JPH0653903B2 - Ni-Fe system high permeability magnetic alloy - Google Patents

Ni-Fe system high permeability magnetic alloy

Info

Publication number
JPH0653903B2
JPH0653903B2 JP1256383A JP25638389A JPH0653903B2 JP H0653903 B2 JPH0653903 B2 JP H0653903B2 JP 1256383 A JP1256383 A JP 1256383A JP 25638389 A JP25638389 A JP 25638389A JP H0653903 B2 JPH0653903 B2 JP H0653903B2
Authority
JP
Japan
Prior art keywords
magnetic
present
alloy
permeability
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1256383A
Other languages
Japanese (ja)
Other versions
JPH0375327A (en
Inventor
正 井上
正行 木下
智良 大北
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to DE69009317T priority Critical patent/DE69009317T2/en
Priority to EP90901881A priority patent/EP0407608B1/en
Priority to PCT/JP1990/000067 priority patent/WO1990008201A1/en
Publication of JPH0375327A publication Critical patent/JPH0375327A/en
Publication of JPH0653903B2 publication Critical patent/JPH0653903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) 本発明は、Ni−Fe系高透磁率磁性合金に係り、その磁気
特性を改良し、特に直流及び低周波域での透磁率などの
磁気特性及びシールド性能の優れた該磁性合金に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION "Object of the Invention" (Industrial field of application) The present invention relates to a Ni-Fe-based high-permeability magnetic alloy, which has improved magnetic characteristics, and particularly in a direct current and a low frequency range. The present invention relates to the magnetic alloy having excellent magnetic properties such as magnetic permeability and shielding performance.

(従来の技術) JIS PC相当のNi−Fe系磁性合金は、現在磁気ヘッドケー
スおよび各種コア、変成磁心、各種磁気シールド材など
のようにその利用範囲が極めて広い磁性材料である。即
ちこのようなPCパーマロイは高磁性率で、低保磁力で
あることが特徴であり、今日実用化されているものは、
80%Ni−5%Mo−Fe(スーパーマロイ)や、77%Ni
−5%Cu−4%Mo−Fe(Mo、Cuパーマロイ)などであ
り、それら合金で通常得られる透磁率のレベルは、初透
磁率(以下μiという)が150,000 、最大透磁率(以下
μmという)が300,000 程度である。
(Prior Art) Ni-Fe magnetic alloys equivalent to JIS PC are magnetic materials that have a very wide range of applications, such as magnetic head cases, various cores, metamorphic magnetic cores, and various magnetic shield materials. That is, such PC permalloy is characterized by high magnetic permeability and low coercive force.
80% Ni-5% Mo-Fe (supermalloy) and 77% Ni
-5% Cu-4% Mo-Fe (Mo, Cu permalloy), etc., and the level of magnetic permeability usually obtained with these alloys is that the initial magnetic permeability (hereinafter referred to as μi) is 150,000 and the maximum magnetic permeability (hereinafter referred to as μm). ) Is about 300,000.

ところが昨今におけるエレクトロニクスの発達から各種
機器の小型高性能化が進み、上記したような磁性合金の
特性についてもより一層の向上が望まれている。即ちこ
のような要求に対して上記成分系の磁性合金における磁
気特性を不純物元素の低減およびCrの添加により向上さ
せた特開昭62-227053 および特開昭62-227054 が開発さ
れている。
However, due to recent advances in electronics, miniaturization and high performance of various devices have progressed, and further improvement in the characteristics of magnetic alloys as described above is desired. That is, in order to meet such demands, Japanese Patent Laid-Open Nos. 62-227053 and 62-227054 have been developed in which the magnetic properties of the above-described magnetic alloys are improved by reducing impurity elements and adding Cr.

又特開昭63-149361 では上記成分系の合金に製造時の熱
間加工性を改善するためBを添加した材料において、磁
性焼鈍時に脱Bを行い磁性特性を改善することが発表さ
れている。
Further, Japanese Patent Application Laid-Open No. 63-149361 discloses that in a material in which B is added to the alloy of the above-mentioned component system in order to improve hot workability during manufacturing, B is removed during magnetic annealing to improve magnetic properties. .

一方、上記成分系ではNiが約80wt%程度含まれていて高
価なため、成分系を根本的に見直し、Niを低減し、代り
にNiより安価なCu、Mnを添加して高い初透磁率を達成し
た特公昭62-13420、更にはこの特公昭62-13420の技術に
加えて適量のAl添加を行い酸化物系介在物を減少し磁気
特性を高めるという特開昭63-247336および特開昭63-24
7339の技術も開発されている。特にこれら特開昭63-247
336および特開昭63-247339 の提案による合金のμiは
最高で426,000 という高いレベルである。
On the other hand, in the above component system, Ni is contained at about 80 wt% and is expensive, so the component system was fundamentally reviewed, Ni was reduced, and instead, Cu and Mn, which are cheaper than Ni, were added to increase the initial permeability. In addition to the technique of JP-B-62-13420, which has achieved the above-mentioned characteristics, JP-A-63-247336 and JP-A-63-247336 in which an appropriate amount of Al is added in addition to the technique of JP-B-62-13420 to reduce oxide inclusions and enhance magnetic properties. Sho 63-24
7339 technology is also being developed. In particular, these JP-A-63-247
The μi of alloys proposed by 336 and JP-A-63-247339 is as high as 426,000.

上述のような磁気特性向上の要望に加え、最近では所要
の特性をより低コストで製造することも求められてお
り、この観点からは、特開平1-100,232 の技術も提案さ
れている。すなわち、この技術は通常のMoスーパーマロ
イにSiを1〜4wt%添加し、磁気焼鈍温度を約1030℃以
下というような比較的低い温度によっても充分に満足す
る透磁率を得ることを特徴としている。
In addition to the above-mentioned demands for improving the magnetic properties, it has recently been required to manufacture the required properties at a lower cost. From this viewpoint, the technique disclosed in JP-A-1-100,232 has been proposed. That is, this technique is characterized by adding 1 to 4 wt% of Si to ordinary Mo supermalloy and obtaining a sufficiently satisfactory magnetic permeability even at a relatively low magnetic annealing temperature of about 1030 ° C or less. .

(発明が解決しようとする課題) 前記した特開昭62-227053 および同227054で特徴として
いる不純物低減、Cr添加によっても最終の水素雰囲気で
の熱処理(1100℃×3時間)後の直流磁気特性は、例え
ばμiで高々100,000 であり、それ以上の磁気特性が要
求される用途に対しては不適とならざるを得ない。
(Problems to be Solved by the Invention) DC magnetic characteristics after the final heat treatment (1100 ° C. × 3 hours) in a hydrogen atmosphere even with the reduction of impurities and the addition of Cr, which are the features of JP-A-62-227053 and 227054. Is, for example, at most 100,000 in μi, and is inevitably unsuitable for applications in which magnetic characteristics higher than that are required.

また特開昭62-227054 の提案では、通常のNi−Fe−Mo系
またはNi−Fe−Mo−Cu系の成分に新たにCrを添加するた
めコスト高となる。一方特開昭62-227053 の提案ではこ
のCr添加によりコスト高に加え、Mnを通常レベルより高
くする(1.2〜10wt%とする)ため熱間加工性が極
めて悪くなるという製造上の問題も有している。
Further, in the proposal of JP-A-62-227054, since Cr is newly added to the usual Ni-Fe-Mo-based or Ni-Fe-Mo-Cu-based component, the cost becomes high. On the other hand, according to the proposal of Japanese Patent Laid-Open No. 62-227053, in addition to the high cost due to the addition of Cr, the Mn is made higher than the normal level (1.2 to 10 wt%), so that the hot workability is extremely deteriorated. I also have.

なお上記した2つの提案では何れもBの添加が行われて
いるが、この場合のB添加は熱間加工性および打抜き性
を改善するためのもので、これらの提案で意図するBの
添加だけでは磁気特性の明らかな向上は見られず、逆に
劣化するケースも認められる。
In both of the above two proposals, B is added, but the addition of B in this case is to improve hot workability and punchability. Only the addition of B intended in these proposals is performed. However, no clear improvement in magnetic properties was observed, and in some cases deterioration was observed.

