JPH07228947A - Alloy with high strength and low thermal expansion - Google Patents

Alloy with high strength and low thermal expansion

Info

Publication number
JPH07228947A
JPH07228947A JP4306794A JP4306794A JPH07228947A JP H07228947 A JPH07228947 A JP H07228947A JP 4306794 A JP4306794 A JP 4306794A JP 4306794 A JP4306794 A JP 4306794A JP H07228947 A JPH07228947 A JP H07228947A
Authority
JP
Japan
Prior art keywords
thermal expansion
alloy
less
coefficient
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4306794A
Other languages
Japanese (ja)
Other versions
JP2968430B2 (en
Inventor
Munehiro Matsushita
宗弘 松下
Tatsuro Isomoto
辰郎 磯本
Genryu Abe
源隆 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP4306794A priority Critical patent/JP2968430B2/en
Publication of JPH07228947A publication Critical patent/JPH07228947A/en
Application granted granted Critical
Publication of JP2968430B2 publication Critical patent/JP2968430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce an alloy having high strength and reduced in thermal expansion by preparing an alloy having a specific composition in which respective contents of C, Ni, V, and Cr are specified. CONSTITUTION:An alloy, which has a composition consisting of, by weight, 0.1-0.4% C, 0.2-1.5% Si, 0.1-1.5% Mn, 33-42% Ni, <=5.0% Co, 0.75-3.0% Cr, 0.2-3.0% V, <=0.003% B, <=0.003% O, <=0.1% Al, <=0.1% Mg, <=0.1% Ti, <=0.1% Ca, and the balance Fe with inevitable impurities and satisfying 1.0%<=V+Cr<=5.0%, is prepared. By this method, the alloy combining high strength with low thermal expansion, in which average thermal expansion coefficient at a temp. between room temp. and 300 deg.C and average thermal expansion coefficient at a temp. between room temp. and 100 deg.C are regulated to <=about 5.0X10<-6>/ deg.C and <=about 1.5X10<-6>/ deg.C, respectively, and which has >=about 1200N/mm<2> tensile strength at an ordinary temp., can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、使用中昇温の可能性の
ある精密機械部品や低弛度耐熱送電線用等に使用される
高強度低熱膨張合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength and low-thermal expansion alloy used for precision machine parts which may increase in temperature during use, low sag heat resistant transmission lines, and the like.

【0002】[0002]

【従来の技術】耐熱性と低熱膨張特性が要求される材料
としては、インバー合金(36Ni-Fe) がよく用いられてい
る。この合金は磁気変態点が約165 ℃と比較的低く、こ
れを超える温度では、急に熱膨張係数が増大する傾向が
あって、使用可能な温度領域が狭く、また常温引張り強
さは高々600N/mm2であり、用途によって不満足である。
2. Description of the Related Art Invar alloy (36Ni-Fe) is often used as a material required to have heat resistance and low thermal expansion characteristics. This alloy has a relatively low magnetic transformation point of about 165 ° C. At temperatures above this temperature, the coefficient of thermal expansion tends to increase rapidly, the usable temperature range is narrow, and the tensile strength at room temperature is at most 600N. / mm 2, which is unsatisfactory depending on the application.

【0003】常温引張り強さの上昇のためにNb、Tiおよ
びW等を添加した合金があるが、これらの合金は巨大炭
化物が析出析出し易く、その場合冷間加工後の靱性や捻
回値の低下をもたらす。
There are alloys to which Nb, Ti, W, etc. are added in order to increase the tensile strength at room temperature. However, in these alloys, giant carbides are likely to precipitate and precipitate, in which case the toughness and the twist value after cold working are increased. Bring about a decline.

【0004】マトリックスを強化する目的でMoを添加し
た合金が開発されている(例えば、特公昭56−459
90号公報参照)が、この合金は常温引張り強さは高い
が、熱膨張係数も高い。このため高強度でかつ低熱膨張
の合金の開発が一層望まれている。
Alloys containing Mo have been developed for the purpose of strengthening the matrix (for example, Japanese Patent Publication No. 56-459).
However, although this alloy has a high tensile strength at room temperature, it also has a high coefficient of thermal expansion. For this reason, development of alloys with high strength and low thermal expansion is further desired.

