3)。しかしながら、高透磁率特性や鋼線のダレ等の寸法安定性に関する記載は無い。   A ferrite stainless steel wire having a diameter of 50 to 200 μm for a magnetic filter is also disclosed (Patent Document 3). However, there is no description regarding dimensional stability such as high magnetic permeability characteristics and sagging of steel wire.

更に、近年、3分程度の1050℃のストランド焼鈍(光輝焼鈍)で磁性を有する高純度フェライト系ステンレス鋼線およびその高生産性の製造方法が提案されている(特許文献4)。しかしながら、着磁性を有するものの細線(線径≦0.5mm)では伸線歪みの影響で優れた磁気特性が得られない。また、ストランド焼鈍(光輝焼鈍)を施しても表面窒化により表面にマルテンサイト組織が生成するなどで優れた磁気特性を満足することができないうえ、生産性にも問題があった。   Furthermore, in recent years, a high-purity ferritic stainless steel wire having magnetism by strand annealing (bright annealing) at about 1050 ° C. for about 3 minutes and a manufacturing method with high productivity have been proposed (Patent Document 4). However, excellent magnetic properties cannot be obtained with fine wires (wire diameter ≦ 0.5 mm) due to the effect of wire drawing distortion, although they are magnetized. Further, even if strand annealing (bright annealing) is performed, excellent magnetic properties cannot be satisfied due to the formation of a martensite structure on the surface due to surface nitriding, and productivity is also problematic.

そのため、従来の鋼細線(線径:0.05〜0.5mm)では、耐食性と優れた形状安定性,軟磁性を安価に兼ね備えることができなかった。   For this reason, conventional steel fine wires (wire diameter: 0.05 to 0.5 mm) cannot combine corrosion resistance with excellent shape stability and soft magnetism at low cost.

特開2004−27307号公報Japanese Patent Laid-Open No. 2004-27307 特開平02−15143号公報Japanese Patent Laid-Open No. 02-15143 特開昭56−38116号公報JP-A-56-38116 特開2006−16665号公報JP 2006-16665 A

本発明は、前述のような従来技術の問題点を解消し、軟磁性に優れる高純度フェライト系ステンレス鋼細線(線径≦0.5mm)および安価製造方法を提供し、従来の高耐食・軟磁性細線よりも形状安定性に優れる製品を飛躍的に安価に大量に提供することを課題とする。   The present invention eliminates the problems of the prior art as described above, provides a high-purity ferritic stainless steel fine wire (wire diameter ≦ 0.5 mm) excellent in soft magnetism, and a low-cost manufacturing method. It is an object to provide a large amount of products that are more excellent in shape stability than magnetic wires at dramatically low cost.

本発明者らは、上記課題を解決するために種々検討した結果、Nb,Ti等の安定化元素を添加し、極低C,N化した高純度フェライト系ステンレス鋼細線(線径:0.05〜0.5mm)において、高温・単時間のストランド焼鈍(光輝焼鈍)を施して線径に対する平均結晶粒径を制御することで、磁気特性に優れる(最大比透磁率≧800)ステンレス鋼細線を飛躍的に安価に得ることを見出した。本発明は、上記知見に基づいてなされたものであり、その要旨とするところは特許請求の範囲に記載した下記の通りである。   As a result of various studies to solve the above-mentioned problems, the present inventors have added a stabilizing element such as Nb and Ti to obtain a very low C and N high purity ferritic stainless steel fine wire (wire diameter: 0. 0). Stainless steel fine wires with excellent magnetic properties (maximum relative permeability ≧ 800) by controlling the average crystal grain size with respect to the wire diameter by subjecting strand annealing (bright annealing) at a high temperature for a single time at 05 to 0.5 mm) Has been found to be dramatically cheaper. This invention is made | formed based on the said knowledge, and the place made into the summary is as follows described in the claim.

