JP3746877B2 - Stainless steel wire for springs with excellent corrosion resistance and spring characteristics - Google Patents

Stainless steel wire for springs with excellent corrosion resistance and spring characteristics Download PDF

Info

Publication number
JP3746877B2
JP3746877B2 JP17057897A JP17057897A JP3746877B2 JP 3746877 B2 JP3746877 B2 JP 3746877B2 JP 17057897 A JP17057897 A JP 17057897A JP 17057897 A JP17057897 A JP 17057897A JP 3746877 B2 JP3746877 B2 JP 3746877B2
Authority
JP
Japan
Prior art keywords
wire
stainless steel
steel wire
corrosion resistance
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17057897A
Other languages
Japanese (ja)
Other versions
JPH1112695A (en
Inventor
一弘 渡邊
好則 谷本
直行 川畑
善紀 川上
雅人 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Daido Steel Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd, Daido Steel Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP17057897A priority Critical patent/JP3746877B2/en
Publication of JPH1112695A publication Critical patent/JPH1112695A/en
Application granted granted Critical
Publication of JP3746877B2 publication Critical patent/JP3746877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性と機械的特性を兼備しばね特性を向上させたばね用ステンレス鋼線に関する。
【0002】
【従来の技術】
ステンレス鋼は、用途や求める特性により成分分量や加工条件の組合わせによって多種多様の製品が開発されており、例えばJIS規格G−4309では一般用途を対象としたステンレス鋼線が規定され、またG−4314では特にばね用を対象として各々鋼種及び特性を規程しており、この中で最も汎用の鋼種としてSUS304及びSUS316を示している。
【0003】
しかしながら、これら鋼種についてはいずれも一長一短があって、あらゆる用途への適用は困難である。すなわち、鋼種SUS304は最も一般的なものであって、比較的安定した耐食性を備えながらも大きな強度を備えるものとして知られているが、苛酷な腐食環境への使用は好ましくない。
【0004】
一方、同SUS316については、成分的にもニッケルを高めかつモリブデンを添加していることから、耐食性には優れる反面、強度や疲労特性においてSUS304にははるかに及ばないという欠点がある。
【0005】
したがって、従来の材料選択基準は強度及び耐食性のいずれの特性を重視するかによってなされてきた状況があり、品質保証の上ではメンテナンス期間を短くしたり、出力のより大きい形態での設計とする方策が取られて来た。
【0006】
このような状況の中で、一方では新たな特性を持つ新鋼種の開発もなされてはきたが、近年の品質要求基準を満足することには至っていない。その一例として特開昭51−50217号公報では、前記両特性を兼備する材料の提供を目的として、C:0.08以下、Si:0.70〜1.50,Mn:2.00以下,P:0.040以下,S:0.030以下,Ni:8〜10.50,Cr:18〜20.00,Mo:1〜2.00,N:0.1〜0.25を添加したばね用のステンレス鋼線を開示している。
【0007】
【発明が解決しようとする課題】
しかし前記公報が開示する発明は、モリブデンが1〜2%で、しかもニッケルが8%前後と共に低く耐食性が十分とは言えないばかりか、比較的多くのケイ素を含有させることで材料自身のマルテンサイト変態による加工硬化を促進し高強度を図っているものと思われる。
【0008】
その為、前記公報によるステンレス鋼線の特性(機械的特性)として、低温焼なまし処理温度に伴う引張強さや0.2%降伏強さ(耐力)をその第2図及び第3図に示しているが、これら結果を見るといずれも特性値が不安定で、しかも引張強さに対して降伏強さが低いことがうかがえる。
【0009】
ばね材料においては、成形されたばね製品が長期に亙ってへたりや変形なく安定的に作動させる為には、引張強さとともに降伏強さにもすぐれることが必要であるものの、前記公報で得られた線材の降伏強さは160Kg/mm2 (1570N/mm2 )程度にとどまり、しかも引張り強さとの差が25〜30Kg/mm2 もあることから、ばね用線材としては満足なものとは言えない。
【0010】
さらにこの結果によれば、特に低温焼なましの処理温度が450℃を境にして急激な特性の上昇を見ているが、このような変化の激しい材料では得られるばね製品の品質に多大のバラツキを与えることから、ばね設計に大きな負担をもたらすものである。
【0011】
本発明は、低温焼なまし処理後の0.2%耐力が苛酷な使用状態にも耐え得るよう引張強さの90%以上を満足するとともに、耐食性にも優れたばね用ステンレス鋼線とする為に、チッ素とモリブデンを添加して、炭素,ケイ素,ニッケル分量を調整しながら、しかも炭素とチッ素の合計分量、さらにニッケル当量を規定することで達成したものである。
【0012】
【課題を解決するための手段】
本発明は、重量比で、0.07〜0.10%の炭素と、0.45〜0.70%のケイ素、1.3〜1.5%のマンガン、10.00〜10.50%のニッケル、16.00〜18.00%のクロム、2.00〜3.00%のモリブデン、及びチッ素を0.18〜0.30%含み、残部が不可避不純物及び鉄からなるオーステナイト系ステンレス鋼線であって、該鋼線は、温度350〜550℃での低温熱処理を施した時の0.2%引張耐力比を90%以上の特性とする為に、前記炭素とチッ素との合計分量が0.26〜0.35%範囲でかつ次式に示すニッケル当量を25〜30%とするとともに、加工率60%以上での伸線加工を施してなる耐食性とばね特性にすぐれたばね用ステンレス鋼線である。
ニッケル当量%=Ni+0.35Si+1.05Mn
+0.65Cr+12.6(C+N)+0.98Mo
【0013】
また請求項2の発明では、前記ステンレス鋼線に0.10〜0.30%のニオブを添加するとともに前記クロムを16.00〜17.00%としており、さらに請求項3では、前記炭素とチッ素との合計分量を0.26〜0.32%とした。
【0014】
このように本発明では、加工オーステナイト相の安定化を図る為のニッケル当量が25〜30%と高くし、さらに機械的特性のアップを目的として、ニッケル組成の分量を10.00〜10.50%と高レベルでかつ狭く設定する一方、炭素とチッ素との合計分量を0.26〜0.36%としており、加工率60%以上での伸線加工を施すものであり、それによって該鋼線に前記低温焼なまし処理を施した時の少なくとも0.2%引張耐力比を90%以上を可能とするものである。
【0015】
ステンレス鋼線は加工に伴って機械的特性が増加することは公知であり、また加工歪みを除去する為にばね成形後に低温焼なまし処理することも行われているが、この処理によって前記耐力比を90%以上と大きく設定できる特性を備えることは、負荷応力が大きい範囲まで安定的に使用できることを示しており、特に繰返しの荷重が負荷するばね用としての用途では、この範囲に限定する必要がある。
【0016】
なおこの場合、ばね特性は材料自身の機械的性質(弾性特性)に起因するが、例えばトーションばねとして用いる場合には主として引張りに対する0.2%耐力比が、またコイルばねとして用いるものの場合には、その伸縮によって線材自身に全体的なねじり応力が負荷されることから、ねじりに対する0.3%耐力比を評価することが望まれるが、両耐力比は相関関係にあることから少なくとも引張りについての耐力比は確認しておくことが必要である。しかし、あらゆるばね用途を対象としかつ厳密な管理を行うものにあっては、前記引張りの場合以外にねじりの耐力比についても確認して、いずれも90%以上となるように設定される。
