JPS59211552A - Martensitic high cr steel with high toughness - Google Patents

Martensitic high cr steel with high toughness

Info

Publication number
JPS59211552A
JPS59211552A JP8544583A JP8544583A JPS59211552A JP S59211552 A JPS59211552 A JP S59211552A JP 8544583 A JP8544583 A JP 8544583A JP 8544583 A JP8544583 A JP 8544583A JP S59211552 A JPS59211552 A JP S59211552A
Authority
JP
Japan
Prior art keywords
steel
less
toughness
temperature
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8544583A
Other languages
Japanese (ja)
Other versions
JPH0377268B2 (en
Inventor
Fujimitsu Masuyama
不二光 増山
Takashi Oguro
大黒 貴
Yasutaka Okada
康孝 岡田
Kunihiko Yoshikawa
吉川 州彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8544583A priority Critical patent/JPS59211552A/en
Publication of JPS59211552A publication Critical patent/JPS59211552A/en
Publication of JPH0377268B2 publication Critical patent/JPH0377268B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide high toughness, superior strength at high temp. and superior oxidation resistance at high temp. to the resulting martensitic high Cr steel and to reduce the cost by preparing a low carbon steel having a specified composition contg. Si, Mn, Cr, Mo, N and P. CONSTITUTION:This martensitic high Cr steel with high toughness has a composition consisting of, by weight, <=0.09% C, 0.01-0.15% Si, <=3.0% Mn, 7.0-15.0% Cr, <=3.0% Mo, 0.05-0.15% N, <=0.015% P and the balance essentially Fe. The composition may further contain one or more among <=1% Ni, <=1.0% Cu, <=0.01% Ca, <=0.01% Mg and <=0.01% rare earth element.

Description

【発明の詳細な説明】 この発明は、高温用厚肉部材として使用するのに好適な
、高靭性を有するマルテンサイト系高cr鋼に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a martensitic high cr steel having high toughness and suitable for use as a thick-walled member for high temperature use.

一般に、高速増殖炉等の原子力利用設備、火力発電設備
、或いは一般の・ドイラ設備等におけるような高温・高
圧の環境下で使用される熱交換チューブ、配管、継手又
はバルブ等の各種部材には、高い高温強度(クリープ強
度)や優れた耐高温酸化性が要求されることはもちろん
のことであるが同時に、溶接性に優れていることや、熱
応力に起因する事故を誘発することのない十分に小さな
熱膨張係数であること等も重要な要1牛とされていた。
In general, various parts such as heat exchange tubes, piping, joints, and valves used in high-temperature and high-pressure environments such as nuclear power facilities such as fast breeder reactors, thermal power generation facilities, and general/doiler facilities, etc. Of course, high temperature strength (creep strength) and excellent high temperature oxidation resistance are required, but at the same time, it must also have excellent weldability and not cause accidents due to thermal stress. Another important factor was that it had a sufficiently small coefficient of thermal expansion.

ところで、従来、このような50Q〜600℃の高温で
使用される高温用材料として、Crを7〜土、3%(以
下、%は重量割合とする)含有する高CI鋼か知られて
おシ、耐高温酸化性に優れていること、MO等の合金元
素の添加によって高温強度を一段と向上できること、熱
膨張係数が小さいこと、そして価格が比較的低廉である
こと等の展出から各方面で広く使用されるようになって
きた。そして、例えば、特開昭54−81116号公報
にもみられるように、高Cr鋼を基本とし、これに特定
の合金元素を添加して所望特性の改善を図った材料も多
数提案されており、前述のような各種高温設備の性能や
信頼性は一段と向」二したものとなっている。
By the way, as a high-temperature material used at such high temperatures of 50Q to 600°C, high CI steel containing 7 to 3% Cr (hereinafter % is a weight percentage) is known. It has been widely used in various fields due to its excellent high-temperature oxidation resistance, the ability to further improve high-temperature strength by adding alloying elements such as MO, low coefficient of thermal expansion, and relatively low price. has become widely used. For example, as seen in JP-A-54-81116, many materials have been proposed that are based on high Cr steel and have specific alloying elements added to it to improve desired properties. The performance and reliability of the various high-temperature equipment mentioned above have become even more advanced.