更に、特開昭63-149361 では磁気特性を脱B処理により
改善するものであるが、この処理の後で得られる磁気特
性はμiで高々75,000であり、このレベルは通常のNi−
Fe−Mo−Cu系合金で得られるレベルである。従ってこの
技術ではそれ以上の磁気特性が要求される用途に対して
は不適とならざるを得ない。
Further, in Japanese Patent Laid-Open No. 63-149361, the magnetic characteristics are improved by the B-removing treatment, but the magnetic characteristics obtained after this treatment are at most 75,000 μi, which is a normal Ni- level.
This is the level obtained with Fe-Mo-Cu alloys. Therefore, this technique is inevitably unsuitable for applications requiring higher magnetic properties.

一方特公昭62-13420、特開昭63-247336 および同247339
の技術によっては高μiのパーマロイを提供し得るが、
Mn、Cuを高めるため製造時の熱間加工性が本質的に低く
なるという製造上の問題点を有している。又この提案で
得られる合金の飽和磁束密度は、例えばB10(10エルス
テッドでの磁束密度)で見ると、高々5000ガウスであ
り、スーパーマロイやMo、CuパーマロイにおけるB10
7000〜8000ガウスに比較すると低い。このことは、この
合金がスーパーマロイやMo、Cuパーマロイに比し低い外
部磁場で材料内の磁束が飽和してしまうことを意味し、
シールド材料として用いる場合は外部磁場が比較的高い
場所での使用は不適とならざるを得ない。
On the other hand, JP-B-62-13420, JP-A-63-247336 and 247339.
Can provide high μi permalloy,
Since Mn and Cu are increased, there is a manufacturing problem that hot workability during manufacturing is essentially lowered. The saturation magnetic flux density of the alloy obtained by this proposal is, for example, at most 5000 gauss when viewed in terms of B 10 (magnetic flux density at 10 oersteds), and B 10 of B 10 in supermalloy, Mo, and Cu permalloy.
Low compared to 7,000-8,000 gauss. This means that this alloy saturates the magnetic flux in the material with an external magnetic field lower than Supermalloy, Mo, and Cu Permalloy,
When used as a shield material, it must be used in a place where the external magnetic field is relatively high.

また、特開平1-100232の技術では、Siを多く添加するた
め、加工性が劣化し、製造性が悪くなるという問題を有
している。また、この技術では50Hzのシールド性能は、
所要のレベルを有してはいるが、直流でのシールド性能
がやや劣るという欠点を有していた。
Further, the technique disclosed in Japanese Patent Laid-Open No. 1-100232 has a problem that since a large amount of Si is added, workability deteriorates and manufacturability deteriorates. Also, with this technology, the shielding performance of 50 Hz is
Although it had the required level, it had a drawback that the shield performance at DC was slightly inferior.

「発明の構成」 (課題を解決するための手段) 本発明は上記したような従来のものにおける問題点を解
決するように検討を重ねて創案されたものであって、直
流及び低周波域での透磁率などの磁気特性及びシールド
性能を本質的に向上せしめ、さらには、従来と同じレベ
ルの要求特性を得るのに磁気焼鈍を従来よりも100℃
程度低温化することも可能とすることを目的として、磁
気特性に対するNi、Mo、Cu、Feなどの主要成分による影
響を更に検討し、そこで得られた特性と成分の関係をB
添加系にまで拡大して実験、研究を行った結果、本発明
を完成した。即ち本発明は以下の如くである。
“Structure of the Invention” (Means for Solving the Problems) The present invention was devised through repeated studies to solve the above-mentioned problems in the conventional ones, and has been proposed in DC and low frequency regions. In order to essentially improve the magnetic properties such as magnetic permeability and the shielding performance, and to obtain the required properties at the same level as before, magnetic annealing was performed at 100 ° C
For the purpose of enabling to lower the temperature to some extent, the effect of the main components such as Ni, Mo, Cu and Fe on the magnetic properties was further investigated, and the relation between the obtained properties and the components was
The present invention has been completed as a result of conducting experiments and studies by expanding to an addition system. That is, the present invention is as follows.

(1) Ni:77.5〜79.5wt%、Mo:3.8〜4.6wt%、 Cu:1.8〜2.5wt%、Mn:0.1〜1.10wt%、 P:0.010 wt%以下、S:0.0020wt%以下、 O:0.0030wt%以下、N:0.0010wt%以下、 C:0.020 wt%以下 を含有し、かつBを、 の範囲内で含有し、残部は基本的にFeからなり、しかも
Ni、Mo、Cu、Mn、Feが、 を満たす範囲でそれぞれ含有されたことを特徴とするNi
−Fe系高透磁率磁性合金。
(1) Ni: 77.5 to 79.5 wt%, Mo: 3.8 to 4.6 wt%, Cu: 1.8 to 2.5 wt%, Mn: 0.1 to 1.10 wt%, P: 0.010 wt% or less, S: 0.0020 wt% or less, O: 0.0030 wt% or less, N: 0.0010 wt% or less, C: 0.020 wt% or less, and B: Contained within the range of, and the balance basically consists of Fe, and
Ni, Mo, Cu, Mn, Fe Ni which is contained in a range satisfying
-Fe-based high-permeability magnetic alloy.

(2) 前項に記載の成分組成を有し、かつ磁気焼鈍後で
オーステナイト粒界およびその近傍でのB量が10〜5
0atm %であることを特徴とするNi−Fe系高透磁率磁性
合金。
(2) It has the composition as described in the preceding paragraph, and the amount of B in the austenite grain boundary and its vicinity is 10 to 5 after magnetic annealing.
Ni-Fe based high permeability magnetic alloy characterized by being 0 atm%.

(作用) 本発明によるものは、不純物元素の適正制御のもとで、
Ni、Mo、Cu、Mn、FeおよびBの各添加量を適正化し、か
つ各量の成分バランスを特定範囲内に制御することによ
り従来の同系統によるMo、Cuパーマロイやスーパーマロ
イで見られなかった高い透磁率及びシールド性を達成
し、かつ従来と同じレベルの要求特性を得るのに磁気焼
鈍温度を従来よりも100℃程度低温化することも可能
とするものである。
(Operation) According to the present invention, under proper control of impurity elements,
It is not found in conventional Mo, Cu permalloy or supermalloy by the same system by optimizing the addition amount of Ni, Mo, Cu, Mn, Fe and B and controlling the component balance of each amount within a specific range. In addition, it is possible to lower the magnetic annealing temperature by about 100 ° C. as compared with the conventional one in order to achieve high magnetic permeability and shield property and obtain the required characteristics at the same level as the conventional one.

即ち、先ず本発明で意図する磁気特性の向上は合金中不
純物レベルの制御のもとで達成され、P、S、O、N、
Cの限度理由はwt%(以下単に%という)で以下の如く
である。
That is, first, the improvement of the magnetic properties intended in the present invention is achieved under the control of the impurity level in the alloy, and P, S, O, N,
The reason for the limit of C is wt% (hereinafter simply referred to as%) and is as follows.

Pは、本発明の対象とする高Ni−Fe合金の熱間加工性に
有害であり、かつ最終の水素焼鈍時における立方体集合
組織の形成傾向を弱める元素であって、このPが0.010
%を越えると透磁率が劣化し、又熱間加工性も悪くなる
ため、上限を0.010 %とした。なお下限は溶製上の経済
性から好ましくは0.0010%である。
P is an element that is detrimental to the hot workability of the high Ni-Fe alloy targeted by the present invention, and weakens the tendency to form a cubic texture during the final hydrogen annealing, and this P is 0.010.
%, The magnetic permeability deteriorates and the hot workability also deteriorates, so the upper limit was made 0.010%. The lower limit is preferably 0.0010% from the economical aspect of melting.

Sは、熱間加工性に有害であり、かつ硫化物の形成を通
じて最終の水素焼鈍時における粒成長を阻害し、焼鈍後
の粒径が小さくなるため透磁率が向上しないという理由
から磁気特性に対しては極めて有害な元素である。この
S量が0.0020%を超えると、以下に示すようなNi、Mo、
Cu、Fe、B量の適正化を計っても本発明で目的とするよ
うな磁気特性の向上が計れず、又熱間加工性が著しく悪
くなるため0.0020%を上限とすることが必要である。な
お直流及び交流での透磁率の異なる向上のためには0.00
05%以下がより望ましい。
S is detrimental to hot workability, and it inhibits grain growth during final hydrogen annealing through the formation of sulfides, and the grain size after annealing is small, so magnetic permeability does not improve. On the other hand, it is an extremely harmful element. If the S content exceeds 0.0020%, Ni, Mo,
Even if the Cu, Fe, and B contents are optimized, the magnetic properties intended in the present invention cannot be improved, and the hot workability is significantly deteriorated, so 0.0020% is required as the upper limit. . In order to improve the permeability of DC and AC differently, 0.00
Less than 05% is more desirable.