【0017】
また、本発明ではその前提として前記焼なまし処理温度を350〜550℃範囲での評価としているが、これは実験の結果からこの範囲で処理したものが特性的に最も優れるという事実から設定したものであるが、現実に必ずしもその温度範囲で処理されるものだけを権利範囲とするものではない。
【0018】
なお、前記ニッケル当量については{Ni+0.35Si+1.05Mn+0.65Cr+12.6(C+N)+0.98Mo}の算式で、さらに0.2%引張耐力比とは、鋼線を引張試験によって引張測定した時の破断応力(σB)に対する0.2%耐力(σ0.2 )との比率、すなわち{σ0.2 /σB ×100}で求めることとした。
【0019】
そしてその測定は、引張歪み0.2%における引張応力から求めることとし、その詳細はJIS−Z−2241「金属材料引張試験方法」の「オフセット法」によるものとする。
【0020】
さらに0.3%ねじり耐力比についても、前記引張耐力比の算出方法と同様にねじり試験を行った時の測定結果から、〔{0.3%ねじり耐力(τ0.3)/ねじり破断応力(τB)}×100〕の算式で求めることとした。
【0021】
なお、ねじり耐力については、被測定材にねじりを加えて、トルク−ねじり角曲線(T−θ曲線)を描き、この曲線から応力換算して求めることとした。すなわち、この曲線の一例を図6に添付しており、前記ねじり破断応力(τB)は同曲線の最大トルク(TB )を用いて次式から算出する。なお、Dは被測定材の線径(mm)である。
τB(N/mm2 )=12TB /πD3
【0022】
また同様に0.3%ねじり耐力についても、引張試験の場合と同様に永久ひずみγ=0.3%を与えるときのねじり角θを{2・lγ0.3 /D}式より求めることとし、比例域(線OD)と平行に第一平行線(イ線)を引き、曲線との交点(点Y)とその垂線(点B)とを求める。次に点Yを通る接線(線ST)を引き、さらにこの線STと平行にかつトルク0点を通る第二平行線(ロ線)から点Cを求める。
【0023】
以上の操作から求めたトルク値Y及び同Cの値を次式に代入してτ0.3%のねじり応力が算出される。
τ1 =4(3Y+θ・dT/dθ)/πD3
すなわち、τ0.3(N/mm2 )=4(3Y+C)/πD3 で示される。
【0024】
この詳細は『Prandtleの計算式』として「ばね用ステンレス鋼線共同研究」(ばね論文集,1969.第14号.P84〜85:日本ばね工業会発行)に紹介されている。
【0025】
また前記ニッケル当量については、特にNi組成が大きな要因を持つものとなるが、該当量が25%より小さい場合にあっては伸線加工によるマルテンサイトの発生量が大きくなって磁性を帯びるという新たな問題を起こすこととなり好ましくない。
【0026】
一方、30%を越える程大きくすることは、ばね材料として必要とされる十分な機械的特性を得ることができなくなることから前記範囲を設定しており、このようにニッケル当量を調整することは加工オーステナイト相の安定化を計り耐食性向上をもたらすことにも寄与する。
【0027】
本発明では、このように低温焼なまし処理による0.2%引張耐力比が90%以上(さらに好ましくは0.3%ねじり耐力比も90%以上の特性も兼備すること)を有するばね特性と耐食性にもすぐれた特性とする為に、各種組成をきびしく調整することで達成するものであって、特に炭素やケイ素,マンガン,ニッケル,モリブデン,チッ素分量に特徴を付与しつつ、さらに炭素及びチッ素の合計分量(0.26〜0.35%)とニッケル当量(25〜30%)との制御を併合した。
【0028】
また本発明において、第三元素として0.10〜0.30%のニオブを添加することは耐粒界腐食性を果たして低Cr分量化(16.00〜17.00%)を図るとともに、Nb炭化物の析出によりさらに強度を高めることができるという作用も有する。
【0029】
また一般的なステンレス鋼の場合、これを冷間加工すると加工に伴ってマルテンサイト量が増加し、かつ鋼線の磁性を示す透磁率も上昇することとなるが、本発明の鋼線ではニッケル当量を調整することで、処理によっても例えばμ=1.16と磁性をほとんど有しない特性とすることができ、この為、バネ製品としてこれまで磁性を規制していた用途への拡大を図ることができる。
【0030】
さらに、前記炭素とチッ素との合計分量として0.26〜0.35%としているが、その理由は0.26%未満では所定温度での低温焼なまし処理を行っても0.2%引張耐力比が90%を下回ることから高強度の特性を得ることができず、また0.35%を越える程高くした場合には、鋼塊や線材製造時の欠陥発生の危険性が大きくなるなど、新たな問題となる為前記範囲に設定しているが、より好ましくは0.26〜0.32%とする。
【0031】
一方、耐食性についても本発明ではクロム以外にモリブデンやチッ素を多く含み、耐食性の評価算式であるP.I=Cr+3.3Mo+16Nから求められるP.I値を例えば27%以上と高くすることで、実施例に説明するような耐食性を備える効果としている。
【0032】
また、チッ素と炭素との合計分量を前記ニッケル分量との関係で設定すれば、チッ素と炭素の合計分量の37〜40倍程度であるならば十分な固溶強化させ、ばね材としての機械的特性を向上させることができる。
【0033】
次に、個々の組成の限定理由について以下に説明する。
炭素は、強力なオーステナイト生成元素であり、強度を増大させる機能があるものの、0.07%未満では本発明の高強度を得るには不十分である。しかし炭素は含有量が多くなりすぎると炭化物を発生させ粒界腐食や孔食発生原因となることから上限を0.10%とした。
【0034】
ケイ素は、脱酸剤として添加され、また強力なフェライト生成元素でもある。ケイ素の含有によって引張強さや弾性限,耐食性は向上するが、多量の含有は靭性を減少させることとなることから0.45〜0.70%とした。
【0035】
マンガンはオーステナイト生成元素で脱硫や脱酸剤として作用するが、耐食性特に耐酸化性を劣化させることから、1.3〜1.5%とした。
【0036】
ニッケルは、オーステナイト系ステンレス鋼の基本成分であって、加工オーステナイト相の安定化を図るニッケル当量に大きく影響し、耐食性を高めるものの多すぎる添加は強度を低下させることとなる。この為10.00〜10.50%としている。
【0037】
またクロムについても、ニッケルと同様にステンレス鋼の基本組成であつて、耐酸化性,耐食性を向上させるが、硬度や引張強さを低下させることがあって、16.00〜18.00%としており、ニオブを添加する場合は16.00〜17.00%と低くすることができる。
【0038】
モリブデンについても、鋼線の耐食性、特に隙間腐食や孔食防止に有効であって少なくとも2.00%以上を必要とするが、過度に添加しても耐食性への寄与度は飽和するとともに、製品コストを高めることから3.00%を上限とした。
【0039】
チッ素は、炭素と同様にオーステナイト生成元素で、固溶によって鋼線の耐力を高め、微細なチッ化物を形成して靭性を改善する作用を持つ。しかしその量が0.18%未満では期待する効果が得られず、また0.30%を越えて添加してもステンレス鋼への溶解度が悪くなることからその上限は0.30%とした。
【0040】
ニオブは、結晶粒度を微細化させるとともにNb炭化物として粒内に析出することで、他の炭化物発生を抑えその結果耐粒界腐食性を改善して高温強さを上昇させる利点がある。しかし、多量の添加はδフェライトの析出によって熱間加工性を低下させ一般耐食性を悪くすることから、これを添加する場合には0.10〜0.30%とするのがよい。
【0041】
このような組成範囲に加え、さらに本発明では前記ニッケル当量及び炭素+チッ素の値を調整することによって、仮に温度350〜550℃での低温焼なまし処理を行った場合の0.2%引張耐力を例えば線径2mmでは1700〜2200N/mm2 と高い特性を可能とすること、同耐力比も90%以上を有すること、さらに従来のSUS316ステンレス鋼が有する高耐食性を上回る鋼線を可能としており、特にばね用において非常に有効である。
【0042】
また耐力についても前記したように、線径2mmでの1700〜2200N/mm2 の特性は、これまで高強度として用いられてきたSUS304を10〜20%も向上させたものであり、前記組成の調整により達成を可能にすることができた。
【0043】
【実施例】
以下、実施例によりさらに本発明の作用効果を説明する。
表1の化学成分を持つ実施線材(A1〜A4)と、比較線材としてSUS304(B1)及び同316(B3)として選択したステンレス鋼を用い、各線材は各々通常の大気溶解炉で溶解し、熱間圧延を経て細径化したものであって、最終加工は冷間伸線機により共に加工率75%で2mmに仕上げたものである。
【0044】
表1に得られた鋼線の機械的特性(引張り試験,ねじり試験)をまとめて示すが、参考として前記先行特許公報中から抜粋したものを(B2)として併記した。
【0045】
【表1】