また一方では、このような技術的背景をふまえ、エネル
ギー需要の目覚しい増大などに対処するために前記高温
設備の高能率化や大型化が急速に推進されており、それ
にともなって高温用管部材や継手等に太径厚肉化の要望
が強くなされるようにもなってきだのである。
On the other hand, based on this technical background, high-temperature equipment is rapidly becoming more efficient and larger in order to cope with the remarkable increase in energy demand, and along with this, high-temperature pipe members and There has also been a strong demand for larger diameters and thicker walls for joints and the like.

しかしながら、従来の高Cr系高温用鋼は、例え(d 
9Cr −I Mo鋼では所定の熱処理の後マルテンサ
イト組織を呈するけれども庫温強度が低く、丑だ高温強
度の高い9Cr−2MO鋼ではマルテンサイト中にフェ
ライトを含んだ組織を呈するものである。
However, conventional high-Cr-based high-temperature steels, for example (d
Although the 9Cr-I Mo steel exhibits a martensitic structure after a predetermined heat treatment, its strength at room temperature is low, and the 9Cr-2MO steel, which has considerably high high-temperature strength, exhibits a structure containing ferrite in martensite.

従って、後者は薄肉管等に使用した場合に良好な曲げ加
工性を示すものではあったが、厚肉管、鍛鋼品、或いは
鋳造品等の厚肉材として使用する場合、フェライト量が
増加すると所望の強度を確保することが困難となるほか
、特に厚肉材の場合は長O1間の応力除去焼鈍が実施さ
れることがあり、靭1イVの一層の向上が強く要求され
ている。特に、熱1uJ加工によって製造される部材の
場合には、加工方向とこれに直角方向の靭性の差か比較
的大きくなることも13Aもがとなった。
Therefore, although the latter exhibited good bending workability when used in thin-walled pipes, when used as thick-walled materials such as thick-walled pipes, forged steel products, or cast products, the increase in ferrite content In addition to making it difficult to secure the desired strength, especially in the case of thick-walled materials, stress relief annealing may be performed between the length O1, and further improvement of toughness 1-V is strongly required. Particularly, in the case of a member manufactured by thermal 1uJ processing, the difference in toughness between the processing direction and the direction perpendicular to this becomes relatively large by as much as 13A.

