JP2013049918A - Electromagnetic stainless steel and method of manufacturing the same - Google Patents

Electromagnetic stainless steel and method of manufacturing the same Download PDF

Info

Publication number
JP2013049918A
JP2013049918A JP2012168043A JP2012168043A JP2013049918A JP 2013049918 A JP2013049918 A JP 2013049918A JP 2012168043 A JP2012168043 A JP 2012168043A JP 2012168043 A JP2012168043 A JP 2012168043A JP 2013049918 A JP2013049918 A JP 2013049918A
Authority
JP
Japan
Prior art keywords
stainless steel
electromagnetic stainless
electromagnetic
less
electrical resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012168043A
Other languages
Japanese (ja)
Inventor
Shinichiro Yokoyama
紳一郎 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012168043A priority Critical patent/JP2013049918A/en
Publication of JP2013049918A publication Critical patent/JP2013049918A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic stainless steel which has high electromagnetic resistivity suitable to the application of a rotor and a stator of a solenoid valve such as a fuel injector in an automobile exposed to the severe environment, and excellent corrosion resistance, and a method of manufacturing the same.SOLUTION: The electromagnetic stainless steel is composed of, by mass%, ≤0.04% C, 0.3-1.2% Si, 0.3-1.0% Mn, 0.01-0.05% S, ≤1.0% (not including 0%) Ni, >16.0% to ≤18.0% Cr, 0.2-0.5% Al, 0-0.05% Ti and the balance Fe with impurities.

Description

本発明は、高い電気抵抗率を有し、耐食性に優れた電磁ステンレス鋼及びその製造方法に関するものである。   The present invention relates to electromagnetic stainless steel having high electrical resistivity and excellent corrosion resistance, and a method for producing the same.

従来、自動車の燃料噴射装置等の電磁弁の可動子や固定子の部品として、高い電気抵抗率を有することで、動的磁場に対する磁場応答性に優れ、かつ耐食性にも優れた電磁ステンレス鋼が採用されている。
例えば、特許文献1には、質量%でC:0.05%以下、N:0.04%以下、Al:0.50%を超えて3.0%以下、Si:0.30〜2.50%、Mn:0.50%以下、S:0.03%以下、Ti:0.01〜0.50%、Cr:5.0%〜20.0%、B:0.0005〜0.01%を含有し、残部は不可避不純物及び実質的にFeの組成でなる電磁ステンレス鋼が提案されている。この特許文献1で提案される組成の特徴の一つ目は、TiとBを複合添加し、且つ、Sを極力低減すること、及び、特徴の二つ目は、Alを比較的多量に含有させることにより、電気抵抗率を高めるとともに耐食性と磁気特性を向上させるものである。また、被削性の改善を目的に選択元素の一つとして、Pb:0.30%以下を含んでも良いとするものである。
また、本願出願人による特許文献2には、質量%でC:0.03%以下、N:0.03%以下、Al:0.2〜1.5%、Si:0.3〜1.2%、Mn:0.5〜1.0%、S:0.008〜0.06%、Cr:8〜16%、残部が実質的にFeからなる電磁ステンレス鋼が提案されている。この提案は、13Cr−Fe系合金を基に、Al、Si、Mn、Sの含有量を適正化することで、被削性を損なうことなく高い電気抵抗率、優れた軟磁性と冷鍛性を実現するものである。この特許文献2では、SとMnの量を調整して被削性のよい非金属介在物であるMnS量を調整することにより、環境に対して有害な元素であるPbを含まずとも、耐食性、軟磁性、被削性が得られるという点で優れた技術である。
Conventionally, electromagnetic stainless steel having excellent electric field responsiveness to a dynamic magnetic field and excellent corrosion resistance has a high electrical resistivity as a component of a mover or stator of an electromagnetic valve such as an automobile fuel injection device. It has been adopted.
For example, in Patent Document 1, C: 0.05% or less, N: 0.04% or less, Al: more than 0.50% to 3.0% or less, Si: 0.30-2. 50%, Mn: 0.50% or less, S: 0.03% or less, Ti: 0.01-0.50%, Cr: 5.0% -20.0%, B: 0.0005-0. There has been proposed an electromagnetic stainless steel containing 01%, with the balance being inevitable impurities and substantially Fe. The first feature of the composition proposed in Patent Document 1 is that Ti and B are added together and S is reduced as much as possible. The second feature is that Al is contained in a relatively large amount. As a result, the electrical resistivity is increased and the corrosion resistance and magnetic properties are improved. In addition, Pb: 0.30% or less may be included as one of selective elements for the purpose of improving machinability.
Moreover, in patent document 2 by this applicant, C: 0.03% or less, N: 0.03% or less, Al: 0.2-1.5%, Si: 0.3-1. 2%, Mn: 0.5-1.0%, S: 0.008-0.06%, Cr: 8-16%, the electromagnetic stainless steel which the remainder consists essentially of Fe is proposed. This proposal is based on a 13Cr-Fe alloy, and by optimizing the contents of Al, Si, Mn, and S, it has high electrical resistivity, excellent soft magnetism and cold forging without sacrificing machinability. Is realized. In Patent Document 2, the amount of S and Mn is adjusted to adjust the amount of MnS, which is a non-metallic inclusion having good machinability, so that it does not contain Pb which is an element harmful to the environment. It is an excellent technique in that soft magnetism and machinability can be obtained.