Figure 0003746877
【0046】
この結果によれば、引張り強さ及び耐力値はSUS304より若干高く、ねじり強さ,ねじり降伏強さはほぼ同等であったことが認められる。また縦弾性係数・横弾性係数も共に大きな違いは認められなかった。
【0047】
また、この鋼線の磁性特性を表2に示す。この結果からSUS304(B1)は透磁率が高くマルテンサイト量が多く、本発明鋼線(A1)ではSUS316(B3)と同等でマルテンサイト量が少ないことが分かる。
【0048】
【表2】
Figure 0003746877
【0049】
【試験1】
線材の低温熱処理特性
次にこの線材(A1,A4,B1)に各々300〜650℃で30分間の低温熱処理(焼きなまし)を50℃間隔で施して各々試料採取した。試験は前記と同様に引張り試験とねじり試験とで行ない、その結果を図1及び図2に示す。
【0050】
同図中、符号△は実施線材A1,○は同A4,また□は比較線材B1の各引張強さの変化を示し、一方▲●■は前記に対応する0.2%耐力の変化である。さらに耐力比についても各々同形状の符号を用いて図下方に示している。
【0051】
この結果から分かるように、実施線材(A1,A4)は550℃で最大の特性となるよう除々に増加しているのに対し、比較線材(B1:SUS304)では温度によっても特性の変化はほとんど認めることができず、特性値も実施線材には及ばないものであった。
【0052】
特に0.2%引張耐力は、比較線材(B1)及び参考とした先行特許のものが13〜15%程度の増加であつたのに比べ、実施線材では26%と倍増するという顕著な効果が確認された。そして同時に、引張およびねじりにおける耐力比は共に90〜96%程度で安定しており、比較線材よりも温度による耐力比の変化が少ないことが分かる。
【0053】
このような特性を示すことは、ばね成形処理後の熱処理を行っても、長期にわたりへたりや変形がなく、安定的に作動させることができる。同時にこうした安定化傾向は、ねじり試験での結果からもうかがうことができる。
【0054】
【試験2】
ばねの疲労特性
次に、この線材の疲労特性を確認する為、線材をバネ成形機によって外径20.5mmの圧縮コイルばねに成形し、温度500℃×30min で低温熱処理を行った。なお比較線材でなるバネの処理温度は図1,2の結果から400℃とした。
【0055】
この2種のばねを、圧縮コイルばね疲労試験機にセットして、平均応力390N/mm2 の条件で疲労試験を行ない、図3のS−N曲線を作成した。実施線材でなるばね製品の5×106 回での疲労限度は、比較線材のばね製品に比べ50N/mm2 も高く、時間強さにおいても大幅に上回る結果を得た。
【0056】
【試験3】
高温へたり特性
試験1における低温熱処理特性の結果から、本発明のばね用ステンレス鋼線においては特に高温での耐へたり特性にすぐれることが想定されることから、以下の高温締め付け試験を実施した。
試験ばねは、前記疲労試験で用いた線材(A1,B1)の他にニオブ添加のA4線材について、400℃×96時間の締め付け試験からばねの残留剪断歪を求めることとした。その結果は図4に示したが、実施ばね製品は比較ばね製品に比べ残留剪断歪が小さく、しかも締め付け応力が大きくなっても、比較線材ばねと比べて残留剪断歪の増加率が小さいことが認められた。
【0057】
また締付け応力が400N/mm2 のときの実施ばね製品(A1線材使用)の残留剪断歪は比較製品(B1)の50%に止まり、さらにニオブ添加のA4線材によるものでは締付応力が増しても剪断歪の発生が小さく優れた高温耐へたり性を備えることが分かった。
【0058】
【試験4】
耐食性
耐食性の評価として、前記実施線材(A1)と比較線材(B1:SUS304及びB3:SUS316)の3.5%Nacl(30℃)溶液でのアノード分極試験を各々行ない、その結果を図5に示す。
【0059】
この結果によれば、10μA/mm2 における実施線材の孔食電位は、比較線材(B3)に比べても約0.4V高くなっており、大幅に耐食性が向上できた。
【0060】
また、表3には塩化第二鉄での浸漬試験結果を示しているが、この結果を見ても本発明による実施線材の腐食減量が小さく耐食性にすぐれていることがわかる。
【0061】
【表3】
Figure 0003746877
【0062】
【発明の効果】
以上説明したように、本発明のバネ用ステンレス鋼線は、各元素の分量とともに、元素相互の調整を図りかつ所定の伸線加工を施すものであって、高い耐力比によってバネ特性を向上するとともに、耐食性においても従来の鋼種SUS316を上回る特性とすることができ、幅広い用途への拡大に寄与する。
【図面の簡単な説明】
【図1】鋼線の焼なまし処理温度に伴う引張特性の関係を示す結果の一例である。
【図2】鋼線の焼なまし処理温度に伴うねじり特性の関係を示す結果の一例である。
【図3】鋼線の疲労特性を示すS−N曲線の一例である。
【図4】高温へたり特性を示す結果の一例である。
【図5】耐食性を示す結果の一例である。
【図6】ねじり試験におけるT−θ曲線の一例を示す線図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stainless steel wire for springs that has both corrosion resistance and mechanical properties and improved spring properties.
[0002]
[Prior art]
As for stainless steel, a wide variety of products have been developed by combinations of component amounts and processing conditions depending on the application and desired characteristics. For example, JIS standard G-4309 defines a stainless steel wire for general use, and G -4314 regulates the steel types and characteristics for springs in particular, and SUS304 and SUS316 are shown as the most general steel types among them.
[0003]
However, these steel types all have merits and demerits, and are difficult to apply to all uses. That is, the steel type SUS304 is the most common and is known to have a large strength while having a relatively stable corrosion resistance, but is not preferable for use in a severe corrosive environment.
[0004]
On the other hand, the SUS316 has a drawback that it is excellent in corrosion resistance but has a strength and fatigue characteristics that are far below those of SUS304 because nickel is added and molybdenum is added.
[0005]
Therefore, there is a situation where the conventional material selection criteria have been made depending on which of the properties of strength and corrosion resistance is important, and in terms of quality assurance, measures to shorten the maintenance period or design in a form with a larger output Has been taken.
[0006]
In such a situation, on the other hand, new steel types having new characteristics have been developed, but have not yet satisfied the quality requirement standards in recent years. As an example, Japanese Patent Application Laid-Open No. 51-50217 discloses C: 0.08 or less, Si: 0.70 to 1.50, Mn: 2.00 or less, for the purpose of providing a material having both of the above characteristics. P: 0.040 or less, S: 0.030 or less, Ni: 8 to 10.50, Cr: 18 to 20.00, Mo: 1 to 2.00, N: 0.1 to 0.25 were added. A stainless steel wire for springs is disclosed.
[0007]
[Problems to be solved by the invention]
However, the invention disclosed in the above publication is not only low in corrosion resistance and sufficient in that the content of molybdenum is 1 to 2% and nickel is about 8%, but the martensite of the material itself by containing a relatively large amount of silicon. It seems that work hardening by transformation is promoted to achieve high strength.
[0008]
Therefore, as the characteristics (mechanical characteristics) of the stainless steel wire according to the above publication, the tensile strength and 0.2% yield strength (proof stress) associated with the low temperature annealing treatment temperature are shown in FIGS. However, these results show that the characteristic values are unstable and the yield strength is lower than the tensile strength.
[0009]
In the spring material, in order for the molded spring product to operate stably without sag or deformation over a long period of time, it is necessary to have excellent tensile strength as well as yield strength. Since the yield strength of the obtained wire is only about 160 kg / mm 2 (1570 N / mm 2 ), and the difference from the tensile strength is 25 to 30 kg / mm 2 , it is satisfactory as a spring wire. I can't say that.
[0010]
Furthermore, according to this result, a rapid increase in properties is observed particularly when the low-temperature annealing treatment temperature is 450 ° C., but the quality of the spring product obtained with such a rapidly changing material is greatly increased. This gives a large burden to the spring design.
[0011]
The present invention is intended to provide a stainless steel wire for springs that satisfies 90% or more of the tensile strength so that the 0.2% proof stress after low-temperature annealing treatment can withstand severe use conditions, and also has excellent corrosion resistance. In addition, nitrogen and molybdenum are added to adjust the amounts of carbon, silicon and nickel, and the total amount of carbon and nitrogen and further the nickel equivalent are defined.
[0012]
[Means for Solving the Problems]