【0005】[0005]

【発明が解決しようとする課題】従来より、架空送電線
については送電容量の増大のために、高温での使用に耐
える耐熱性の向上と弛度の減少について種々検討がなさ
れている。近年、例えば架線張力を鋼心のみに負荷さ
せ、さらに、架線後の通電による温度上昇時の熱膨張を
鋼心のみに受け持たせた架空送電線が、弛度の減少をは
かる目的で実用化されている。この用途に対しては、低
膨張でかつ高強度を有する合金が望ましい。
In order to increase the transmission capacity of overhead power transmission lines, various studies have been conventionally made to improve heat resistance to withstand use at high temperatures and reduce sag. In recent years, for example, an overhead power transmission line has been put into practical use for the purpose of reducing the sag, by applying tension to the steel core only, and then allowing only the steel core to undergo thermal expansion when the temperature rises due to energization after the overhead wire. Has been done. For this application, alloys with low expansion and high strength are desirable.

【0006】本発明は、上述のような送電線用心線や使
用中、昇温の可能性のある精密機械部品等の用途に最適
の材料を提供せんとするもので、室温〜300 ℃の平均熱
膨張係数が、 5.0×10-6/℃以下で、しかも室温〜100
℃の平均熱膨張係数が、 1.5×10-6/℃以下であり、か
つ1200N/mm2 以上の常温引張り強さを有する低熱膨張合
金を提供するものである。
The present invention is intended to provide an optimum material for applications such as the above-mentioned core wire for power transmission lines and precision machine parts that may be heated during use, and the average temperature from room temperature to 300 ° C. Coefficient of thermal expansion is 5.0 × 10 -6 / ℃ or less, and room temperature to 100
Provided is a low thermal expansion alloy having an average thermal expansion coefficient of 1.5 × 10 −6 / ° C. or less and room temperature tensile strength of 1200 N / mm 2 or more.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成する本
発明の高強度低熱膨張合金は、重量比にして、C:0.1
〜0.4 %、Si:0.2 〜1.5 %、Mn:0.1 〜1.5 %、Ni:
33〜42%、Co:5.0%以下、Cr:0.75〜3.0 %、V:0.2
〜3.0 %、B:0.003 %以下、O:0.003 %以下、Al:
0.1 %以下、Mg:0.1 %以下、Ti:0.1 %以下、Ca:0.
1 %以下を含有し、残部がFeおよび不可避不純物から
なり、かつ、1.0 %≦V+Cr≦5.0 %の関係を有するこ
とを特徴とする。
The high-strength low-thermal expansion alloy of the present invention which achieves the above-mentioned object is C: 0.1 in terms of weight ratio.
~ 0.4%, Si: 0.2-1.5%, Mn: 0.1-1.5%, Ni:
33 to 42%, Co: 5.0% or less, Cr: 0.75 to 3.0%, V: 0.2
~ 3.0%, B: 0.003% or less, O: 0.003% or less, Al:
0.1% or less, Mg: 0.1% or less, Ti: 0.1% or less, Ca: 0.
It is characterized by containing 1% or less, the balance being Fe and inevitable impurities, and having a relationship of 1.0% ≤V + Cr≤5.0%.