(1)質量%で、C:0.03%以下、Si:1.0%以下、Mn:1.0%以下、P:0.04%以下、S:0.02%以下、Ni:1.0%以下、Cr:10.5〜16.2%未満、Al:1.5%以下、O:0.01%以下、N:0.03%以下を含有し、更に、Nb:0.05〜1.0%、Ti:0.05〜1.0%、V:0.05〜1.0%、W:0.05〜1.0%、Ta:0.05〜1.0%の内、1種類以上を含有し、残部Feおよび不可避的不純物から構成され、フェライト単相組織であり、線径が0.05〜0.5mm,平均結晶粒径が線径の0.1〜0.8倍であり、最大比透磁率が800以上であることを特徴とする軟磁性ステンレス鋼細線。
(2)更に質量%で、Mo:2.5%以下を含有することを特徴とする(1)に記載の軟磁性ステンレス鋼細線。
(3)更に質量%で、B:0.0001〜0.01%を含有することを特徴とする(1)または(2)に記載の軟磁性ステンレス鋼細線。
(4)更に質量%で、Cu:1.0%以下、Co:1.0%以下の内、1種類以上を含有することを特徴とする(1)〜(3)のいずれか一項に記載の軟磁性ステンレス鋼細線。
(5)更に質量%で、Ca:0.0005〜0.01%、Mg:0.0005〜0.01%、REM:0.0005〜0.05%の内、1種類以上を含有することを特徴とする(1)〜(4)のいずれか一項に記載の軟磁性ステンレス鋼細線。
(6)最終伸線加工後に900〜1200℃で5〜60秒の最終のストランド焼鈍を施して仕上げることを特徴とする(1)〜(5)のいずれか一項に記載の軟磁性ステンレス鋼細線の製造方法。
(1) By mass%, C: 0.03% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.04% or less, S: 0.02% or less, Ni: 1 0.0 % or less, Cr: 10.5 to less than 16.2% , Al: 1.5% or less, O: 0.01% or less, N: 0.03% or less, and Nb: 0.00% or less . 05-1.0%, Ti: 0.05-1.0%, V: 0.05-1.0%, W: 0.05-1.0%, Ta: 0.05-1.0% Among them, it contains at least one kind, and is composed of the remaining Fe and inevitable impurities, and has a ferrite single-phase structure. The wire diameter is 0.05 to 0.5 mm, and the average crystal grain size is 0.1 to 0.1. A soft magnetic stainless steel fine wire characterized by being 0.8 times and having a maximum relative permeability of 800 or more.
(2) The soft magnetic stainless steel thin wire according to (1), further containing, by mass%, Mo: 2.5% or less.
(3) The soft magnetic stainless steel thin wire according to (1) or (2), further containing B: 0.0001 to 0.01% by mass%.
(4) Further, by mass%, one or more of Cu: 1.0% or less and Co: 1.0% or less are contained. Any one of (1) to (3) Soft magnetic stainless steel fine wire as described.
(5) Further, by mass%, one or more of Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.01%, and REM: 0.0005 to 0.05% should be contained. The soft magnetic stainless steel fine wire according to any one of (1) to (4).
(6) The soft magnetic stainless steel according to any one of (1) to (5), which is finished by performing final strand annealing at 900 to 1200 ° C. for 5 to 60 seconds after the final wire drawing. Thin wire manufacturing method.

本発明による線径に対する結晶粒径を制御された高純度フェライト系ステンレス鋼細線(線径≦0.5mm)は、高生産性(高製品歩留まり)の伸線・熱処理プロセスで材料自体に優れた耐食性と最大比透磁率≧800の軟磁性を合わせもつため、耐食性,形状安定性と軟磁性に優れる細線製品を飛躍的に安価に大量に提供することができ、産業上有用な著しい効果を奏する。   The high purity ferritic stainless steel fine wire (wire diameter ≦ 0.5 mm) with controlled crystal grain size relative to the wire diameter according to the present invention is excellent in the material itself in the wire drawing / heat treatment process with high productivity (high product yield). Because it has both corrosion resistance and soft magnetism with maximum relative permeability ≧ 800, it can provide a large amount of fine wire products with excellent corrosion resistance, shape stability and soft magnetism at a great price, and has a remarkable industrially useful effect. .

先ず、本発明の(1)に記載の限定理由について説明する。   First, the reason for limitation described in (1) of the present invention will be described.

C,Nは、NbやTi等と結合して炭化物を形成するが、各々0.03%を超えて添加すると、粗大炭窒化物が生成して、軟磁性および靱性が劣化して生産性が劣化する。そのため、各々の上限を0.03%とする。好ましい範囲は、0.005〜0.02%である。   C and N combine with Nb, Ti and the like to form carbides, but when added in excess of 0.03%, coarse carbonitrides are formed, soft magnetism and toughness deteriorate, and productivity is reduced. to degrade. Therefore, each upper limit is made 0.03%. A preferred range is 0.005 to 0.02%.

Siは、脱酸のため添加するが、1.0%を超えて添加すると細線の靱性が劣化して生産性が劣化する。そのため、上限を1.0%に限定する。好ましい範囲は、0.1〜0.5%である。   Si is added for deoxidation, but if added over 1.0%, the toughness of the fine wire deteriorates and the productivity deteriorates. Therefore, the upper limit is limited to 1.0%. A preferable range is 0.1 to 0.5%.

Mnは、脱酸のため添加する。しかしながら、1.0%を超えて添加すると磁気特性が劣化するばかりか、靱性が悪く生産性も劣化する。そのため、上限を1.0%に限定する。好ましい範囲は、0.1〜0.5%である。   Mn is added for deoxidation. However, addition exceeding 1.0% not only deteriorates the magnetic properties, but also deteriorates toughness and productivity. Therefore, the upper limit is limited to 1.0%. A preferable range is 0.1 to 0.5%.

Pは、不可避不純物であり、軟磁性を劣化させるため、0.04%以下に限定する。好ましくは、0.025%以下である。   P is an unavoidable impurity and is limited to 0.04% or less in order to deteriorate soft magnetism. Preferably, it is 0.025% or less.