The present invention is 0.07-0.10% carbon, 0.45-0.70% silicon, 1.3-1.5% manganese, 10.00-10.50% by weight. Austenitic stainless steel comprising 0.18 to 0.30% of nickel, 16.00 to 18.00% chromium, 2.00 to 3.00% molybdenum, and 0.18 to 0.30% of the balance, with the balance being inevitable impurities and iron A steel wire, the steel wire is made of carbon and nitrogen in order to make the 0.2% tensile strength ratio when the low temperature heat treatment is performed at a temperature of 350 to 550 ° C. to a characteristic of 90% or more. The total amount is in the range of 0.26 to 0.35% and the nickel equivalent shown in the following formula is 25 to 30%, and it has excellent corrosion resistance and spring characteristics when wire drawing is performed at a processing rate of 60% or more. It is a stainless steel wire for a spring.
Nickel equivalent% = Ni + 0.35Si + 1.05Mn
+ 0.65Cr + 12.6 (C + N) + 0.98Mo
[0013]
In addition, in the invention of claim 2, 0.10 to 0.30% niobium is added to the stainless steel wire, and the chromium is made 16.00 to 17.00%. The total amount with nitrogen was 0.26 to 0.32%.
[0014]
As described above, in the present invention, the nickel equivalent for stabilizing the processed austenite phase is increased to 25 to 30%, and the amount of the nickel composition is set to 10.00 to 10.50 for the purpose of improving mechanical properties. %, And the total amount of carbon and nitrogen is 0.26 to 0.36%, and wire drawing is performed at a processing rate of 60% or more. When the steel wire is subjected to the low-temperature annealing treatment, at least a 0.2% tensile strength ratio can be 90% or more.
[0015]
It is known that the mechanical properties of stainless steel wire increase with processing, and low temperature annealing treatment is also performed after spring forming in order to remove processing strain. The characteristic that the ratio can be set to a large value of 90% or more indicates that it can be stably used up to a range where the load stress is large, and is limited to this range particularly in applications for springs where repeated loads are applied. There is a need.
[0016]
In this case, the spring characteristics are caused by the mechanical properties (elastic characteristics) of the material itself. For example, when used as a torsion spring, a 0.2% yield strength ratio with respect to tension is mainly used, and when used as a coil spring. Since the entire torsional stress is applied to the wire itself due to the expansion and contraction, it is desired to evaluate the 0.3% yield strength ratio against torsion, but since both yield strength ratios are correlated, at least the tensile strength It is necessary to confirm the yield strength ratio. However, in a case where all springs are used and strict management is performed, in addition to the case of the tension, the torsional strength ratio is also confirmed, and both are set to be 90% or more.
[0017]
Further, in the present invention, the annealing treatment temperature is evaluated in the range of 350 to 550 ° C. as a premise thereof, but this is set based on the fact that those treated in this range are the best in characteristics from the experimental results. However, the scope of rights is not necessarily limited to what is actually processed in that temperature range.
[0018]
In addition, about the said nickel equivalent, it is a formula of {Ni + 0.35Si + 1.05Mn + 0.65Cr + 12.6 (C + N) + 0.98Mo}, and further 0.2% tensile strength ratio is when the steel wire is subjected to tensile measurement by a tensile test. The ratio was determined by the ratio of 0.2% proof stress (σ0.2) to the breaking stress (σB), that is, {σ0.2 / σB × 100}.
[0019]
The measurement is obtained from the tensile stress at a tensile strain of 0.2%, and the details are based on the “offset method” of JIS-Z-2241 “Metal material tensile test method”.
[0020]
Further, for the 0.3% torsional strength ratio, from the measurement result when the torsion test was performed in the same manner as the calculation method of the tensile strength ratio, [{0.3% torsional strength (τ0.3) / torsion breaking stress ( τB)} × 100].
[0021]
The torsion strength was determined by adding a twist to the material to be measured, drawing a torque-torsion angle curve (T-θ curve), and converting the stress from this curve. That is, an example of this curve is attached to FIG. 6, and the torsional breaking stress (τB) is calculated from the following equation using the maximum torque (T B ) of the curve. D is the wire diameter (mm) of the material to be measured.
τB (N / mm 2 ) = 12T B / πD 3
[0022]
Similarly, for the 0.3% torsional yield strength, the torsion angle θ when giving a permanent strain γ = 0.3% is obtained from the {2 · lγ 0.3 / D} equation as in the case of the tensile test. A first parallel line (b) is drawn parallel to the area (line OD), and an intersection (point Y) with the curve and its perpendicular (point B) are obtained. Next, a tangent line (line ST) passing through the point Y is drawn, and further, a point C is obtained from a second parallel line (row line) passing through the point ST in parallel with the line ST.
[0023]
The torsional stress of τ 0.3% is calculated by substituting the torque values Y and C obtained from the above operations into the following equation.
τ 1 = 4 (3Y + θ · dT / dθ) / πD 3
That is, τ0.3 (N / mm 2 ) = 4 (3Y + C) / πD 3 is indicated.
[0024]
Details of this are introduced in “Spring stainless steel wire joint research” (Spring paper collection, 1969. No. 14, P84-85: published by the Japan Spring Industry Association) as “Prandtle calculation formula”.
[0025]
In addition, the nickel equivalent has a great factor especially in the Ni composition, but if the amount is less than 25%, the amount of martensite generated by wire drawing increases and becomes magnetized. Cause undesired problems.
[0026]
On the other hand, increasing the value to exceed 30% makes it impossible to obtain sufficient mechanical properties required as a spring material, so the above range is set, and thus adjusting the nickel equivalent is not possible. This contributes to the stabilization of the processed austenite phase and the improvement of corrosion resistance.
[0027]