【0008】[0008]

【作用】本発明の合金の組成を上記のように定めた理由
は、次の通りである。Cは、固溶硬化による材質強化に
大きく貢献する元素であり、常温引張り強さ1000N/mm2
以上を確保するためには0.1 %以上の量を含有させる必
要がある。しかし、多量に含有すると炭化物を形成しや
すく、Fe−Ni系合金本来の熱膨張特性を不安定にするた
め、0.4 %以下に限定する。よってC:0.1 %〜0.4 %
とする。
The reason for defining the composition of the alloy of the present invention as described above is as follows. C is an element that greatly contributes to strengthening the material by solid solution hardening, and has a normal temperature tensile strength of 1000 N / mm 2
In order to secure the above, it is necessary to contain an amount of 0.1% or more. However, if it is contained in a large amount, carbides are easily formed and the original thermal expansion characteristics of the Fe-Ni alloy become unstable, so the content is limited to 0.4% or less. Therefore C: 0.1% to 0.4%
And

【0009】Siは、低温での熱膨張係数を下げ、かつ基
地を硬化させるための望ましい元素である。しかし、過
度の添加は高温側の熱膨張係数を増大させるので、1.5
%以下、望ましくは1.0 %以下に抑えることが望まし
く、一方、0.2 %未満では基地を硬化させる効果がな
い。よってSi:0.2 %〜1.5 %とする。
Si is a desirable element for lowering the coefficient of thermal expansion at low temperatures and hardening the matrix. However, excessive addition increases the coefficient of thermal expansion on the high temperature side, so 1.5
% Or less, preferably 1.0% or less, while less than 0.2% has no effect of hardening the matrix. Therefore, Si: 0.2% to 1.5%.

【0010】Mnは、脱酸剤として有効な元素でこのため
に0.1 %以上必要である。しかし、1.5 %以上を越えて
添加すると熱膨張係数を増大させるので、1.5 %以下に
抑えることが望ましい。よってMn:0.1 %〜1.5 %とす
る。
Mn is an element effective as a deoxidizing agent and, for this reason, 0.1% or more is necessary. However, if added in excess of 1.5% or more, the coefficient of thermal expansion increases, so it is desirable to keep it below 1.5%. Therefore, Mn: 0.1% to 1.5%.

【0011】Niは、低熱膨張特性の実現に不可欠の元素
であり、室温〜300 ℃の平均熱膨張係数が、 5.0×10-6
/℃以下で、しかも室温〜100 ℃の平均熱膨張係数が、
1.5×10-6/℃以下を確保するためには33%以上含有さ
せる必要がある。しかし、その含有量が42%を超える
と、室温〜300 ℃における平均熱膨張係数を 5.0×10-6
/℃以下に、しかも室温〜100 ℃における平均熱膨張係
数を 1.5×10-6/℃以下に確保することが困難になる。
よってNi:33%〜42%とする。
Ni is an element indispensable for realizing low thermal expansion characteristics and has an average coefficient of thermal expansion of 5.0 × 10 −6 at room temperature to 300 ° C.
/ ° C or less, and the average coefficient of thermal expansion from room temperature to 100 ° C
In order to secure 1.5 × 10 -6 / ° C or less, it is necessary to contain 33% or more. However, if its content exceeds 42%, the average coefficient of thermal expansion at room temperature to 300 ° C will be 5.0 × 10 -6.
It is difficult to secure the average thermal expansion coefficient of 1.5 × 10 −6 / ° C. or less at room temperature to 100 ° C.
Therefore, Ni: 33% to 42%.

【0012】Coは、フェロニッケルやNi地金中に不可避
の不純物として0.1%以上含まれることが多いが、作用効
果はNiと変わらず、ある程度まで含有が許容できる。し
かしNiよりも高価で5.0%を超えると原価を上げることに
なるので、5.0%以下とする。
Co is often contained in ferro-nickel or Ni ingots as an unavoidable impurity in an amount of 0.1% or more, but the effect is the same as that of Ni, and the inclusion of Co is acceptable to some extent. However, it is more expensive than Ni, and if it exceeds 5.0%, it will raise the cost, so it should be 5.0% or less.

【0013】Crは、Fe−Ni系合金を強化する効果が大き
く、0.75%未満では強化効果がなく、3.0 %を超えると
熱膨張特性を満たし得なくなり、かつ熱処理によって強
固な酸化物を生成してメッキ前処理性や伸線時の潤滑性
を低下させる。よってCr:0.75%〜3.0 %とする。
[0013] Cr has a large effect of strengthening the Fe-Ni alloy, and if it is less than 0.75%, it has no strengthening effect, and if it exceeds 3.0%, it cannot satisfy the thermal expansion characteristics, and it forms a strong oxide by heat treatment. Reduce the pretreatment of plating and lubricity during wire drawing. Therefore, Cr: 0.75% to 3.0%.

【0014】Vは、Fe−Ni系合金を強化する効果および
炭化物の微細化効果が大きく、その効果はMoより大き
い。本発明においては強化元素として、従来のMoに代え
てVを添加した。Vはまた熱膨張係数の低下にも非常に
有効である。0.2 %未満では強化効果がなく、3.0 %を
超えるとその効果が飽和し、原価をあげることになる。
よってV:0.2 %〜3.0 %とする。
V has a large effect of strengthening the Fe-Ni alloy and an effect of refining carbides, and the effect is larger than that of Mo. In the present invention, V is added as a strengthening element in place of conventional Mo. V is also very effective in reducing the coefficient of thermal expansion. If it is less than 0.2%, there is no strengthening effect, and if it exceeds 3.0%, the effect is saturated and the cost is raised.
Therefore, V: 0.2% to 3.0%.

【0015】ここで、VとCrの合計量は 1.0〜5.0 %が
最適であり、1.0 %未満では所望の機械的強度が得られ
ず、5.0 %を超えると熱膨張特性を満足しない。よって
1.0%≦V+Cr≦5.0 %とする。
Here, the total amount of V and Cr is optimally 1.0 to 5.0%. If it is less than 1.0%, the desired mechanical strength cannot be obtained, and if it exceeds 5.0%, the thermal expansion characteristics are not satisfied. Therefore
1.0% ≤ V + Cr ≤ 5.0%.

【0016】Bは、熱間加工性を向上させるための重要
な元素であり、熱間加工温度条件に関係なく効果を発揮
する。0.003 %を超えるとFe2Bを生じ赤熱脆性を起こ
す。よってB:0.003 %以下とする。
B is an important element for improving hot workability, and exerts an effect regardless of hot working temperature conditions. If it exceeds 0.003%, Fe 2 B is generated to cause red heat embrittlement. Therefore, B: 0.003% or less.

【0017】Oは、冷間加工後の捻回値が酸化物系介在
物の存在で大きく低下するので、できるだけ酸化物系介
在物を少なくするため、0.003 %以下とする。
The value of O is 0.003% or less in order to reduce the oxide inclusions as much as possible, since the twist value after cold working is greatly reduced by the presence of the oxide inclusions.

【0018】Al、Mg、TiおよびCaの各元素は、Mnと共に
脱酸元素として添加することもあるが、その場合0.1 %
を超えて含有すると特性に悪影響を与える。よってAl、
Mg、Ti、Caの各元素は:0.1 %以下とする。
Each element of Al, Mg, Ti and Ca may be added as a deoxidizing element together with Mn. In that case, 0.1% is added.
If it is contained in excess of, the characteristics will be adversely affected. Therefore Al,
Each element of Mg, Ti and Ca: 0.1% or less.

【0019】[0019]

【実施例】次に、本発明鋼の特徴を従来鋼、比較鋼と比
べて、実施例をもって明らかにする。表1に示す元素と
通常の不純物とからなる本発明の合金を溶製し、径30mm
に鍛伸後、50%冷間引抜きを行い、700 ℃で焼鈍を行っ
た。比較鋼も同様の方法により作製した。この材料よ
り、引張試験片および熱膨張試験片を採取し、試験に供
した。引張試験は常温で行い、熱膨張係数は常温〜100
℃間および常温〜300℃の間で測定した。これらの試験
結果も表1に示す。
[Examples] Next, the characteristics of the steel of the present invention will be clarified by examples compared with the conventional steel and the comparative steel. The alloy of the present invention consisting of the elements shown in Table 1 and ordinary impurities was melted and the diameter was 30 mm.
After forging, cold drawing was performed at 50% and annealing was performed at 700 ° C. Comparative steel was also manufactured by the same method. Tensile test pieces and thermal expansion test pieces were sampled from this material and subjected to the test. The tensile test is performed at room temperature, and the coefficient of thermal expansion is from room temperature to 100.
The measurement was performed between ℃ and normal temperature to 300 ℃. The results of these tests are also shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】表1において、比較鋼のNo.7、No.8、No.9
はC含有量が本発明の規定値外で、No.10、No.11、No.1
2はNiが、No.13はCr及びV が、No.14、No.15はV+Crが、
No.16はAlが、No.17はMgが、No.18はTiが、No.19はCaが
規定値外で、No.20 は Bをまったく含有せず、No.20は
Oが規定値外である。
In Table 1, the comparative steels No. 7, No. 8 and No. 9
C content is outside the specified value of the present invention, No. 10, No. 11, No. 1
2 is Ni, No. 13 is Cr and V, No. 14 and No. 15 is V + Cr,
No. 16 is Al, No. 17 is Mg, No. 18 is Ti, No. 19 is Ca outside the specified value, No. 20 does not contain B at all, No. 20 is
O is outside the specified value.

【0022】表1から各元素の含有量の及ぼす影響がわ
かる。
Table 1 shows the influence of the content of each element.

【0023】Cの影響について:C量の増加により引
張り強さも熱膨張係数も高くなる。1200N/mm2 の引張り
強さを確保するためには0.1 %以上のCが必要である。
すなわち、比較鋼のNo.7は炭素含有量が0.08%と規定よ
りも低く、従って、引張り強さは831N/mm2と低い。一
方、Cを多量に含有すると熱膨張係数が高くなり、比較
鋼のNo.8、No.9に見られるとおり、1.5 ×10-6/℃の確
保が困難となる。従って0.40%以下が望ましいことがわ
かる。
Regarding the effect of C: As the amount of C increases, both the tensile strength and the coefficient of thermal expansion increase. In order to secure a tensile strength of 1200 N / mm 2 , 0.1% or more of C is necessary.
That is, Comparative Steel No. 7 has a carbon content of 0.08%, which is lower than the specified value, and therefore the tensile strength is low, 831 N / mm 2 . On the other hand, when a large amount of C is contained, the coefficient of thermal expansion becomes high, and it becomes difficult to secure 1.5 × 10 −6 / ° C. as seen in Comparative Steel Nos. 8 and 9. Therefore, it can be seen that 0.40% or less is desirable.

【0024】Niの影響について:Niは36%のときに、
最も熱膨張係数が低くなる。室温〜100 ℃における平均
熱膨張係数を 1.5×10-6/℃以下に確保するためには、
Niの含有量を33%≦Ni≦42%としなければならない。
Regarding the effect of Ni: When Ni is 36%,
It has the lowest coefficient of thermal expansion. In order to secure the average coefficient of thermal expansion at room temperature to 100 ℃ below 1.5 × 10 -6 / ℃,
The Ni content must be 33% ≤ Ni ≤ 42%.

【0025】V+Crの影響について:V+Crが増大す
るとともに引張り強さも増大する。しかしV+Crが1.0
%未満では十分でない。また、熱膨張係数はV+Crが5
%を超えると、急に増加し、捻回値も低下するので、V
+Crは1.0 %≦V+Cr≦5.0%にすることが望ましい。
Regarding the effect of V + Cr: As V + Cr increases, the tensile strength also increases. But V + Cr is 1.0
Less than% is not enough. The coefficient of thermal expansion is 5 for V + Cr.
If it exceeds%, the value will suddenly increase and the twist value will decrease, so V
+ Cr is preferably 1.0% ≤ V + Cr ≤ 5.0%.

【0026】[0026]

【発明の効果】以上のように、本発明は、室温〜300 ℃
における平均熱膨張係数が 5.0×10-6/ ℃以下で、しか
も室温〜100 ℃の平均熱膨張係数が 1.5×10-6/℃以下
と極めて低く、かつ、1200N/mm2 の高い常温引張り強さ
を有しており、従来の合金に見られぬ高強度低熱膨張合
金であり、使用中昇温の可能性のある精密機械部品や低
弛度耐熱送電線用等に使用する高強度低熱膨張合金とし
て極めて優れたものである。
As described above, the present invention can be performed at room temperature to 300 ° C.
Has an average coefficient of thermal expansion of 5.0 × 10 -6 / ° C or less, and an average coefficient of thermal expansion of room temperature to 100 ° C of 1.5 × 10 -6 / ° C or less, and a high room temperature tensile strength of 1200 N / mm 2. It is a high-strength, low-thermal-expansion alloy that is not found in conventional alloys and has high strength and low-thermal expansion used for precision machinery parts that may heat up during use, low-sag heat-resistant transmission lines, etc. It is an extremely excellent alloy.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量比にして、C:0.1 〜0.4 %、Si:
0.2 〜1.5 %、Mn:0.1 〜1.5 %、Ni:33〜42%、Co:
5.0%以下、Cr:0.75〜3.0 %、V:0.2 〜3.0%、B:
0.003 %以下、O:0.003 %以下、Al:0.1 %以下、M
g:0.1 %以下、Ti:0.1 %以下、Ca:0.1 %以下を含
有し、残部がFeおよび不可避不純物からなり、かつ、
1.0 %≦V+Cr≦5.0 %の関係を有することを特徴とす
る高強度低熱膨張合金。
1. A weight ratio of C: 0.1 to 0.4%, Si:
0.2 to 1.5%, Mn: 0.1 to 1.5%, Ni: 33 to 42%, Co:
5.0% or less, Cr: 0.75 to 3.0%, V: 0.2 to 3.0%, B:
0.003% or less, O: 0.003% or less, Al: 0.1% or less, M
g: 0.1% or less, Ti: 0.1% or less, Ca: 0.1% or less, the balance being Fe and inevitable impurities, and
A high-strength, low-thermal expansion alloy having a relationship of 1.0% ≤ V + Cr ≤ 5.0%.
JP4306794A 1994-02-17 1994-02-17 High strength low thermal expansion alloy Expired - Lifetime JP2968430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4306794A JP2968430B2 (en) 1994-02-17 1994-02-17 High strength low thermal expansion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4306794A JP2968430B2 (en) 1994-02-17 1994-02-17 High strength low thermal expansion alloy

Publications (2)

Publication Number Publication Date
JPH07228947A true JPH07228947A (en) 1995-08-29
JP2968430B2 JP2968430B2 (en) 1999-10-25

Family

ID=12653517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4306794A Expired - Lifetime JP2968430B2 (en) 1994-02-17 1994-02-17 High strength low thermal expansion alloy

Country Status (1)

Country Link
JP (1) JP2968430B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846368B2 (en) * 2001-01-05 2005-01-25 Hitachi Metals, Ltd. Casting steel having high strength and low thermal expansion
EP1589123A1 (en) * 2002-07-08 2005-10-26 Hitachi Metals, Ltd. Casting steel having high strength and low thermal expansion
DE10208855B4 (en) * 2001-03-02 2013-01-03 Sanyo Special Steel Co., Ltd. High strength alloy with low thermal expansion and improved torsional properties, as well as wire of said alloy
JP2017172045A (en) * 2016-03-22 2017-09-28 新日鐵住金株式会社 Low thermal expansion alloy
JP2018145474A (en) * 2017-03-03 2018-09-20 新報国製鉄株式会社 Low thermal expansion alloy
JP2019163536A (en) * 2018-03-16 2019-09-26 日本製鉄株式会社 Low thermal expansion alloy and method for producing the same
KR20200003794A (en) 2017-04-19 2020-01-10 산요오도꾸슈세이꼬 가부시키가이샤 High strength low thermal expansion alloy wire
JP6831489B1 (en) * 2020-08-06 2021-02-17 住友電気工業株式会社 Iron alloys, iron alloy wires, and iron alloy stranded wires