Oは、本発明で対象とする合金の中では酸化物系介在物
として存在し、その量が多いと最終の水素焼鈍時におけ
る粒成長を阻害し、焼鈍後の粒径が小さいため透磁率が
向上しないことから磁気特性に対し極めて有害な元素で
ある。即ちこのO量が0.0030%を超えると上記同様にN
i、Mo、Cu、Fe、B量の適正化を図っても本発明で意図
する磁気特性向上が計れないため0.0030%を上限と定め
た。なお、直流での透磁率の更なる向上のためには0.00
10%以下がより好ましい。
O exists as an oxide inclusion in the alloy targeted by the present invention, and if the amount thereof is large, it inhibits grain growth during the final hydrogen annealing, and since the grain size after annealing is small, the magnetic permeability is high. Since it does not improve, it is an extremely harmful element for magnetic properties. That is, if this O amount exceeds 0.0030%, N
Even if the amounts of i, Mo, Cu, Fe, and B are optimized, the magnetic properties intended in the present invention cannot be improved, so 0.0030% is set as the upper limit. In order to further improve the magnetic permeability at direct current, 0.00
10% or less is more preferable.

Nは、B添加を基本とした合金においては、Bの容易に
結合しBNを形成するため有効B量が低下する。また形
成されたBNにより磁気特性が著しく劣化せしめられる
などの理由により合金中に多く含有されると悪影響を及
ぼす。即ちこのNが0.0010%を超えると上記のような理
由から磁気特性劣化が著しくなるので0.0010%を上限と
した。なお、交流での透磁率の更なる向上のためには0.
0005%以下がより好ましい。
In an alloy based on the addition of B, N easily combines with B to form BN, so that the amount of effective B decreases. In addition, if a large amount is contained in the alloy for the reason that the formed BN causes the magnetic properties to be remarkably deteriorated, it has an adverse effect. That is, if this N exceeds 0.0010%, the magnetic properties deteriorate remarkably for the above reason, so 0.0010% was made the upper limit. In addition, in order to further improve the magnetic permeability with alternating current, 0.
0005% or less is more preferable.

Cは、本発明の対象合金の中では侵入型元素として存在
し、その量が多いと透磁率が低下するので磁気特性に対
して有害な元素であり、0.020 %を越えるとこのような
理由により磁気特性劣化が著しくなるため、.020 %を
上限と定めた。
C exists as an interstitial element in the target alloy of the present invention, and if it is present in a large amount, the magnetic permeability decreases, so it is an element harmful to the magnetic properties. If it exceeds 0.020%, C is for this reason. Since the deterioration of magnetic properties becomes remarkable, the upper limit was set at .020%.

さて、本発明では上記のような不純物元素の制御下にお
いて、Ni、Mo、Cu、FeおよびBの各添加量を適正化し、
又各量の成分バランスを特定範囲内として始めてその目
的が達成され、これらについては以下の如くである。
Now, in the present invention, under the control of the impurity elements as described above, the addition amounts of Ni, Mo, Cu, Fe and B are optimized,
The object is achieved by setting the component balance of each amount within a specific range, and these are as follows.

Niは、77.5〜79.5%の範囲では本発明の意図す
るような高い磁気特性及び高いシールド特性を得しめ
る。このNiが77.5%未満または79.5%を越える
と何れの場合においても透磁率が低下するので77.5
%を下限とし、79.5%を上限とした。
In the range of 77.5 to 79.5%, Ni can obtain high magnetic characteristics and high shielding characteristics intended by the present invention. If this Ni content is less than 77.5% or more than 79.5%, the magnetic permeability decreases in any case.
% Was the lower limit and 79.5% was the upper limit.

Moは、3.8〜4.6%の範囲内のときに本発明の目的
とする高い磁気特性及び高いシールド特性を達成し得
る。即ちMoが3.8%未満または4.6%を越えると透
磁率向上が達成されないので、3.8〜4.6%とする
ことが必要である。
Mo can achieve the high magnetic properties and high shielding properties aimed at by the present invention in the range of 3.8 to 4.6%. That is, if Mo is less than 3.8% or exceeds 4.6%, the improvement of magnetic permeability cannot be achieved, so it is necessary to set it to 3.8 to 4.6%.

Cuは、本発明の規定内にある合金において、後述するB
の存在のもとで直流磁気特性を飛躍的に向上させ、か
つ、交流の実効透磁率も向上させ、かつ交流(50Hz)
での角型性(Br/Bm)も向上させる効果を有する。この
ようなCuの効果はNi77.5〜79.5%、Mo:3.8
〜4.6%の時あらわれ、最適のCu量は、1.8〜2.
5%である。なお、Cuが1.8%未満ではこのようなCu
による特性向上が計れず、一方Cuが2.5%を超えると
逆に特性が劣化するため、Cuの範囲は1.8〜2.5%
と定めた。
Cu is an alloy which falls within the scope of the present invention, and is B described later.
In the presence of, the DC magnetic characteristics are dramatically improved, the effective magnetic permeability of AC is also improved, and AC (50Hz)
It also has the effect of improving the squareness (Br / Bm). The effect of Cu is 77.5 to 79.5% for Ni and Mo: 3.8.
Appears when the content is up to 4.6%, and the optimum Cu content is from 1.8 to 2.
5%. In addition, if Cu is less than 1.8%, such Cu
However, if Cu exceeds 2.5%, the characteristic deteriorates. Therefore, the range of Cu is 1.8-2.5%.
I decided.

Mnは、上記したMo、Cuと同様に本発明対象合金の磁性に
影響を及ぼす元素であり、このMnが1.10%以下でも本発
明で目的とする高透磁率を達成し得るが、1.10%を
超えると斯うした透磁率向上が達成されないので1.1
0%を上限とする。一方Mnが0.10%未満では熱間加
工性が劣化し、好ましくないので0.10%を下限とし
た。
Mn is an element that affects the magnetism of the alloy of the present invention like Mo and Cu described above, and even if this Mn is 1.10% or less, the high magnetic permeability targeted by the present invention can be achieved, but 1.10 If it exceeds%, such improvement in magnetic permeability cannot be achieved, so 1.1
The upper limit is 0%. On the other hand, if Mn is less than 0.10%, hot workability deteriorates, which is not preferable, so 0.10% was made the lower limit.

Bは、本発明で意図する高い透磁率を達成するためには
必須の元素である。
B is an essential element for achieving the high magnetic permeability intended in the present invention.

(〔B〕、〔N〕はそれぞれB、Nの合金中添加量、
%)が、0.0005〜0.0070%の範囲では本発明の目的を有
効に達成し得るが、0.0005%未満では透磁率が向上せ
ず、一方0.0070%を超えると透磁率が低くなるので、 の下限および上限をそれぞれ0.0005%、0.0070%と定め
た。
([B] and [N] are the addition amounts of B and N in the alloy,
%), The object of the present invention can be effectively achieved in the range of 0.0005 to 0.0070%, but if it is less than 0.0005%, the magnetic permeability does not improve, while if it exceeds 0.0070%, the magnetic permeability decreases. The lower and upper limits of 0.0005% and 0.0070% were set, respectively.