本発明者等は、上述のような観点から、まず、高Cr系
高温用厚肉鋼材にみられる前記問題点の発生原因を究明
ずへく、数多くの実験・研究を行・つだところ、 (1」)  従来の高温強度の高い高Cr系高温用鋼は
、熱処理後の状態でマルテンサイト中に5〜b量%程度
のフェライトを含有するものであったが、厚肉インにな
ると、規準処理後の冷却速度が小さくなる上、熱間加工
時の加工率を十分に大きくできないこともあって、鋼中
のフェライト量が一層増加してし−まい、どうしても強
度の低下を招いてし1う、 (b)  丑だ、厚肉材は溶接後の応力除去焼鈍を欠か
ぜないものであるが、フェライト量が増加すると応力除
去焼鈍後に靭性の劣化を来たすこととなシ、その後の高
温域での長時間使用による脆化もフェライト量の増加と
ともに大きくなる、(C)特に、熱間加工によって厚肉
材を製造すると、硬いマルテンサイト相中に存在する軟
質の大きなフェライト相が薄く押し延ばされ、熱間加工
方向に粗大なフェライトが延びた組織を形成することと
なって材料に異方性が生じ、これが加工方向と直角方向
の靭性や強度を著しく低下する原因となる、 との新しい事実を見出したのである1、そこで、本発明
者等は、高cr鋼において、室温或いは高温での強度を
十分に確保し、しかも応力除去焼鈍後或いは長時間の使
用後の靭性低下を最小限にとどめるには、規準処理後に
おいてもフェライトを生成することのない、マルテンサ
イト単相の成分系を選べば良いとの結論に達し、高温強
度や耐高温酸化性に優れていることはもちろんのこと、
低熱膨張係数を有し、廉価であり、しかも良好な靭性を
も兼備したマルテンサイト鋼を実現すべく更に研究を重
ねだ結果、 (d)CFを7〜15%添加して高温耐酸化性を確保し
た鋼のSl含有量を極めて低く抑えるとともに所定量の
Nを添加すると、フェライトの生成が極めて少なくなっ
て実質的にマルテンサイト単相の鋼材が得られる上、 
Si含有量を特定の低い範囲に調整することで炭化物が
微細に分散することとなって炭化物析出に伴う靭性劣化
が防止され、これらによって鋼材の靭性が大幅に向上す
ること、(e)  Nを添加することによって、上述の
ようにフェライト量そのものを減らすことがでhる上、
高温強度も大幅に向上すること、 (f)  更にC含有量を低減すると、応力除去焼鈍や
高温での使用中における炭化物析出量が抑制されて、靭
性が一層改善されること、 (→ C含有量低減による強度低下は、マルテンサイト
単相鋼となることによって十分にカバーできること、 (1))  このような高Cr鋼に、所定量のNi 、
 Cu 、 Ca 。
From the above-mentioned viewpoint, the present inventors first conducted numerous experiments and research to find out the cause of the above-mentioned problems observed in high-Cr-based high-temperature thick-walled steel materials. (1) Conventional high-Cr-based high-temperature steels with high high-temperature strength contain ferrite in martensite in the state after heat treatment, but when it becomes thick-walled, As the cooling rate after standard treatment becomes slower and the processing rate during hot working cannot be increased sufficiently, the amount of ferrite in the steel increases further, inevitably leading to a decrease in strength. (b) For thick-walled materials, stress relief annealing is essential after welding, but if the amount of ferrite increases, the toughness will deteriorate after stress relief annealing, and the subsequent high temperature (C) In particular, when thick-walled materials are manufactured by hot working, the soft large ferrite phase existing in the hard martensitic phase is pushed thinly. This results in the formation of a structure in which coarse ferrite extends in the hot working direction, resulting in anisotropy in the material, which causes a significant decrease in toughness and strength in the direction perpendicular to the working direction. Therefore, the present inventors have discovered a new fact that high CR steel has sufficient strength at room temperature or high temperature, and also prevents the decrease in toughness after stress relief annealing or after long-term use. In order to minimize the formation of ferrite, we have reached the conclusion that it is best to choose a single-phase martensite component system that does not generate ferrite even after standard treatment, and that it has excellent high-temperature strength and high-temperature oxidation resistance. Of course,
As a result of further research to create a martensitic steel that has a low coefficient of thermal expansion, is inexpensive, and also has good toughness, we found that (d) 7 to 15% of CF was added to improve high-temperature oxidation resistance. By keeping the Sl content of the obtained steel extremely low and adding a predetermined amount of N, the formation of ferrite is extremely reduced and a steel material with a substantially martensitic single phase can be obtained.
By adjusting the Si content to a specific low range, carbides are finely dispersed, preventing toughness deterioration due to carbide precipitation, and as a result, the toughness of the steel material is significantly improved; (e) N By adding it, the amount of ferrite itself can be reduced as mentioned above, and
(f) Further reducing the C content suppresses the amount of carbide precipitation during stress relief annealing and use at high temperatures, further improving toughness; The decrease in strength due to the reduction in the amount of Ni can be fully compensated for by becoming a martensitic single phase steel. (1)) Adding a predetermined amount of Ni to such high Cr steel
Cu, Ca.

Mg及び希土類元素のうちの1種以上を添加すると、そ
の靭性がより向上すること、 以上(d)〜(h)に示される如き知見を得るに至った
のである。
We have come to the knowledge shown in (d) to (h) above that the addition of one or more of Mg and rare earth elements further improves the toughness.

この発明は、上記知見に基づいてなされたものであり、
高Cr鋼を、 C:0.09%以下、Si:0.01〜0.15%。
This invention was made based on the above findings,
High Cr steel, C: 0.09% or less, Si: 0.01 to 0.15%.

Mn:3.0%以下、   Cr : 7. O〜l 
5.0%。
Mn: 3.0% or less, Cr: 7. O~l
5.0%.

Mo:3.0%以下、   N : 0.05〜0.1
5 %。
Mo: 3.0% or less, N: 0.05-0.1
5%.

P:0.015係以下。P: 0.015 or less.

を含有するとともに、更に必要に応じて、Ni:1.0
%以下、   Cu:1.0%以下。
and, if necessary, Ni: 1.0
% or less, Cu: 1.0% or less.

Ca:0.01%以下、Mg:O,01%以下。Ca: 0.01% or less, Mg: O, 01% or less.

希土類元素(REV):0.01係以下。Rare earth elements (REV): 0.01 or less.

のうちの1種以上をも含み、 1?0及び不可避不純物:残り。Also includes one or more of the following: 1?0 and unavoidable impurities: remainder.

から成る成分組成とすることによって、靭性が極めて良
好で、高温強度及び高温耐酸化性とも申し分のないマル
テンサイト単相組織鋼とした点に特徴を有するものであ
る。
This steel is characterized by having a martensitic single-phase structure steel with extremely good toughness and satisfactory high-temperature strength and high-temperature oxidation resistance.