特開平6−010101号公報JP-A-6-010101 特開平2−061028号公報JP-A-2-061028

上述したように、特許文献1に開示される電磁ステンレス鋼では、Alを積極添加することで電気抵抗率の上昇、最大透磁率の上昇と保磁力の低下を実現しようとするものであるが、Alを高めると加工性が劣化する。また、優れた被削性を得るために添加するPbは環境に有害な物質である。
また、特許文献2に開示される電磁ステンレス鋼ではPbを含まずとも、被削性を得ることができるが、過酷な環境下に晒されると、塩害で電磁ステンレス鋼が錆びるという問題があった。例えば、燃料噴射装置の可動子や固定子の部品に電磁ステンレス鋼を適用する場合、これらの部品に発錆が生じると、電磁弁としての機能に障害が生じて問題となる。また、電気抵抗率を高め、磁性を向上させるために、Alをやや高めて含有するため、やはり加工性に問題を生じる場合がある。
このように、電磁ステンレス鋼には、電気抵抗率、耐食性、軟磁性、加工性、被削性等の諸特性が要求されるが、近年、特に高い電気抵抗率と優れた耐食性が要求される傾向にある。この要求に対し、従来、開示されている電磁ステンレス鋼では不十分であるという課題があった。
本発明の目的は、この課題を解決し、高い電気抵抗率を有し、耐食性にも優れた電磁ステンレス鋼及びその製造方法を提供することである。
As described above, the electromagnetic stainless steel disclosed in Patent Document 1 is intended to realize an increase in electrical resistivity, an increase in maximum magnetic permeability, and a decrease in coercive force by positively adding Al. When Al is raised, workability deteriorates. Further, Pb added to obtain excellent machinability is a substance harmful to the environment.
In addition, the electromagnetic stainless steel disclosed in Patent Document 2 can obtain machinability without containing Pb, but when exposed to a harsh environment, there is a problem that the electromagnetic stainless steel rusts due to salt damage. . For example, when electromagnetic stainless steel is applied to the parts of the mover and stator of the fuel injection device, if rusting occurs in these parts, the function as the electromagnetic valve is impaired, which causes a problem. In addition, in order to increase the electrical resistivity and improve the magnetism, Al is slightly increased and contained, which may cause problems in workability.
Thus, electromagnetic stainless steel is required to have various properties such as electrical resistivity, corrosion resistance, soft magnetism, workability, machinability, etc., but in recent years, particularly high electrical resistivity and excellent corrosion resistance are required. There is a tendency. In response to this requirement, there has been a problem that conventionally disclosed electromagnetic stainless steel is insufficient.
An object of the present invention is to solve this problem and to provide an electromagnetic stainless steel having a high electrical resistivity and excellent corrosion resistance and a method for producing the same.

本発明者は、Pbのような有害物質を排除し、電磁ステンレス鋼の化学組成と電気抵抗率、耐食性、磁気特性の関係を改めて調査した。その結果、Cr量は17%近傍が最適であることを知見した。また、従来の電磁ステンレス鋼で磁気特性を向上させるために積極添加されるAlは、Crを増加させることにより、加工性を劣化させない範囲まで低減しても高透磁率、低保磁力の優れた軟磁性が得られることを見出し、本発明に到達した。
すなわち、本発明は、質量%でC:0.04%以下、Al:0.2〜0.5%、Si:0.3〜1.2%、Mn:0.3〜1.0%、S:0.01〜0.05%、Ti:0〜0.05%、Cr:16.0%を超えて18.0%以下、Ni:1.0%以下(0%を含まず)、残部はFe及び不純物からなる電磁ステンレス鋼である。
本発明において、好ましいAl、Cr及びTiの範囲は、Al含有量は質量%で、0.2〜0.35%、Cr含有量は質量%で、16.5〜18.0%、Ti含有量は質量%で、0.008〜0.05%である。
また、本発明は、前述の組成を有する鋼塊を得た後、950〜1150℃に加熱して熱間加工することにより熱間加工材を得る電磁ステンレス鋼の製造方法である。
さらに本発明は、前記熱間加工工程の後、850〜1050℃での焼鈍を行う電磁ステンレス鋼の製造方法である。
The present inventor excluded a harmful substance such as Pb, and again investigated the relationship between the chemical composition of electromagnetic stainless steel and the electrical resistivity, corrosion resistance, and magnetic properties. As a result, it was found that the Cr content is optimally around 17%. In addition, Al added positively in order to improve magnetic properties in conventional electromagnetic stainless steel is excellent in high permeability and low coercive force even if it is reduced to a range where workability is not deteriorated by increasing Cr. The inventors have found that soft magnetism can be obtained and have reached the present invention.
That is, in the present invention, by mass%, C: 0.04% or less, Al: 0.2-0.5%, Si: 0.3-1.2%, Mn: 0.3-1.0%, S: 0.01 to 0.05%, Ti: 0 to 0.05%, Cr: more than 16.0% and 18.0% or less, Ni: 1.0% or less (not including 0%), The balance is electromagnetic stainless steel made of Fe and impurities.
In the present invention, preferable Al, Cr and Ti ranges are as follows: Al content is mass%, 0.2 to 0.35%, Cr content is mass%, 16.5 to 18.0%, Ti content The amount is 0.008 to 0.05% by mass.
Moreover, this invention is a manufacturing method of the electromagnetic stainless steel which obtains a hot work material by obtaining the steel ingot which has the above-mentioned composition, and heating to 950-1150 degreeC and hot-working.
Furthermore, this invention is a manufacturing method of the electromagnetic stainless steel which anneals at 850-1050 degreeC after the said hot working process.