In the present invention, the spring characteristics having a 0.2% tensile strength ratio by the low-temperature annealing treatment of 90% or higher (more preferably, the 0.3% torsional strength ratio also has a characteristic of 90% or higher). In order to make the properties excellent in corrosion resistance, it is achieved by severely adjusting various compositions. In particular, carbon is added to carbon, silicon, manganese, nickel, molybdenum, and nitrogen content, while carbon is added. And control of the total amount of nitrogen (0.26-0.35%) and nickel equivalent (25-30%).
[0028]
In the present invention, addition of 0.10 to 0.30% of niobium as the third element achieves intergranular corrosion resistance and reduces Cr content (16.00 to 17.00%), and Nb. It also has an effect that the strength can be further increased by precipitation of carbides.
[0029]
In the case of general stainless steel, when this is cold worked, the amount of martensite increases along with the machining, and the magnetic permeability indicating the magnetism of the steel wire also rises. By adjusting the equivalent, it is possible to achieve a characteristic that has almost no magnetism, for example, μ = 1.16, even by processing. For this reason, it is intended to expand to applications where magnetism has been regulated so far as spring products. Can do.
[0030]
Further, the total amount of carbon and nitrogen is 0.26 to 0.35%. The reason is that if it is less than 0.26%, it is 0.2% even if low temperature annealing treatment is performed at a predetermined temperature. Since the tensile strength ratio is less than 90%, high strength characteristics cannot be obtained, and when the tensile strength ratio exceeds 0.35%, the risk of defects during steel ingot or wire production increases. However, it is more preferably 0.26 to 0.32%.
[0031]
On the other hand, regarding corrosion resistance, the present invention contains a large amount of molybdenum and nitrogen in addition to chromium, and is an evaluation formula for corrosion resistance. I = Cr + 3.3Mo + 16N obtained from P.N. By increasing the I value to, for example, 27% or more, the effect of providing corrosion resistance as described in the examples is obtained.
[0032]
Moreover, if the total amount of nitrogen and carbon is set in relation to the nickel amount, if it is about 37 to 40 times the total amount of nitrogen and carbon, sufficient solid solution strengthening is performed, and as a spring material Mechanical properties can be improved.
[0033]
Next, the reasons for limiting the individual compositions will be described below.
Carbon is a strong austenite generating element and has a function of increasing the strength, but if it is less than 0.07%, it is insufficient to obtain the high strength of the present invention. However, if the carbon content is too large, carbides are generated, causing intergranular corrosion and pitting corrosion, so the upper limit was made 0.10%.
[0034]
Silicon is added as a deoxidizer and is also a strong ferrite-forming element. Although the tensile strength, elastic limit, and corrosion resistance are improved by the silicon content, a large amount reduces the toughness, so the content was made 0.45 to 0.70%.
[0035]
Manganese is an austenite-forming element and acts as a desulfurization and deoxidizing agent, but it deteriorates the corrosion resistance, particularly the oxidation resistance.
[0036]
Nickel is a basic component of austenitic stainless steel, and greatly affects the nickel equivalent to stabilize the processed austenitic phase. However, although the corrosion resistance is increased, adding too much decreases the strength. For this reason, it is 10.00 to 10.50%.
[0037]
Chromium also has a basic composition of stainless steel like nickel and improves oxidation resistance and corrosion resistance, but may reduce hardness and tensile strength, so that it is 16.00-18.00%. When niobium is added, the content can be lowered to 16.00-17.00%.
[0038]
Molybdenum is also effective in preventing corrosion of steel wires, especially crevice corrosion and pitting corrosion, and requires at least 2.00% or more, but even if added excessively, the contribution to corrosion resistance is saturated, and the product In order to increase the cost, 3.00% was made the upper limit.
[0039]
Nitrogen is an austenite-forming element like carbon, and has the effect of improving the toughness by increasing the yield strength of the steel wire by solid solution and forming fine nitrides. However, if the amount is less than 0.18%, the expected effect cannot be obtained, and even if added over 0.30%, the solubility in stainless steel deteriorates, so the upper limit was made 0.30%.
[0040]
Niobium has the advantage of reducing the grain size and precipitating in the grains as Nb carbide, thereby suppressing the generation of other carbides and consequently improving the intergranular corrosion resistance and increasing the high temperature strength. However, since a large amount of addition reduces the hot workability and deteriorates the general corrosion resistance due to precipitation of δ ferrite, when it is added, the content is preferably 0.10 to 0.30%.
[0041]
In addition to such a composition range, in the present invention, by adjusting the nickel equivalent value and the value of carbon + nitrogen, 0.2% of the case where low temperature annealing treatment is performed at a temperature of 350 to 550 ° C. For example, it is possible to achieve a high tensile strength of 1700-2200 N / mm 2 for a wire diameter of 2 mm, a strength ratio of 90% or more, and a steel wire that exceeds the high corrosion resistance of conventional SUS316 stainless steel. It is very effective especially for springs.
[0042]
Also as described above also yield strength properties of 1700~2200N / mm 2 in diameter 2mm are also those with improved SUS304 10% to 20% which has been used heretofore as a high strength, of the composition It was possible to achieve this by adjustment.
[0043]
【Example】
Hereinafter, the effects of the present invention will be further described with reference to examples.
Using the stainless steels selected as SUS304 (B1) and 316 (B3) as the comparison wire rods with the implementation wire rods (A1 to A4) having the chemical components in Table 1, each wire rod is melted in a normal atmospheric melting furnace, The diameter is reduced by hot rolling, and the final processing is finished to 2 mm by a cold wire drawing machine at a processing rate of 75%.
[0044]
Table 1 summarizes the mechanical properties (tensile test, torsion test) of the steel wires obtained, but for reference, an excerpt from the above prior patent publication is also shown as (B2).