なお、この発明の高cr鋼は、熱間加工によって厚肉品
とされたり、或いは鋳造品として使用されることにより
、所望の十分な効果が発揮されるものであるが、従来の
高Cr鋼におけるように薄肉品にまで熱間加工して使用
することによっても良好な結果がイ4すられることは当
然のことである。
Note that the high Cr steel of the present invention exhibits the desired sufficient effect when it is made into a thick-walled product by hot working or used as a cast product, but the conventional high Cr steel It is a matter of course that good results can be obtained even by hot working thin-walled products as shown in (4).

次に、この発明の鋼に菱いて、化学成分の組成割合を前
記の如くに数値限定した理由を説明する。
Next, the reason why the composition ratio of the chemical components is numerically limited as described above in relation to the steel of the present invention will be explained.

■す Cには、フェライト量を低減するとともに常温Jffi
びに高温強度を上昇させる作用があるが、その含有量か
0.09%を越えると、応力除去焼鈍或いi−1、高温
での使用中に炭化物の析出量が多くなって靭性な著しく
低下させる上、溶接時の高温割れ感受性をも極端に高ぐ
することから、C含有量を009%以下と定めた。
■To reduce the amount of ferrite and to reduce the amount of ferrite,
However, if its content exceeds 0.09%, the amount of carbide precipitation increases during stress relief annealing or high temperature use, resulting in a significant decrease in toughness. In addition, the C content was set at 0.09% or less because it also extremely increases the susceptibility to hot cracking during welding.

■ S] Sユは鋼の脱酸に有効な元素として知られているが、そ
の含有量がO,15%を越えるとフェライト量が」■加
して靭性の劣化を招くこととなる。そし”’C,Si含
有計が0.15 %以下の範囲であれば、鋼中の炭化物
が微細に分散することとなシ、炭化物析出に伴う靭性劣
化も抑制されることが判明したのである。また、S1含
有量は低ければ低いほど良好な結果が得られ、最近のA
O])又はVODによる鋼の溶製ではS1含有量を低く
しても十分な脱酸が可能となったが、経済性を考慮して
その下限を0.01%としだ。このようなことから、S
1含有量を0.01〜0.15%と定めだのである。
■S] S is known as an effective element for deoxidizing steel, but if its content exceeds 15% of O, the amount of ferrite will increase and the toughness will deteriorate. It has been found that when the C and Si content is within the range of 0.15% or less, carbides in the steel are finely dispersed and deterioration in toughness due to carbide precipitation is suppressed. In addition, the lower the S1 content, the better the results, and the recent A
Although it has become possible to achieve sufficient deoxidation even if the S1 content is lowered in steel melting by VOD or VOD, the lower limit has been set at 0.01% in consideration of economic efficiency. For this reason, S
1 content is set at 0.01 to 0.15%.

なお、S1含有量は0.10 %以下であることが好ま
しく、この範囲で炭化物析出に伴う靭性劣化が顕著に抑
制されるものであるが、0.05%以下の81含有量の
範囲ではその効果は一層顯著(r(なる。
Note that the S1 content is preferably 0.10% or less, and within this range, toughness deterioration due to carbide precipitation is significantly suppressed; however, in the 81 content range of 0.05% or less, The effect is even more pronounced.

@Mn Mn成分はオーステナイト生成元素としてフェライト量
を減少させるのに有効なものであるが、3.0チを越え
て含有させると、逆にマルテンサイト部の靭性が劣化す
るので、Mn含有量を30係以下と定めた。
@Mn The Mn component is effective in reducing the amount of ferrite as an austenite-forming element, but if it is contained in an amount exceeding 3.0 mm, the toughness of the martensite portion will deteriorate, so the Mn content must be reduced. The number of employees is set at 30 or less.

■ Cr Cr成分には、鋼の銅酸化性及び高温強度を改善する作
用があるが、その含有量が7.0%未満では前記作用、
特に面」酸化性改善作用に所望の効果が得られず、他方
15.0%を越えて含有させるとフェライト量が急激に
増加してもはやどのような手段を講じてもフェライトを
無くすることができなくなり、室温での強度並びに靭性
を大幅に劣化することから、Cr含有量を70〜15.
0%と定めた。
■ Cr The Cr component has the effect of improving copper oxidation properties and high-temperature strength of steel, but if its content is less than 7.0%, the above effects,
In particular, the desired effect on surface oxidation improvement cannot be obtained, and on the other hand, if the content exceeds 15.0%, the amount of ferrite increases rapidly, and it is no longer possible to eliminate ferrite no matter what means are taken. The Cr content should be set at 70 to 15.
It was set as 0%.