Sは、不可避不純物であり、軟磁性を劣化させるため、0.02%以下に限定する。好ましくは、0.005%以下である。   S is an unavoidable impurity and is limited to 0.02% or less in order to deteriorate soft magnetism. Preferably, it is 0.005% or less.

Niは、耐食性や靱性を向上させるため、必要に応じて添加するが、過度に添加すると軟磁性を劣化させるため、1.0%以下に限定する。好ましくは、Ni:0.05〜0.5%である。   Ni is added as necessary in order to improve corrosion resistance and toughness. However, Ni is limited to 1.0% or less because soft magnetism is deteriorated when excessively added. Preferably, Ni: 0.05 to 0.5%.

Crは、基本的に耐食性を確保するため添加するが、9.0%未満の場合、高温ストランド焼鈍時にオーステナイト相が生成し、冷却時にマルテンサイト変態を生じて軟磁性を劣化させる。一方、17.0%を超えて添加すると磁束密度が低下するため軟磁性が劣化する。そのため、9.0〜17.0%に限定する。好ましい範囲は10.5%〜16.5%である。   Cr is basically added to ensure corrosion resistance. However, if it is less than 9.0%, an austenite phase is generated during high-temperature strand annealing, and martensitic transformation occurs during cooling, thereby degrading soft magnetism. On the other hand, if added over 17.0%, the magnetic flux density is lowered and soft magnetism is deteriorated. Therefore, it is limited to 9.0 to 17.0%. A preferable range is 10.5% to 16.5%.

Alは、脱酸のため添加する。しかしながら、1.5%を超えて添加すると生産性が劣化する。そのため、上限を1.5%に限定する。好ましい範囲は、0.002%以上、0.05%未満である。   Al is added for deoxidation. However, if it exceeds 1.5%, productivity deteriorates. Therefore, the upper limit is limited to 1.5%. A preferable range is 0.002% or more and less than 0.05%.

Oは、不可避不純物であり、軟磁性を確保するため、0.01%以下に限定する。好ましくは、0.008%以下である。   O is an unavoidable impurity and is limited to 0.01% or less in order to ensure soft magnetism. Preferably, it is 0.008% or less.

Nb,Ti,V,W,Taは、炭窒化物を形成してC,Nを固定することで、マルテンサイト組織の生成を抑制し、軟磁性を向上させる。しかしながら、過度に添加すると粗大炭窒化物が生成して軟磁性を逆に劣化させる。そのため、Nb:0.05〜1.0%,Ti:0.05〜1.0%、V:0.05〜1.0%、W:0.05〜1.0%,Ta:0.05〜1.0%の内、1種類以上を含有することに限定する。好ましくは、Nb:0.2〜0.6%,Ti:0.05〜0.2%、V:0.1〜0.5%、W:0.1〜0.5%,Ta:0.1〜0.5%の内、1種類以上を含有する。   Nb, Ti, V, W, and Ta form carbonitride and fix C and N, thereby suppressing the formation of martensite structure and improving soft magnetism. However, if added excessively, coarse carbonitrides are produced and soft magnetism is deteriorated. Therefore, Nb: 0.05-1.0%, Ti: 0.05-1.0%, V: 0.05-1.0%, W: 0.05-1.0%, Ta: 0. It is limited to containing 1 or more types in 05-1.0%. Preferably, Nb: 0.2-0.6%, Ti: 0.05-0.2%, V: 0.1-0.5%, W: 0.1-0.5%, Ta: 0.1 It contains at least one of ˜0.5%.

金属組織は、マルテンサイト組織やオーステナイト組織等、フェライト組織以外の金属組織が5体積%以上混じると軟磁性が急激に劣化する。そのため、軟磁性に優れるフェライト単相組織に限定する。   When the metal structure is mixed with 5% by volume or more of a metal structure other than a ferrite structure such as a martensite structure or an austenite structure, the soft magnetism rapidly deteriorates. Therefore, it is limited to a ferrite single phase structure excellent in soft magnetism.

線径および平均結晶粒径の制御は本発明の最大の特性であり、線径が0.5mmを超えるとダレや表面窒化によるマルテサイト生成等の問題も無くなり、従来公知の製造方法でも形状安定性と軟磁性に優れる鋼線を製造可能であり、本発明の優位性が無くなる。そのため、線径を0.5mm以下に限定する。一方、線径が0.05mm未満になると本発明を適用しても形状安定性に劣る。そのため、線径を0.05〜0.5mmに限定する。好ましい線径範囲は、0.1〜0.4mmである。     The control of the wire diameter and the average crystal grain size is the greatest characteristic of the present invention. When the wire diameter exceeds 0.5 mm, there is no problem of martensite generation due to sagging or surface nitriding, and shape stabilization is possible even with a conventionally known manufacturing method. Steel wire excellent in properties and soft magnetism can be produced, and the superiority of the present invention is lost. Therefore, the wire diameter is limited to 0.5 mm or less. On the other hand, when the wire diameter is less than 0.05 mm, the shape stability is poor even when the present invention is applied. Therefore, the wire diameter is limited to 0.05 to 0.5 mm. A preferable wire diameter range is 0.1 to 0.4 mm.