本発明の電磁ステンレス鋼は、高い電気抵抗率を有するため、動的磁場に対する磁場応答性に優れる。また、過酷な環境下での耐食性にも優れている。さらに、高透磁率、低保磁力の軟磁性という点でも優れている。それ故、例えば、磁場応答性が要求され、過酷な環境下で使用される燃料噴射装置の電磁弁用部品に好適である。   Since the electromagnetic stainless steel of the present invention has a high electrical resistivity, the magnetic field responsiveness to a dynamic magnetic field is excellent. It also has excellent corrosion resistance under harsh environments. Furthermore, it is excellent in terms of soft permeability with high magnetic permeability and low coercivity. Therefore, for example, magnetic field responsiveness is required, and it is suitable for an electromagnetic valve component of a fuel injection device used in a harsh environment.

本発明の電磁ステンレス鋼の塩水噴霧試験後の外観を示す写真である。It is a photograph which shows the external appearance after the salt spray test of the electromagnetic stainless steel of this invention. 比較例の電磁ステンレス鋼の塩水噴霧試験後の外観を示す写真である。It is a photograph which shows the external appearance after the salt spray test of the electromagnetic stainless steel of a comparative example.

上述したように、本発明の重要な特徴は、電磁ステンレス鋼の化学組成、電気抵抗率、耐食性、軟磁性の関係を検討し、適正な範囲の化学組成としたことである。本発明の電磁ステンレス鋼において、各化学組成を規定した理由は、以下の通りである。なお、特に記載のない限り質量%として記す。
C:0.04%以下
Cは、CrやTiと結合して炭化物となり、電磁ステンレス鋼の耐食性と軟磁性を劣化させる元素であるので、含有量は少ない方がよい。そのため、Cは本発明で制限すべき元素の一つである。Cは0.04%以下の範囲であれば、顕著な耐食性劣化と軟磁性劣化を起こさない。それ故、上限を0.04%とした。好ましいCの下限は0%であり、好ましいCの上限は0.02%である。
Al:0.2〜0.5%
Alは、電磁ステンレス鋼の電気抵抗率を高め、軟磁性を向上する効果のある元素である一方で、加工性を劣化させる元素であるので、含有量は低いことが望ましい。本発明では、Crを17%近傍とすることで従来の電磁ステンレス鋼と比較して、Alを低減することが可能である。但し、Alが0.2%未満では高電気抵抗率化と軟磁性の改善効果が小さく、逆に0.5%を超える範囲では電磁ステンレス鋼の硬さが高くなり、塑性加工性を低下させるので、上限を0.5%とした。Alの好ましい下限は0.22%であり、更に好ましくは0.24%である。一方、Alの好ましい上限は0.45%であり、更に好ましくは0.35%である。
As described above, an important feature of the present invention is that the relationship between the chemical composition, electrical resistivity, corrosion resistance, and soft magnetism of the electromagnetic stainless steel is studied and the chemical composition is within an appropriate range. The reason why each chemical composition is defined in the electromagnetic stainless steel of the present invention is as follows. Unless otherwise specified, the mass% is indicated.
C: 0.04% or less Since C is an element that combines with Cr and Ti to form carbides and degrades the corrosion resistance and soft magnetism of electromagnetic stainless steel, the content is preferably as low as possible. Therefore, C is one of the elements that should be restricted in the present invention. If C is in the range of 0.04% or less, significant corrosion resistance deterioration and soft magnetic deterioration will not occur. Therefore, the upper limit was made 0.04%. A preferable lower limit of C is 0%, and a preferable upper limit of C is 0.02%.
Al: 0.2-0.5%
While Al is an element that has the effect of increasing the electrical resistivity of electromagnetic stainless steel and improving soft magnetism, it is an element that deteriorates workability, so that the content is desirably low. In the present invention, it is possible to reduce Al as compared with conventional electromagnetic stainless steel by setting Cr to be close to 17%. However, when the Al content is less than 0.2%, the effect of improving the electrical resistivity and soft magnetism is small, and conversely, when the Al content exceeds 0.5%, the hardness of the electromagnetic stainless steel is increased and the plastic workability is lowered. Therefore, the upper limit was made 0.5%. The minimum with preferable Al is 0.22%, More preferably, it is 0.24%. On the other hand, the preferable upper limit of Al is 0.45%, and more preferably 0.35%.

Si:0.3〜1.2%
Siは、電磁ステンレス鋼の電気抵抗率を高め、軟磁性を向上する効果のある元素である。そのため、本発明では必須で添加する。但し、Siが0.3%未満では高電気抵抗率化と軟磁性向上効果が小さく、逆に1.2%を超える範囲では電磁ステンレス鋼の硬度が高くなって加工性を低下させるので、上限を1.2%とした。好ましいSiの下限は0.5%であり、更に好ましくは0.6%である。一方、Siの好ましい上限は1.0%であり、更に好ましくは0.9%である。
Mn:0.3〜1.0%
Mnは、Sと結合して非金属介在物のMnSとなり、電磁ステンレス鋼の被削性を確保する元素である。但し、Mnが0.3%未満ではSを固定するには不十分であり、逆に1.0%を超える範囲では、電磁ステンレス鋼の磁束密度を低下させるので、0.3〜1.0%の範囲とした。好ましいMnの下限は0.4%であり、更に好ましくは0.45%である。一方、Mnの好ましい上限は0.9%であり、更に好ましくは0.8%である。
Si: 0.3-1.2%
Si is an element that has the effect of increasing the electrical resistivity of electromagnetic stainless steel and improving soft magnetism. Therefore, it is essential and added in the present invention. However, if Si is less than 0.3%, the effect of increasing the electrical resistivity and soft magnetism is small, and conversely in the range exceeding 1.2%, the hardness of the electromagnetic stainless steel increases and the workability is lowered. Was 1.2%. The lower limit of Si is preferably 0.5%, more preferably 0.6%. On the other hand, the preferable upper limit of Si is 1.0%, more preferably 0.9%.
Mn: 0.3 to 1.0%
Mn is an element that combines with S to become MnS of non-metallic inclusions and ensures the machinability of electromagnetic stainless steel. However, if Mn is less than 0.3%, it is insufficient to fix S. Conversely, if Mn is more than 1.0%, the magnetic flux density of the electromagnetic stainless steel is lowered. % Range. The minimum of preferable Mn is 0.4%, More preferably, it is 0.45%. On the other hand, the preferable upper limit of Mn is 0.9%, more preferably 0.8%.

S:0.01〜0.05%
Sも、MnSとなり、電磁ステンレス鋼の被削性を確保する元素である。但し、Sが0.01%未満では、MnSの量が少なくて被削性を改善する効果が小さく、逆に0.05%を超える範囲では、MnSの量が多くなり過ぎて軟磁性を劣化させるので、0.01〜0.05%の範囲とした。好ましいSの下限は0.02%であり、更に好ましくは0.025%である。一方、Sの好ましい上限は0.04%であり、更に好ましくは0.035%である。
Ti:0〜0.05%
Tiは、CやNを固定して、CやNが電磁ステンレス鋼の母相に固溶することによる軟磁性の劣化を防ぐ効果のある元素であるが、一方で、Tiが、母相に固溶することによって軟磁性を劣化させるおそれがあるので、必要に応じて添加すればよく、無添加(0%)でもよい。Tiを添加する場合の上限は、上述の理由から0.05%とした。Tiを添加する場合の好ましい下限は0.008%であり、更に好ましくは0.01%である。一方、Tiの好ましい上限は0.03%であり、更に好ましくは0.02%である。
S: 0.01 to 0.05%
S is also an element that becomes MnS and ensures the machinability of the electromagnetic stainless steel. However, if S is less than 0.01%, the amount of MnS is small and the effect of improving the machinability is small. Conversely, if it exceeds 0.05%, the amount of MnS is too large and soft magnetism is deteriorated. Therefore, the range was 0.01 to 0.05%. A preferable lower limit of S is 0.02%, and more preferably 0.025%. On the other hand, the preferable upper limit of S is 0.04%, more preferably 0.035%.
Ti: 0 to 0.05%
Ti is an element that fixes C and N and prevents deterioration of soft magnetism due to solid solution of C and N in the parent phase of electromagnetic stainless steel. On the other hand, Ti is the parent phase. Since there is a possibility that the soft magnetism may be deteriorated by dissolving in a solid solution, it may be added as necessary, or it may be added (0%). The upper limit in the case of adding Ti is set to 0.05% for the reason described above. The preferable lower limit in the case of adding Ti is 0.008%, more preferably 0.01%. On the other hand, the preferable upper limit of Ti is 0.03%, and more preferably 0.02%.

Cr:16.0%を超えて18.0%以下
Crは、本発明の電磁ステンレス鋼にとって最重要元素であるが、Crが少な過ぎても、或いは、高過ぎても所望の効果が望めないため、極めて狭い範囲に調整する。上述したように、高電気抵抗率化と耐食性、磁気特性の向上には、Cr量は17%近傍まで高めた組成が最適であり、Cr含有量を極めて狭い範囲で調節することにより、Alを低減させることができる。しかし、Crが16.0%以下の範囲では、例えば、塩害のような過酷な環境下で電磁ステンレス鋼に発錆の可能性が高まるので、Crは16.0%を超えて含有する必要がある。一方、18.0%を超える範囲であっても高電気抵抗率化と耐食性向上には有利であるものの、磁束密度の低下が顕著となるので、上限を18.0%に規定した。好ましいCrの下限は16.5%であり、更に好ましくは16.7%である。一方、好ましいCrの上限は17.8%であり、、更に好ましくは17.5%である。
Ni:1.0%以下(0%を含まず)
Niは、Crと同様、耐食性の向上に効果があるとともに、電気抵抗率を高める効果のある本発明の必須元素である。また、フェライト組織中にNiを固溶することにより、固溶強化で電磁ステンレス鋼の強度が高まる効果もある。但し、1.0%を超える範囲では、軟磁性を劣化させるので、上限を1.0%に規定した。Niの耐食性向上の効果をより確実に得るには、Niの下限を0.3%とすると良い。より好ましいNiの下限は0.35%であり、より好ましいNiの上限は0.7%である。
Cr: more than 16.0% and not more than 18.0% Cr is the most important element for the electromagnetic stainless steel of the present invention, but the desired effect cannot be expected even if Cr is too little or too high. Therefore, it is adjusted to an extremely narrow range. As described above, the composition with the Cr content increased to around 17% is optimal for increasing the electrical resistivity, corrosion resistance, and magnetic properties, and by adjusting the Cr content within a very narrow range, Can be reduced. However, when Cr is in the range of 16.0% or less, for example, the possibility of rusting is increased in the electromagnetic stainless steel under a severe environment such as salt damage, so Cr needs to be contained in excess of 16.0%. is there. On the other hand, even if it is in the range exceeding 18.0%, although it is advantageous for increasing the electrical resistivity and improving the corrosion resistance, the magnetic flux density is significantly reduced. Therefore, the upper limit is defined as 18.0%. The lower limit of Cr is preferably 16.5%, more preferably 16.7%. On the other hand, the upper limit of preferable Cr is 17.8%, more preferably 17.5%.
Ni: 1.0% or less (excluding 0%)
Ni, like Cr, is an essential element of the present invention that is effective in improving corrosion resistance and has an effect of increasing electrical resistivity. Further, by dissolving Ni in the ferrite structure, there is an effect of increasing the strength of the electromagnetic stainless steel by solid solution strengthening. However, in the range exceeding 1.0%, soft magnetism is deteriorated, so the upper limit is defined as 1.0%. In order to obtain the effect of improving the corrosion resistance of Ni more reliably, the lower limit of Ni is preferably set to 0.3%. A more preferable lower limit of Ni is 0.35%, and a more preferable upper limit of Ni is 0.7%.

残部はFe及び不純物
残部はFe及び製造上不可避的に混入する不純物である。不純物含有量は少ない方が好ましい。代表的な不純物の上限は以下の範囲であれば差し支えない。
P≦0.05%、N≦0.04%、O≦0.01%
The balance is Fe and impurities. The balance is Fe and impurities inevitably mixed in the manufacturing process. A lower impurity content is preferred. The upper limit of typical impurities may be in the following range.
P ≦ 0.05%, N ≦ 0.04%, O ≦ 0.01%

次に、本発明の製造方法について説明する。
本発明では、前述の組成を有する鋼塊を製造する。鋼塊の製造方法は常法で差し支えないが、活性なTiを添加する組成とするのであれば、真空溶解を行って鋼塊を製造するのが好ましい。
得られた鋼塊に熱間加工を行って熱間加工材とする。これは、鋼塊に熱間加工を行うことにより、電磁ステンレス鋼が再結晶し、優れた軟磁性を得易くなるためである。
熱間加工時の加熱温度が950℃未満であると、熱間加工時の変形抵抗が高くなり、熱間加工中の電磁ステンレス鋼に割れが発生する懸念があるので、加熱温度の下限を950℃とした。より望ましい下限温度は980℃であり、更に望ましい下限温度は1000℃である。一方、熱間加工時の加熱温度が1150℃を超えると、フェライト粒が粗大化して、粒界割れの懸念があるので、加熱温度の上限を1150℃とした。より望ましい上限温度は1120℃であり、更に望ましい上限温度は1100℃である。
なお、本発明でいう熱間加工とは、熱間鍛造、熱間プレス加工、熱間圧延等、公知の熱間加工技術をいう。
Next, the manufacturing method of this invention is demonstrated.
In the present invention, a steel ingot having the aforementioned composition is produced. The method for producing the steel ingot may be a conventional method, but if the composition is such that active Ti is added, it is preferable to produce the steel ingot by performing vacuum melting.
The obtained steel ingot is hot-worked to obtain a hot-worked material. This is because by performing hot working on the steel ingot, the electromagnetic stainless steel is recrystallized and it becomes easy to obtain excellent soft magnetism.
If the heating temperature at the time of hot working is less than 950 ° C., there is a concern that deformation resistance at the time of hot working increases and cracking occurs in the electromagnetic stainless steel during hot working, so the lower limit of the heating temperature is 950 C. A more desirable lower limit temperature is 980 ° C., and a more desirable lower limit temperature is 1000 ° C. On the other hand, if the heating temperature during hot working exceeds 1150 ° C., the ferrite grains become coarse and there is a concern of intergranular cracking, so the upper limit of the heating temperature was set to 1150 ° C. A more desirable upper limit temperature is 1120 ° C, and a more desirable upper limit temperature is 1100 ° C.
The hot working in the present invention refers to a known hot working technique such as hot forging, hot pressing, hot rolling and the like.

次に、上述の熱間加工工程の後に焼鈍を行う。
焼鈍は、熱間加工中にできた動的再結晶組織を焼鈍することによって、フェライト粒径の大きさを整え、優れた軟磁性を得るためである。なお、焼鈍を行う際の電磁ステンレス鋼の形状は、部品形状に加工後に行うことが好ましい。
焼鈍工程での加熱温度の下限を850℃としたのは、850℃未満の温度ではフェライト粒を整粒化する効果が小さいためである。より好ましい下限温度は880℃であり、更に望ましい下限温度は900℃である。一方、加熱温度が1050℃を超えると、フェライト粒径が大きく揃うことによって軟磁性は向上するが、部品形状に加工後であると、1050℃を超える高温では電磁ステンレス鋼の変形や、部品形状同士の接着の問題が発生するためである。より望ましい上限温度は1020℃であり、更に望ましい上限温度は1000℃である。
以上、説明する本発明の電磁ステンレス鋼は、従来の電磁ステンレス鋼より高い電気抵抗率と優れた耐食性を有する。また、優れた軟磁性も有することから、例えば、自動車の燃料噴射装置等の電磁弁の可動子や固定子の部品に好適である。
Next, annealing is performed after the hot working process described above.
Annealing is for annealing the dynamic recrystallized structure formed during hot working to adjust the ferrite grain size and to obtain excellent soft magnetism. In addition, it is preferable that the shape of the electromagnetic stainless steel at the time of annealing is performed after processing into a part shape.
The reason why the lower limit of the heating temperature in the annealing process is set to 850 ° C. is that the effect of regulating the ferrite grains is small at a temperature lower than 850 ° C. A more preferable lower limit temperature is 880 ° C., and a more preferable lower limit temperature is 900 ° C. On the other hand, when the heating temperature exceeds 1050 ° C., soft magnetism is improved by increasing the ferrite grain size, but after processing into a part shape, deformation of the electromagnetic stainless steel or part shape at a high temperature exceeding 1050 ° C. This is because a problem of bonding between the two occurs. A more desirable upper limit temperature is 1020 ° C, and a more desirable upper limit temperature is 1000 ° C.
As described above, the electromagnetic stainless steel of the present invention to be described has higher electrical resistivity and superior corrosion resistance than conventional electromagnetic stainless steel. Moreover, since it also has excellent soft magnetism, it is suitable, for example, for parts of a mover or a stator of an electromagnetic valve such as an automobile fuel injection device.

以下の実施例で本発明を更に詳しく説明する。
真空溶解炉により10kgの電磁ステンレス鋼の鋼塊を10種類、溶製した。各電磁ステンレス鋼の化学組成を表1に示す。
表1のNo.1〜8の合金は、本発明の電磁ステンレス鋼の化学組成の範囲内である。一方、比較例のNo.11では合金、Mn、S、Crの量が本発明の範囲から外れているとともに、有害物質であるPbを含んだ比較例合金である。また、比較例のNo.12では、Alが本発明の範囲から外れている。
The following examples further illustrate the present invention.
Ten types of ingots of 10 kg electromagnetic stainless steel were melted in a vacuum melting furnace. Table 1 shows the chemical composition of each electromagnetic stainless steel.
No. in Table 1 Alloys 1-8 are within the chemical composition of the electromagnetic stainless steel of the present invention. On the other hand, no. No. 11 is a comparative alloy containing Pb, which is a harmful substance, while the amounts of the alloy, Mn, S, and Cr are out of the scope of the present invention. Moreover, No. of the comparative example. In 12, Al is outside the scope of the present invention.

本発明のNo.1〜8合金と比較例のNo.11合金及びNo.12合金の各電磁ステンレス鋼の鋼塊を1100℃に加熱して熱間鍛造を行い、直径30mmの丸棒材を得た。
熱間鍛造時の酸化スケールを除去した後、この丸棒材から直径20mm、板厚2mmの塩水噴霧試験片を切り出し、片面をエメリー紙で#500まで研磨で仕上げた。また、各丸棒材より、4mm×4mm×80mmの電気抵抗測定片、外径20mm、内径15mm、板厚5mmのリング試験片と5mm×10mm×30mmの電磁石試験片を切り出した。
これらの塩水噴霧試験片、電気抵抗測定片、リング試験片、電磁石試験片を、水素雰囲気炉中950℃で2時間保持後、炉冷する磁性焼鈍を行って、電気抵抗測定、塩水噴霧試験と磁性測定に供した。電気抵抗は、四端子法による電気抵抗測定装置を用いて測定した。また、塩水噴霧試験は、温度35℃の5%NaCl水溶液を168時間噴霧し、錆の発生状況を確認した。
磁気特性の測定は、小リング試験片に1次100回、2次10回の巻線を施し、最大印加磁場Hm=800A/m、2000A/m、4000A/m、8000A/mの各条件で直流磁気特性を測定した。更に、電磁石試験片に最大印加磁場Hm=40000A/mの条件で直流磁気特性を測定した。
No. of the present invention. Nos. 1 to 8 and Comparative Example No. No. 11 alloy and no. A steel ingot of each alloy stainless steel of 12 alloys was heated to 1100 ° C. and hot forging was performed to obtain a round bar with a diameter of 30 mm.
After removing the oxide scale at the time of hot forging, a salt spray test piece having a diameter of 20 mm and a plate thickness of 2 mm was cut out from this round bar, and one side was polished to # 500 with emery paper. In addition, a 4 mm × 4 mm × 80 mm electrical resistance measurement piece, an outer diameter of 20 mm, an inner diameter of 15 mm, a plate thickness of 5 mm, and an electromagnet test piece of 5 mm × 10 mm × 30 mm were cut out from each round bar.
These salt spray test pieces, electrical resistance measurement pieces, ring test pieces, and electromagnet test pieces were held in a hydrogen atmosphere furnace at 950 ° C. for 2 hours, and then subjected to magnetic annealing to cool the furnace, and electrical resistance measurement, salt spray test and It used for the magnetic measurement. The electrical resistance was measured using an electrical resistance measuring device based on the four probe method. In the salt spray test, a 5% NaCl aqueous solution having a temperature of 35 ° C. was sprayed for 168 hours to confirm the occurrence of rust.
The measurement of the magnetic characteristics is performed by winding the small ring test piece 100 times primary and 10 times secondary, and applying the maximum applied magnetic field Hm = 800 A / m, 2000 A / m, 4000 A / m, and 8000 A / m. DC magnetic properties were measured. Further, the DC magnetic characteristics were measured on the electromagnet test piece under the condition of the maximum applied magnetic field Hm = 40000 A / m.

本発明のNo.1〜8合金と比較例のNo.11合金及びNo.12合金の電気抵抗率、耐食性と磁気特性を表2に一覧にして示す。また、塩水噴霧試験結果の一例として、本発明のNo.1合金の塩水噴霧試験後の外観写真を図1に、比較例のNo.11合金の塩水噴霧試験後の外観を図2に示す。
図1から、本発明のNo.1合金では端部に僅かに錆の起点が見られるが、顕著な錆は見られない。一方、比較例のNo.11合金の塩水噴霧試験後には、顕著な赤錆が見られる。このことから、No.1合金の耐食性は、No.11合金より優れていることが分かる。なお、表2の耐食性には、顕著な錆が見られないものを○、顕著な錆が見られるものを×と記したが、比較例のNo.11合金以外は、全てNo.1合金と同程度の発錆であった。
また、各電磁ステンレス鋼の電気抵抗率に着目すると、本発明のNo.1〜8合金では、0.71μΩm以上の電気抵抗率が得られているが、比較例のNo.11合金とNo.12合金の電気抵抗率は0.71μΩmより低い結果となった。
更に、磁気特性に着目すると、本発明のNo.1合金、No.2合金及びNo.5合金では、比較例と比べて最大透磁率μmが高く、軟磁性にも優れている。
No. of the present invention. Nos. 1 to 8 and Comparative Example No. No. 11 alloy and no. Table 2 lists the electrical resistivity, corrosion resistance, and magnetic properties of the 12 alloys. In addition, as an example of the salt spray test result, No. 1 of the present invention. A photograph of the appearance of the alloy 1 after the salt spray test is shown in FIG. The appearance of the 11 alloy after the salt spray test is shown in FIG.
From FIG. In the case of one alloy, a starting point of rust is slightly seen at the end, but no remarkable rust is seen. On the other hand, no. After the salt spray test of Alloy 11, noticeable red rust is seen. From this, No. The corrosion resistance of Alloy 1 is No. 1. It turns out that it is superior to 11 alloy. In Table 2, the corrosion resistance was marked as ◯ when no significant rust was observed, and marked as x when significant rust was observed. Except for alloy No. 11, all were No. The rusting was the same as that of 1 alloy.
Further, when attention is paid to the electrical resistivity of each electromagnetic stainless steel, No. 1 of the present invention. In the alloys 1 to 8, an electrical resistivity of 0.71 μΩm or more was obtained. No. 11 alloy and no. The electrical resistivity of alloy 12 was lower than 0.71 μΩm.
Further, when focusing attention on the magnetic characteristics, the No. 1 of the present invention. No. 1 alloy, no. No. 2 alloy and No. 2 In the case of alloy 5, the maximum permeability μm is higher than in the comparative example, and the soft magnetism is also excellent.

以上の結果から、本発明のNo.1〜8合金は比較例のNo.11合金及びNo.12合金に対して高い電気抵抗率を有し、かつ耐食性にも優れていることが分かる。   From the above results, No. 1 of the present invention. Nos. 1 to 8 are comparative examples. No. 11 alloy and no. It can be seen that it has a high electrical resistivity with respect to 12 alloys and is excellent in corrosion resistance.

本発明の電磁ステンレス鋼は、高い電気抵抗率を有するとともに、耐食性にも優れているので、例えば、動的磁場に対する磁場応答性が要求され、かつ過酷な環境下に晒される自動車の燃料噴射装置等の電磁弁の可動子や固定子の用途に適用できる。   The electromagnetic stainless steel of the present invention has a high electric resistivity and excellent corrosion resistance. For example, a fuel injection device for an automobile that requires a magnetic field response to a dynamic magnetic field and is exposed to a harsh environment. It can be applied to the use of a mover or stator of a solenoid valve.

Claims (6)