■ J\4Q l・Ao酸成分鋼の強度及び靭性の向上に有効な元素で
あるが、1可○もCrと同様にフェライト生成元素であ
り、3.0%を越えて含有させると多量にフェライトが
生成して靭性低下を招くことがら、Mo含有ml゛を3
.0%以下と定めた。
■ J\4Q l・Ao is an effective element for improving the strength and toughness of acid component steel, but like Cr, 1. Since ferrite is generated and causes a decrease in toughness, the Mo content is reduced to 3 mL.
.. It was set as 0% or less.

■ N N成分には、Cと同、様にフェライトの生成を抑制し、
しかも室温及び高温強度を向上する作用があるが、その
含有量が0.05%未満では前記作用に所望の効果を得
ることができない。一方、N成分はCに比べて、応力除
去焼鈍後や高温での使用による靭性劣化が小さいので比
較的多量の添加が許容されるが、0.15%を越えて含
有させると窒化物が生成して靭性の劣化を招くこととな
る。従って、N含有量を0.05〜0.15%と定めた
■N The N component has the same properties as C, which suppresses the formation of ferrite.
Moreover, it has the effect of improving room temperature and high temperature strength, but if its content is less than 0.05%, the desired effect cannot be obtained. On the other hand, compared to C, the N component causes less deterioration in toughness after stress relief annealing or when used at high temperatures, so it is permissible to add a relatively large amount, but if it is added in excess of 0.15%, nitrides will form. This results in deterioration of toughness. Therefore, the N content was determined to be 0.05 to 0.15%.

@ P ■〕は、鋼中に不可避的に随伴される不純物として存在
するものであり、crを7〜15%含むマルテンサイト
鋼の高温長時間使用による靭性低下を加速する元素であ
るが、その含有量が0.015%以下になると前記靭性
劣化作用が大幅に緩和されるので、P含有量を0.01
5 %以下と定めだ。
@P ■] is an element that exists as an impurity that is unavoidably accompanied in steel, and is an element that accelerates the decrease in toughness of martensitic steel containing 7 to 15% Cr due to long-term use at high temperatures. When the P content is 0.015% or less, the toughness deterioration effect is significantly alleviated.
It is set at 5% or less.

なお、P含有量を0.010%以下に抑えると、靭性向
上効果が一層顕著になることも確認された。
It was also confirmed that when the P content is suppressed to 0.010% or less, the effect of improving toughness becomes even more remarkable.

■ Ni 、 C1,、Ca 、 Mg 、及び希土類
元素 さこれらの元素は、この発明の高cr鋼(・て添
加することによってその靭性な改善する作用があるので
、鋼の靭性なより向上させる必要がある場合に1種以上
添加されるものであるが、以下、付随的な効果をも含め
て、添加量限定理由をより詳細に説明する。
■ Ni, C1, Ca, Mg, and rare earth elements These elements have the effect of improving the toughness of the high Cr steel of this invention (by adding them, it is necessary to further improve the toughness of the steel. In some cases, one or more types of these are added, but the reason for limiting the amount added will be explained in more detail below, including the accompanying effects.

■Ni、及びCu N1及びCu成分はオーステナイト生成元素であり、フ
ェライトの生成を抑制する作用があるので、特に規準処
理における冷却速度が遅くなってフェライトを生成する
恐れのある厚肉材に添加含有ぜしめて、フェライト生成
を抑制し、靭性並びに強度を確保するのに有効なもので
ある、。
■Ni and Cu N1 and Cu components are austenite-forming elements and have the effect of suppressing the formation of ferrite, so they are added to thick-walled materials where the cooling rate in standard processing is slow and there is a risk of forming ferrite. It is definitely effective in suppressing ferrite formation and ensuring toughness and strength.