次に、上記した各成分の添加量の適正化のもとでNi、M
o、Cu、FeおよびBの成分バランスの適正化を図ること
が本発明で意図する特性向上のためには必要で、第1図
から第4図はそれぞれこれらの成分バランスを規定する
パラメーター(このパラメータをXとし、 とする)を横軸、B添加量を縦軸とした場合の各供試材
で得られる初透磁率、遮蔽度、1kHz での実効透磁率、
50Hzでの角型性を示しているが、この第1図から第4
図の中の供試材はすべてNi、Mo、Cu、Mn、B、P、S、
O、N、C量が本発明範囲内のものであって、熱間加工
後、冷延、焼鈍を繰返して作成した板厚0.5mmの薄板
サンプルより外径45mm、内径33mmのJISリングを
打抜いて試料とし、それらをパラジウム膜透過させ精製
した高純度水素気流中雰囲気下で、1100℃×3時間
の熱処理を行い、1100℃から650℃までの間を
100℃/hrで冷却し、その後は炉冷したものである。
遮蔽度は上記と同じ製造履歴を経た、板厚0.5mm、直
径50mm、長さ200mmの円筒にヘルムホルツコイルに
て外部磁場(H0)、500ミリガウスを円筒の軸方向
に対して直角方向にかけた場合の円筒内側中央部での内
部磁場H1を測定することにより求めた。図中の数字
(遮蔽度)はH/Hの値である。なお、測定に際し
ては、地磁気の影響が十分無視できるレベルまで磁気シ
ールドしたボックス内にて行った。1KHzの実効透磁率
は上記と同じ磁気焼鈍を経た板厚0.35mmのリングサ
ンプルを用い、5ミリエルステッドのインダクタンス透
磁率を測定することにより求め、50Hzでの角型性は実
効透磁率を測定したのと同じリングサンプルを用いて、
磁場0.1エルステッドでのBrとBmの比から求め
た。なお、Bmは0.1エルステッドの外部磁場を加え
たときの材料の中の磁束密度であり、Brは0.1エル
ステッドでの外部磁界を加えた状態から外部磁場を取り
去った時の磁束密度のことであり、以下単にBr,Bm
と記す。
Next, under the optimized addition amount of each component mentioned above, Ni, M
It is necessary to optimize the component balance of o, Cu, Fe and B in order to improve the characteristics intended in the present invention, and FIGS. 1 to 4 show the parameters that define these component balances (this Parameter is X, Where) is the horizontal axis and the amount of B added is the vertical axis, the initial magnetic permeability, the degree of shielding, and the effective magnetic permeability at 1 kHz obtained for each test material,
It shows the squareness at 50Hz, but it is
All test materials in the figure are Ni, Mo, Cu, Mn, B, P, S,
A JIS ring having an outer diameter of 45 mm and an inner diameter of 33 mm was prepared from a thin plate sample having a thickness of 0.5 mm, which was prepared by repeating hot rolling, cold rolling and annealing after the contents of O, N and C were within the scope of the present invention. After punching, the sample was heat-treated at 1100 ° C for 3 hours in an atmosphere of high-purity hydrogen gas that had been permeated with a palladium membrane and purified, and the temperature between 1100 ° C and 650 ° C
It was cooled at 100 ° C./hr and then furnace cooled.
The degree of shielding is the same as above, and a Helmholtz coil is applied to a cylinder with a plate thickness of 0.5 mm, a diameter of 50 mm, and a length of 200 mm, and an external magnetic field (H 0 ) is applied to the cylinder in a direction perpendicular to the axial direction of the cylinder. It was obtained by measuring the internal magnetic field H 1 at the center of the inner side of the cylinder. The numbers (blocking degree) in the figure are the values of H 0 / H 1 . The measurement was performed in a box that was magnetically shielded to a level where the effect of geomagnetism could be ignored. The effective magnetic permeability at 1 KHz is obtained by measuring the inductance magnetic permeability of 5 mOersted using a ring sample with a plate thickness of 0.35 mm that has been subjected to the same magnetic annealing as above, and the squareness at 50 Hz measures the effective magnetic permeability. Using the same ring sample I did,
It was calculated from the ratio of Br and Bm in a magnetic field of 0.1 Oersted. Bm is the magnetic flux density in the material when an external magnetic field of 0.1 oersted is applied, and Br is the magnetic flux density when the external magnetic field is removed from the state in which the external magnetic field of 0.1 oersted is applied. This is simply Br and Bm below.
Is written.

パラメータXが3.3〜3.8の範囲内で、かつ が0.0005〜0.0070%の範囲内で初透磁率μiが350,000
以上と高い値を示しているのに対し、Xが3.3未満ま
たは3.8を超える場合ではμiが200,000 未満と低い
レベルにある。またXが3.3〜3.8の範囲でも、 が0.0005未満ではμiが200,000 未満と向上が見られ
ず、一方この が0.0070%を超える場合には逆にμiは低下している。
また第2図より遮蔽度も本発明範囲にて300以上の高
い値を示し、本発明範囲以外の材料での遮蔽度より高い
値を示している。
Parameter X is in the range of 3.3 to 3.8, and Is 0.0005 to 0.0070% and the initial permeability μi is 350,000.
While the values are high as above, when X is less than 3.3 or more than 3.8, μi is at a low level of less than 200,000. Moreover, even if X is in the range of 3.3 to 3.8, Is less than 0.0005, μi is less than 200,000, showing no improvement. On the contrary, when the ratio exceeds 0.0070%, μi decreases.
Further, from FIG. 2, the shielding degree also shows a high value of 300 or more in the range of the present invention, which is higher than the shielding degree in the materials other than the range of the present invention.

第3図は実効透磁率についてのものであるが、本発明範
囲にて6500以上と高い値を示し、本発明以外の材料
より高い値を示している。又第4図は50Hzでの角型性
においても本発明範囲にて0.90以上と高い値を示
し、本発明以外の材料より高い値を示している。これら
のことより本発明では高いμi及び高い遮蔽度、高い実
効透磁率、高い角型性が得られる成分バランスとしてN
i、Mo、Cu、Mn、Bの上記のような本発明範囲とし、し
かもパラメータXを3.3〜3.8の範囲内と規定し
た。
FIG. 3 shows the effective magnetic permeability, which is as high as 6500 or more in the range of the present invention, which is higher than that of the materials other than the present invention. Further, FIG. 4 shows that the squareness at 50 Hz is as high as 0.90 or more in the range of the present invention, which is higher than that of the materials other than the present invention. From these facts, in the present invention, as a component balance that obtains high μi, high shielding degree, high effective magnetic permeability, and high squareness, N
The range of i, Mo, Cu, Mn, B of the present invention is as described above, and the parameter X is defined as within the range of 3.3 to 3.8.

ところで本発明者等は上記のような本発明合金を用いて
磁気特性を更に高めるための検討を重ねた結果、最終の
磁性を高めるための熱処理後で合金のオーステナイト結
晶粒界およびその近傍でのB量が特定範囲のときに初透
磁率μi及び遮蔽度が更に向上する事実を確認した。即
ち第5図(a)〜(d)はそれぞれ本発明成分範囲の合金(後
述する実施例1の発明合金3)のμi遮蔽度、実効透磁
率、角型性とオーステナイト粒界およびその近傍でのB
量の関係を示すもので、μiは上記合金と熱間加工後、
冷延、焼鈍を繰返して作製した板厚0.5mmの薄板サン
プルより外径45mm、内径33mmのJIS リングを打抜
き、これを試料としてパラジウム膜を透過させ精製した
高純度水素気流中雰囲気下で1100℃で3時間の熱処理を
行い、1100℃から650℃までの間を50〜400℃/
hrの範囲内における一定冷却速度で冷却し、その後は炉
冷したサンプルによりμiを測定した結果をオーステナ
イト粒界およびその近傍でのB量との関係で整理して示
す。即ちオーステナイト粒界およびその近傍でのB量は
μiを測定した薄板サンプルと同じ熱加工履歴を経たサ
ンプルよりオージエ観察用ステージに取付け可能なノッ
チ入り試験片を切出しカソード電解法により電解水素を
添加し、粒界脆化処理を施して粒界破壊を真空中で行
い、顕われた粒界破面の成分分析をオージエ分光法によ
り異なる10点について実施し、平均したものを求めた
のもで、単位はatm%である。遮蔽度は上記と同じ製造
履歴を経た板厚0.5mm、直径50mm、長さ200mmの
円筒にヘルムホルツコイルにて外部磁場(H0)、50
0ミリガウスを円筒軸方向に対して直角方向にかけた場
合の円筒内側中央部での内部磁場Hを測定することに
より求めた。遮蔽度(=H/H)の測定に際して
は、地磁気の影響が十分無視できるレベルまで磁気シー
ルドしたボックス内にて行った。1KHz の実効透磁率は
上記と同じ磁気焼鈍を経た板厚0.35mmのリングサン
プルを用い、5ミリエルステッドでのインダクタンス透
磁率を測定することにより求め、50Hzでの角型性は実
効透磁率を測定したと同じリングサンプルを用いて磁場
0.1エルステッドでのBrとBmの比から求めた。
By the way, the inventors of the present invention conducted a study to further enhance the magnetic properties by using the alloy of the present invention as described above, and as a result, after the heat treatment for enhancing the final magnetism, the austenite grain boundary of the alloy and its vicinity It was confirmed that the initial magnetic permeability μi and the degree of shielding were further improved when the amount of B was in the specific range. That is, FIGS. 5 (a) to 5 (d) respectively show the μi shielding degree, the effective magnetic permeability, the squareness and the austenite grain boundary of the alloy within the composition range of the present invention (inventive alloy 3 of Example 1 described later) and the vicinity thereof. B
It shows the relationship of the amount, μi after hot working with the above alloy,
A JIS ring with an outer diameter of 45 mm and an inner diameter of 33 mm was punched out from a thin plate sample with a thickness of 0.5 mm prepared by repeating cold rolling and annealing, and using this as a sample, a palladium membrane was made to permeate through it, and was refined through a palladium membrane to produce 1100 in an atmosphere of a high-purity hydrogen stream. Heat treatment for 3 hours at ℃, 50 ~ 400 ℃ / from 1100 ℃ to 650 ℃
The results obtained by measuring μi with a sample cooled at a constant cooling rate within the range of hr and then cooled in a furnace are summarized in relation to the B content in the austenite grain boundaries and in the vicinity thereof. That is, the amount of B in the austenite grain boundaries and in the vicinity thereof was cut out from a sample having a thermal processing history similar to that of a thin plate sample for which μi was measured, a notched test piece that could be attached to an auger observation stage was cut, and electrolytic hydrogen was added by the cathode electrolysis method. , The grain boundary embrittlement treatment was performed to perform the grain boundary fracture in vacuum, and the component analysis of the exposed grain boundary fracture surface was performed for 10 different points by Auger spectroscopy, and the average was obtained. atm%. The degree of shielding is the same as the above manufacturing history. A cylinder with a plate thickness of 0.5 mm, a diameter of 50 mm and a length of 200 mm is applied to a Helmholtz coil with an external magnetic field (H 0 ), 50
It was determined by measuring the internal magnetic field H 1 at the center of the inside of the cylinder when 0 milligauss was applied in the direction perpendicular to the axis of the cylinder. The degree of shielding (= H 0 / H 1 ) was measured in a box that was magnetically shielded to a level where the effect of geomagnetism could be sufficiently ignored. The effective magnetic permeability at 1 KHz is obtained by measuring the inductance magnetic permeability at 5 mOersted using a ring sample with a plate thickness of 0.35 mm that has been subjected to the same magnetic annealing as above, and the squareness at 50 Hz is the effective magnetic permeability. Using the same ring sample as that measured, it was determined from the ratio of Br and Bm in a magnetic field of 0.1 Oersted.

第5図(a)のμiは、オーステナイト粒界およびその近
傍でのB量が10〜50atm %の範囲内で向上している
ことは明かであり、特に15〜40atm %の範囲内では
480,000 以上である。このようなμiの向上原因は明ら
かでないが、粒界およびその近傍で適量のBが存在する
ことより粒界部分の性状を変え、この変化が磁気特性、
特に初透磁率といった磁壁の移動のしやすさ、又は回転
磁化のしやすさが求められる特性値に対して良い影響を
与えているものと推察される。このような結果から本発
明成分範囲の合金で、より高いμi及び高い遮蔽度と比
較的高い実効透磁率、比較的高い角型性を合わせ持つ条
件として磁気焼鈍後のオーステナイト粒界およびその近
傍でのB量を10〜50atm %とすることを定めた。
It is clear that μi in FIG. 5 (a) is improved in the amount of B in the austenite grain boundary and its vicinity in the range of 10 to 50 atm%, particularly in the range of 15 to 40 atm%.
It is more than 480,000. The cause of such an improvement in μi is not clear, but the presence of an appropriate amount of B at and near the grain boundaries changes the properties of the grain boundaries, and this change causes
In particular, it is presumed that the ease of movement of the domain wall, such as the initial magnetic permeability, or the ease of rotational magnetization has a good influence on the required characteristic value. From these results, alloys in the composition range of the present invention have a higher μi, a higher degree of shielding, a relatively high effective magnetic permeability, and a relatively high squareness as a condition to combine austenite grain boundaries after magnetic annealing and the vicinity thereof. B content of 10 to 50 atm% was determined.

なお本発明で対象とするNi−Fe合金では、熱間加工性が
劣っている。この加工性を改良する方法としては微量の
B添加と微量のCa添加を組合わせることがしばしば行わ
れるが、斯うした微量Ca添加を行っても上述したような
本発明の構成要件を満せば本発明の目的とする初透磁率
の向上は達成される。又本発明においては上記したよう
な成分組成の他、鉄合金とする場合に不可避的に含まれ
るSi、Alについても、詳しく言及しないが、例えばSi:
0.3%以下、Al:0.03%以下の範囲内での含有が
許容される。
The Ni-Fe alloy targeted by the present invention is inferior in hot workability. As a method of improving the workability, a combination of a small amount of B and a small amount of Ca is often combined, but even if such a small amount of Ca is added, the constituent requirements of the present invention as described above can be satisfied. For example, the improvement of the initial magnetic permeability which is the object of the present invention is achieved. Further, in the present invention, in addition to the above-described component composition, Si and Al inevitably included in the case of forming an iron alloy will not be described in detail.
Content within the range of 0.3% or less and Al: 0.03% or less is allowed.

(実施例) 本発明によるものの具体的な実施例について説明する
と、以下の如くである。
(Example) A specific example of the present invention will be described below.

実施例1. 次の第1表に示すような科学成分を有する高Ni−Fe合金
の本発明合金および比較合金を真空溶解にて溶製し、こ
れを熱間加工、脱スケールを施し、冷延素材を準備し
た。Si含有量はいずれの供試材でも0.05〜0.15
%範囲内である。又これらの素材は次いで冷延加工、焼
鈍して0.5mmの薄板サンプルとし、これらより外径が
45mmで内径33mmのJISリングを打抜き試料とし
た。又磁気特性をこれらの試料について、パラジウム膜
を透過させ精製した高純度水素気流中雰囲気下において
1100℃で3時間の熱処理を行い、1100℃〜65
0℃の間は400℃/hrにて冷却し、その後は炉冷させ
て測定し、μiを0.005 エルステッドでの透磁率として
求めた結果及び遮蔽度、実効透磁率、50Hzでの角型
性、保磁力、磁束密度の結果を併せて第1表に示した。
Example 1 Inventive alloys and comparative alloys of high Ni-Fe alloys having the chemical composition as shown in the following Table 1 were melted by vacuum melting, which was hot worked, descaled, and cooled. Prepared rolled material. The Si content is 0.05 to 0.15 in any of the test materials.
Within the% range. Further, these materials were then cold rolled and annealed to form thin plate samples of 0.5 mm, and JIS rings having an outer diameter of 45 mm and an inner diameter of 33 mm were punched out from these samples. The magnetic properties of these samples were heat-treated at 1100 ° C. for 3 hours in an atmosphere of high-purity hydrogen gas that had been purified by passing through a palladium film, and then subjected to heat treatment at 1100 ° C. to 65 ° C.
It was cooled at 400 ° C / hr during 0 ° C, then cooled in a furnace and measured, and the result obtained by measuring μi as the magnetic permeability at 0.005 Oersted and the degree of shielding, effective magnetic permeability, squareness at 50 Hz, The results of coercive force and magnetic flux density are also shown in Table 1.

遮蔽度は上記と同じ製造履歴を経た板厚0.5mm、直径
50mm、長さ200mmの円筒にヘルムホルツコイルにて
外部磁場(H)、500ミリガウスを円筒の軸方向に
対して直角方向にかけた場合の円筒内側中央部での内部
磁場Hを測定することにより求めた。遮蔽度(=H
/H)の測定に際しては、地磁気の影響が十分無視で
きるレベルまで磁気シールドしたボックス内にて行っ
た。
The degree of shielding was the same as the above manufacturing history. A cylinder with a plate thickness of 0.5 mm, a diameter of 50 mm, and a length of 200 mm was applied to a cylinder with a Helmholtz coil with an external magnetic field (H 0 ), and 500 milligauss was applied in the direction perpendicular to the axial direction of the cylinder. In this case, it was obtained by measuring the internal magnetic field H 1 at the central portion inside the cylinder. Shielding degree (= H 0
/ H 1 ) was measured in a box that was magnetically shielded to a level where the influence of geomagnetism could be sufficiently ignored.

1kHz の実効透磁率は上記と同じ磁気焼鈍を経た板厚
0.35mmのリングサンプルを用い、5ミリエルステッ
ドでのインダクタンス透磁率を測定することにより求
め、50Hzでの角型性は実効透磁率を測定したと同じサ
ンプルリングを用いて磁場0.1エルステッドでのBr
とBmの比から求めた。
The effective permeability at 1 kHz is obtained by measuring the inductance permeability at 5 mOersted using a ring sample with a thickness of 0.35 mm that has been subjected to the same magnetic annealing as above, and the squareness at 50 Hz is the effective permeability. Br at 0.1 Oersted magnetic field using the same sample ring as measured
And Bm.

なお、磁束密度及び保磁力は、初透磁率を求めたと同じ
サンプルリングにて測定した。磁束密度はB1000は10
00A/mの外部磁界を加えた時の磁束密度であり、保
磁力は1000A/mの外部磁界を加え次に反転し、磁
束密度を0とする磁界の強さである。
The magnetic flux density and the coercive force were measured using the same sample ring as that used for obtaining the initial magnetic permeability. The magnetic flux density is B 1000 is 10
It is the magnetic flux density when an external magnetic field of 00 A / m is applied, and the coercive force is the strength of the magnetic field at which the magnetic flux density is 0 after the external magnetic field of 1000 A / m is applied and then the magnetic field is reversed.

即ち合金No.1とNo.2の各材は、C、P、S、O、N、
B、Ni、Mo、CuおよびMn量が何れも本発明成分範囲内の
もので、μiは350,000 以上の高い透磁率を示してお
り、遮蔽度も約300以上と高い値を示している。又、
実効透磁率、50Hzでの角型性、保磁力も比較例に比べ
て優れたレベルとなっている。
That is, alloy No. 1 and No. 2 materials are C, P, S, O, N,
The amounts of B, Ni, Mo, Cu and Mn are all within the range of the composition of the present invention, and μi shows a high magnetic permeability of 350,000 or more, and the shielding degree shows a high value of about 300 or more. or,
The effective magnetic permeability, squareness at 50 Hz, and coercive force are also at superior levels compared to the comparative example.

又、合金No.3とNo.4は、C、P、S、O、N、B、N
i、Mo、CuおよびMn量が本発明成分範囲内の合金であっ
て、かつ熱間加工性の向上を意図して微量のCa添加を行
った合金であるが、この場合においても各特性値は上記
した合金No.1およびNo.2と略同じレベルにある。即ち
このように微量Ca添加が行われた合金においても本発明
の効果は十分に発揮されることが確認された。
Alloy Nos. 3 and 4 are C, P, S, O, N, B, N
i, Mo, Cu and Mn amount is an alloy within the present invention component range, and is an alloy with a trace amount of Ca added with the intention of improving hot workability, but in this case, each characteristic value Is about the same level as alloys No. 1 and No. 2 described above. That is, it was confirmed that the effect of the present invention is sufficiently exerted even in the alloy in which the trace amount of Ca is added as described above.

また、合金No.5材ではC、S、O、Nがより好ましい
レベルまで低減されており、各特性値はNo.1〜No.4の
各材よりさらに高くなっている。なお、これらNo.1〜N
o.5の発明合金では面圧4kgf/mm付加時の初透磁率の
劣化も、後述の比較合金No.6〜、No.22,No.14〜No.22
に比較して小さくなっており、歪に対する特性の劣化も
小さいことがわかる。
Further, in alloy No. 5 material, C, S, O and N are reduced to more preferable levels, and respective characteristic values are higher than those of No. 1 to No. 4. In addition, these No. 1-N
In the case of the invention alloy of o.5, deterioration of the initial magnetic permeability when the surface pressure of 4 kgf / mm 2 is applied is also the comparative alloys Nos. 6 to 22, No. 22 and No. 14 to No. 22 described later.
It is smaller than that of (1), and it can be seen that the deterioration of the characteristics due to strain is also small.

これに対し、合金No.6およびNo.7の各材はNi量がそれ
ぞれ上限を越え、あるいは下限未満のものであり、又合
金No.8およびNo.9の各材はMo量が上限を越えたもの、
あるいは下限未満のものであって、合金No.10およびN
o.11はCu量がそれぞれ上限を越え、あるいは下限未満
のものである。更に合金No.12はMn量が上限を越えた
ものであり、No.13はそれぞれが下限未満のものであ
り、合金No.14とNo.15のものはそれぞれB量が上限
を越え、あるいは下限未満のものであって、更に合金N
o.16〜No.20の各材はそれぞれC、P、S、O、N
の何れかが本発明成分範囲を超えるもの、又合金No.2
1、No.22はそれぞれパラメータXが本発明で規定し
た上限を超えるものと、下限未満のものであるが、これ
らの供試材No.6〜No.21はNo.13以外が何れも本発
明に比べて低いレベルにある。なお合金No.13はMn量
が本発明で規定した下限未満であることは上記の如く
で、各特性値レベルは本発明と同じレベルで高い値を示
しているが、サンプル作製時の熱間加工性は著しく悪い
ものであった。
On the other hand, the alloys No. 6 and No. 7 have Ni content exceeding the upper limit or less than the lower limit, respectively, and the alloys No. 8 and No. 9 have the Mo amount exceeding the upper limit. Beyond
Or less than the lower limit, alloy No. 10 and N
No. 11 shows that the Cu content exceeds the upper limit or less than the lower limit, respectively. Further, alloy No. 12 has Mn content exceeding the upper limit, No. 13 has less than each lower limit, and alloys No. 14 and No. 15 have B content exceeding the upper limit, or Less than the lower limit, and further alloy N
o.16 to No.20 are C, P, S, O, N respectively
Which exceeds the composition range of the present invention, or alloy No. 2
No. 1 and No. 22 are those in which the parameter X exceeds the upper limit and less than the lower limit specified in the present invention, respectively, but these test materials No. 6 to No. 21 are all other than No. 13 It is at a lower level than the invention. It should be noted that alloy No. 13 has the Mn content below the lower limit specified in the present invention as described above, and each characteristic value level shows a high value at the same level as in the present invention. The workability was extremely poor.

即ち本発明によるものは、C、P、S、O、Nの不純物
元素低減のもとで、Ni、Mo、Cu、Mn、B、Feをそれらの
単独量およびバランスが厳密に規定された範囲とするこ
とにより優れた初透磁率、遮蔽度、実効透磁率、50Hz
での角型性、保磁力及び歪に対する特性の劣化を小さく
することを初めて達成することができる。なお本発明に
おいて所要の特性を得るためには熱処理に使用するガス
は、この実施例で示したような高純度のHガスで可能
であるが、同様な特性はJISに規定されているような
通常のH雰囲気、すなわち露点−40℃以下のH
ス気流中で熱処理を行うことにとっても得られる。
That is, according to the present invention, the amount of Ni, Mo, Cu, Mn, B, and Fe is individually controlled and the balance thereof is strictly defined under the reduction of impurity elements such as C, P, S, O, and N. Excellent initial permeability, shielding degree, effective permeability, 50Hz
For the first time, it is possible to reduce the deterioration of the characteristics with respect to squareness, coercive force, and strain. In order to obtain the required characteristics in the present invention, the gas used for the heat treatment can be a high-purity H 2 gas as shown in this example, but similar characteristics are defined in JIS. It can also be obtained by performing heat treatment in a normal H 2 atmosphere, that is, in a H 2 gas stream having a dew point of −40 ° C. or lower.

実施例2. 前記した実施例1の本発明合金No.1〜No.4について冷
延、焼鈍を経た0.5mmの薄板サンプルより外径45m
m、内径33mmのJISリングを打抜きによって作製
し、試料とした。またオージエ観察用ステージに取付け
可能なノッチ入り試験片も同様のサンプルより切出し
た。
Example 2 With respect to the alloys No. 1 to No. 4 of the present invention of Example 1 described above, the outer diameter is 45 m from the 0.5 mm thin plate sample that has been cold rolled and annealed.
A JIS ring having a diameter of 33 mm and an inner diameter of 33 mm was punched to prepare a sample. In addition, a notched test piece that can be attached to the stage for auger observation was cut out from the same sample.

上記のようにして得られたサンプルは、次の第2表に示
すような種々の雰囲気下で、1100℃×3時間の熱処理を
行い、1100℃〜650℃の間をそれぞれ異った冷却
速度で冷却し、その後は炉冷したサンプルにより磁気特
性及び遮蔽度を測定した。またオーステナイト粒界およ
びその近傍でのB量は、上記熱処理の後に、カソード電
解法により電解水素を添加して粒界脆化処理を施し、粒
界破壊を真空中で行い、顕われた粒界破面の成分分析を
オージエ分光法により異る10点について行い平均して
求めた。これら結果は第2表に併せて示す如くである。
The samples obtained as described above were heat-treated at 1100 ° C. for 3 hours under various atmospheres as shown in Table 2 below, and the cooling rates varied between 1100 ° C. and 650 ° C. The magnetic properties and the degree of shielding were measured using a sample that was cooled in a furnace and then cooled in a furnace. Further, the amount of B in the austenite grain boundaries and the vicinity thereof is determined by adding cathodic electrolysis hydrogen by the cathodic electrolysis method to perform grain boundary embrittlement treatment after the heat treatment, and performing grain boundary fracture in vacuum to reveal the grain boundaries. The component analysis of the fractured surface was carried out for 10 different points by Auger spectroscopy, and the results were averaged. These results are as shown in Table 2 together.

即ち本発明合金No.1を用いたものにおいて供試材No.1
〜No.4は、そのオーステナイト粒界およびその近傍で
のB量が本発明規定内であり、μi及び遮蔽度はオース
テナイト粒界およびその近傍でのB量が本発明規定外の
供試材No.6ものより高くなっている。又本発明合金No.
2を用いた場合では、供試材No.8〜No.11の各材にお
けるオーステナイト粒界およびその近傍でのB量は本発
明規定内であり、そのμi及び遮蔽度はオーステナイト
粒界およびその近傍でのB量が本発明の規定外である供
試材No.7、No.12の各材のものより高くなっている。
That is, the test material No. 1 using the alloy No. 1 of the present invention
In No. 4, the B content in the austenite grain boundary and its vicinity is within the definition of the present invention, and the μi and the shielding degree are the B content in the austenite grain boundary and its vicinity not being the specification of the present invention. It is higher than .6. Inventive alloy No.
In the case of using No. 2, the amount of B in the austenite grain boundaries and in the vicinity thereof in each of the test materials No. 8 to No. 11 is within the scope of the present invention, and the μi and the degree of shielding are the austenite grain boundaries and the The B content in the vicinity is higher than that of each of the test materials No. 7 and No. 12, which are out of the regulation of the present invention.

本発明合金No.3を用いたものでは、供試材No.14〜N
o.16の各材におけるオーステナイト粒界およびその近
傍でのB量は本発明規定内であって、そのμi及び遮蔽
度はオーステナイト粒界およびその近傍のB量が本発明
規定外の供試材No.13およびNo.18のものより高くな
っている。
In the case of using the alloy No. 3 of the present invention, the test materials No. 14 to N
The amount of B in the austenite grain boundary and its vicinity in each of the o.16 materials is within the definition of the present invention, and the μi and the degree of shielding have a B content in the austenite grain boundary and the vicinity thereof that are outside the specifications of the present invention. It is higher than those of No. 13 and No. 18.

更に本発明合金No.4を用いた場合にあっては、供試材N
o.19、20、22および23の各材におけるオーステ
ナイト粒界およびその近傍でのB量は本発明規定内であ
り、そのμi及び遮蔽度はそれが規定外である供試材N
o.24のものより高くなっている。なお、オーステナイ
ト粒界及びその近傍でのB量が本発明規定内の供試材N
o.1〜No.4、No.8〜No.11、No.14〜No.16、No.
19、No.20、No.22、No.23では優れた初透磁率
及び遮蔽度を有し且つ比較的高い実効透磁率及び50Hz
での角型性をも合わせ持っている。
Furthermore, in the case of using the alloy No. 4 of the present invention, the test material N
The amount of B at and near the austenite grain boundaries in each of Nos. 19, 20, 22, and 23 is within the specifications of the present invention, and its μi and shielding degree are outside the specifications.
It is higher than that of o.24. The amount of B at and near the austenite grain boundary is within the range of the test material N
o.1 to No.4, No.8 to No.11, No.14 to No.16, No.
Nos. 19, No. 20, No. 22, and No. 23 have excellent initial permeability and shielding, and relatively high effective permeability and 50 Hz.
It also has the squareness of.

また、供試材No.2、No.14、No.15、No.18、No.
19ではより高い初透磁率を有しており、これらの材料
ではより低い保磁力を有している。またこれらの供試体
では、面圧4kgf/mm付加の時の初透磁率の劣化も実施
例1の比較合金に較べて小さく、歪による特性劣化が小
さいこともわかる。
The test materials No. 2, No. 14, No. 15, No. 18, No.
19 has a higher initial permeability and these materials have a lower coercivity. It is also understood that in these test pieces, the deterioration of initial magnetic permeability when a surface pressure of 4 kgf / mm 2 is applied is smaller than that of the comparative alloy of Example 1, and the characteristic deterioration due to strain is small.

なお、第2表における供試材No.5、17および21の
各材は1100℃×3hrの雰囲気保持中におけるH
露点が−40℃より高い場合であり、このような条件で
熱処理されたサンプルのμiは200,000 程度と明かに低
く遮蔽度も100前後と他の発明例に比べて低い。即ち
本発明の効果はJISで規定されている露点−40℃以
下のHで熱処理を行うことにより適切に発揮される。
また1×10-5Torr というような高真空下の熱処理で
も本発明の効果は発揮し得る。
Each of the test materials Nos. 5, 17, and 21 in Table 2 is the case where the dew point of H 2 is higher than −40 ° C. while maintaining the atmosphere at 1100 ° C. × 3 hr, and is heat treated under such conditions. The sample had a distinctly low μi of about 200,000, and the shielding degree was around 100, which is lower than that of other invention examples. That is, the effects of the present invention are appropriately exhibited by performing heat treatment at H 2 having a dew point of −40 ° C. or lower defined by JIS.
Further, the effect of the present invention can be exhibited even by heat treatment under a high vacuum of 1 × 10 −5 Torr.

(実施例3) 前記した実施例1の本発明合金No.4及び表3に示すよ
うな成分を有する比較合金No.23について実施例2と
同様の製作条件にてサンプルを作成しそれぞれ、表4に
示すような磁気焼鈍条件にて熱処理を行い、磁気特性及
び遮蔽度を実施例2と同様の方法にて行った。結果を表
4に示す。
(Example 3) Samples were prepared under the same manufacturing conditions as in Example 2 with respect to the alloy No. 4 of the present invention of Example 1 described above and the comparative alloy No. 23 having the components shown in Table 3 respectively. Heat treatment was performed under the magnetic annealing conditions as shown in FIG. 4, and the magnetic characteristics and the degree of shielding were the same as in Example 2. The results are shown in Table 4.

なお、この比較合金No.23は、Ni、Cuが本発明規定外
であり、その他の成分は本発明規定内のものである。
In addition, in this comparative alloy No. 23, Ni and Cu are outside the scope of the present invention, and the other components are within the scope of the present invention.

発明合金No.4を用いて、1000℃×1時間の磁気焼鈍後
で得られる磁気性質とほぼ同じレベルかやや高い値を示
している。即ち、本発明によれば、比較合金と同じ特性
を得るのに磁気焼鈍温度を約100℃低温化することが
出来ることがわかる。
Inventive alloy No. 4 shows a value almost the same as or slightly higher than the magnetic properties obtained after magnetic annealing at 1000 ° C. for 1 hour. That is, according to the present invention, it can be seen that the magnetic annealing temperature can be lowered by about 100 ° C. to obtain the same characteristics as the comparative alloy.

本発明は、実施例の製造方法のみでなく、溶解・溶製
し、薄鋳板に鋳造し、鋳造のまま又は熱間加工後および
又は脱スケールし、冷延加工、焼鈍しても良い。
The present invention is not limited to the manufacturing method of the embodiment, and may be melted / melted, cast into a thin cast plate, as-cast or after hot working and / or descaled, cold rolled, and annealed.

熱間加工に代えて又は冷延加工の高能率化のために温間
加工を施しても良い。
Instead of hot working, or warm working may be performed to improve the efficiency of cold rolling.

但し表面性状、板厚形状、寸法精度が要求される場合
は、最終溶製の前に冷延加工を施した方が良い。
However, when surface texture, plate thickness and dimensional accuracy are required, it is better to perform cold rolling before final melting.

更に、1回の冷延加工に代えて冷延加工、再結晶焼鈍
(例えば800℃以上)、冷延加工を繰りかえしても良
い。
Further, instead of one cold rolling, cold rolling, recrystallization annealing (for example, 800 ° C. or higher), and cold rolling may be repeated.

以上のような製造方法であっても、本発明の範囲内であ
ればほぼ同等のものが得られる。
Even with the manufacturing method as described above, almost the same method can be obtained within the scope of the present invention.

「発明の効果」 以上説明したような本発明によるときは、Ni−Fe系の高
透磁率磁性合金における磁気特性を適切に改善し、特に
直流及び低周波域での透磁率などの磁気特性、及びシー
ルド性能が従来のPCパーマロイの如きに比し飛躍的に
優れた高透磁率磁性合金を提供せしめ、従来におけるよ
り更にシールド特性の要求される各種磁器シールド材や
磁気ヘッドケース、コア、さらには磁気増幅器、パルス
変圧器などの非線形応用に用いる材料類などに広く採用
せしめ得、さらには従来と同じレベルの要求特性を得る
のに磁気焼鈍温度を従来よりも100℃程度低減化するこ
とも可能とし、かつ歪みによる特性劣化も小さく、シー
ルドルームのような構造部品とした際でも所要の磁気特
性を発揮することができ、近時におけるエレクトロニク
ス産業の要請に対して適切に即応し得るものであるから
工業的にその効果の大きい発明である。
"Effects of the Invention" According to the present invention as described above, the magnetic characteristics of the Ni-Fe-based high-permeability magnetic alloy are appropriately improved, and particularly the magnetic characteristics such as the magnetic permeability in the DC and low frequency regions, And, by providing a high magnetic permeability magnetic alloy that has dramatically superior shield performance to the conventional PC Permalloy, various porcelain shield materials, magnetic head cases, cores, and more It can be widely applied to materials used for non-linear applications such as magnetic amplifiers and pulse transformers, and it is also possible to reduce the magnetic annealing temperature by about 100 ° C compared to the conventional method to obtain the required characteristics at the same level as the conventional method. In addition, the characteristic deterioration due to distortion is small, and the required magnetic characteristics can be exhibited even when it is used as a structural part such as a shielded room. Which is a great invention industrially its effect because it is capable of properly readiness against demand.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の技術的内容を示すものであって、第1図
は初透磁率μiとパラメータX、 の関係を示した図表、 第2図は遮蔽度とパラメータX、 の関係を示した図表、 第3図は交流の実効透磁率とパラメータX、 の関係を示した図表、 第4図は50Hzでの角型性とパラメータX、 の関係を示した図表、 第5図は初透磁率μiとオーステナイト粒界およびその
近傍でのB量の関係を示した図表である。
The drawings show the technical contents of the present invention. FIG. 1 shows the initial permeability μi and the parameter X, Fig. 2 shows the relationship between Fig. 3 shows the relationship between the effective magnetic permeability of AC and the parameter X, Fig. 4 shows the relationship between the squareness and parameter X at 50Hz. And FIG. 5 is a chart showing the relationship between the initial magnetic permeability μi and the B content in the austenite grain boundaries and in the vicinity thereof.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Ni:77.5〜79.5wt%、Mo:3.8〜4.6
wt%、 Cu:1.8〜2.5wt%、Mn:0.1〜1.10wt%、 P:0.010 wt%以下、S:0.0020wt%以下、 O:0.0030wt%以下、N:0.0010wt%以下、 C:0.020 wt%以下 を含有し、かつBを、 の範囲内で含有し、残部は基本的にFeからなり、しかも
Ni、Mo、Cu、Mn、Feが、 を満たす範囲でそれぞれ含有されたことを特徴とするNi
−Fe系高透磁率磁性合金。
1. Ni: 77.5 to 79.5 wt%, Mo: 3.8 to 4.6
wt%, Cu: 1.8 to 2.5 wt%, Mn: 0.1 to 1.10 wt%, P: 0.010 wt% or less, S: 0.0020 wt% or less, O: 0.0030 wt% or less, N: 0.0010 wt% Hereinafter, C: 0.020 wt% or less is contained, and B is Contained within the range of, and the balance basically consists of Fe, and
Ni, Mo, Cu, Mn, Fe Ni which is contained in a range satisfying
-Fe-based high-permeability magnetic alloy.
【請求項2】請求項1に記載の成分組成を有し、かつ磁
気焼鈍後でオーステナイト粒界およびその近傍でのB量
が10〜50atm %であることを特徴とするNi−Fe系高
透磁率磁性合金。
2. A Ni-Fe-based high permeability having the composition of claim 1 and having a B content of 10 to 50 atm% at and near the austenite grain boundaries after magnetic annealing. Magnetic susceptibility magnetic alloy.
JP1256383A 1989-01-20 1989-09-30 Ni-Fe system high permeability magnetic alloy Expired - Lifetime JPH0653903B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69009317T DE69009317T2 (en) 1989-01-20 1990-01-20 MAGNETIC NICKEL-IRON ALLOY WITH HIGH PERMEABILITY.
EP90901881A EP0407608B1 (en) 1989-01-20 1990-01-20 Nickel-iron base magnetic alloy having high permeability
PCT/JP1990/000067 WO1990008201A1 (en) 1989-01-20 1990-01-20 Nickel-iron base magnetic allow having high permeability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-11575 1989-01-20
JP1157589 1989-01-20

Publications (2)

Publication Number Publication Date
JPH0375327A JPH0375327A (en) 1991-03-29
JPH0653903B2 true JPH0653903B2 (en) 1994-07-20

Family

ID=11781714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256383A Expired - Lifetime JPH0653903B2 (en) 1989-01-20 1989-09-30 Ni-Fe system high permeability magnetic alloy

Country Status (1)

Country Link
JP (1) JPH0653903B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09158967A (en) * 1995-12-06 1997-06-17 Showa:Kk Gas spring
EP2123783B1 (en) 2007-02-13 2013-04-10 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room
JP6143539B2 (en) * 2013-05-08 2017-06-07 日本冶金工業株式会社 Ni-Fe-based permalloy alloy excellent in hot workability and AC magnetic characteristics and method for producing the same
AU2018101205A4 (en) * 2017-08-28 2018-09-20 Bissell Inc. Vacuum cleaner

Also Published As

Publication number Publication date
JPH0375327A (en) 1991-03-29

Similar Documents

Publication Publication Date Title
KR100439457B1 (en) Fe-Ni BASED PERMALLOY, METHOD FOR PRODUCING THE SAME AND CASTING SLAB
US5547520A (en) Wear-resistant high permeability magnetic alloy and method of manufacturing the same
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
US5725687A (en) Wear-resistant high permability alloy and method of manufacturing the same and magnetic recording and reproducing head
JP4360349B2 (en) Soft magnetic steel bar
JP2006328462A (en) Soft magnetic steel
JPH0653903B2 (en) Ni-Fe system high permeability magnetic alloy
JPH0699767B2 (en) Ni-Fe system high permeability magnetic alloy
JPH0699766B2 (en) Ni-Fe system high permeability magnetic alloy
JP2003226945A (en) Soft magnetic steel having excellent cold forgeability and magnetic permeability, soft magnetic steel parts having excellent magnetic permeability and production method therefor
WO1990015886A1 (en) Production method of soft magnetic steel material
JPH08134604A (en) Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production
JP2560579B2 (en) Method for manufacturing high silicon steel sheet having high magnetic permeability
JP4772703B2 (en) Electromagnetic soft iron parts having excellent magnetic properties, bar wires for electromagnetic soft iron parts, and manufacturing method thereof
JP2674137B2 (en) High permeability magnetic material
EP0407608B1 (en) Nickel-iron base magnetic alloy having high permeability
US20230257859A1 (en) Soft magnetic member and intermediate therefor, methods respectively for producing said member and said intermediate, and alloy for soft magnetic member
JP4795900B2 (en) Fe-Ni permalloy alloy
JP2006510799A (en) Low frequency magnetic shield made from soft magnetic alloy
JPH076046B2 (en) Method for producing Ni-Fe alloy plate having excellent magnetic properties
JPH07166281A (en) Wear resistant magnetic alloy
US4398972A (en) Ferritic Fe-Ni magnetic alloys
JP3019656B2 (en) Heat treatment method of high silicon steel sheet in magnetic field
JPH04154940A (en) Fe-ni series high permeability magnet alloy and its manufacture
JP2001192784A (en) High permeability magnetic alloy