質量%でC:0.04%以下、Al:0.2〜0.5%、Si:0.3〜1.2%、Mn:0.3〜1.0%、S:0.01〜0.05%、Ti:0〜0.05%、Cr:16.0%を超えて18.0%以下、Ni:1.0%以下(0%を含まず)、残部はFe及び不純物からなることを特徴とする電磁ステンレス鋼。   C: 0.04% or less in mass%, Al: 0.2-0.5%, Si: 0.3-1.2%, Mn: 0.3-1.0%, S: 0.01- 0.05%, Ti: 0 to 0.05%, Cr: more than 16.0% and 18.0% or less, Ni: 1.0% or less (excluding 0%), the balance from Fe and impurities Electromagnetic stainless steel characterized by Al含有量が質量%で、0.2〜0.35%であることを特徴とする請求項1に記載の電磁ステンレス鋼。   The electromagnetic stainless steel according to claim 1, wherein the Al content is 0.2% to 0.35% by mass. Cr含有量が質量%で、16.5〜18.0%であることを特徴とする請求項1または2に記載の電磁ステンレス鋼。   The electromagnetic stainless steel according to claim 1 or 2, wherein the Cr content is 16.5 to 18.0% by mass. Ti含有量が質量%で、0.008〜0.05%であることを特徴とする請求項1乃至3の何れかに記載の電磁ステンレス鋼。   The electromagnetic stainless steel according to any one of claims 1 to 3, wherein the Ti content is 0.008 to 0.05% by mass. 請求項1乃至4の何れかに記載の組成を有する鋼塊を得た後、950〜1150℃に加熱して熱間加工することにより熱間加工材を得ることを特徴とする電磁ステンレス鋼の製造方法。   After obtaining the steel ingot which has a composition in any one of Claims 1 thru | or 4, a hot work material is obtained by heating to 950-1150 degreeC and hot-working, The electromagnetic stainless steel characterized by the above-mentioned Production method. 前記熱間加工程の後、850〜1050℃での焼鈍を行うことを特徴とする請求項5に記載の電磁ステンレス鋼の製造方法。   The method for producing electromagnetic stainless steel according to claim 5, wherein annealing is performed at 850 to 1050 ° C. after the hot-heating step.
JP2012168043A 2011-08-02 2012-07-30 Electromagnetic stainless steel and method of manufacturing the same Pending JP2013049918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168043A JP2013049918A (en) 2011-08-02 2012-07-30 Electromagnetic stainless steel and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011169012 2011-08-02
JP2011169012 2011-08-02
JP2012168043A JP2013049918A (en) 2011-08-02 2012-07-30 Electromagnetic stainless steel and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013049918A true JP2013049918A (en) 2013-03-14

Family

ID=47610822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168043A Pending JP2013049918A (en) 2011-08-02 2012-07-30 Electromagnetic stainless steel and method of manufacturing the same

Country Status (4)

Country Link
JP (1) JP2013049918A (en)
KR (1) KR20130018544A (en)
CN (1) CN102912249A (en)
TW (1) TWI450984B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377013A (en) * 2013-08-13 2015-02-25 青岛菲特电器科技有限公司 Self-excitation valve type controllable reactor
CN103680809B (en) * 2013-12-27 2016-08-17 宁波华液机器制造有限公司 A kind of deep water valve control electromagnet and preparation method thereof
CN105821338A (en) * 2016-06-13 2016-08-03 苏州双金实业有限公司 Steel capable of resisting high temperature
CN113215503A (en) * 2021-05-13 2021-08-06 江苏申源集团有限公司 Preparation process of high-strength high-toughness 316LF stainless steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274057A (en) * 1986-05-20 1987-11-28 Aichi Steel Works Ltd Soft-magnetic stainless steel for cold forging
JP2721192B2 (en) * 1988-08-25 1998-03-04 日立金属株式会社 Corrosion resistant soft magnetic material
JPH06228717A (en) * 1992-12-11 1994-08-16 Daido Steel Co Ltd Silicon stainless steel
JP3968883B2 (en) * 1998-08-20 2007-08-29 Jfeスチール株式会社 Soft magnetic stainless steel sheet and manufacturing method thereof
JP2000160302A (en) * 1998-11-19 2000-06-13 Sanyo Special Steel Co Ltd Electromagnetic stainless steel excellent in cold forgeability

Also Published As

Publication number Publication date
KR20130018544A (en) 2013-02-25
CN102912249A (en) 2013-02-06
TWI450984B (en) 2014-09-01
TW201313922A (en) 2013-04-01

Similar Documents

Publication Publication Date Title
JP2013185183A (en) Soft magnetic stainless steel fine wire and method for producing the same
JP6560881B2 (en) Extremely low permeability stainless steel wire, as well as steel wire and deformed wire with excellent durability
JP2013049918A (en) Electromagnetic stainless steel and method of manufacturing the same
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP2003301245A (en) Precipitation hardening soft magnetic ferritic stainless steel
JP5416452B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and manufacturing methods thereof
WO2019097691A1 (en) Austenitic stainless steel sheet and method for producing same
JP5406686B2 (en) Non-magnetic steel
JP5615727B2 (en) Soft magnetic steel parts for DC
JP2017128784A (en) Manufacturing method of soft magnetic steel component
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JP4646872B2 (en) Soft magnetic steel material, soft magnetic component and method for manufacturing the same
JP5374233B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and methods for producing them
JP4772703B2 (en) Electromagnetic soft iron parts having excellent magnetic properties, bar wires for electromagnetic soft iron parts, and manufacturing method thereof
JP7355234B2 (en) electromagnetic soft iron
JP7239075B1 (en) Electromagnetic soft steel bar
JPWO2012077631A1 (en) Composite magnetic material and composite magnetic material
US20230257859A1 (en) Soft magnetic member and intermediate therefor, methods respectively for producing said member and said intermediate, and alloy for soft magnetic member
JP5530174B2 (en) Soft magnetic steel for nitriding and soft magnetic steel parts with excellent wear resistance
WO2023084756A1 (en) Soft magnetic iron
JP2013224482A (en) Method for producing raw material for composite magnetic material and method for producing the composite magnetic material
JP5339009B1 (en) Composite magnetic material and composite magnetic member
JP2014074234A (en) Soft-magnetic steel material for nitration and soft-magnetic steel component excellent in wear resistance
WO2022091985A1 (en) Soft magnetic iron
JP4360347B2 (en) Soft magnetic steel