平均結晶粒径は、線径の0.1倍未満であれば、磁壁となる結晶粒界の割合が多くなり、軟磁性が劣化する。一方、0.8倍超になると結晶粒の異方性のため軟磁性が逆に劣化する。そのため、平均結晶粒径を線径の0.1〜0.8倍に限定する。好ましい範囲は、線径の0.2〜0.5倍である。   If the average crystal grain size is less than 0.1 times the wire diameter, the proportion of crystal grain boundaries that become domain walls increases and soft magnetism deteriorates. On the other hand, when it exceeds 0.8 times, soft magnetism deteriorates conversely due to the anisotropy of crystal grains. Therefore, the average crystal grain size is limited to 0.1 to 0.8 times the wire diameter. A preferred range is 0.2 to 0.5 times the wire diameter.

最大比透磁率(真空中の透磁率に対する比。最大比透磁率=1は真空中の透磁率を示す。)は、軟磁性の指標であり、800未満であれば公知の製造方法でも製造可能である。本発明の効果の優位性を示すため、最大比透磁率を800以上に限定する。好ましい範囲は、1000以上である。   The maximum relative permeability (ratio to the permeability in vacuum. The maximum relative permeability = 1 indicates the permeability in vacuum) is an index of soft magnetism, and can be manufactured by a known manufacturing method as long as it is less than 800. It is. In order to show the superiority of the effect of the present invention, the maximum relative permeability is limited to 800 or more. A preferable range is 1000 or more.

次に、本発明の(2)に記載の限定理由について説明する。
Moは、耐食性を向上させる元素であり、必要に応じて2.5%以下を添加する。しかしながら、2.5%を超えて添加すると軟磁性が劣化する。そのため、2.5%以下に限定する。好ましい範囲は、0.05〜1.0%以下である。
Next, the reason for limitation described in (2) of the present invention will be described.
Mo is an element that improves the corrosion resistance, and if necessary, 2.5% or less is added. However, if added over 2.5%, soft magnetism deteriorates. Therefore, it is limited to 2.5% or less. A preferable range is 0.05 to 1.0% or less.

次に、本発明の(3)に記載の限定理由について説明する。     Next, the reason for limitation described in (3) of the present invention will be described.

Bは、細線の靱性を向上させて生産性を向上させるため、必要に応じて0.0001%以上添加する。しかしながら、0.01%を超えて添加すると粗大ボライドのため軟磁性が劣化するばかりか靱性が劣化して生産性が劣化するため、上限を0.01%とする。   B is added in an amount of 0.0001% or more as necessary in order to improve the toughness of fine wires and improve the productivity. However, if added over 0.01%, coarse boride not only deteriorates soft magnetism but also deteriorates toughness and productivity, so the upper limit is made 0.01%.

次に、本発明の(4)に記載の限定理由について説明する。     Next, the reason for limitation described in (4) of the present invention will be described.

Cu,Coは、細線の靱性を向上させて生産性を向上させるため、必要に応じて,各々1.0%以下を添加する。しかしながら、1.0%を超えて添加すると軟磁性が劣化する。そのため、上限を各々1.0%に限定する。好ましい範囲は、各々0.01〜0.5%である。   In order to improve the toughness of fine wires and improve productivity, Cu and Co are each added in an amount of 1.0% or less as necessary. However, if added over 1.0%, soft magnetism deteriorates. Therefore, the upper limit is limited to 1.0% each. Preferred ranges are each 0.01 to 0.5%.

次に、本発明の(5)に記載の限定理由について説明する。     Next, the reason for limitation described in (5) of the present invention will be described.

Ca,Mg,REMは、脱酸に有効な元素であり、必要に応じて添加するが、過度に添加すると、軟磁性が劣化するばかりか粗大脱酸生成物のため生産性が劣化する。そのため、Ca:0.0005〜0.01%,Mg:0.0005〜0.01%,REM:0.0005〜0.05%の内、1種類以上を含有することに限定する。   Ca, Mg, and REM are effective elements for deoxidation, and are added as necessary. However, when added excessively, soft magnetism is deteriorated, and productivity is deteriorated due to a coarse deoxidation product. Therefore, it is limited to containing one or more of Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.01%, and REM: 0.0005 to 0.05%.

次に、本発明の(6)に記載の限定理由について説明する。   Next, the reason for limitation described in (6) of the present invention will be described.

線径が0.05〜0.5mmへ最終伸線加工後に、磁壁となる加工歪みや結晶粒界を減らすため、熱処理を行うが、900℃未満では、軟磁性に劣り、1200℃超では断線や線細り等で形状安定性に劣り、製品歩留まりが著しく劣化する。そのため、熱処理温度を900〜1200℃に限定する。好ましい範囲は、1000〜1160℃である。   After the final wire drawing to a wire diameter of 0.05 to 0.5 mm, heat treatment is performed to reduce processing strain and crystal grain boundaries that become domain walls. However, if the temperature is below 900 ° C., soft magnetism is inferior, and if it exceeds 1200 ° C., the wire breaks. It is inferior in shape stability due to thinning of the wire, etc., and the product yield is significantly deteriorated. Therefore, the heat treatment temperature is limited to 900 to 1200 ° C. A preferred range is 1000-1160 ° C.