[0045]
[Table 1]
Figure 0003746877
[0046]
According to this result, it is recognized that the tensile strength and the proof stress value are slightly higher than those of SUS304, and the torsional strength and the torsional yield strength are substantially equal. Also, there was no significant difference in both the longitudinal and transverse elastic modulus.
[0047]
Table 2 shows the magnetic properties of this steel wire. From this result, it can be seen that SUS304 (B1) has a high magnetic permeability and a large amount of martensite, and the steel wire (A1) of the present invention is equivalent to SUS316 (B3) and has a small amount of martensite.
[0048]
[Table 2]
Figure 0003746877
[0049]
[Test 1]
Low Temperature Heat Treatment Characteristics of Wires Next, the wires (A1, A4, B1) were each subjected to low temperature heat treatment (annealing) at 300 to 650 ° C. for 30 minutes at intervals of 50 ° C., and samples were taken. The test is performed by the tensile test and the torsion test in the same manner as described above, and the results are shown in FIG. 1 and FIG.
[0050]
In the figure, symbol Δ indicates the change in the tensile strength of the execution wire A1, ○ indicates the same A4, and □ indicates the change in the tensile strength of the comparative wire B1, while ▲ ● ■ indicates the corresponding change in 0.2% yield strength. . Further, the proof stress ratio is shown in the lower part of the figure using the same reference numerals.
[0051]
As can be seen from this result, the actual wire (A1, A4) gradually increased to have the maximum characteristic at 550 ° C., whereas the comparative wire (B1: SUS304) has almost no change in characteristics depending on the temperature. It could not be recognized, and the characteristic value was not as good as the actual wire.
[0052]
In particular, the 0.2% tensile yield strength has a remarkable effect of doubling to 26% in the actual wire, compared with the comparative wire (B1) and the reference prior patent with an increase of about 13 to 15%. confirmed. At the same time, the yield ratio in tension and torsion is both stable at about 90 to 96%, and it can be seen that the change in the yield ratio due to temperature is less than that of the comparative wire.
[0053]
The fact that such a characteristic is exhibited can be stably operated with no sag or deformation over a long period of time even if the heat treatment after the spring forming process is performed. At the same time, this stabilization tendency can be seen from the results of the torsion test.
[0054]
[Test 2]
Spring Fatigue Properties Next, in order to confirm the fatigue properties of the wire, the wire was formed into a compression coil spring having an outer diameter of 20.5 mm by a spring molding machine and subjected to low-temperature heat treatment at a temperature of 500 ° C. × 30 min. The processing temperature of the spring made of the comparative wire was set to 400 ° C. from the results of FIGS.
[0055]
These two types of springs were set in a compression coil spring fatigue tester, and a fatigue test was performed under the condition of an average stress of 390 N / mm 2 to prepare the SN curve of FIG. The fatigue limit at 5 × 10 6 times of the spring product made of the actual wire rod was 50 N / mm 2 higher than that of the spring product of the comparative wire rod, and the time strength was significantly exceeded.
[0056]
[Test 3]
From the results of the low temperature heat treatment characteristics in the high temperature sag characteristics test 1, it is assumed that the stainless steel wire for springs of the present invention has excellent sag characteristics particularly at high temperatures. did.
As for the test spring, in addition to the wire (A1, B1) used in the fatigue test, the residual shear strain of the spring was determined from a tightening test at 400 ° C. × 96 hours for the A4 wire added with niobium. The results are shown in FIG. 4, and the implemented spring product has a smaller residual shear strain than the comparative spring product, and even if the tightening stress is increased, the increase rate of the residual shear strain is smaller than that of the comparative wire spring. Admitted.
[0057]
In addition, the residual shear strain of the spring product (using A1 wire) when the tightening stress is 400 N / mm 2 is only 50% of that of the comparative product (B1), and the tightening stress increases with the A4 wire added with niobium. It was also found that shear strain was small and excellent high-temperature sag resistance was provided.
[0058]
[Test 4]
As an evaluation of corrosion resistance and corrosion resistance, an anodic polarization test was carried out in a 3.5% NaCl (30 ° C.) solution of the above-described wire (A1) and comparative wire (B1: SUS304 and B3: SUS316), and the results are shown in FIG. Show.
[0059]
According to this result, the pitting corrosion potential of the working wire at 10 μA / mm 2 was about 0.4 V higher than that of the comparative wire (B3), and the corrosion resistance was greatly improved.
[0060]
Table 3 shows the results of the immersion test using ferric chloride. It can be seen from this result that the corrosion weight loss of the wire according to the present invention is small and excellent in corrosion resistance.
[0061]
[Table 3]
Figure 0003746877
[0062]
【The invention's effect】
As described above, the stainless steel wire for springs according to the present invention is intended to adjust each element together with the amount of each element and to perform predetermined wire drawing, and to improve the spring characteristics by a high yield ratio. At the same time, the corrosion resistance can be made higher than that of the conventional steel type SUS316, which contributes to expansion to a wide range of applications.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an example of results showing the relationship of tensile properties with the annealing temperature of a steel wire.
FIG. 2 is an example of a result showing the relationship of torsional characteristics with the annealing temperature of a steel wire.
FIG. 3 is an example of an SN curve showing the fatigue characteristics of a steel wire.
FIG. 4 is an example of results showing high temperature sag characteristics.
FIG. 5 is an example of results showing corrosion resistance.
FIG. 6 is a diagram showing an example of a T-θ curve in a torsion test.