しかしなから、各々]、、 0 %を越えて含有させて
も、より以上の向上効果を得ることができないはかりて
なく、特にCuは熱間加工性を劣化するようになるので
、それぞれの含有量を1.0 %以下と定め/ζ0 (jj)  Ca、、Mg、及び希土類元素特に、これ
らの元素には脱酸(低S1の場合には一層有効である)
、脱硫作用もあるので、調料の熱[u」加工性を向上さ
せ、厚肉材においても熱間での強加工を可能とし、靭性
を一層改善するものであるが、各々o、 01%を越え
て含有さぜると熱間加工性が劣化するようになることか
ら、それぞれの含有量を0.01 %以下と定めた。
However, even if the content exceeds 0% of each, no further improvement effect can be obtained, and in particular, Cu deteriorates hot workability, so each content The amount is set at 1.0% or less/ζ0 (jj) Ca, Mg, and rare earth elements, especially these elements are deoxidized (more effective in the case of low S1)
, also has a desulfurization effect, so it improves the heat [u] processability of the preparation, enables strong hot working even in thick-walled materials, and further improves toughness. Since hot workability deteriorates if the content exceeds 0.01% or less, the content of each is determined to be 0.01% or less.

なお、希土類元素については、経済性を考慮してミツシ
ュメタルの形で添加するのが、実際上好ましいことであ
る。
Note that it is practically preferable to add the rare earth element in the form of Mitsushi metal in consideration of economic efficiency.

そのほか、不純物元素であるSbは、Pと同様、靭性に
悪影響を及ぼすのでその含有量を0.01係以下に抑え
ることか重重しく、寸だ、C(Tも、フェライト生成を
容易にする作用を有していることに加えて原子力用に使
用されると誘導放射能を発生するので、極力抑える(0
12%以下にする)ことが望ましい。
In addition, the impurity element Sb, like P, has a negative effect on toughness, so it is important to keep its content below 0.01 factor. In addition to having a
12% or less) is desirable.

次いで、この発明を実施例により比較例と対比しながら
説明する。
Next, the present invention will be explained by examples and in comparison with comparative examples.

実施例 1 寸ず、電気炉によって第1表に示されるような成分組成
の鋼1〜2日を溶製し、造塊した。次に、イ4コられた
各鋼塊を鍛造によって100 mm厚の板とし、更に第
2表に示すような焼型及び焼戻し処理を施しだ後、引張
試験、シャルピー衝撃試験、並びに焼戻し処理後に更に
600℃で1000時間の時効処理を施した試料につい
てのシャルピー衝撃試験をそれぞれ行い、またクリープ
強度の測定実施例 これらの結果を、第2表に併せて示した。
Example 1 Steel having the composition shown in Table 1 was melted in an electric furnace for 1 to 2 days and then formed into an ingot. Next, each of the steel ingots was forged into a 100 mm thick plate, and after being subjected to baking and tempering treatments as shown in Table 2, it was subjected to a tensile test, a Charpy impact test, and a plate with a thickness of 100 mm. Furthermore, Charpy impact tests were conducted on the samples subjected to aging treatment at 600° C. for 1000 hours, and the results of creep strength measurement examples are also shown in Table 2.

なお、シャルピー衝撃試験片はいずれも鍛造方向と直角
に採取したものを使用し、また、時効処理後の衝撃吸収
エネルギー値を測定したのは、熱履歴を受ける実際の使
用状況に即した1直を求めるためである。そして、クリ
ープ強度は、650℃の温度での1000時間後の破断
応力で示した。
The Charpy impact test specimens were taken perpendicular to the forging direction, and the impact absorption energy values after aging were measured using one straight test specimen that was subjected to thermal history and was subjected to actual usage conditions. This is to find out. The creep strength was expressed as the breaking stress after 1000 hours at a temperature of 650°C.

第2表に示される結果からも、本発明鋼は、室温での強
度はもちろんのこと、クリープ強度も十分に高く、しか
も、高温で長時間使用した場合を想定したe○0℃×1
000hrの時効処理後の7ヤルピー衝撃エネルギー値
も極めて高く、焼戻しのま丑の郵相と比較すれば明らか
なように脆化が非常に少ないことが明白である。
From the results shown in Table 2, it is clear that the steel of the present invention not only has sufficient strength at room temperature, but also has sufficiently high creep strength.
The 7 yalpy impact energy value after aging treatment for 000 hours is also extremely high, and it is clear that embrittlement is extremely low when compared with the post-temperature phase of the untempered steel.

これに対して、比較鋼20〜28は、例えば鋼種28に
みられるように強度が低かったり、又は時効処理(r(
よって靭性が著しく劣化した9、或いはクリープ強度が
低いというように、高温用鋼として十分に満足できる特
性を備えていないことがわかる。
On the other hand, comparative steels 20 to 28 have low strength, as seen in steel type 28, or are aged (r(
Therefore, it can be seen that the steel does not have sufficiently satisfactory characteristics as a high-temperature steel, as shown by the significantly deteriorated toughness (9) or the low creep strength.