また、細線において、形状安定性を確保し、且つ、結晶粒径を制御して優れた軟磁性を得るために熱処理時間も限定する必要がある。単時間のストランド焼鈍を施すが、熱処理時間(在炉時間)が5秒未満であると結晶粒径が小さく、軟磁性に劣る。一方、熱処理時間が60秒を超えると、結晶粒径が粗大化して異方性がでるため軟磁性に劣るばかりか、線細りで形状安定性に劣ったり、断線率が増大したりして製品歩留まりが劣化する。そのため、5〜60秒に限定する。好ましい範囲は、10〜40秒である。   In addition, it is necessary to limit the heat treatment time in order to secure shape stability and obtain excellent soft magnetism by controlling the crystal grain size in the thin wire. Single-hour strand annealing is performed, but if the heat treatment time (in-furnace time) is less than 5 seconds, the crystal grain size is small and the soft magnetism is poor. On the other hand, if the heat treatment time exceeds 60 seconds, the crystal grain size becomes coarse and anisotropy occurs, so it is not only inferior in soft magnetism, but also is thin and inferior in shape stability, or the disconnection rate increases. Yield deteriorates. Therefore, it is limited to 5 to 60 seconds. A preferred range is 10 to 40 seconds.

ストランド焼鈍の雰囲気は、形状安定性のため焼鈍後に酸洗が不要であることが望ましいため、一般のステンレス鋼で実施される水素ガス雰囲気,窒素ガス雰囲気,Arガス雰囲気およびこれらの混合ガス雰囲気が好ましい。   Since it is desirable that the strand annealing atmosphere does not require pickling after annealing for shape stability, a hydrogen gas atmosphere, a nitrogen gas atmosphere, an Ar gas atmosphere and a mixed gas atmosphere thereof, which are performed in general stainless steel, are used. preferable.

以下に本発明の実施例について説明する。表1に実施例の鋼の化学組成(質量%)を示す。   Examples of the present invention will be described below. Table 1 shows the chemical composition (mass%) of the steels of the examples.

Figure 0005872334
Figure 0005872334

これらの化学組成の鋼は、ステンレス鋼の安価溶製プロセスであるAOD溶製を想定し、100kgの真空溶解炉にて溶解し、φ180mmの鋳片に鋳造し、その鋳片をφ5.5mmまで熱間の線材圧延を行い、1000℃で熱間圧延を終了した。その後、溶体化処理として1050℃で30分保持した後に水冷し、酸洗を行い線材とした。その後、φ1.0mmまで伸線加工と通常の焼鈍を繰り返して施した。   Assuming AOD melting, which is a cheap melting process for stainless steel, these chemical compositions are melted in a 100 kg vacuum melting furnace, cast into a slab of φ180 mm, and the slab is reduced to φ5.5 mm Hot wire rolling was performed, and the hot rolling was terminated at 1000 ° C. Then, after hold | maintaining at 1050 degreeC as a solution treatment for 30 minutes, it cooled with water, pickled, and was set as the wire. Thereafter, wire drawing and normal annealing were repeated until φ1.0 mm.

その後、成分の影響を調査するため、30kgサンプリングして、引き続き0.1mmまで冷間で伸線加工を施し、その後、最終焼鈍として、1100℃,20秒在炉のストランド焼鈍(光輝焼鈍)を施し、コイル状に捲き取られたステンレス鋼細線の製品とした。
そして、鋼細線製品の軟磁性,金属組織,結晶粒径(線径に対する比率),耐食性と製品歩留まりに及ぼす成分の影響を評価した。その評価結果を表2に示す。
After that, in order to investigate the influence of the components, 30 kg was sampled and subsequently cold-drawn to 0.1 mm. Then, as the final annealing, strand annealing (bright annealing) in the furnace at 1100 ° C. for 20 seconds was performed. It was made into a product of stainless steel fine wire that was applied and coiled.
The effects of components on the soft magnetism, metal structure, crystal grain size (ratio to wire diameter), corrosion resistance and product yield of steel fine wire products were evaluated. The evaluation results are shown in Table 2.

Figure 0005872334
Figure 0005872334

鋼線製品の軟磁性は、直流磁化特性試験装置を用い、エプスタイン法を用いてヒステリシスカーブを描き、比最大透磁率(最大透磁率を求め、真空中の透磁率に対する比に直したもの)を測定した。本発明例の鋼線の比最大透磁率は、800以上であり、優れた軟磁性を示した。   The soft magnetism of steel wire products is obtained by using a DC magnetization characteristic test device and drawing a hysteresis curve using the Epstein method, and calculating the relative maximum permeability (the maximum permeability is obtained and the ratio to the permeability in vacuum is corrected). It was measured. The specific maximum magnetic permeability of the steel wire of the example of the present invention was 800 or more, indicating excellent soft magnetism.

鋼線製品の金属組織は、鋼線の縦断面埋め込み面を王水エッチ後、光顕観察を行い、金属組織を評価した。本発明の鋼線の金属組織は、フェライト単相であった。   The metallographic structure of the steel wire product was evaluated by optical microscopic observation after aqua regia etching of the vertical cross-section embedded surface of the steel wire. The metal structure of the steel wire of the present invention was a ferrite single phase.

鋼線製品の平均結晶粒径は、鋼線の縦断面埋め込み面を王水エッチ後、光顕観察を行い、切断法により鋼線長手方向の平均結晶粒径を求め、平均結晶粒径/線径の比を計算した。なお、切断法について、光顕写真で鋼線長手方向に直線を引いて直線と結晶粒界が交差する箇所をカウントし、(直線の長さ)/(交差数)で平均結晶粒径を計算した。本発明例の平均結晶粒径/線径の比は、0.1〜0.8の範囲に入っていた。   The average crystal grain size of the steel wire product is obtained by performing optical aquatic observation after etching the vertical cross-section embedded surface of the steel wire, obtaining the average crystal grain size in the longitudinal direction of the steel wire by a cutting method, and calculating the average crystal grain size / wire diameter. The ratio of was calculated. For the cutting method, a straight line was drawn in the longitudinal direction of the steel wire in the photomicrograph, the number of points where the straight line and the grain boundary intersected was counted, and the average crystal grain size was calculated by (straight line length) / (number of crossings) . The ratio of the average crystal grain size / wire diameter in the inventive examples was in the range of 0.1 to 0.8.

鋼線製品の耐食性は、JIS Z 2371の塩水噴霧試験に従い、100時間噴霧試験を実施し、発銹するか否かで評価した。無発銹レベルであれば耐食性を良好,流れ錆等赤錆発銹の場合は耐食性を不良として評価した。本発明鋼の耐食性の評価は全て良好であった。   The corrosion resistance of the steel wire product was evaluated according to whether or not it was sprinkled by carrying out a spray test for 100 hours according to the salt spray test of JIS Z 2371. Corrosion resistance was evaluated as good if it was a non-fogging level, and corrosion resistance was evaluated as poor in the case of red rust such as flowing rust. All the evaluations of the corrosion resistance of the steels of the present invention were good.

鋼線製品の歩留まりは、30kgのサンプリング材に対して、鋼線製品時の良品の質量%により求めた。線径に対して10%以上の線細りの場合や、断線した場合や、ダレ・曲がりがある場合は不良品と判断して歩留まり落ちとした。本発明例の製品歩留まりは80%以上であり、良好な歩留まりを示した。   The yield of the steel wire product was determined from the mass% of the non-defective product at the time of the steel wire product with respect to the sampling material of 30 kg. When the wire diameter was 10% or more with respect to the wire diameter, when the wire was broken, or when there was a sag / bend, it was judged as a defective product and the yield was reduced. The product yield of the example of the present invention was 80% or more, indicating a good yield.

次に、線径,平均結晶粒径の影響を調査するため、前記[0035]段落に示す焼鈍を施された鋼A,AG,ALの線径1.0mmの鋼線を30kgサンプリングし、0.03〜0.7mmまで冷間伸線加工を施し、種々の条件で最終焼鈍を施し、その後、必要に応じて酸洗を行い、コイル状に捲き取られたステンレス鋼細線の製品とした。そして、鋼細線製品の軟磁性,結晶粒径(線径に対する比率)と製品歩留まりに及ぼす成分の影響を評価した。その評価結果を表3に示す。   Next, in order to investigate the influence of the wire diameter and the average crystal grain size, 30 kg of a steel wire having a wire diameter of 1.0 mm of the annealed steels A, AG and AL shown in the paragraph [0035] is sampled. The steel wire was cold-drawn to 0.03 to 0.7 mm, subjected to final annealing under various conditions, and then pickled as necessary to obtain a stainless steel fine wire product that was scraped into a coil. Then, the influence of components on the soft magnetism, crystal grain size (ratio to wire diameter) and product yield of steel fine wire products was evaluated. The evaluation results are shown in Table 3.

Figure 0005872334
Figure 0005872334

本発明例は、優れた軟磁性(最大比透磁率)と製品歩留まりを示した。 一方、比較例は、線径,焼鈍温度,焼鈍時間が本発明から外れており、軟磁性(最大比透磁率)や製品歩留まりに劣っていた。なお、比較例No.84,100,116は、線径が本発明範囲よりも太い領域では、従来の提案されているプロセス(バッチ焼鈍・酸洗)でも優れた軟磁性と製品歩留まりが得られるため本発明の優位性が認められない。   The inventive examples showed excellent soft magnetism (maximum relative magnetic permeability) and product yield. On the other hand, in the comparative example, the wire diameter, annealing temperature, and annealing time were out of the present invention, and the soft magnetism (maximum relative permeability) and product yield were inferior. Comparative Example No. 84, 100, and 116 are superior to the present invention in the region where the wire diameter is thicker than the range of the present invention, because excellent soft magnetism and product yield can be obtained even by the conventionally proposed processes (batch annealing and pickling). Is not allowed.