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846368B2 (en) * 2001-01-05 2005-01-25 Hitachi Metals, Ltd. Casting steel having high strength and low thermal expansion
DE10208855B4 (en) * 2001-03-02 2013-01-03 Sanyo Special Steel Co., Ltd. High strength alloy with low thermal expansion and improved torsional properties, as well as wire of said alloy
EP1589123A1 (en) * 2002-07-08 2005-10-26 Hitachi Metals, Ltd. Casting steel having high strength and low thermal expansion
EP1589123A4 (en) * 2002-07-08 2005-11-30 Hitachi Metals Ltd Casting steel having high strength and low thermal expansion
JP2017172045A (en) * 2016-03-22 2017-09-28 新日鐵住金株式会社 Low thermal expansion alloy
JP2018145474A (en) * 2017-03-03 2018-09-20 新報国製鉄株式会社 Low thermal expansion alloy
KR20200003794A (en) 2017-04-19 2020-01-10 산요오도꾸슈세이꼬 가부시키가이샤 High strength low thermal expansion alloy wire
JP2019163536A (en) * 2018-03-16 2019-09-26 日本製鉄株式会社 Low thermal expansion alloy and method for producing the same
JP6831489B1 (en) * 2020-08-06 2021-02-17 住友電気工業株式会社 Iron alloys, iron alloy wires, and iron alloy stranded wires
WO2022030090A1 (en) * 2020-08-06 2022-02-10 住友電気工業株式会社 Iron alloy, iron alloy wire, and iron alloy stranded wire
JP2022030019A (en) * 2020-08-06 2022-02-18 住友電気工業株式会社 Iron alloy, iron alloy wire and iron alloy stranded wire
EP4194121A4 (en) * 2020-08-06 2024-01-03 Sumitomo Electric Industries Iron alloy, iron alloy wire, and iron alloy stranded wire

Also Published As

Publication number Publication date
JP2968430B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
KR20070009960A (en) High strength, low thermal expansion alloy wire having improved twisting properties
JP2968430B2 (en) High strength low thermal expansion alloy
JPH0321622B2 (en)
JPH08100239A (en) Alloy tool steel
JP2003328079A (en) Steel pipe superior in workability for cold forging, and manufacturing method therefor
US4049430A (en) Precipitation hardenable stainless steel
JP2715033B2 (en) Non-magnetic PC steel wire and method of manufacturing the same
JPS6363617B2 (en)
JPH0570897A (en) Ferritic stainless steel having high toughness and high strength at high temperature
US5951788A (en) Superconducting high strength stainless steel magnetic component
JP2941312B2 (en) High strength low thermal expansion alloy
JP2661911B2 (en) High strength spring steel wire
JPS59211552A (en) Martensitic high cr steel with high toughness
KR100361969B1 (en) Extra high-strength invar alloys with low thermal expansion
JPH0250937A (en) Free cutting stainless steel for header
CN1091163C (en) High-strength low-expansion alloy steel
JP4222111B2 (en) Steel bar or wire rod excellent in machinability and low magnetic field magnetic properties and method for producing the same
JP4103513B2 (en) Extremely low carbon steel wire rod with excellent cold workability and magnetic properties
JP3839957B2 (en) High strength low thermal expansion alloy wire
JPS6123750A (en) Nonmagnetic steel
JP2655860B2 (en) Alloy steel and rolls for cold forming rolls
JPH0718378A (en) Steel for hot die
JP3216824B2 (en) High strength low thermal expansion alloy
JPH0372053A (en) Ferritic stainless steel excellent in thermal fatigue resistance
JPH08302445A (en) Boron-containing steel excellent in workability and strength, and production of forged parts made of the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090820

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110820

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120820

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130820

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130820

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140820

Year of fee payment: 15

EXPY Cancellation because of completion of term