Claims (3)

重量比で、0.07〜0.10%の炭素と、0.45〜0.70%のケイ素、1.3〜1.5%のマンガン、10.00〜10.50%のニッケル、16.00〜18.00%のクロム、2.00〜3.00%のモリブデン、及びチッ素を0.18〜0.30%含み、残部が不可避不純物及び鉄からなるオーステナイト系ステンレス鋼線であって、該鋼線は、温度350〜550℃での低温熱処理を施した時の0.2%引張耐力比を90%以上の特性とする為に、前記炭素とチッ素との合計分量が0.26〜0.35%範囲でかつ次式に示すニッケル当量を25〜30%とするとともに、加工率60%以上での伸線加工を施してなる耐食性とばね特性にすぐれたばね用ステンレス鋼線。
ニッケル当量%=Ni+0.35Si+1.05Mn
+0.65Cr+12.6(C+N)+0.98Mo
0.07-0.10% carbon and 0.45-0.70% silicon, 1.3-1.5% manganese, 10.00-10.50% nickel, 16 by weight This is an austenitic stainless steel wire containing 0.18 to 0.30% chromium, 2.00 to 3.00% molybdenum, and 0.18 to 0.30% nitrogen with the balance being inevitable impurities and iron. In order to make the 0.2% tensile strength ratio when the steel wire is subjected to low-temperature heat treatment at a temperature of 350 to 550 ° C., the total amount of carbon and nitrogen is 0%. .Stainless steel for springs with excellent corrosion resistance and spring characteristics with a nickel equivalent range of 25-30% within the range of 26-0.35% and wire drawing at a processing rate of 60% or higher. line.
Nickel equivalent% = Ni + 0.35Si + 1.05Mn
+ 0.65Cr + 12.6 (C + N) + 0.98Mo
請求項1記載の成分に加えて、0.10〜0.30%のニオブを添加するとともに、前記クロムを16.00〜17.00%としたばね用ステンレス鋼線。 In addition to the components of claim 1, wherein, with the addition of 0.10 to 0.30% niobium, stainless steel wire use Ne tobacco and from 16.00 to 17.00% of the chromium. 前記炭素とチッ素との合計分量は、0.26〜0.32%とした請求項1又は2に記載の前記ばね用ステンレス鋼線。  3. The stainless steel wire for spring according to claim 1, wherein a total amount of the carbon and nitrogen is 0.26 to 0.32%.
JP17057897A 1997-06-26 1997-06-26 Stainless steel wire for springs with excellent corrosion resistance and spring characteristics Expired - Fee Related JP3746877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17057897A JP3746877B2 (en) 1997-06-26 1997-06-26 Stainless steel wire for springs with excellent corrosion resistance and spring characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17057897A JP3746877B2 (en) 1997-06-26 1997-06-26 Stainless steel wire for springs with excellent corrosion resistance and spring characteristics