実施例 2 電気炉によって第3表に示されるような成分組成の本発
明鋼29及び30、並びに比較鋼(従来鋼)31を溶製
し、これを砂型に鋳造して長さが500mjn、幅が2
00mjl、厚さが80mの板状鋳物を作成した。
Example 2 Inventive steels 29 and 30 and comparative steel (conventional steel) 31 having the composition shown in Table 3 were melted in an electric furnace, and cast into sand molds with a length of 500 mjn and a width. is 2
A plate-shaped casting having a size of 00 mjl and a thickness of 80 m was produced.

次に、これらに対して第4表に示すような焼型及び焼戻
し処理を施した後、実施例1と同様に、引張特性、笈び
シャルピー衝撃特性をそれぞれ調べた。
Next, these were subjected to baking and tempering treatments as shown in Table 4, and then, in the same manner as in Example 1, their tensile properties, cracking properties, and Charpy impact properties were examined.

これらの結果を、第4表に併せて示した、第4表に示さ
れる結果からも、本罪明鋼は鋳造拐として使用しても十
分Ka足できる強度と靭性とを備えているのに対して、
成分組成が本発明の範囲から外れている比較鋼では、強
度が低く、しかも靭性、特に時効処理後の靭性が著しく
劣っていることがわかる。
These results are also shown in Table 4. From the results shown in Table 4, it is clear that this steel has sufficient strength and toughness to be used as a casting material. for,
It can be seen that comparative steels whose compositions are outside the scope of the present invention have low strength and significantly inferior toughness, especially toughness after aging treatment.

上述のように、この発明によれば、常温及び高温強度が
高く、かつ極めて良好な靭性を有し、しかも耐高温酸化
性にも優れた低熱膨張係数の鋼をコスト安く得ることが
でき、高温用機器部材の性能を一層向上し得るなど、工
業上極めて有用な効果がもたらされるの″である3、 出願人  三菱重工業株式会社 出願人  住友金属工業株式会社
As described above, according to the present invention, it is possible to obtain at a low cost a steel having high strength at room temperature and high temperature, extremely good toughness, and excellent high temperature oxidation resistance and a low coefficient of thermal expansion. 3. Applicant: Mitsubishi Heavy Industries, Ltd. Applicant: Sumitomo Metal Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)  重量割合にて、 C:0.09q6以下。 Si:O,O1〜0.15係。 Mll : 3.0%以下。 Cr : ’7.0〜15.0%。 Mo : 3. O多収下。 N:0.05〜0.15俤。 P : 0.015%以下。 を含有するとともに、 1’i’ e及び不可避不純物:残シ。 から成ることを特徴とする、靭性の良好なマルンザイト
系高Cr由り。
(1) In terms of weight ratio, C: 0.09q6 or less. Si: O, O1 to 0.15. Mll: 3.0% or less. Cr: '7.0-15.0%. Mo: 3. O under high yield. N: 0.05 to 0.15 yen. P: 0.015% or less. Contains 1'i'e and unavoidable impurities: residue. Marunzite-based high Cr material with good toughness, characterized by consisting of:
(2)重量割合にて、 C:0.09係以下。 Si:0.01〜0.15%。 Mn : 3. O多収下。 Cr  :  7.0〜15.0 %。 Mo 、: 3.0%以下。 N:0.05〜0.15チ。 P:0.01□5%以下。 を含有するとともに、更に、 Ni:1.0チ以下。 Cu:1.Oq6以下。 Ca : 0.01係以下。 Mg : 0.01 %以下。 希土類元素二001慢以下。 のうちの1種以上をも含み、 Fe及び不可避不純物:残り。 から成ることを特徴とする、靭性の良好なマルテンサイ
ト系高Cr鋼。 テ
(2) In terms of weight ratio, C: 0.09 or less. Si: 0.01-0.15%. Mn: 3. O under high yield. Cr: 7.0-15.0%. Mo: 3.0% or less. N: 0.05 to 0.15 inches. P: 0.01□5% or less. and furthermore, Ni: 1.0 or less. Cu:1. Oq6 or less. Ca: 0.01 or less. Mg: 0.01% or less. Rare earth elements 2001 or less. Contains one or more of the following: Fe and unavoidable impurities: Remaining. A martensitic high Cr steel with good toughness, characterized by comprising: Te
JP8544583A 1983-05-16 1983-05-16 Martensitic high cr steel with high toughness Granted JPS59211552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8544583A JPS59211552A (en) 1983-05-16 1983-05-16 Martensitic high cr steel with high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8544583A JPS59211552A (en) 1983-05-16 1983-05-16 Martensitic high cr steel with high toughness

