JPH0375327A - Ni-fe series high permeability magnetic alloy - Google Patents

Ni-fe series high permeability magnetic alloy

Info

Publication number
JPH0375327A
JPH0375327A JP1256383A JP25638389A JPH0375327A JP H0375327 A JPH0375327 A JP H0375327A JP 1256383 A JP1256383 A JP 1256383A JP 25638389 A JP25638389 A JP 25638389A JP H0375327 A JPH0375327 A JP H0375327A
Authority
JP
Japan
Prior art keywords
magnetic
present
alloy
permeability
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1256383A
Other languages
Japanese (ja)
Other versions
JPH0653903B2 (en
Inventor
Tadashi Inoue
正 井上
Masayuki Kinoshita
木下 正行
Tomoyoshi Okita
大北 智良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to DE69009317T priority Critical patent/DE69009317T2/en
Priority to EP90901881A priority patent/EP0407608B1/en
Priority to PCT/JP1990/000067 priority patent/WO1990008201A1/en
Publication of JPH0375327A publication Critical patent/JPH0375327A/en
Publication of JPH0653903B2 publication Critical patent/JPH0653903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the magnetic characteristics such as magnetic permeability and shielding capacity in a direct current and low frequency area by appropriately controlling impurity elements and controlling the amounts of Ni, Mo, Cu, Mn, Fe and B to be added and the componential balance of each amt. into specified range. CONSTITUTION:The compsn. of the Ni-Fe series high permeability magnetic alloy is formed from the one constituted of, by weight, 77.5 to 79.5% Ni, 3.8 to 4.6% Mo, 1.8 to 2.5% Cu, 0.1 to 1.10% Mn, <=0.010% P, <=0.0020% S, <=0.0030% O, <=0.0010% N, <=0.020% C and B in the range satisfying inequality I and the balance essential Fe. Furthermore, Ni, Mo, Cu, Mn and Fe are respectively incorporated thereto in the range satisfying inequality II. In the alloy having the compsn., the amt. of B in austenite grain boundaries and in the neighborhood of them is preferably regulated to 10 to 50atm%.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) 本発明は、Ni−Fe系高透磁率磁性合金に係り、その
磁気特性を改良し、特に直流での初透磁率の優れた該磁
性合金に関するものである。
Detailed Description of the Invention Object of the Invention (Field of Industrial Application) The present invention relates to a Ni-Fe based high permeability magnetic alloy, and the present invention relates to a Ni-Fe based high permeability magnetic alloy, which improves its magnetic properties, and particularly improves its initial permeability under direct current. This invention relates to this excellent magnetic alloy.

(従来の技術) JIS PC相当のNi−Fe系磁性合金は、現在磁気
ヘンドケースおよび各種コア、変成磁心、各種磁気シー
ルド材などのようにその利用範囲が極めて広い磁性材料
である。即ちこのようなPCパーマロイは高透磁率で、
低保磁力であることが特徴であり、今日実用化されてい
るものは、80%Ni−5%Mo−Fe(スーパーマロ
イ)や、77%Ni−5%Cu −4%Mo−Fe (
N0% CLIパーマロイ)などであり、それら合金で
通常得られるi3磁率のレベルは、初透磁率(以下μi
という)が150,000 、最大透磁率(以下μmと
いう)が300.000程度である。
(Prior Art) A Ni-Fe based magnetic alloy equivalent to JIS PC is a magnetic material that is currently used in an extremely wide range of applications such as magnetic hend cases, various cores, metamorphic cores, and various magnetic shielding materials. In other words, such PC permalloy has high magnetic permeability,
It is characterized by a low coercive force, and the ones in practical use today are 80%Ni-5%Mo-Fe (supermalloy) and 77%Ni-5%Cu-4%Mo-Fe (
N0% CLI permalloy), etc., and the level of i3 magnetic permeability normally obtained with these alloys is the initial magnetic permeability (hereinafter μi
The maximum magnetic permeability (hereinafter referred to as μm) is approximately 300,000.

ところが昨今におけるエレクトロニクスの発達から各種
機器の小型高性能化が進み、上記したような磁性合金の
特性についてもより一層の向上が望まれている。即ちこ
のような要求に対して上記成分系の磁性合金における磁
気特性を不純物元素の低減およびCrの添加により向上
させた特開昭62227053および特開昭62−22
7054が開発されている。
However, with the recent development of electronics, various devices have become smaller and more sophisticated, and there is a desire for further improvements in the properties of magnetic alloys as described above. In other words, in response to such demands, JP-A-62227053 and JP-A-62-22 improve the magnetic properties of magnetic alloys with the above-mentioned component system by reducing impurity elements and adding Cr.
7054 has been developed.

又特開昭63−149361では上記成分系の合金に製
造時の熱間加工性を改善するためBを添加した材料にお
いて、磁性焼鈍時に脱Bを行い磁性特性を改善すること
が発表されている。
Furthermore, in JP-A No. 63-149361, it is announced that B is added to an alloy of the above composition system to improve hot workability during manufacturing, and the magnetic properties are improved by removing B during magnetic annealing. .

一方、上記成分系ではNiが約80w t%程度含まれ
ていて高価なため、成分系を根本的に見直し、Niを低
減し、代りにNiより安価なCu、Mnを添加して高い
初透磁率を達成した特公昭62−13420、更にはこ
の特公昭62−13420の技術に加えて適量のAl添
加を行い酸化物系介在物を減少し磁気特性を高めるとい
う特開昭63−247336および特開昭63−247
339の技術も開発されている。特にこれら特開昭63
−247336および特開昭63−247339の提案
による合金のμiは最高で426,000という高いレ
ベルである。
On the other hand, the above component system contains approximately 80 wt% of Ni and is expensive, so we fundamentally reviewed the component system, reduced the amount of Ni, and added Cu and Mn, which are cheaper than Ni, to achieve a high initial penetration. Japanese Patent Publication No. 62-13420, which achieved magnetic properties, and Japanese Patent Publication No. 63-247336 and Japanese Patent Publication No. 63-247336, which added an appropriate amount of Al to reduce oxide inclusions and improve magnetic properties in addition to the technology of Japanese Patent Publication No. 62-13420. Kaisho 63-247
339 technology has also been developed. Especially these JP-A-63
The μi of the alloys proposed in JP-A-247336 and JP-A-63-247339 is as high as 426,000.

上述のような磁気特性向上の要望に加え、最近では所要
の特性をより低コストで製造することも求められており
、この観点からは、特開平1100232の技術も提案
されている。すなわち、この技術は通常のMoスス−−
マロイにSiを1〜4 wt、!添加し、磁気焼鈍温度
を約1030℃以下というような比較的低い温度によっ
ても充分に満足する透磁率を得ることを特徴としている
In addition to the above-mentioned demand for improved magnetic properties, there has recently been a demand for manufacturing with the required properties at a lower cost, and from this point of view, the technique of JP-A-1100232 has also been proposed. In other words, this technology
1 to 4 wt of Si to Malloy! It is characterized in that sufficiently satisfactory magnetic permeability can be obtained even when the magnetic annealing temperature is relatively low, such as approximately 1030° C. or lower.

(発明が解決しようとする課題) 前記した特開昭62−227053および同22705
4で特徴としている不純物低減、Cr添加によっても最
終の水素雰囲気での熱処理(1100℃×3時間)後の
直tJL磁気特性は、例えばμiで高々ioo、ooo
であり、それ以上の磁気特性が要求される用途に対して
は不適とならざるを得ない。
(Problem to be solved by the invention) The above-mentioned Japanese Patent Application Laid-open No. 62-227053 and No. 22705
Even with impurity reduction and Cr addition, which are featured in 4, the direct JL magnetic properties after the final heat treatment in a hydrogen atmosphere (1100°C x 3 hours) are at most ioo, ooo in μi, for example.
Therefore, it is unsuitable for applications requiring higher magnetic properties.

また特開昭62−227054の提案では、通常のNi
Fe −Mo系またはNi−Fe−Mo−Cu系の成分
に新たにCrを添加するためコスト高となる。一方特開
昭62227053の提案ではこのCr添加によりコス
ト高に加え、Mnを通常レベルより高くする(1.2〜
1〇−1%とする)ため熱間加工性が極めて悪くなると
いう製造上の問題も有している。
In addition, in the proposal of JP-A-62-227054, ordinary Ni
Since Cr is newly added to the Fe-Mo-based or Ni-Fe-Mo-Cu-based components, the cost becomes high. On the other hand, in the proposal of JP-A No. 6,222,7053, the addition of Cr not only increases the cost but also increases Mn to a higher level than the normal level (1.2~
10-1%), there is also a manufacturing problem in that hot workability becomes extremely poor.

なお上記した2つの提案では何れもBの添加が行われて
いるが、この場合のB添加は熱間加工性および打抜き性
を改善するためのもので、これらの提案で意図するBの
添加だけでは磁気特性の明かな向上は見られず、逆に劣
化するケースも認められる。
In both of the above two proposals, B is added, but in this case the B addition is to improve hot workability and punching properties, and the addition of B is the only addition intended in these proposals. However, no clear improvement in magnetic properties was observed, and on the contrary, some cases of deterioration were observed.

更に、特開昭63−149361では磁気特性を脱B処
理により改善するものであるが、この処理の後で得られ
る磁気特性はμiで高々75,000であり、このレベ
ルは通常のNi−Fe−Mo−Cu系合金で得られるレ
ベルである。従ってこの技術ではそれ以上の磁気特性が
要求される用途に対しては不適とならざるを得ない。
Furthermore, in JP-A-63-149361, the magnetic properties are improved by B removal treatment, but the magnetic properties obtained after this treatment are at most 75,000 μi, which is a level higher than that of ordinary Ni-Fe. - This is the level obtained with a Mo-Cu alloy. Therefore, this technique is unsuitable for applications requiring higher magnetic properties.

一方特公昭62−13420、特開昭63−24733
6および同247339の技術によっては高μiのパー
マロイを提供し得るが、Mns Cuを高めるため製造
時の熱間加工性が本質的に低くなるという製造上の問題
点を有している。又この提案で得られる合金の飽和磁束
密度は、例えばB+o(10エルステソドでの磁束密度
)で見ると、高々5000ガウスであり、スーパーマロ
イやMo、 CuパーマロイにおけるB、。の7000
〜8000ガウスに比較すると低い。このことは、この
合金がスーパーマロイやMO% Cuパーマロイに比し
低い外部磁場で材料内の磁束が飽和してしまうことを意
味し、シールド材料として用いる場合は外部磁場が比較
的高い場所での使用は不適とならざるを得ない。
On the other hand, JP 62-13420, JP 63-24733
6 and 247339 can provide permalloy with a high μi, but they have a manufacturing problem in that hot workability during manufacturing is inherently low due to the increased Mns Cu content. Also, the saturation magnetic flux density of the alloy obtained by this proposal is, for example, 5000 Gauss at most when viewed as B+o (magnetic flux density at 10 Oerstes), which is similar to B in supermalloy, Mo, and Cu permalloy. 7000
It is low compared to ~8000 Gauss. This means that the magnetic flux in this alloy is saturated in a lower external magnetic field than supermalloy or MO% Cu permalloy, and when used as a shielding material, it is difficult to use it in places where the external magnetic field is relatively high. Its use must be inappropriate.

また、特開平1−100232の技術では、Stを多く
添加するため、加工性が劣化し、製造性が悪くなるとい
う問題を有している。また、この技術では5011zの
シールド性能は、所要のレベルを有してはいるが、直流
でのシールド性能がやや劣るという欠点を有していた。
Furthermore, the technique of JP-A-1-100232 has a problem in that workability deteriorates and manufacturability deteriorates because a large amount of St is added. Further, in this technology, although the shielding performance of 5011z was at the required level, it had the drawback that the shielding performance in direct current was somewhat inferior.

「発明の構成」 (課題を解決するための手段) 本発明は上記したような従来のものにおける問照点を解
決するように検討を重ねて創案されたものであって、直
流及び低周波域での透磁率などの磁気特性及びシールド
性能を本質的に向上せしめ、さらには、従来と同じレベ
ルの要求特性を得るのに磁気焼鈍を従来よりも100℃
程度低温化することも可能とすることを目的として、磁
気特性に対するNi、 Mo、 Cu、 Feなとの主
要成分による影響を更に検討し、そこで得られた特性と
成分の関係をB添加系にまで拡大して実験、研究を行っ
た結果、本発明を完成した。即ち本発明は以下の如くで
ある。
"Structure of the Invention" (Means for Solving the Problems) The present invention was created after repeated studies to solve the problems in the conventional products as described above. This essentially improves the magnetic properties such as magnetic permeability and shielding performance, and furthermore, it requires magnetic annealing at 100°C more than before to obtain the same level of required properties as before.
With the aim of making it possible to lower the temperature to a certain degree, we further investigated the influence of the main components such as Ni, Mo, Cu, and Fe on the magnetic properties, and applied the relationship between the properties and components obtained there to the B-added system. As a result of extensive experiments and research, the present invention was completed. That is, the present invention is as follows.

(1)  Ni : 77.5〜79.5wt%、Mo
 : 0.1〜1.10wt%、Cu : 1.8〜2
.5 wt%、Mn : 0.010wt%、P : 
0.010 wt%以下、S : 0.0020wt%
以下、0 : 0.0030wt%以下、N : 0.
0010匈t%以下、C: 0.020 wt%以下 を含有し、かつBを、 4 の範囲内で含有し、残部は基本的にPeからなり、しか
もNi、 Mo、 Cu、 Mn、 Feが、(但し〔
〕内は−t%) を満たす範囲でそれぞれ含有されたことを特徴とするN
i−Fe系高透磁率磁性合金。
(1) Ni: 77.5-79.5wt%, Mo
: 0.1-1.10wt%, Cu: 1.8-2
.. 5 wt%, Mn: 0.010 wt%, P:
0.010 wt% or less, S: 0.0020 wt%
Below, 0: 0.0030wt% or less, N: 0.
0.010 wt% or less, C: 0.020 wt% or less, B is contained within the range of 4, the balance basically consists of Pe, and Ni, Mo, Cu, Mn, Fe are ,(however〔
] indicates -t%)
i-Fe based high permeability magnetic alloy.

(2)前項に記載の成分組成を有し、かつ磁気焼鈍後で
オーステナイト粒界およびその近傍でのB量が10〜5
0atm%であることを特徴とするNi−Fe系高透磁
率磁性合金。
(2) It has the component composition described in the previous section, and after magnetic annealing, the amount of B at the austenite grain boundary and its vicinity is 10 to 5.
A Ni-Fe based high permeability magnetic alloy characterized by having a magnetic permeability of 0 atm%.

(作用) 本発明によるものは、不純物元素の適正制御のもとで、
Ni、 Mo、 Cu、 Mn、 FeおよびBの各添
加量を適正化し、かつ基量の成分バランスを特定範囲内
に制御することにより従来の同系統によるMO1Cuパ
ーマロイやスーパーマロイで見られなかった高い透磁率
及びシールド性を遠戚し、かつ従来と同じレベルの要求
特性を得るのに磁気焼鈍温度を従来よりも100℃程度
低温化することも可能とするものである。
(Function) The device according to the present invention, under proper control of impurity elements,
By optimizing the amounts of Ni, Mo, Cu, Mn, Fe, and B added, and controlling the component balance of the base amount within a specific range, we have achieved a high The magnetic annealing temperature can be lowered by about 100° C. compared to the conventional method while making magnetic permeability and shielding properties distantly related and obtaining the same level of required characteristics as the conventional method.

即ち、先ず本発明で意図する磁気特性の向上は合金中不
純物レベルの制御のもとで遠戚され、P。
That is, first, the improvement of magnetic properties intended in the present invention can be achieved by controlling the level of impurities in the alloy.

S、O,N、Cの限度理由は−t%(以下単に%という
)で以下の如くである。
The reason for the limit for S, O, N, and C is -t% (hereinafter simply referred to as %) and is as follows.

Pは、本発明の対象とする高Ni−Fe合金の熱間加工
性に有害であり、かつ最終の素焼鈍時における立方体集
合組織の形成傾向を弱める元素であって、このPが0.
010Xを越えると透磁率が劣化し、又熱間加工性も悪
くなるため、上限を0.010%とした。なお下限は溶
製上の経済性から好ましくは0.0010%である。
P is an element that is harmful to the hot workability of the high Ni-Fe alloy that is the subject of the present invention, and weakens the tendency to form a cubic texture during final bisque annealing.
If it exceeds 0.010X, magnetic permeability deteriorates and hot workability deteriorates, so the upper limit was set at 0.010%. Note that the lower limit is preferably 0.0010% from the economical point of view of melting.

Sは、熱間加工性に有害であり、かつ硫化物の形成を通
じて最終の水素焼鈍時における粒成長を阻害し、焼鈍後
の粒径が小さくなるため透磁率が向上しないという理由
から磁気特性に対しては極めて有害な元素である。この
B量が0.0020%を超えると、以下に示すようなN
i、 Mo、 Cu、 Fe、  B量の適正化を計っ
ても本発明で目的とするような磁気特性の向上が計れず
、又熱間加工性が著しく悪くなるため0.0020%を
上限とすることが必要である。なお磁気特性向上のため
には0.0005%以下がより望ましい。
S is harmful to hot workability, inhibits grain growth during final hydrogen annealing through the formation of sulfides, and has a negative effect on magnetic properties because the grain size after annealing becomes small and magnetic permeability does not improve. It is an extremely harmful element. If this amount of B exceeds 0.0020%, the following N
Even if the amounts of i, Mo, Cu, Fe, and B are optimized, it is not possible to improve the magnetic properties as aimed at in the present invention, and the hot workability deteriorates significantly, so the upper limit is set at 0.0020%. It is necessary to. Note that in order to improve magnetic properties, the content is more preferably 0.0005% or less.

Oは、本発明で対象とする合金の中では酸化物系介在物
として存在し、その量が多いと最終の水素焼鈍時におけ
る粒成長を阻害し、焼鈍後の粒径が小さいため透磁率が
向上しないことから磁気特性に対し極めて有害な元素で
ある。即ちこの0量が0.0030%を超えると上記同
様にNi、 Mo、 Cu、 Pe。
O exists as an oxide inclusion in the alloy targeted by the present invention, and if its amount is large, it inhibits grain growth during the final hydrogen annealing, and the grain size after annealing is small, resulting in a decrease in magnetic permeability. Since it does not improve magnetic properties, it is an extremely harmful element to magnetic properties. That is, if this zero amount exceeds 0.0030%, Ni, Mo, Cu, and Pe as above.

Biの適正化を図っても本発明で意図する磁気特性向上
が計れないため0.0030%を上限と定めた。
Even if the Bi content is optimized, the magnetic properties intended by the present invention cannot be improved, so 0.0030% is set as the upper limit.

なお、磁気特性向上のためには0.0010%以下がよ
り好ましい。
Note that in order to improve magnetic properties, the content is more preferably 0.0010% or less.

Nは、B添加を基本とした合金においては、Bと容易に
結合しBNを形成するため有効B量が低下する。また形
成されたBNにより磁気特性が著しく劣化せしめられる
などの理由より合金中に多く含有されると悪影響を及ぼ
す。即ちこのNが0.0010%を越えると上記のよう
な理由から磁気特性劣化が著しくなるのでo、ooio
%を上限とした。
In an alloy based on B addition, N easily combines with B to form BN, resulting in a decrease in the effective amount of B. Furthermore, since the magnetic properties are significantly deteriorated by the formed BN, if it is contained in a large amount in the alloy, it will have an adverse effect. In other words, if this N exceeds 0.0010%, the deterioration of magnetic properties will be significant for the reasons mentioned above.
The upper limit was %.

なお、磁気特性向上のためには0.0005%以下がよ
り好ましい。
Note that in order to improve magnetic properties, the content is more preferably 0.0005% or less.

Cは、本発明の対象合金の中では侵入型元素として存在
し、その量が多いと透磁率が低下するので磁気特性に対
して有害な元素であり、0.020%を越えるとこのよ
うな理由により磁気特性劣化が著しくなるため、0.0
20%を上限と定めた。
C exists as an interstitial element in the target alloy of the present invention, and if its amount is large, the magnetic permeability decreases, so it is a harmful element to magnetic properties, and if it exceeds 0.020%, this element For some reason, the deterioration of magnetic properties becomes significant, so 0.0
The upper limit was set at 20%.

さて、本発明では上記のような不純物元素の制御下にお
いて、Ni、 Mo、 Cu、 FeおよびBの各添加
量を適正化し、又多量の成分バランスを特定範囲内とし
て始めてその目的が達威され、これらについては以下の
如くである。
Now, in the present invention, the purpose can be achieved only by optimizing the amounts of Ni, Mo, Cu, Fe, and B added under the control of impurity elements as described above, and by keeping the balance of large amounts of components within a specific range. , these are as follows.

Niは、77.5〜79.5%の範囲では本発明の意図
するような高い磁気特性及び高いシールド特性を得しめ
る。このNiが77.5%未満または79.5%を越え
ると何れの場合においても透磁率が低下するので77.
5%を下限とし、79.5%を上限とした。
When Ni is in the range of 77.5 to 79.5%, high magnetic properties and high shielding properties as intended by the present invention can be obtained. If this Ni content is less than 77.5% or more than 79.5%, magnetic permeability will decrease in either case.
The lower limit was 5% and the upper limit was 79.5%.

Moは、0.1〜1.10%の範囲内のときに本発明の
目的とする高い磁気特性及び高いシールド特性を達成し
得る。即ちMoが3.8%未満または4.6%を越える
と透磁率向上が達成されないので、0.1〜1.10%
とすることが必要である。
When Mo is in the range of 0.1 to 1.10%, the high magnetic properties and high shielding properties that are the object of the present invention can be achieved. That is, if Mo is less than 3.8% or exceeds 4.6%, magnetic permeability cannot be improved;
It is necessary to do so.

Cuは、本発明の規定内にある合金において、後述する
Bの共存のもとて直流磁気特性を飛躍的に向上させ、か
つ、交流の実効透磁率も向上させ、かつ交流(50Hz
)での角型性(Br/B+w)も向上させる効果を有す
る。このようなCuの効果はNi77.5〜79.5%
、 Mo: 0.1〜1.10%の時あられれ、最適の
Cu量は、1.8〜2.5%である。なお、Cuが1.
8%未満ではこのようなCuによる特性向上が計れず、
一方Cuが2.5%を超えると逆に特性が劣化するため
、Cuの範囲は1.8〜2.5%と定めた。
In alloys within the specifications of the present invention, Cu dramatically improves DC magnetic properties in the coexistence of B, which will be described later, and also improves the effective magnetic permeability of AC.
) also has the effect of improving the squareness (Br/B+w). This effect of Cu is 77.5% to 79.5% of Ni.
, Mo: Hail occurs when it is 0.1 to 1.10%, and the optimum amount of Cu is 1.8 to 2.5%. Note that Cu is 1.
If the content is less than 8%, such improvement in properties due to Cu cannot be observed,
On the other hand, if Cu exceeds 2.5%, the properties deteriorate, so the range of Cu was set at 1.8 to 2.5%.

Mnは、上記したMO% Cuと同様に本発明対象合金
の磁性に影響を及ぼす元素であり、このMnが1.10
%以下でも本発明で目的とする高透磁率を達威し得るが
、1.10%を超えると斯うした透磁率向上が達成され
ないので1.10%を上限とする。一方Mnが0.10
%未満では熱間加工性が劣化し、好ましくないので0.
10%を下限とした。
Mn is an element that affects the magnetism of the alloy of the present invention, similar to MO% Cu mentioned above, and when Mn is 1.10
% or less can achieve the high magnetic permeability targeted by the present invention, but if it exceeds 1.10%, such improvement in magnetic permeability cannot be achieved, so 1.10% is set as the upper limit. On the other hand, Mn is 0.10
If it is less than 0.0%, hot workability deteriorates and is not preferable.
The lower limit was set at 10%.

ためには必唄の7c索である。[[J −−[N)(〔
B〕、(N)はそれぞれB、Nの合金中添加量、%)が
、o、ooos〜0.0070%の範囲では本発明の目
的を有効に達威し得るが、o、ooos%未満では透磁
率が向上せず、一方0.0070%を超えると透磁4 ぞれ0.0005%、0.0070%と定めた。
This is the must-song 7c chord. [[J --[N)([
B] and (N) are the amounts of B and N added in the alloy, respectively (%), which can effectively achieve the object of the present invention in the range of o,ooos to 0.0070%, but less than o,ooos%. If the magnetic permeability exceeds 0.0070%, the magnetic permeability is determined to be 0.0005% and 0.0070%, respectively.

次に、上記した各成分の添加量の適正化のもとでNi、
 Mo、 Cu、 FeおよびBの成分バランスの適正
化を図ることが本発明で意図する特性向上のためには必
要で、第1図から第4図はそれぞれこれらの成分バラン
スを規定するパラメータ(このパラメータをXとし、 とする)を横軸、B添加量を縦軸とした場合の各供試材
で得られる初透磁率、遮蔽度、l kHzでの実効透磁
率、50Hzでの角型性を示しているが、この第1図中
の供試材はすべてNi、 Mo、 Cu、 Mn、  
B。
Next, by optimizing the amount of each component added above, Ni,
It is necessary to optimize the component balance of Mo, Cu, Fe, and B in order to improve the characteristics intended by the present invention, and FIGS. 1 to 4 respectively show the parameters (this Initial magnetic permeability, shielding degree, effective magnetic permeability at 1 kHz, squareness at 50 Hz obtained for each sample material when the horizontal axis is the parameter X and the vertical axis is the amount of B added However, the test materials in Figure 1 are all Ni, Mo, Cu, Mn,
B.

P、S、O,N、C量が本発明範囲内のものであって、
熱間加工後、冷延、焼鈍を繰返して作成した板厚0.5
Nの薄板サンプルより外径45tm、内径33關のJI
Sリングを打抜いて試料とし、それらをパラジウム膜i
3遇させ精製した高純度水素気流中雰囲気下で、■10
0℃×3時間の熱処理を行い、1ioo℃から650℃
までの間を100℃/hrで冷却し、その後は炉冷した
ものである。遮蔽度は上記と同じ製造履歴を経た、板厚
0.5s+m、直径50+l1m、長さ200mmの円
筒にヘルムホルツコイルにて外部磁場(Ho)、500
ξリガウスを円筒の軸方向に対して直角方向にかけた場
合の円筒内側中央部での内部磁場Hlを測定することに
より求めた。図中の数字(遮蔽度)はHa/H+の値で
ある。なお、測定に際しては、地磁気の影響が十分無視
できるレベルまで磁気シールドしたボックス内にて行っ
た。
The amounts of P, S, O, N, and C are within the range of the present invention,
Plate thickness 0.5 made by repeating cold rolling and annealing after hot working
JI with an outer diameter of 45 tm and an inner diameter of 33 mm from a thin plate sample of N.
Punch out S-rings to use as samples, and cover them with palladium film i.
Under an atmosphere of a stream of purified high-purity hydrogen, ■10
Heat treatment for 0℃ x 3 hours, from 1ioo℃ to 650℃
It was cooled at a rate of 100° C./hr until then, and then cooled in a furnace. The degree of shielding was obtained by applying an external magnetic field (Ho) of 500 using a Helmholtz coil to a cylinder with a plate thickness of 0.5 s + m, a diameter of 50 + 1 m, and a length of 200 mm, which had the same manufacturing history as above.
It was determined by measuring the internal magnetic field Hl at the center inside the cylinder when ξ Li Gauss is applied in a direction perpendicular to the axial direction of the cylinder. The numbers (shielding degree) in the figure are the values of Ha/H+. Note that the measurements were performed in a box that was magnetically shielded to a level where the influence of geomagnetism was sufficiently negligible.

(K” )zの実効透磁率は上記と同じ磁気焼鈍を経た
板厚0.35mmのリングサンプルを用い、5ミリエル
ステツドでのインダクタンス透磁率を測定することによ
り求め、50H2での角型性は実効透磁率を測定したの
と同じリングサンプルを用いて、磁場0.1エルステツ
ドでのBrとBmの比から求めた。
The effective magnetic permeability of (K'')z is determined by measuring the inductance permeability at 5 millier steps using a ring sample with a thickness of 0.35 mm that has undergone the same magnetic annealing as above, and the squareness at 50H2 is determined by the effective magnetic permeability. The magnetic permeability was determined from the ratio of Br and Bm at a magnetic field of 0.1 oersted using the same ring sample used to measure the magnetic permeability.

内で初透磁率Niが350,000以上と高い値を示し
ているのに対し、Xが3.3未満または3.8を超える
場合ではNiが200,000未満と低いレベルにあ4 は逆にμjは低下している。また第2図より遮蔽度も本
発明範囲にて300以上の高い値を示し、本発明範囲以
外の材料での遮蔽度より高い値を示している。
In contrast, when X is less than 3.3 or more than 3.8, Ni is at a low level of less than 200,000. μj is decreasing. Further, as shown in FIG. 2, the shielding degree also shows a high value of 300 or more within the range of the present invention, which is higher than the shielding degree of materials outside the range of the present invention.

第3図は実効透磁率についてのものであるが、本発明範
囲にて6500以上と高い値を示し、本発明以外の材料
より高い値を示している。又第4図は50Hzでの角型
性においても本発明範囲にて0.90以上と高い値を示
し、本発明以外の材料より高い値を示している。これら
のことより本発明では高いNi及び高い遮蔽度、高い実
効透磁率、高い角型性が得られる成分バランスとしてN
i、 Mo、 Cu、 Mn。
FIG. 3 shows the effective magnetic permeability, which shows a high value of 6500 or more within the range of the present invention, which is higher than materials other than those of the present invention. Furthermore, in FIG. 4, the squareness at 50 Hz also shows a high value of 0.90 or more within the range of the present invention, which is higher than that of materials other than the materials of the present invention. Based on these facts, the present invention uses N as a component balance that provides high Ni, high shielding degree, high effective magnetic permeability, and high squareness.
i, Mo, Cu, Mn.

Bを上記のような本発明範囲とし、しかもパラメータX
を3.3〜3.8の範囲内と規定した。
B is the range of the present invention as described above, and the parameter
was defined as within the range of 3.3 to 3.8.

ところで本発明者等は上記のような本発明合金を用いて
磁気特性を更に高めるための検討を重ねた結果、最終の
磁性を高めるための熱処理後で合金のオーステナイト結
晶粒界およびその近傍でのB量が特定範囲のときに初透
磁率Ni及び遮蔽度が更に向上する事実を確認した。即
ち第5図(al〜+d)は本発明成分範囲の合金(後述
する実施例1の発明合金3)の Niとオーステナイト
粒界およびその近傍でのB量の関係を示すもので、Ni
は上記合金と熱間加工後、冷延、焼鈍を繰返して作製し
た板厚0.5 n+の薄板サンプルより外径45tm、
内径33mのJISリングを打抜き、これを試料として
パラジウム膜を透過させ精製した高純度水素気流中雰囲
気下で1100℃で3時間の熱処理を行い、1100℃
から650℃までの間を50〜b囲内における一定冷却
速度で冷却し、その後は炉冷したサンプルによりNiを
測定した結果をオーステナイト粒界およびその近傍での
Blとの関係で整理して示す。即ちオーステナイト粒界
およびその近傍でのB量はNiを測定した薄板サンプル
と同し熱加工履歴を経たサンプルよりオージェ観察用ス
テージに取付は可能なノツチ入り試験片を切出しカソー
ド電解法により電解水素を添加し、粒界脆化処理を施し
て粒界破壊を真空中で行い、顕われた粒界破面の成分分
析をオージェ分光法により異る10点について実施し、
平均したものを求めたもので、単位はatm%である。
By the way, as a result of repeated studies on further improving the magnetic properties using the alloy of the present invention as described above, the present inventors found that after the final heat treatment to increase the magnetism, the austenite grain boundaries and the vicinity of the austenite grain boundaries of the alloy It was confirmed that the initial magnetic permeability Ni and the degree of shielding were further improved when the amount of B was within a specific range. That is, FIG. 5 (al to +d) shows the relationship between Ni and the amount of B at the austenite grain boundary and its vicinity in an alloy having the composition range of the present invention (invention alloy 3 of Example 1 described later).
is a thin plate sample with a thickness of 0.5 n+ produced by repeatedly cold rolling and annealing after hot working with the above alloy, with an outer diameter of 45 tm,
A JIS ring with an inner diameter of 33 m was punched out, and this sample was heat-treated at 1100°C for 3 hours in an atmosphere of purified high-purity hydrogen that was permeated through a palladium membrane.
to 650° C. at a constant cooling rate within the range of 50 to 650° C. and then furnace-cooled. That is, the amount of B at the austenite grain boundaries and their vicinity was determined by cutting out a notched test piece that could be mounted on an Auger observation stage from a sample that had undergone the same thermal processing history as the thin plate sample in which Ni was measured. The grain boundary fracture surface was analyzed in 10 different points using Auger spectroscopy.
The average value is calculated, and the unit is atm%.

遮蔽度は上記と同じ製造履歴を経た板厚0.5 n+、
直径50問、長さ200mmの円筒にヘルムホルツコイ
ルにて外部磁場(Ho)、500ミリガウスを円筒軸方
向にかけた場合の円筒内側中央部での内部磁場HIを測
定することにり求めた。遮蔽度(=H,/H1)の測定
に際しては、地磁気の影響が十分無視できるレベルまで
磁気シールドしたボックス内にて行った。I KHzの
実効透磁率は上記と同じ磁気焼鈍を経た板厚0.35w
のリングサンプルを用い、5ミリエルステツドでのイン
ダクタンス透磁率を測定することにより求め、50Hz
での角型性は実効透磁率を測定したと同じリングサンプ
ルを用いて磁場0.1エルステツドでのBrとBmの比
から求めた。
The degree of shielding is a plate thickness of 0.5 n+ that has gone through the same manufacturing history as above,
It was determined by measuring the internal magnetic field HI at the center inside the cylinder when an external magnetic field (Ho) of 500 milligauss was applied in the axial direction of the cylinder using a Helmholtz coil with a diameter of 50 questions and a length of 200 mm. The degree of shielding (=H, /H1) was measured in a box that was magnetically shielded to a level where the influence of geomagnetism could be sufficiently ignored. The effective permeability of I KHz is 0.35W, which has undergone the same magnetic annealing as above.
It was determined by measuring the inductance permeability at 5 millier steps using a ring sample of 50 Hz.
The squareness was determined from the ratio of Br and Bm at a magnetic field of 0.1 oersted using the same ring sample used to measure the effective magnetic permeability.

第5図(a)のNiは、オーステナイト粒界およびその
近傍でのB量が10〜50a tmXの範囲内で向上し
ていることは明かであり、特に15〜40a tmXの
範囲内では480.000以上である。このようなNi
の向上原因は明かでないが、粒界およびその近傍で適量
のBが存在することにより粒界部分の性状を変え、この
変化が磁気特性、特に初透磁率といった磁壁の移動のし
やすさ、又は回転磁化のしやすさが求められる特性値に
対して良い影響を与えているものと推察される。このよ
うな結果から本発明成分範囲の合金で、より高いNi及
び高い遮蔽度と比較的高い実効透磁率、比較的高い角型
性を合わせ持つ条件として磁気焼鈍後のオーステナイト
粒界およびその近傍でのBtを10〜50a tmXと
することを定めた。
It is clear that the amount of B at the austenite grain boundaries and the vicinity of the Ni shown in FIG. 000 or more. Ni like this
Although the reason for the improvement is not clear, the presence of an appropriate amount of B at and near the grain boundaries changes the properties of the grain boundaries, and this change improves magnetic properties, especially the ease of movement of domain walls such as initial magnetic permeability, or It is presumed that the ease of rotational magnetization has a positive effect on the required characteristic values. From these results, we found that the conditions for achieving both higher Ni and higher shielding degree, relatively high effective magnetic permeability, and relatively high squareness in an alloy within the composition range of the present invention are as follows: It was determined that the Bt of 10 to 50 atmX.

なお本発明で対象とするNi−Fe合金では、熱間加工
性が劣っている。この加工性を改良する方法としては微
量のB添加とLitのCa添加を組合わせることがしば
しば行われるが、斯うした微量Ca添加を行っても上述
したような本発明の構成要件を満せば本発明の目的とす
る初透磁率の向上は達成される。又本発明においては上
記したような成分組成の他、鉄合金とする場合に不可避
的に含まれるSi、^iについても、詳しく言及しない
が、例えばSi:0.3%以下、A/:0.03%以下
の範囲内での含有が許容される。
Note that the Ni-Fe alloy targeted by the present invention has poor hot workability. As a method for improving this processability, a combination of adding a small amount of B and adding Lit Ca is often used, but even if such a small amount of Ca is added, the above-mentioned requirements of the present invention cannot be satisfied. In this case, the objective of the present invention, which is to improve the initial magnetic permeability, can be achieved. Further, in the present invention, in addition to the above-mentioned composition, Si and ^i, which are inevitably included in iron alloys, will not be mentioned in detail, but for example, Si: 0.3% or less, A/: 0 Content within the range of .03% or less is allowed.

(実施例) 本発明によるものの具体的な実施例について説明すると
、以下の如くである。
(Example) Specific examples of the present invention will be described below.

実施例】。Example】.

次の第1表に示すような化学成分を有する高NiFe合
金の本発明合金および比較合金を真空溶解にて溶製し、
これを熱間加工、脱スケールを施し、冷延素材を準備し
た。Si含有量はいずれの供試材でも0.05〜0.1
5%範囲内である。又これらの素材は次いで冷延加工、
焼鈍して0.5 amの薄板サンプルとし、これらより
外径が45mmで内径33nのJISリングを打抜き試
料とした。又磁気特性をこれらの試料について、パラジ
ウム膜を透過させ精製した高純度水素気流中雰囲気下に
おいて1100℃で3時間の熱処理を行い、1100℃
〜650℃の間は400”C/hrにて冷却し、その後
は炉冷させて測定し、μiを0.005エルステソドで
の透磁率として求めた結果及び遮蔽度、実効透磁率、5
0Hzでの角型性、保磁力、磁束密度の結果を併せて第
1表に示した。
The present invention alloy and comparative alloy, which are high NiFe alloys having chemical components as shown in Table 1 below, were produced by vacuum melting,
This was subjected to hot working and descaling to prepare a cold rolled material. The Si content is 0.05 to 0.1 in all sample materials.
It is within the 5% range. In addition, these materials are then subjected to cold rolling processing,
The thin plate samples of 0.5 am were annealed, and JIS rings with an outer diameter of 45 mm and an inner diameter of 33 nm were punched from these samples. In addition, the magnetic properties of these samples were heat treated at 1100°C for 3 hours in an atmosphere of purified high-purity hydrogen permeated through a palladium membrane.
The measurement was performed by cooling at 400"C/hr between ~650℃ and then furnace cooling, and μi was determined as magnetic permeability at 0.005 oerstesod, shielding degree, effective magnetic permeability, 5
The results of squareness, coercive force, and magnetic flux density at 0 Hz are also shown in Table 1.

遮蔽度は上記と同じ製造履歴を経た板厚0.5關、直径
som、長さ200 w*の円筒にヘルムホルツコイル
にて外部磁場(Ho)、500ミリガウスを円筒の軸方
向に対して直角方向にかけた場合の円筒内側中央部での
内部磁場H8を測定することにより求めた。遮蔽度(−
HO/Hl )  の測定に際しては、地磁気の影響が
十分無視できるレヘルまで磁気シールドしたボックス内
にて行った。
The shielding degree is a cylinder with a plate thickness of 0.5 mm, diameter som, and length 200 w* that has gone through the same manufacturing history as above, and is applied with an external magnetic field (Ho) of 500 milligauss in a direction perpendicular to the axis of the cylinder using a Helmholtz coil. It was determined by measuring the internal magnetic field H8 at the center inside the cylinder when applied to the cylinder. Shielding degree (-
HO/Hl) was measured in a box that was magnetically shielded to a level where the influence of geomagnetism could be sufficiently ignored.

l kHzの実効透磁率は上記と同じ磁気焼鈍を経た板
厚0.35mmのリングサンプルを用い、5ミリエルス
テツドでのインダクタンス透磁率を測定することにより
求め、5Hzでの角型性は実効透磁率を測定したと同じ
サンプルリングを用いて磁場0.1エルステソドでのB
rとBmの比から求めた。
The effective magnetic permeability at 1 kHz is determined by measuring the inductance permeability at 5 millier steps using a ring sample with a thickness of 0.35 mm that has been subjected to the same magnetic annealing as above, and the squareness at 5 Hz is determined by the effective magnetic permeability. B at a magnetic field of 0.1 eStesod using the same sample ring as measured.
It was determined from the ratio of r and Bm.

なお、磁束密度及び保磁力は、初透磁率を求めたと同し
サンプルリングにて測定した。磁束密度はBIOo。は
100OA/mの外部磁界を加えた時の磁束密度であり
、保磁力は1000A#+の外部磁場を加え次に反転し
、磁束密度をOとする磁界の強さである。
The magnetic flux density and coercive force were measured using the same sample ring used to determine the initial magnetic permeability. The magnetic flux density is BIOo. is the magnetic flux density when an external magnetic field of 100 OA/m is applied, and the coercive force is the strength of the magnetic field when an external magnetic field of 1000 A#+ is applied and then reversed to make the magnetic flux density O.

即ち合金階1と隘2の各村は、c、p、s、 ○。In other words, each village on the 1st floor and the 2nd floor is c, p, s, ○.

N、  B、 Ni、門o、 CuおよびMn量が何れ
も本発明成分範囲内のもので、μiは350 、000
以上と高い透磁率を示しており、遮蔽度も約300以上
と高い値を示している。又、実効透磁率、50Hzでの
角型性、保磁力も比較例に比べて優れたレベルとなって
いる。
The amounts of N, B, Ni, Cu, and Mn are all within the range of the components of the present invention, and μi is 350,000.
It shows a high magnetic permeability, and the degree of shielding also shows a high value of about 300 or more. In addition, the effective magnetic permeability, squareness at 50 Hz, and coercive force are also at an excellent level compared to the comparative example.

又、合金Nn3と隘4はC,P、  S、 O,N、 
B。
Also, alloys Nn3 and 4 are C, P, S, O, N,
B.

Ni、 Mo、 CuおよびMn1lが本発明範囲内の
合金であって、かつ熱間加工性の向上を意図して微量の
Ca添加を行った合金であるが、この場合においても各
特性値は上記した合金阻1および阻2と略同じレベルに
ある。即ちこのように1iica添加が行われた合金に
おいても本発明の効果は十分に発揮されることが確認さ
れた。
Ni, Mo, Cu, and Mn1l are alloys within the scope of the present invention, and are alloys in which a trace amount of Ca is added with the intention of improving hot workability, but even in this case, each characteristic value is as described above. It is at approximately the same level as Alloy 1 and 2. In other words, it was confirmed that the effects of the present invention are sufficiently exhibited even in alloys to which 1iica is added.

また、合金Nn5材ではC,S、 O,Nがより好まし
いレベルまで低減されており、各特性値は狙1−414
の各村よりさらに高くなっている。
In addition, in the alloy Nn5 material, C, S, O, and N are reduced to more preferable levels, and each characteristic value is aimed at 1-414.
It is even higher than each village.

これに対し、合金IVk16および阻7の各村はNi量
がそれぞれ上限を越え、あるいは下限未満のものであり
、又合金ぬ8および狙9の各村はM4が上限を越えたも
の、あるいは下限未満のものであって、合金ll&11
0および阻11はCu量がそれぞれ上限を越え、あるい
は下限未満のものである。更に合金1m12はMn量が
上限を越えたものであり、代13はそれぞれが下限未満
のものであり、合金IVkl14とIh15のものはそ
れぞれBiが上限を越え、あるいは下限未満のものであ
って、更に合金11h16〜m20の各村はそれぞれC
,P、S、O,Nの何れかが本発明成分範囲を超えるも
の、又合金11h2L l1h22はそれぞれパラメー
タXが本発明で規定した上限を超えるものと、下限未満
のものであるが、これらの供試付磁6〜11&121は
1t13以外が何れも本発明に比べて低いレベルにある
。なお合金胞13はMnlが本発明で規定した下限未満
であることは上記の如くで、各特性値レベルは本発明と
同じレベルで高い値を示しているが、サンプル作製時の
熱間加工性は著しく悪いものであった。
On the other hand, each village of Alloy IVk16 and Alloy 7 has a Ni content exceeding the upper limit or less than the lower limit, and each village of Alloy No 8 and Ai9 has an M4 exceeding the upper limit or the lower limit. Alloy ll & 11
Nos. 0 and 11 have a Cu amount exceeding the upper limit or less than the lower limit, respectively. Furthermore, Alloy 1m12 has a Mn content exceeding the upper limit, Alloy 13 has a Mn content below the lower limit, and Alloys IVkl14 and Ih15 each have a Bi content exceeding the upper limit or below the lower limit, Furthermore, each village of alloys 11h16 to m20 is C
, P, S, O, N exceeds the composition range of the present invention, and alloy 11h2L l1h22 has parameter Test magnets 6 to 11 & 121 are all at a lower level than the present invention except for 1t13. As mentioned above, the Mnl of alloy cell 13 is less than the lower limit specified in the present invention, and each characteristic value level is the same as that of the present invention and shows high values, but the hot workability during sample preparation was extremely bad.

即ち本発明によるものは、C,P、S、O,Nの不純物
元素低減のもとで、Ni、 Mo、 Cu、 Mn、 
 B。
That is, in the present invention, Ni, Mo, Cu, Mn, and Ni, Mo, Cu, Mn, and C, P, S, O, and N impurity elements are reduced.
B.

Feをそれらの単独量およびバランスが厳密に規定され
た範囲とすることにより優れた初透磁率、遮断度、実効
透磁率、50 Hzでの角型性、保磁力を初めて達成す
ることができる。なお本発明において所要の特性を得る
ためには熱処理に使用するガスは、この実施例で示した
ような高純度のH2ガスで可能であるが、同様な特性は
JISに規定されているような通常のH2雰囲気、すな
わち露点40°C以下の11□ガス気流中で熱処理を行
うことによっても得られる。
By controlling the amount and balance of Fe within strictly defined ranges, excellent initial magnetic permeability, shielding degree, effective magnetic permeability, squareness at 50 Hz, and coercive force can be achieved for the first time. In order to obtain the required characteristics in the present invention, the gas used for the heat treatment can be a high-purity H2 gas as shown in this example, but the same characteristics can be obtained by using a high-purity H2 gas as specified in JIS. It can also be obtained by heat treatment in a normal H2 atmosphere, that is, in a 11□ gas stream with a dew point of 40°C or less.

実施例2゜ 前記した実施例1の本発明合金ml−11h4について
冷延、焼鈍を経た0、5mmの薄板サンプルより外径4
5目、内径33mmのJISリングを打抜きによって作
製し、試料とした。またオージェ観察用ステージに取付
は可能なノツチ入り試験片も同様のサンプルより切出し
た。
Example 2 The outer diameter of the 0.5 mm thin plate sample of the present invention alloy ml-11h4 of Example 1, which was cold rolled and annealed, was 4 mm.
A JIS ring with 5 meshes and an inner diameter of 33 mm was produced by punching and used as a sample. A notched test piece that could be attached to an Auger observation stage was also cut from the same sample.

上記のようにして得られたサンプルは、次の第2表に示
すような種々の雰囲気下で、1100℃×3時間の熱処
理を行い、1100℃〜650℃の間をそれぞれに異っ
た冷却速度で冷却し、その後は炉冷したサンプルにより
磁気特性及び遮蔽度を測定した。
The samples obtained as described above were heat treated at 1100°C for 3 hours under various atmospheres as shown in Table 2 below, and then cooled at different temperatures between 1100°C and 650°C. The magnetic properties and degree of shielding were measured using samples that were cooled at high speed and then furnace cooled.

またオーステナイト粒界およびその近傍でのBiは、上
記熱処理の後に、カソード電解法により電解水素を添加
して粒界脆化処理を施し、粒界破壊を真空中で行い、顕
われた粒界破面の成分分析をオージェ分光法により異る
10点について行い平均して求めた。これら結果は第2
表に併せて示す如くである。
In addition, after the above heat treatment, Bi in the austenite grain boundaries and their vicinity is treated by adding electrolytic hydrogen by cathodic electrolysis to perform grain boundary embrittlement treatment, and grain boundary fracture is performed in a vacuum. Component analysis of the surface was performed at 10 different points using Auger spectroscopy, and the results were averaged. These results are the second
As shown in the table.

即ち本発明合金1klを用いたものにおいて供試材11
hl〜4は、そのオーステナイト粒界およびその近傍で
のB量が本発明規定内であり、μi及び遮蔽度はオース
テナイト粒界およびその近傍でのB量が本発明規定外の
供試材11h6のものより高くなっている。又本発明合
金ぬ2を用いた場合では、供試材11m24の各村にお
けるオーステナイト粒界およびその近傍でのB量は本発
明規定内であり、そのμi・及び遮蔽度はオーステナイ
ト粒界およびその近傍でのB量が本発明の規定外である
供試材N7、旭12の各村のものより高くなっている。
That is, in the case of using 1 kl of the alloy of the present invention, sample material 11
In hl~4, the amount of B at the austenite grain boundary and its vicinity is within the specification of the present invention, and the μi and shielding degree are those of sample material 11h6, in which the amount of B at the austenite grain boundary and the vicinity thereof is outside the specification of the invention. It's higher than that. In addition, in the case of using the present invention alloy No. 2, the amount of B at the austenite grain boundary and its vicinity in each village of 11 m24 of the sample material was within the specification of the present invention, and the μi and the degree of shielding were at the austenite grain boundary and its vicinity. The amount of B in the vicinity is higher than that in each village of sample materials N7 and Asahi 12, which are outside the scope of the present invention.

本発明合金Il&13を用いたものでは、供試材Na1
4〜11h16の各村におけるオーステナイト粒界およ
びその近傍でのB量は本発明規定内であって、そのμi
及び遮蔽度はオーステナイト粒界およびその近傍のBl
が本発明規定外の供試材11h13および魚18のもの
より高くなっている。
In the case of using the alloy Il&13 of the present invention, the sample material Na1
The amount of B at the austenite grain boundary and its vicinity in each village of 4 to 11h16 is within the specification of the present invention, and its μi
and the shielding degree is Bl at the austenite grain boundary and its vicinity.
is higher than that of sample material 11h13 and fish 18, which are not specified in the present invention.

更に本発明合金11h4を用いた場合にあっては、供試
材m19.20.22および23の各村におけるオース
テナイト粒界およびその近傍でのBilは本発明規定内
であり、それらのμi及び遮蔽度はそれが規定外である
供試材11m24のものより高くなっている。なお、オ
ーステナイト粒界及びその近傍でのBilが本発明規定
内の供試材弘1−N14.N18〜馳11. N114
〜N116. 弘19. 阻20. 弘22. Na2
3では優れた初透磁率及び遮蔽度を有し且つ比較的高い
実効透磁率及び50Hzでの角型性をも合わせ持ってい
る。
Furthermore, when the present invention alloy 11h4 is used, the Bi at the austenite grain boundary and its vicinity in each village of sample materials m19.20.22 and 23 is within the present invention specification, and their μi and shielding The degree is higher than that of sample material 11m24, which is out of specification. In addition, the Bi of the austenite grain boundary and its vicinity is within the specification of the present invention in the test material Ko1-N14. N18~hase11. N114
~N116. Hiro 19. 20. Hiro 22. Na2
No. 3 has excellent initial magnetic permeability and shielding degree, and also has relatively high effective magnetic permeability and squareness at 50 Hz.

また、供試材1m2.磁14. N115.患18. 
Na19ではより高い初透磁率を有しており、これらの
材料ではより近い保磁力を有している。
In addition, the sample material was 1m2. Magnetic 14. N115. Disease 18.
Na19 has a higher initial permeability and these materials have closer coercivity.

なお、第2表における供試材11m5.17および21
の各村は1100℃X3hrの雰囲気保持中におけるH
8の露点が一40℃より高い場合であり、このような条
件で熱処理されたサンプルのμiは200.000程度
と明かに低く遮蔽度も100前後と他の発明例に比べて
低い。即ち本発明の効果はJISで規定されている露点
−40℃以下のH2で熱処理を行うことにより適切に発
揮される。またI X 10−’Torrというような
高真空下の熱処理でも本発明の効果は発揮し得る。
In addition, the sample materials 11m5.17 and 21 in Table 2
Each village is H during the atmosphere maintained at 1100℃
This is the case where the dew point of No. 8 is higher than 140° C., and the μi of the sample heat-treated under such conditions is clearly low at about 200,000, and the degree of shielding is also about 100, which is lower than other invention examples. That is, the effects of the present invention can be properly exhibited by performing heat treatment at H2 with a dew point of -40° C. or lower as defined by JIS. Further, the effects of the present invention can also be exhibited by heat treatment under a high vacuum such as I x 10-'Torr.

(実施例3〉 前記した実施例1の本発明規定外4及び表3に示すよう
な成分を有する比較合金弘23について実施例2と同様
の製作条件にてサンプルを作威しそれぞれ、表4に示す
ような磁気焼鈍条件にて熱処理を行い、磁気特性及び遮
蔽度を実施例2と同様の方法にて行った。結果を表4に
示す。
(Example 3) Samples were made under the same manufacturing conditions as in Example 2 for the above-mentioned Example 1 outside the scope of the present invention 4 and Comparative Alloy Hiro 23 having the components shown in Table 3. Heat treatment was performed under the magnetic annealing conditions as shown in Figure 4, and the magnetic properties and shielding degree were determined in the same manner as in Example 2. The results are shown in Table 4.

なお、この比較合金ヌ23は、Ni、 Cuが本発明規
定外であり、その他の成分は本発明規定内のものである
In this comparative alloy No. 23, Ni and Cu are outside the scope of the present invention, and other components are within the scope of the present invention.

発明合金恥4を用いて、1000℃×1時間の磁気焼鈍
後で得られる磁気性質とほぼ同じレベルかやや高い値を
示している。即ち、本発明によれば、比較合金と同じ特
性を得るのに磁気焼鈍温度を約100℃低温化すること
が出来ることがわかる。
The magnetic properties are approximately the same level or slightly higher than those obtained after magnetic annealing at 1000° C. for 1 hour using the invention alloy 4. That is, it can be seen that according to the present invention, the magnetic annealing temperature can be lowered by about 100° C. to obtain the same properties as the comparative alloy.

本発明は、実施例の製造方法のみでなく、溶解・溶製し
、薄鋳板に鋳造し、鋳造のまま又は熱間加工後および又
は脱スケールし、冷延加工、焼鈍しても良い。
The present invention is not limited to the manufacturing method of the embodiments, but may also be carried out by melting and refining, casting into a thin cast plate, as-cast or after hot working and/or descaling, cold rolling, and annealing.

熱間加工に代えて又は冷延加工の高能率化のために温間
加工を施しても良い。
Warm working may be performed instead of hot working or to improve the efficiency of cold rolling.

但し表面性状、板厚形状、寸法精度が要求される場合は
、最終溶製の前に冷延加工を施した方が良い。
However, if surface quality, plate thickness shape, and dimensional accuracy are required, it is better to perform cold rolling before final melting.

更に、1回の冷延加工に代えて冷延加工、再結晶焼鈍(
例えば800℃以上)、冷延加工を繰りかえしても良い
Furthermore, instead of one cold rolling process, cold rolling process and recrystallization annealing (
For example, at 800° C. or higher), the cold rolling process may be repeated.

以上のような製造方法であっても、本発明の範囲内であ
ればほぼ同等のものが得られる。
Even with the above manufacturing method, substantially equivalent products can be obtained as long as they are within the scope of the present invention.

「発明の効果」 以上説明したような本発明によるときは、Ni −Fe
系の高透磁率磁性合金における磁気特性を適切に改善し
、特に直流及び低周波域での透磁率などの磁気特性、及
びシールド性能が従来のPCパーマロイの如きに比し飛
躍的に優れた高透磁率磁性合金を提供せしめ、従来にお
けるより更にシールド特性の要求される各種磁器シール
ド材や磁気ヘッドケース、コア、さらには磁気増幅器、
パルス変圧器などの非線形応用に用いる材料類などに広
く採用せしめ得、さらには従来と同じレベルの要求特性
を得るのに磁気焼鈍温度を従来よりも100℃程度低減
化することも可能とし、かつ歪みによる特性劣化も小さ
く、シールドルームのような構造部品とした際でも所要
の磁気特性を発揮することができ、近時におけるエレク
トロニクス産業の要請に対して適切に即応し得るもので
あるから工業的にその効果の大きい発明である。
"Effects of the Invention" According to the present invention as explained above, Ni-Fe
The system has appropriately improved the magnetic properties of the high permeability magnetic alloy, and has dramatically superior magnetic properties such as magnetic permeability, especially in the DC and low frequency range, and shielding performance compared to conventional PC permalloy. We provide magnetic permeability magnetic alloys for various types of magnetic shielding materials, magnetic head cases, cores, and even magnetic amplifiers that require higher shielding properties than conventional ones.
It can be widely used in materials used in nonlinear applications such as pulse transformers, and it also makes it possible to reduce the magnetic annealing temperature by about 100 degrees Celsius compared to conventional methods to obtain the same level of required characteristics as conventional ones. It has little characteristic deterioration due to distortion, and can exhibit the required magnetic properties even when used as a structural component such as a shielded room.It is suitable for industrial use because it can respond appropriately and quickly to the recent demands of the electronics industry. This is a highly effective invention.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであって、第1図
は初透磁率μiとパラメータX、4 第3図は交流の実効透磁率とパラメータX、第1図 4 第5図は初透磁率μ、とオーステナイト粒界およびその
近傍でのBtの関係を示した図表である。 パラメータX 第2図 第5図 (a+ 0 0 040 060 0 0 0 オーステナイト粒界およびその近傍でのBl(a−υ第
3図 0 0 0 0 0 0 0 0 0 0  10  20  30  40  50 60 
 70  80  90オ一ステナイト粒界およζ〈そ
の近傍でのBl(a山υ第4図 平底 1年12月15日 繍庁長官吉田文毅殿 1、事件の表示 平成1年特許願題256383号 3゜ 4゜ 補正をする者 羽生との関係 住所 名  称 代 理 人
The drawings show the technical contents of the present invention, and Fig. 1 shows the initial magnetic permeability μi and the parameter X, Fig. 3 shows the effective magnetic permeability of AC and the parameter 2 is a chart showing the relationship between magnetic permeability μ and Bt at and near austenite grain boundaries. Parameter
70 80 90 Ostenite grain boundary and ζ〈Bl in its vicinity (a mountain υ Fig. 4 flat bottom) December 15, 1999, Director General of the Japanese Bureau of Art, Mr. Yoshida Bunki 1, Incident Indication 1999 Patent Application No. 256383 No. 3゜4゜Person making the amendment Name of address related to Hanyu Name of agent

Claims (1)

【特許請求の範囲】 1、Ni:77.5〜79.5wt%、Mo:3.8〜
4.6wt%Cu:1.8〜2.5wt%、Mn:0.
1〜1.10wt%、P:0.010wt%以下、S:
0.0020wt%以下、O:0.0030wt%以下
、N:0.0010wt%以下、C:0.020wt%
以下 を含有し、かつBを、 0.0005wt%≦〔B〕−10.8/14〔N〕≦
0.0070wt%の範囲内で含有し、残部は基本的に
Feからなり、しかもNi、Mo、Cu、Mn、Feが
、 3.3≦(2.02×〔Ni〕−11.13×〔Mo〕
−1.25×〔Cu〕−5.03×〔Mn〕)/2.1
3×〔Fe〕≦3.8(但し〔 〕内はwt%) を満たす範囲でそれぞれ含有されたことを特徴とするN
i−Fe系高透磁率磁性合金。 2、請求項1に記載の成分組成を有し、かつ磁気焼鈍後
でオーステナイト粒界およびその近傍でのB量が10〜
50atm%であることを特徴とするNi−Fe系高透
磁率磁性合金。
[Claims] 1. Ni: 77.5 to 79.5 wt%, Mo: 3.8 to 79.5 wt%
4.6 wt% Cu: 1.8 to 2.5 wt%, Mn: 0.
1 to 1.10 wt%, P: 0.010 wt% or less, S:
0.0020wt% or less, O: 0.0030wt% or less, N: 0.0010wt% or less, C: 0.020wt%
Contains the following and B, 0.0005wt%≦[B]-10.8/14[N]≦
The content is within the range of 0.0070 wt%, and the remainder basically consists of Fe, and Ni, Mo, Cu, Mn, and Fe are contained within the range of 3.3≦(2.02×[Ni]−11.13×[ Mo〕
−1.25×[Cu]−5.03×[Mn])/2.1
3×[Fe]≦3.8 (however, values in brackets are wt%).
i-Fe based high permeability magnetic alloy. 2. It has the component composition according to claim 1, and the amount of B at the austenite grain boundary and its vicinity after magnetic annealing is 10 to 10.
A Ni-Fe based high permeability magnetic alloy characterized by having a magnetic flux of 50 atm%.
JP1256383A 1989-01-20 1989-09-30 Ni-Fe system high permeability magnetic alloy Expired - Lifetime JPH0653903B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69009317T DE69009317T2 (en) 1989-01-20 1990-01-20 MAGNETIC NICKEL-IRON ALLOY WITH HIGH PERMEABILITY.
EP90901881A EP0407608B1 (en) 1989-01-20 1990-01-20 Nickel-iron base magnetic alloy having high permeability
PCT/JP1990/000067 WO1990008201A1 (en) 1989-01-20 1990-01-20 Nickel-iron base magnetic allow having high permeability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1157589 1989-01-20
JP1-11575 1989-01-20

Publications (2)

Publication Number Publication Date
JPH0375327A true JPH0375327A (en) 1991-03-29
JPH0653903B2 JPH0653903B2 (en) 1994-07-20

Family

ID=11781714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1256383A Expired - Lifetime JPH0653903B2 (en) 1989-01-20 1989-09-30 Ni-Fe system high permeability magnetic alloy

Country Status (1)

Country Link
JP (1) JPH0653903B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797593A (en) * 1995-12-06 1998-08-25 Showa Coporation Gas spring
US8157929B2 (en) 2007-02-13 2012-04-17 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room
JP2014218694A (en) * 2013-05-08 2014-11-20 日本冶金工業株式会社 Ni-Fe BASED PERMALLOY ALLOY HAVING EXCELLENT HOT WORKABILITY AND AC MAGNETIC PROPERTY
US11751742B2 (en) * 2017-08-28 2023-09-12 Bissell Inc. Vacuum cleaner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797593A (en) * 1995-12-06 1998-08-25 Showa Coporation Gas spring
US8157929B2 (en) 2007-02-13 2012-04-17 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room
JP5326576B2 (en) * 2007-02-13 2013-10-30 日立金属株式会社 Geomagnetic shielding materials, geomagnetic shielding components and geomagnetic shielding rooms
JP2014218694A (en) * 2013-05-08 2014-11-20 日本冶金工業株式会社 Ni-Fe BASED PERMALLOY ALLOY HAVING EXCELLENT HOT WORKABILITY AND AC MAGNETIC PROPERTY
US11751742B2 (en) * 2017-08-28 2023-09-12 Bissell Inc. Vacuum cleaner

Also Published As

Publication number Publication date
JPH0653903B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
KR100439457B1 (en) Fe-Ni BASED PERMALLOY, METHOD FOR PRODUCING THE SAME AND CASTING SLAB
RU2725240C2 (en) Vibration damping material of ferrite stainless steel with high content of al and production method
RU2725239C2 (en) Damping material of ferritic stainless steel and production method
KR101949626B1 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
EP4079889A2 (en) Non-oriented electrical steel sheet and method for manufacturing same
JP4360349B2 (en) Soft magnetic steel bar
JPH0375327A (en) Ni-fe series high permeability magnetic alloy
EP4265779A1 (en) Non-oriented electrical steel sheet and method for manufacturing same
JP2006328462A (en) Soft magnetic steel
JP4223726B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof
JP4622162B2 (en) Non-oriented electrical steel sheet
JP2019035116A (en) Nonoriented electromagnetic steel sheet and method of producing the same
JPH03122236A (en) Ni-fe serite high permeability magnetic alloy
JPH02213421A (en) Production of soft-magnetic steel stock
JPH03122237A (en) Ni-fe serite high permeability magnetic alloy
JPH08134604A (en) Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production
US20230257859A1 (en) Soft magnetic member and intermediate therefor, methods respectively for producing said member and said intermediate, and alloy for soft magnetic member
JP2006510799A (en) Low frequency magnetic shield made from soft magnetic alloy
JPH01263218A (en) Production of high magnetic permeability alloy of ni-fe system
JP4266336B2 (en) Soft magnetic steel material excellent in hot forgeability, magnetic properties and machinability, soft magnetic steel parts excellent in magnetic properties and manufacturing method thereof
EP0407608B1 (en) Nickel-iron base magnetic alloy having high permeability
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JP4795900B2 (en) Fe-Ni permalloy alloy
JP2002226953A (en) Nonoriented silicon steel sheet for high frequency having excellent low magnetic field characteristic
JP2013224482A (en) Method for producing raw material for composite magnetic material and method for producing the composite magnetic material