以上の各実施例から明らかなように、本発明により軟磁性に優れる高純度フェライト系ステンレス鋼細線を安価に製造でき、優れた耐食性と軟磁性特性を合わせ持つ磁気フィルター等の細線製品を安価に提供することができ、産業上極めて有用である。
As is clear from each of the above examples, the present invention can produce high-purity ferritic stainless steel fine wires excellent in soft magnetism at low cost, and can reduce the cost of thin wire products such as magnetic filters having excellent corrosion resistance and soft magnetic properties. It can be provided and is extremely useful in industry.

Claims (6)

質量%で、
C:0.03%以下、
Si:1.0%以下、
Mn:1.0%以下、
P:0.04%以下、
S:0.02%以下、
Ni:1.0%以下、
Cr:10.5〜16.2%未満
Al:1.5%以下、
O:0.01%以下、
N:0.03%以下を含有し、
更に、
Nb:0.05〜1.0%、
Ti:0.05〜1.0%、
V:0.05〜1.0%、
W:0.05〜1.0%、
Ta:0.05〜1.0%の内、1種類以上を含有し、残部Feおよび不可避的不純物から構成され、フェライト単相組織であり、線径が0.05〜0.5mm,平均結晶粒径が線径の0.1〜0.8倍であり、最大比透磁率が800以上であることを特徴とする軟磁性ステンレス鋼細線。
% By mass
C: 0.03% or less,
Si: 1.0% or less,
Mn: 1.0% or less,
P: 0.04% or less,
S: 0.02% or less,
Ni: 1.0% or less,
Cr: 10.5 to less than 16.2% ,
Al: 1.5% or less,
O: 0.01% or less,
N: 0.03% or less,
Furthermore,
Nb: 0.05-1.0%
Ti: 0.05 to 1.0%,
V: 0.05-1.0%
W: 0.05-1.0%
Ta: 0.05 to 1.0%, containing one or more types, balance Fe and inevitable impurities, ferrite single phase structure, wire diameter 0.05 to 0.5 mm, average crystal A soft magnetic stainless steel fine wire having a particle diameter of 0.1 to 0.8 times the wire diameter and a maximum relative permeability of 800 or more.
更に質量%で、
Mo:2.5%以下を含有することを特徴とする請求項1に記載の軟磁性ステンレス鋼細線。
In addition,
Mo: 2.5% or less is contained, The soft-magnetic stainless steel fine wire of Claim 1 characterized by the above-mentioned.
更に質量%で、
B:0.0001〜0.01%を含有することを特徴とする請求項1または2に記載の軟磁性ステンレス鋼細線。
In addition,
B: The soft magnetic stainless steel fine wire according to claim 1 or 2, characterized by containing 0.0001 to 0.01%.
更に質量%で、
Cu:1.0%以下、
Co:1.0%以下の内、1種類以上を含有することを特徴とする請求項1〜3のいずれか一項に記載の軟磁性ステンレス鋼細線。
In addition,
Cu: 1.0% or less,
The soft magnetic stainless steel fine wire according to any one of claims 1 to 3, wherein Co: 1.0% or less contains one or more types.
更に質量%で、
Ca:0.0005〜0.01%、
Mg:0.0005〜0.01%、
REM:0.0005〜0.05%の内、1種類以上を含有することを特徴とする請求項1〜4のいずれか一項に記載の軟磁性ステンレス鋼細線。
In addition,
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
The soft magnetic stainless steel fine wire according to any one of claims 1 to 4, wherein one or more of REM: 0.0005 to 0.05% are contained.
最終伸線加工後に900〜1200℃で5〜60秒の最終のストランド焼鈍を施して仕上げることを特徴とする請求項1〜5のいずれか一項に記載の軟磁性ステンレス鋼細線の製造方法。   The method for producing a soft magnetic stainless steel fine wire according to any one of claims 1 to 5, wherein the final strand annealing is performed by performing final strand annealing at 900 to 1200 ° C for 5 to 60 seconds.
JP2012049865A 2012-03-07 2012-03-07 Soft magnetic stainless steel fine wire and method for producing the same Active JP5872334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012049865A JP5872334B2 (en) 2012-03-07 2012-03-07 Soft magnetic stainless steel fine wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049865A JP5872334B2 (en) 2012-03-07 2012-03-07 Soft magnetic stainless steel fine wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013185183A JP2013185183A (en) 2013-09-19
JP5872334B2 true JP5872334B2 (en) 2016-03-01

Family

ID=49386890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049865A Active JP5872334B2 (en) 2012-03-07 2012-03-07 Soft magnetic stainless steel fine wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP5872334B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471918A (en) * 2020-03-30 2020-07-31 山西太钢不锈钢股份有限公司 Soft magnetic stainless steel and method for manufacturing soft magnetic stainless steel wire

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326207B2 (en) * 2013-09-20 2018-05-16 太陽誘電株式会社 Magnetic body and electronic component using the same
CN106636909A (en) * 2017-01-13 2017-05-10 南京理工大学 Corrosion-resistant soft magnetic ferrite stainless steel
CN107012401A (en) * 2017-04-07 2017-08-04 邢台钢铁有限责任公司 A kind of low-carbon ferrite soft-magnetic stainless steel and its production method
CN110212712B (en) * 2017-07-15 2021-09-07 芜湖乾凯材料科技有限公司 Low-stress motor iron core and preparation method thereof
CN108637032B (en) * 2018-04-18 2021-01-01 苏州启航不锈钢制品有限公司 Zero-magnetism spring fine line and production processing technology thereof
WO2021166797A1 (en) * 2020-02-19 2021-08-26 日鉄ステンレス株式会社 Rod-shaped electromagnetic stainless steel material
KR20230059480A (en) * 2021-10-26 2023-05-03 주식회사 포스코 Ferritic stainless steel with improved magnetic properties and the method for manufacturing the same
CN115786804B (en) * 2022-11-28 2023-11-10 江阴华新特殊合金材料有限公司 Low-Cr soft magnetic stainless steel and control method of structure thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131613A (en) * 1978-04-03 1979-10-12 Central Glass Co Ltd Metal wire reinforced glass plate
JP2000160229A (en) * 1998-11-20 2000-06-13 Nisshin Steel Co Ltd Production of ferritic stainless steel excellent in ridging resistance
JP3534731B2 (en) * 2000-12-15 2004-06-07 日立金属株式会社 Glass reinforcing wire and glass encapsulating it
JP4519543B2 (en) * 2004-07-01 2010-08-04 新日鐵住金ステンレス株式会社 Low cost stainless steel wire having magnetism with excellent corrosion resistance, cold workability and toughness, and method for producing the same
JP4675771B2 (en) * 2005-12-15 2011-04-27 新日鐵住金ステンレス株式会社 Ferritic stainless steel wire for glass encapsulation
JP5390175B2 (en) * 2007-12-28 2014-01-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent brazeability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471918A (en) * 2020-03-30 2020-07-31 山西太钢不锈钢股份有限公司 Soft magnetic stainless steel and method for manufacturing soft magnetic stainless steel wire
CN111471918B (en) * 2020-03-30 2021-08-27 山西太钢不锈钢股份有限公司 Soft magnetic stainless steel and method for manufacturing soft magnetic stainless steel wire

Also Published As

Publication number Publication date
JP2013185183A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5872334B2 (en) Soft magnetic stainless steel fine wire and method for producing the same
JP6302722B2 (en) High-strength duplex stainless steel wire excellent in spring fatigue characteristics, its manufacturing method, and high-strength duplex stainless steel wire excellent in spring fatigue characteristics
JP7221474B6 (en) Non-magnetic austenitic stainless steel and its manufacturing method
JP4616935B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
CN113015818B (en) High strength non-magnetic austenitic stainless steel and method for manufacturing same
JP6370275B2 (en) Damping ferritic stainless steel material and manufacturing method
JP6782601B2 (en) High-strength stainless steel wire with excellent warmth relaxation characteristics, its manufacturing method, and spring parts
EP3625808B1 (en) Fe-si base alloy and method of making same
CN107923016A (en) The damping ferrite-group stainless steel material of high Al content and manufacture method
JP2014185367A (en) Stainless steel wire excellent in twisting processability and manufacturing method therefor, and stainless steel wire and manufacturing method therefor
JP4589747B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, its manufacturing method and strain relief annealing method
JP6560881B2 (en) Extremely low permeability stainless steel wire, as well as steel wire and deformed wire with excellent durability
JP2003301245A (en) Precipitation hardening soft magnetic ferritic stainless steel
JP5416452B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and manufacturing methods thereof
WO2019131099A1 (en) Hot-rolled steel sheet and method for manufacturing same
WO2019097691A1 (en) Austenitic stainless steel sheet and method for producing same
JP2013049918A (en) Electromagnetic stainless steel and method of manufacturing the same
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP4772703B2 (en) Electromagnetic soft iron parts having excellent magnetic properties, bar wires for electromagnetic soft iron parts, and manufacturing method thereof
KR20060125820A (en) High silicon steel and its manufacture process
CN112853228B (en) Cold-rolled electromagnetic pure iron with high strength and high magnetic performance and manufacturing method thereof
CN112877615B (en) High-magnetic-induction iron-based amorphous soft magnetic alloy and preparation method thereof
JP6686796B2 (en) Fe-Ni alloy, soft magnetic material, soft magnetic material, and method for manufacturing soft magnetic material
JPH0653903B2 (en) Ni-Fe system high permeability magnetic alloy

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160113

R150 Certificate of patent or registration of utility model

Ref document number: 5872334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250