Publications (2)

Publication Number Publication Date
JPS59211552A true JPS59211552A (en) 1984-11-30
JPH0377268B2 JPH0377268B2 (en) 1991-12-10

Family

ID=13859069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8544583A Granted JPS59211552A (en) 1983-05-16 1983-05-16 Martensitic high cr steel with high toughness

Country Status (1)

Country Link
JP (1) JPS59211552A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179751A (en) * 1984-09-27 1986-04-23 Nippon Stainless Steel Co Ltd Low-carbon martensitic stainless steel
JPS61174361A (en) * 1985-01-30 1986-08-06 Nippon Steel Corp Low carbon martensitic stainless steel excelling in hardenability and rust resistance
JPS63293143A (en) * 1987-05-25 1988-11-30 Nippon Kinzoku Kogyo Kk Martensitic stainless steel hardening by subzero treatment
WO2016170761A1 (en) * 2015-04-21 2016-10-27 Jfeスチール株式会社 Martensitic stainless steel
JP2017020086A (en) * 2015-07-13 2017-01-26 新日鐵住金株式会社 Martensitic steel material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179751A (en) * 1984-09-27 1986-04-23 Nippon Stainless Steel Co Ltd Low-carbon martensitic stainless steel
JPH0379426B2 (en) * 1984-09-27 1991-12-18 Nippon Stainless Steel Co
JPS61174361A (en) * 1985-01-30 1986-08-06 Nippon Steel Corp Low carbon martensitic stainless steel excelling in hardenability and rust resistance
JPH027390B2 (en) * 1985-01-30 1990-02-16 Nippon Steel Corp
JPS63293143A (en) * 1987-05-25 1988-11-30 Nippon Kinzoku Kogyo Kk Martensitic stainless steel hardening by subzero treatment
JPH0456108B2 (en) * 1987-05-25 1992-09-07 Nippon Metal Ind
WO2016170761A1 (en) * 2015-04-21 2016-10-27 Jfeスチール株式会社 Martensitic stainless steel
JPWO2016170761A1 (en) * 2015-04-21 2017-04-27 Jfeスチール株式会社 Martensitic stainless steel
US10655195B2 (en) 2015-04-21 2020-05-19 Jfe Steel Corporation Martensitic stainless steel
JP2017020086A (en) * 2015-07-13 2017-01-26 新日鐵住金株式会社 Martensitic steel material

Also Published As

Publication number Publication date
JPH0377268B2 (en) 1991-12-10

Similar Documents

Publication Publication Date Title
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
JP3838216B2 (en) Austenitic stainless steel
WO2006106944A1 (en) Austenitic stainless steel
US5591391A (en) High chromium ferritic heat-resistant steel
EP0411515A1 (en) High strength heat-resistant low alloy steels
JP4816642B2 (en) Low alloy steel
US6623569B2 (en) Duplex stainless steels
JPH09165655A (en) Austenitic stainless steel for high temperature apparatus and is production
JPS5940901B2 (en) Corrosion-resistant austenitic stainless steel
JPS59211552A (en) Martensitic high cr steel with high toughness
JP2968430B2 (en) High strength low thermal expansion alloy
JP2017020054A (en) Stainless steel and stainless steel tube
JPH0472013A (en) Manufacture of two phase stainless steel having excellent corrosion resistance to concentrated sulfuric acid
JPS59211553A (en) High cr steel with superior toughness and superior strength at high temperature
JPS59226151A (en) Austenitic high-alloy stainless steel with superior weldability and hot workability
JPH0114991B2 (en)
EP0057316B1 (en) Low interstitial, corrosion resistant, weldable ferritic stainless steel and process for the manufacture thereof
JP3836977B2 (en) Clad steel plate with excellent low temperature toughness
JPS61104054A (en) High-strength and high-toughness welded clad steel pipe for line pipe
JP3950384B2 (en) High-strength steel pipe with excellent workability and manufacturing method thereof
JPH07233449A (en) Ferritic stainless steel sheet and its production
JPH0368100B2 (en)
JPS61130461A (en) Nitrogen-containing stainless steel of two phase system having superior hot workability
JPH0577727B2 (en)
JP2599466B2 (en) Low yield ratio structural steel excellent in non-aging property and method of manufacturing the same