Publications (2)

Publication Number Publication Date
JPH1112695A JPH1112695A (en) 1999-01-19
JP3746877B2 true JP3746877B2 (en) 2006-02-15

Family

ID=15907442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17057897A Expired - Fee Related JP3746877B2 (en) 1997-06-26 1997-06-26 Stainless steel wire for springs with excellent corrosion resistance and spring characteristics

Country Status (1)

Country Link
JP (1) JP3746877B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187600A4 (en) * 2014-08-01 2018-01-24 Nhk Spring Co., Ltd. Stainless steel spring, and stainless-steel-spring production method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069586A (en) * 2000-08-25 2002-03-08 Nippon Seisen Co Ltd Extra fine wire of high strength stainless steel
TWI266806B (en) * 2002-01-24 2006-11-21 Sumitomo Electric Industries Steel site for thermal-resistant springs, thermal-resistant spring and manufacturing method thereof
JP4245457B2 (en) * 2003-10-29 2009-03-25 住友電工スチールワイヤー株式会社 Stainless steel wire, spring, and spring manufacturing method
KR100620325B1 (en) 2004-12-16 2006-09-12 만호제강주식회사 Stainless steel wire having a excellent forming properties and the manufacturing method
JP2007224366A (en) * 2006-02-23 2007-09-06 Sumitomo Electric Ind Ltd High strength stainless steel spring and its manufacturing method
JP5497604B2 (en) * 2010-09-30 2014-05-21 朝日インテック株式会社 Manufacturing method of medical guide wire
CN105970088A (en) * 2016-07-06 2016-09-28 安徽红桥金属制造有限公司 High-elasticity oil seal spring and production technology thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187600A4 (en) * 2014-08-01 2018-01-24 Nhk Spring Co., Ltd. Stainless steel spring, and stainless-steel-spring production method

Also Published As

Publication number Publication date
JPH1112695A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
JP4561834B2 (en) Low alloy steel
AU2003200351B2 (en) Duplex stainless steel for urea manufacturing plants
JP5171197B2 (en) Duplex stainless steel wire for high strength and high corrosion resistance bolts excellent in cold forgeability, steel wire and bolt, and method for producing the same
JP7252761B2 (en) Precipitation hardening steel and its manufacture
EP0411515A1 (en) High strength heat-resistant low alloy steels
EP0525331B1 (en) Heat resisting, ferritic steel with high chromium content and having improved resistance to embrittlement by intergranular precipitation of copper
JP4614547B2 (en) Martensitic heat resistant alloy with excellent high temperature creep rupture strength and ductility and method for producing the same
JP5154122B2 (en) High strength stainless steel and high strength stainless steel wire using the same
JP3534413B2 (en) Ferritic heat-resistant steel excellent in high-temperature strength and method for producing the same
JP3746877B2 (en) Stainless steel wire for springs with excellent corrosion resistance and spring characteristics
EP2128278B1 (en) Process for producing bend pipe for line pipe and bend pipe for line pipe
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP4026228B2 (en) Martensitic heat resistant steel
JPH10245656A (en) Martensitic stainless steel excellent in cold forgeability
JP4123528B2 (en) Manufacturing method of martensitic stainless steel oil well pipe
JP2716937B2 (en) High corrosion resistant austenitic stainless steel with excellent hot workability
KR101776491B1 (en) High strength spring steel having excellent corrosion resistance
JP2000063947A (en) Manufacture of high strength stainless steel
JPH10287957A (en) High strength pc steel bar and its manufacture
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
KR102463015B1 (en) High-strength austenitic stainless steel with excellent hot workability
JP2001107198A (en) Martensitic stainless steel linepipe excellent in ssc resistance and its producing method
JPH0735548B2 (en) Method for producing high-Cr ferritic heat-resistant steel pipe having high creep rupture strength
JPH04365838A (en) Ferritic heat resisting steel excellent in hot workability and strength at high temperature

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees