WO2006106944A1 - Austenitic stainless steel - Google Patents

Austenitic stainless steel Download PDF

Info

Publication number
WO2006106944A1
WO2006106944A1 PCT/JP2006/306894 JP2006306894W WO2006106944A1 WO 2006106944 A1 WO2006106944 A1 WO 2006106944A1 JP 2006306894 W JP2006306894 W JP 2006306894W WO 2006106944 A1 WO2006106944 A1 WO 2006106944A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
content
creep
stainless steel
strength
Prior art date
Application number
PCT/JP2006/306894
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Okada
Masaaki Igarashi
Kazuhiro Ogawa
Yasutaka Noguchi
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to DK06730842.9T priority Critical patent/DK1867743T5/en
Priority to JP2007511185A priority patent/JP4803174B2/en
Priority to EP20060730842 priority patent/EP1867743B9/en
Priority to KR1020077022019A priority patent/KR100931448B1/en
Priority to CA2603681A priority patent/CA2603681C/en
Publication of WO2006106944A1 publication Critical patent/WO2006106944A1/en
Priority to US11/905,707 priority patent/US7731895B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to an austenitic stainless steel excellent in high-temperature strength, which is used as a pipe and as a heat-resistant and pressure-resistant steel plate, steel bar, forged steel product, etc. in a power generation boiler engineering plant or the like.
  • austenitic stainless steels such as JIS SUS304H, SUS316H, SUS321H, SUS347H, and SUS310S have been used as equipment materials in boiler engineering plants that are used in high-temperature environments. It was. However, in recent years, the operating conditions of equipment in such a high temperature environment have become extremely severe, and as a result, the required performance for the materials used has become strict, and conventionally used austenitic stainless steel has an extremely insufficient high temperature strength. It becomes a situation to do! /
  • Precipitation of carbides is effective in improving the high-temperature strength, especially creep strength, of austenitic stainless steel, and the strengthening action of carbides such as MC, TiC, and NbC is beneficial.
  • P which is essentially an impurity element, contributes to the refinement of MC carbides and creep strength.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 62-243742
  • Patent Document 2 discloses an austenitic stainless steel containing more than 0.06% and up to 0.20% P.
  • the steel was developed with the goal of improving high temperature salt resistance. For this reason, it contains a large amount of Si, from over 2.0% to 4.0%. Such a large amount of Si promotes precipitation of the ⁇ phase, leading to deterioration of toughness and ductility.
  • Patent Document 2 Japanese Patent Laid-Open No. 7-118810
  • a first object of the present invention is to provide an austenitic stainless steel having high creep strength and excellent creep ductility and weldability.
  • a second object of the present invention is to provide an austenitic stainless steel that has improved hot workability in addition to the above characteristics.
  • the present inventor attempted to improve creep ductility, weldability, and hot workability by adding trace elements in an austenitic stainless steel in which the P content was increased to increase the high-temperature strength. .
  • the present inventor has made various studies on elements that improve the creep ductility of austenitic stainless steel having a high P content. As a result, it was found that the addition of a very small amount of REM, especially Nd, dramatically improved creep ductility, and was also effective in improving weldability and hot workability.
  • the present invention has been made on the basis of the above-mentioned findings, and the gist thereof lies in the following austenitic stainless steels (1) to (4).
  • REM is an abbreviation for rare earth element, and is a collective term for 17 elements with 15 lanthanoid elements and Sc and Y.
  • the stainless steel of the present invention can be widely applied to applications requiring high-temperature strength and corrosion resistance, such as steel pipes, steel plates, steel bars, steel products, and forged products.
  • the C is an effective and important element for securing the tensile strength and creep strength required when used in a high temperature environment.
  • the content is 0.05% or more, the above-described effects cannot be exhibited and the target high-temperature strength cannot be obtained.
  • the C content is set to 0.05 to 0.15%.
  • a more preferred upper limit is 0.13%.
  • a more preferred upper limit is 0.12%.
  • Si is added as a deoxidizing element, and is an element effective for enhancing oxidation resistance and steam oxidation resistance. In order to obtain the effect, 0.1% or more is desirable. However, if its content exceeds 2%, precipitation of intermetallic compound phases such as ⁇ phase is promoted, and toughness and ductility are reduced due to deterioration of structural stability at high temperatures. Also melt The contact property and hot workability also deteriorate. Therefore, the Si content is set to 2% or less. Preferred is 1% or less.
  • Mn has a deoxidizing effect on molten steel, similar to Si, and fixes S, which is inevitably contained in the steel, as a sulfide and improves hot workability. In order to obtain the effect sufficiently, it is necessary to contain 0.1% or more. However, if its content exceeds 3%, precipitation of intermetallic compound phases such as the ⁇ phase is promoted, and the structural stability, high temperature strength, and mechanical properties deteriorate.
  • the force S and the Mn content were 0.1 to 3%. More preferred lower and upper limits are 0.2 and 2%, respectively. A more preferred upper limit is 1.5%.
  • P precipitates fine precipitates of carbides and phosphorus precipitates with Ti and Fe, and improves the tap strength of the steel of the present invention.
  • a content of 0.05% or more is necessary.
  • the additive of P is accompanied by deterioration of creep ductility, weldability and hot workability, but in the steel of the present invention, the deterioration of the above characteristics is suppressed by the additive of REM.
  • the appropriate P content is 0.05 to 0.3%. More preferable lower limit and upper limit are 0.06% and 0.25%, respectively, more preferable lower limit is an amount exceeding 0.08%, and further preferable upper limit is 0.20%.
  • S is contained as an inevitable impurity in the steel, so that hot workability is remarkably lowered.
  • Cr is an important element for ensuring oxidation resistance, steam oxidation resistance, high-temperature corrosion resistance, and the like, and further contributes to the formation of Cr-based carbides and increased strength. Therefore, it is made to contain 15% or more. The higher the Cr content, the better the corrosion resistance. When the content exceeds 28%, the austenite structure becomes unstable, and it is easy to produce intermetallic compounds such as ⁇ phase and ⁇ -Cr phase. . Therefore, the Cr content should be 15-28%. More preferable lower and upper limits are 16% and 25%, respectively. Further preferred under The upper limit is 17%, and a more preferable upper limit is 23%.
  • Ni is an essential element for securing a stable austenite structure.
  • the minimum required content is determined by the content of ferrite-forming elements such as Cr, Mo, W, and Nb and austenite-generating elements such as C and N contained in the steel.
  • Strength required to contain 15% or more of Cr in the steel of the present invention If Ni is less than 8% with respect to the amount of Cr, it is difficult to form an austenite single phase structure. In addition, the austenite structure becomes unstable with long-term use at high temperatures, and high temperature strength and toughness deteriorate significantly due to embrittlement phase precipitation such as ⁇ phase, so that it can withstand use as a heat and pressure resistant member. Can not. Even if the content exceeds 55%, the effect is saturated and the economic efficiency is impaired. Therefore, the Ni content is 8 to 55%. A more preferred upper limit is 25%, and a more preferred upper limit is 15%.
  • Cu is one of the elements that precipitates in the austenite matrix as a fine Cu phase during the use of the steel of the present invention at a high temperature and greatly improves the creep strength. Therefore, when such an effect is desired, Cu can be contained. However, excessive Cu content degrades hot workability and creep ductility. In the steel of the present invention, when the Cu content exceeds 3.0%, the effect of improving the creep ductility by adding REM described later decreases. Therefore, the Cu content of the steel of the present invention is set to 0 to 3.0%. A more preferred upper limit is 2.0%, and a still more preferred upper limit is 0.9%. In the present invention, Cu may not be contained, but when it is contained in order to obtain the effect of improving the creep strength, the lower limit of the content is preferably 0.01%.
  • Ti forms carbides and contributes to improving high temperature strength.
  • it is precipitated as phosphorus deposits by complex addition with P and further contributes to the improvement of creep strength. If its content is less than 0.05%, a sufficient effect cannot be obtained, and if it exceeds 0.6%, weldability and hot workability are deteriorated. Therefore, the appropriate Ti content is 0.05-0.6%. More preferred lower and upper limits are 0.06% and 0.5%, respectively.
  • sol.Al 0.001 to 0.1%
  • Al whose content is a problem is sol.Al (acid-soluble Al).
  • A1 is an element added as a deoxidizer for molten steel, and in order to exert its effect, it is necessary to contain 0.001% or more as sol. A1.
  • the appropriate range of sol.Al content is 0.001-0. 1%. More preferred lower and upper limits are 0.005% and 0.05%, respectively. Further preferred lower and upper limits are 0.01% and 0.03%, respectively.
  • N 0.03% or less
  • the N content when the N content exceeds 0.03%, Ti N precipitates at a high temperature, which remains in the steel as coarse undissolved nitride and is hot-worked. Decrease cold workability and cold workability. Therefore, the N content should be 0.03% or less. The smaller the N content is, the more desirable it is, more preferably 0.02% or less, and even more preferably 0.015% or less.
  • REM is one of important elements.
  • the creep ductility, weldability, and hot workability deteriorated by the high concentration P additive can be recovered.
  • it is necessary to contain 0.001% or more.
  • the proper range of REM content is 0.001 to 0.5%. More preferable lower and upper limits are 0.005% and 0.2%, respectively, and a more preferable upper limit is less than 0.1%.
  • the elements in REM can be added as a mixture, such as mish metal, which can be added alone.
  • mish metal which can be added alone.
  • One of the steels of the present invention is an austenitic stainless steel in which, in addition to the above components, the balance is Fe and impurities.
  • Another steel of the present invention is an austenitic system containing one or more selected from Mo, W, B, Nb, V, Co, Zr, Hf and Ta in order to further improve the high temperature strength. Stainless steel.
  • these components will be described.
  • Mo 0.05 to 5%
  • W 0.05 to 10%, but less than 5% with Mo + (WZ2)
  • Mo and W are not essential components of the steel of the present invention. However, since these are effective elements for improving the high temperature strength and creep strength, they can be added as necessary. In the case of single addition, the content should be 0.05% or more, respectively. In the case of complex addition, the total should be 0.05% or more. However, if Mo exceeds 5% and W exceeds 10%, the strength improvement effect is saturated and the formation of intermetallic compounds such as the ⁇ phase is caused, and the structural stability and hot workability deteriorate.
  • the upper limit for addition is preferably 5% for Mo alone, 10% for W alone, and 5% or less for Mo + (WZ2) when Mo and W are added in combination. Since W is a ferrite-forming element, the W content is more preferably less than 4% in order to stabilize the austenite structure.
  • B exists in the grain boundary in carbonitride or by itself, promotes fine dispersion precipitation of carbonitride during use at high temperature, and suppresses intergranular slip by strengthening the grain boundary, thereby increasing high temperature strength and creep strength. To improve. In order to exert its effect, it is necessary to contain 0.0005% or more, but if it exceeds 0.05%, the weldability deteriorates. Therefore, the appropriate range of B content when added is 0.0005-0.05%. More preferred lower and upper limits are 0.001% and 0.01%, respectively. A more preferred upper limit is 0.005%.
  • Nb also forms carbonitrides like Ti and improves creep rupture strength. If its content is less than 0.05%, a sufficient effect cannot be obtained, and if it exceeds 0.8%, hot workability, in addition to deterioration of mechanical properties due to increase in weldability and undissolved nitride, In particular, the high hot ductility at 1200 ° C or higher is significantly reduced. Therefore, the appropriate Nb content is 0.05-0.8%. A more preferred upper limit is 0.6%.
  • V 0.02 ⁇ : L. 5%
  • V is an element that forms carbides and is effective in improving high temperature strength and creep strength. When added, the effect is not good if its content is less than 0.02%. If it exceeds 1.5%, the hot corrosion resistance deteriorates, and ductility and toughness deteriorate due to brittle soot phase precipitation. Therefore, the appropriate V content is 0.02 ⁇ : L 5%. More preferred lower and upper limits are 0.04% and 1%, respectively. [0034] Co: 0.05--5%
  • Co like Ni, stabilizes the austenite structure and contributes to improved creep strength. If the content is less than 0.05%, the effect is not sufficient. If the content exceeds 5%, the effect is saturated and the economic efficiency is lowered. Therefore, the Co content when added should be 0.05 to 5%.
  • Zr contributes to grain boundary strengthening and improves high temperature strength and creep strength. Furthermore, it has the effect of improving the hot workability by fixing S. In order to bring out the effect, the mechanical properties such as ductility and toughness are deteriorated when the force exceeds 0.205%, which is required to contain 0.0005% or more. Therefore, the appropriate Zr content when added is 0.0005-0. 2%.
  • a more preferable lower limit and upper limit are 0.01% and 0.1%, respectively, and a more preferable upper limit is 0.05%.
  • Hf mainly contributes to grain boundary strengthening and improves creep strength. If the content is less than 0.0 005%, there is no effect. On the other hand, if its content exceeds 1%, the caulking property and weldability are impaired. Therefore, when Zr is added, the appropriate content is 0.0005 to 1%. More preferred lower and upper limits are 0.01% and 0.8%, respectively, and more preferred lower and upper limits are 0.02% and 0.5%, respectively.
  • Ta forms carbonitride and improves the high temperature strength and creep strength as a solid solution strengthening element. If the content is less than 0.01%, there is no effect. On the other hand, if the Ta content exceeds 8%, the cache properties and mechanical properties are impaired. Therefore, when Ta is added, its content should be 0.01 to 8%. More preferred lower and upper limits are 0.1% and 7%, respectively, and more preferred lower and upper limits are 0.5% and 6%, respectively.
  • Yet another steel of the present invention is an austenitic stainless steel further containing one or both of Ca and Mg in addition to the above components. As described below, Ca and Mg improve the hot workability of the steel of the present invention.
  • Mg and Ca 0.005% to 0.05% each
  • Mg and Ca improve the hot workability by adhering S, which inhibits hot workability, as sulfides. Be good. If each content is less than 0.0005%, there is no effect. On the other hand, Mg and Ca in a content exceeding 0.05% each harm the steel quality and reduce hot workability and ductility. Therefore, the content of Mg and Ca when added is preferably 0.005-0.05%. More preferred lower and upper limits are 0.001% and 0.02%, respectively. A more preferred upper limit is 0.01%.
  • a steel ingot having the above-mentioned chemical composition is produced by a normal stainless steel melting and forging method.
  • the obtained steel ingot is forged or formed into billets by forging or split rolling, and then subjected to hot working such as hot extrusion or hot rolling.
  • the heating temperature before hot working is preferably 1160 ° C or higher and 1250 ° C or lower.
  • the hot working finish temperature is preferably 1150 ° C or higher.
  • a final heat treatment may be performed, or a cold working may be added if necessary.
  • a final heat treatment it is necessary to dissolve carbonitride by intermediate heat treatment, and this intermediate heat treatment is performed at a temperature higher than the lower one of the heating temperature before hot working or the end temperature of hot working. Good.
  • the heat treatment of the final product is preferably carried out at a temperature in the range of 1170 to 1300 ° C, at a temperature higher than the hot working finish temperature or 10 ° C above the intermediate heat treatment temperature mentioned above!
  • the obtained ingot was hot forged into a 40 mm thick plate, and a round bar tensile test piece (diameter 10 mm, length 130 mm) for evaluating high temperature ductility was produced by machining. Further, a plate material having a thickness of 15 mm was formed by hot forging, and after softening heat treatment, it was cold-rolled to a thickness of 10 mm, held at 1150 ° C. for 15 minutes, and then water-cooled. [0044] Creep test pieces and ballast train test pieces were produced by the above plate material force machining.
  • the shape of the creep test piece is a round bar test piece with a diameter of 6 mm and a distance between the gauge points of 30 mm
  • the Valestrain test piece is a plate-like test piece with a thickness of 4 mm, a width of 100 mm and a length of 100 mm.
  • the ballast train test for evaluating weldability was performed by the TIG method with a heat input of 19 kjZcm and an applied strain of 1.5%, and the weldability was evaluated from the total crack length.
  • Table 2 shows the results of the above tests.
  • comparative steels A, B and C the P content is changed.
  • P is limited to 0.040% or less. Therefore, comparative steel A corresponds to the P content of general stainless steel. As shown in Table 2, the creep rupture life is improved by increasing the amount of P added, but the fracture drawing, weldability and hot ductility are significantly reduced.
  • Steels No. 1 to No. 4 and No. 19 that are the steels of the present invention are steels that have been improved in creep rupture life by adding P in the same manner as comparative steels B and C.
  • these steels due to the addition of Nd or La and Ce, there was no decrease in creep ductility, weldability and hot ductility as seen in comparative steels. This is an improvement over comparative steel A, which is a general level.
  • Comparative steel D is inferior in creep characteristics because it does not contain Ti and does not contain Ti, which does not contain Ti and contains P and Nd equivalent to steel symbol 2 of the steel of the present invention.
  • Steel symbols 5 and 6 are obtained by further adding Cu to increase the creep strength.
  • Comparative Steel E contains more than 3.0% Cu As shown here, the addition of excess Cu loses the creep ductility, weldability, and hot ductility improvement effects of Nd additive. This also shows that the Cu content needs to be 3.0% or less.
  • the steel of the present invention can further contain one or more of W, Mo, B, Nb, V, Co, Zr, Hf, Ta, Mg and Ca. As indicated by steel symbols 7-18, the addition of these elements further improves high temperature ductility and creep rupture strength.
  • the austenitic stainless steel of the present invention is a steel in which P and REM, particularly Nd, are added in combination, and the hot workability is remarkably improved in addition to having a large high-temperature strength. Furthermore, improved toughness on the high temperature and long time side has also been achieved.
  • the steel of the present invention is suitable as a heat and pressure resistant member used at a high temperature of 650 ° C to 700 ° C or higher. Since the plant using this steel can operate with high efficiency, the manufacturing cost of the product manufactured with the plant can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Disclosed is an austenitic stainless steel with high creep strength which is improved in creep ductility, weldability and hot workability. This steel contains, in mass%, 0.05-0.15% of C, not more than 2% of Si, 0.1-3% of Mn, 0.05-0.30% of P, not more than 0.03% of S, 15-28% of Cr, 8-55% of Ni, 0-3.0% of Cu, 0.05-0.6% of Ti, 0.001-0.5% of REM, 0.001-0.1% of sol. Al, not more than 0.03% of N and the balance of Fe and unavoidable impurities. This steel may further contain one or more elements selected from Mo, W, B, Nb, V, Co, Zr, Hf, Ta, Ca and Mg. It is desirable to use Nd as the REM.

Description

明 細 書 技術分野  Technical field
[0001] 本発明は、発電用ボイラゃィ匕学工業用プラント等において、管として、また耐熱耐 圧部材の鋼板、棒鋼、鍛鋼品等として用いられる高温強度に優れたオーステナイト 系ステンレス鋼に関する。  TECHNICAL FIELD [0001] The present invention relates to an austenitic stainless steel excellent in high-temperature strength, which is used as a pipe and as a heat-resistant and pressure-resistant steel plate, steel bar, forged steel product, etc. in a power generation boiler engineering plant or the like.
背景技術  Background art
[0002] 従来、高温環境下で使用されるボイラゃィ匕学プラント等においては、装置用材料と して JISの SUS304H、 SUS316H, SUS321H, SUS347H, SUS310S等のォ ーステナイト系ステンレス鋼が使用されてきた。しかし、近年、このような高温環境下 における装置の使用条件が著しく過酷になり、それに伴って使用材料に対する要求 性能が厳しくなつて、従来用いられてきたオーステナイト系ステンレス鋼では高温強 度が著しく不足する状況となって!/、る。  Conventionally, austenitic stainless steels such as JIS SUS304H, SUS316H, SUS321H, SUS347H, and SUS310S have been used as equipment materials in boiler engineering plants that are used in high-temperature environments. It was. However, in recent years, the operating conditions of equipment in such a high temperature environment have become extremely severe, and as a result, the required performance for the materials used has become strict, and conventionally used austenitic stainless steel has an extremely insufficient high temperature strength. It becomes a situation to do! /
[0003] オーステナイト系ステンレス鋼の高温強度、特にクリープ強度の改善には、炭化物 の析出が有効であり、 M C、あるいは TiC、 NbC等の炭化物による強化作用が利  [0003] Precipitation of carbides is effective in improving the high-temperature strength, especially creep strength, of austenitic stainless steel, and the strengthening action of carbides such as MC, TiC, and NbC is beneficial.
23 6  23 6
用されている。また、 Cu添カ卩によるクリープ強度の向上も利用されている。それは、ク リーブ中に微細析出する Cu相がクリープ強度を高めるのに寄与する力もである。  It is used. In addition, the improvement of creep strength by using Cu-added copper is also used. It is also the force that the Cu phase that finely precipitates in the clave contributes to increasing the creep strength.
[0004] 一方、本来不純物元素である Pは、 M C炭化物の微細化に寄与しクリープ強度 [0004] On the other hand, P, which is essentially an impurity element, contributes to the refinement of MC carbides and creep strength.
23 6  23 6
に寄与することが知られており、例えば、特許文献 1に開示される発明では、 Pを添加 することによりクリープ強度の向上を図っている。し力しながら、 P添加量の増加は溶 接性およびクリープ延性を劣化させるため、その添加量は制限を受ける。そのため、 For example, in the invention disclosed in Patent Document 1, the creep strength is improved by adding P. However, increasing the amount of P deteriorates the weldability and creep ductility, so the amount added is limited. for that reason,
P添カ卩による強化は、十分活用されて ヽるとは言 ヽがた!ヽ。 It can be said that the strengthening by P-adders is fully utilized!
特許文献 1:特開昭 62— 243742号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 62-243742
[0005] 特許文献 2には、 0. 06%を超えて 0. 20%までの Pを含有するオーステナイト系ス テンレス鋼が開示されている。しかし、その鋼は、耐高温塩害性の改善を目標として 開発されたものである。そのために、 2. 0%を超えて 4. 0%までという多量の Siを含 有している。このような多量の Siは、 σ相の析出を促し、靱性および延性の悪化を招 <o [0005] Patent Document 2 discloses an austenitic stainless steel containing more than 0.06% and up to 0.20% P. However, the steel was developed with the goal of improving high temperature salt resistance. For this reason, it contains a large amount of Si, from over 2.0% to 4.0%. Such a large amount of Si promotes precipitation of the σ phase, leading to deterioration of toughness and ductility. <o
特許文献 2:特開平 7— 118810号公報  Patent Document 2: Japanese Patent Laid-Open No. 7-118810
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明の第 1の目的は、クリープ強度が高ぐし力もクリープ延性および溶接性にも 優れたオーステナイト系ステンレス鋼を提供することにある。 [0006] A first object of the present invention is to provide an austenitic stainless steel having high creep strength and excellent creep ductility and weldability.
本発明の第 2の目的は、上記の特性に加えてさらに熱間加工性も改善されたォー ステナイト系ステンレスま岡を提供することにある。  A second object of the present invention is to provide an austenitic stainless steel that has improved hot workability in addition to the above characteristics.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者は、高温強度を高めるべく Pの含有量を高めたオーステナイト系ステンレ ス鋼において、微量元素の添カ卩によりクリープ延性、溶接性および熱間加工性の改 善を図った。 [0007] The present inventor attempted to improve creep ductility, weldability, and hot workability by adding trace elements in an austenitic stainless steel in which the P content was increased to increase the high-temperature strength. .
[0008] 本発明者は、 Pの含有量が高いオーステナイト系ステンレス鋼のクリープ延性を改 善する元素に関して種々検討を重ねた。その結果、極微量の REM、中でも Ndの添 加が飛躍的にクリープ延性を向上させ、そのうえ溶接性および熱間加工性の改善に も有効であることを見出した。  [0008] The present inventor has made various studies on elements that improve the creep ductility of austenitic stainless steel having a high P content. As a result, it was found that the addition of a very small amount of REM, especially Nd, dramatically improved creep ductility, and was also effective in improving weldability and hot workability.
[0009] また、 Pとともに Tiを複合添加すると、炭化物の微細化効果が得られるだけではなく 、クリープ中にリンィ匕物の析出が生じ、クリープ強度が向上することが確認された。  [0009] Further, it was confirmed that when Ti is added in combination with P, not only the effect of refining carbide is obtained, but also the precipitation of phosphorus is caused during creep and the creep strength is improved.
[0010] さらにクリープ強度の向上を目指して Cu添加の影響を検討した。その結果、 Cu含 有量が 3. 0%を超えると、 REM,特に Ndの添加による延性改善効果はほとんど失 われてしまうことが明らかになった。  [0010] Further, the effect of Cu addition was investigated with the aim of improving the creep strength. As a result, it was found that when the Cu content exceeds 3.0%, the effect of improving ductility by adding REM, especially Nd, is almost lost.
[0011] 本発明は、上記の知見を基礎としてなされたもので、その要旨は、下記(1)から (4) までのオーステナイト系ステンレス鋼にある。  [0011] The present invention has been made on the basis of the above-mentioned findings, and the gist thereof lies in the following austenitic stainless steels (1) to (4).
[0012] (1)質量0 /0で、 C : 0. 05〜0. 15%、 Si: 2%以下、 Mn: 0. 1〜3%、 P: 0. 05〜0. In [0012] (1) Weight 0/0, C:. 0. 05~0 15%, Si: 2% or less, Mn: 0. 1~3%, P : 0. 05~0.
30%、S : 0. 03%以下、 Cr: 15〜28%、 Ni: 8〜55%、 Cu: 0〜3. 0%、Ti: 0. 05 〜0. 6%、REM : 0. 001〜0. 5%、sol.Al: 0. 001〜0. 1%、N : 0. 03%以下を含 有し、残部が Feおよび不可避的不純物力もなるオーステナイト系ステンレス鋼。  30%, S: 0.03% or less, Cr: 15-28%, Ni: 8-55%, Cu: 0-3.0%, Ti: 0.05-0.6%, REM: 0.001 Austenitic stainless steel containing ~ 0.5%, sol.Al: 0.001 ~ 0.1%, N: 0.03% or less, the balance being Fe and inevitable impurity power.
[0013] (2) Feの一部に代えて、質量0 /0で、さらに Mo : 0. 05〜5%、 W: 0. 05〜10%、た だし Mo+ (WZ2)は 5%以下、 B : 0. 0005〜0. 05%、Nb : 0. 05〜0. 8%、V: 0. 02〜: L 5%、Co : 0. 05〜5%、Zr: 0. 0005〜0. 2%、Hf : 0. 0005〜1%および Ta : 0. 01〜8%のうちの 1種以上を含有する上記(1)に記載のオーステナイト系ステ ンレス鋼。 [0013] (2) instead of a part of Fe, by mass 0/0, further Mo: 0. 05~5%, W: 0. 05~10%, was However, Mo + (WZ2) is 5% or less, B: 0. 0005 to 0.05%, Nb: 0.05 to 0.8%, V: 0.02 to: L 5%, Co: 0.05 to 5 %, Zr: 0.005 to 0.2%, Hf: 0.0005 to 1%, and Ta: 0.01 to 8%, and the austenitic stainless steel according to (1) above. steel.
[0014] (3) Feの一部に代えて、質量0 /0で、さらに Mg : 0. 0005〜0. 05%および Ca : 0. 0 005-0. 05%の一方または両方を含有する上記(1)または(2)に記載のオーステ ナイト系ステンレス鋼。 [0014] (3) instead of a part of Fe, by mass 0/0, further Mg:. 0. 0,005-0 0.05% and Ca: containing one or both of 0.0 005-0 0.05%. The austenitic stainless steel according to (1) or (2) above.
[0015] (4) REMが Ndである上記(1)から(3)までの!/、ずれかに記載のオーステナイト系 ステンレス ί岡。  [0015] (4) Austenitic stainless ίoka as described in any one of (1) to (3) above, wherein REM is Nd.
なお、 REMは、 rare earth elementの略で、 15種のランタノイド(lanthanoid)元素 に Scおよび Yをカ卩えた 17種の元素の総称である。  REM is an abbreviation for rare earth element, and is a collective term for 17 elements with 15 lanthanoid elements and Sc and Y.
[0016] 本発明のステンレス鋼は、鋼管、鋼板、棒鋼、铸鋼品、鍛鋼品などとして、高温強度 と耐食性が求められる用途に幅広く適用することができる。 [0016] The stainless steel of the present invention can be widely applied to applications requiring high-temperature strength and corrosion resistance, such as steel pipes, steel plates, steel bars, steel products, and forged products.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下に成分範囲の限定理由を述べる。成分含有量に関する%は「質量%」である。 [0017] The reason for limiting the component range will be described below. The% regarding the component content is “mass%”.
C : 0. 05〜0. 15%  C: 0.05-0.15%
Cは、高温環境下で使用される際に必要となる引張強さおよびクリープ強度を確保 するために有効かつ重要な元素である。本発明鋼においてはその含有量を 0. 05% 以上にしないと上記の効果が発揮されず、目標の高温強度が得られない。しかし、 0 . 15%を超える量を含有させても、溶体化状態における未固溶炭化物量が増加する だけで、高温強度の向上に寄与しなくなる。また、靭性などの機械的性質や溶接性 を劣化させる。したがって、 C含有量は 0. 05〜0. 15%とした。より好ましい上限は 0 . 13%である。さらに好ましい上限は 0. 12%である。  C is an effective and important element for securing the tensile strength and creep strength required when used in a high temperature environment. In the steel of the present invention, unless the content is 0.05% or more, the above-described effects cannot be exhibited and the target high-temperature strength cannot be obtained. However, even if the content exceeds 0.15%, only the amount of undissolved carbide in the solution state increases, and it does not contribute to the improvement of the high temperature strength. It also degrades mechanical properties such as toughness and weldability. Therefore, the C content is set to 0.05 to 0.15%. A more preferred upper limit is 0.13%. A more preferred upper limit is 0.12%.
[0018] Si: 2%以下 [0018] Si: 2% or less
Siは、脱酸元素として添加され、また、耐酸化性および耐水蒸気酸化性等を高める のに有効な元素である。その効果を得るためには 0. 1%以上含有させるのが望まし い。しかし、その含有量が 2%を超えると、 σ相等の金属間化合物相の析出を促進し 、高温における組織安定性の劣化に起因した靭性ゃ延性の低下を生ずる。また、溶 接性や熱間加工性も低下する。よって Si含有量は 2%以下とした。好ましいのは 1% 以下である。 Si is added as a deoxidizing element, and is an element effective for enhancing oxidation resistance and steam oxidation resistance. In order to obtain the effect, 0.1% or more is desirable. However, if its content exceeds 2%, precipitation of intermetallic compound phases such as σ phase is promoted, and toughness and ductility are reduced due to deterioration of structural stability at high temperatures. Also melt The contact property and hot workability also deteriorate. Therefore, the Si content is set to 2% or less. Preferred is 1% or less.
[0019] Mn: 0. 1〜3%  [0019] Mn: 0.1-3%
Mnは、 Siと同様に溶鋼の脱酸作用を有するとともに、鋼中に不可避的に含有され る Sを硫ィ匕物として固着し、熱間加工性を改善する。その効果を十分得るためには 0 . 1%以上の含有が必要である。しかし、その含有量が 3%を超えると、 σ相等の金属 間化合物相の析出を助長し、組織安定性、高温強度、機械的性質が劣化する。した 力 Sつて Mn含有量は 0. 1〜3%とした。より好ましい下限と上限は、それぞれ 0. 2およ び 2%である。さらに好ましい上限は 1. 5%である。  Mn has a deoxidizing effect on molten steel, similar to Si, and fixes S, which is inevitably contained in the steel, as a sulfide and improves hot workability. In order to obtain the effect sufficiently, it is necessary to contain 0.1% or more. However, if its content exceeds 3%, precipitation of intermetallic compound phases such as the σ phase is promoted, and the structural stability, high temperature strength, and mechanical properties deteriorate. The force S and the Mn content were 0.1 to 3%. More preferred lower and upper limits are 0.2 and 2%, respectively. A more preferred upper limit is 1.5%.
[0020] P : 0. 05〜0. 30%  [0020] P: 0.05-0.30%
Pは、炭化物の微細析出や Tiおよび Feとのリンィ匕物を析出させ、本発明鋼のタリー プ強度を向上させる。この効果を得るためには 0. 05%以上の含有が必要である。通 常、 Pの添カ卩はクリープ延性や溶接性並びに熱間加工性の劣化を伴うのであるが、 本発明鋼では REMの添カ卩により上記の特性の劣化を抑制している。しかし、 Pを過 剰に添カ卩した場合には REM添カ卩の効果、特に Nd添カ卩の効果が失われるため、そ の含有量は 0. 3%以下にする必要がある。したがって、 P含有量は 0. 05〜0. 3%が 適正である。より好ましい下限と上限はそれぞれ 0. 06%および 0. 25%、さらに好ま しい下限は 0. 08%を超える量であり、また、さらに好ましい上限は 0. 20%である。  P precipitates fine precipitates of carbides and phosphorus precipitates with Ti and Fe, and improves the tap strength of the steel of the present invention. In order to obtain this effect, a content of 0.05% or more is necessary. Usually, the additive of P is accompanied by deterioration of creep ductility, weldability and hot workability, but in the steel of the present invention, the deterioration of the above characteristics is suppressed by the additive of REM. However, if P is added excessively, the effect of REM additive, especially the effect of Nd additive, is lost, so its content must be 0.3% or less. Therefore, the appropriate P content is 0.05 to 0.3%. More preferable lower limit and upper limit are 0.06% and 0.25%, respectively, more preferable lower limit is an amount exceeding 0.08%, and further preferable upper limit is 0.20%.
[0021] S : 0. 03%以下  [0021] S: 0.03% or less
Sは、鋼中に不可避的不純物として含有され、熱間加工性を著しく低下させるため 、 0. 03%以下とする。その含有量は少ないほどよい。  S is contained as an inevitable impurity in the steel, so that hot workability is remarkably lowered. The smaller the content, the better.
[0022] Cr: 15〜28%  [0022] Cr: 15-28%
Crは、耐酸化性、耐水蒸気酸化性、耐高温腐食性等を確保する重要な元素であり 、さらに Cr系炭化物を形成し強度を上げるのにも寄与する。そのため 15%以上含有 させる。 Cr含有量が多いほど耐食性は向上する力 その含有量が 28%を超えるとォ ーステナイト組織が不安定となり σ相などの金属間化合物や α— Cr相を生成しやす ぐ靭性ゃ高温強度も損なう。したがって Cr含有量は 15〜28%とするべきである。な お、より好ましい下限と上限は、それぞれ 16%および 25%である。さらに好ましい下 限は 17%であり、また、さらに好ましい上限は 23%である。 Cr is an important element for ensuring oxidation resistance, steam oxidation resistance, high-temperature corrosion resistance, and the like, and further contributes to the formation of Cr-based carbides and increased strength. Therefore, it is made to contain 15% or more. The higher the Cr content, the better the corrosion resistance. When the content exceeds 28%, the austenite structure becomes unstable, and it is easy to produce intermetallic compounds such as σ phase and α-Cr phase. . Therefore, the Cr content should be 15-28%. More preferable lower and upper limits are 16% and 25%, respectively. Further preferred under The upper limit is 17%, and a more preferable upper limit is 23%.
[0023] Ni: 8〜55%  [0023] Ni: 8-55%
Niは、安定なオーステナイト組織を確保するために必須の元素である。その必要最 少含有量は、鋼中に含まれる Cr、 Mo、 W、 Nbなどのフェライト生成元素や C、 Nなど のオーステナイト生成元素の含有量によって定まる。本発明鋼には 15%以上の Crを 含有させる必要がある力 この Cr量に対して Niが 8%未満だとオーステナイト単相組 織にするのが困難である。また、高温での長時間の使用にともないオーステナイト組 織が不安定になり、 σ相等の脆化相析出に起因して高温強度ゃ靭性が著しく劣化し 、耐熱耐圧部材としての使用に耐えることができない。また、 55%を超える含有量に しても、その効果は飽和し経済性が損なわれる。したがって、 Ni含有量は 8〜55%と する。より好ましい上限は 25%、さらに好ましい上限は 15%である。  Ni is an essential element for securing a stable austenite structure. The minimum required content is determined by the content of ferrite-forming elements such as Cr, Mo, W, and Nb and austenite-generating elements such as C and N contained in the steel. Strength required to contain 15% or more of Cr in the steel of the present invention If Ni is less than 8% with respect to the amount of Cr, it is difficult to form an austenite single phase structure. In addition, the austenite structure becomes unstable with long-term use at high temperatures, and high temperature strength and toughness deteriorate significantly due to embrittlement phase precipitation such as σ phase, so that it can withstand use as a heat and pressure resistant member. Can not. Even if the content exceeds 55%, the effect is saturated and the economic efficiency is impaired. Therefore, the Ni content is 8 to 55%. A more preferred upper limit is 25%, and a more preferred upper limit is 15%.
[0024] Cu: 0〜3. 0%  [0024] Cu: 0 to 3.0%
Cuは、本発明鋼の高温での使用中に微細な Cu相としてオーステナイト母相に整 合析出し、クリープ強度を大幅に向上させる元素の一つである。したがって、このよう な効果を得たい場合には、 Cuを含有させることができる。しかし、 Cu含有量が過剰 になると、熱間加工性およびクリープ延性を劣化させる。本発明鋼においては、 Cu 含有量が 3. 0%を超えた場合、後述の REMの添カ卩によるクリープ延性改善効果が 減少する。したがって、本発明鋼の Cu含有量は 0〜3. 0%とする。より好ましい上限 は 2. 0%、さらに好ましい上限は 0. 9%である。なお、本発明では Cuは含有させなく てもよいが、クリープ強度向上効果を得るために含有させる場合は、含有量の下限を 0. 01%とするのが望ましい。  Cu is one of the elements that precipitates in the austenite matrix as a fine Cu phase during the use of the steel of the present invention at a high temperature and greatly improves the creep strength. Therefore, when such an effect is desired, Cu can be contained. However, excessive Cu content degrades hot workability and creep ductility. In the steel of the present invention, when the Cu content exceeds 3.0%, the effect of improving the creep ductility by adding REM described later decreases. Therefore, the Cu content of the steel of the present invention is set to 0 to 3.0%. A more preferred upper limit is 2.0%, and a still more preferred upper limit is 0.9%. In the present invention, Cu may not be contained, but when it is contained in order to obtain the effect of improving the creep strength, the lower limit of the content is preferably 0.01%.
[0025] Ti: 0. 05〜0. 6%  [0025] Ti: 0.05-0.6%
Tiは、炭化物を形成し高温強度向上に寄与する。本発明鋼においては Pとの複合 添カロによりリンィ匕物として析出し、さらにクリープ強度の向上にも寄与する。その含有 量が 0. 05%未満では十分な効果が得られず、 0. 6%を超えると溶接性や熱間加工 性を低下させる。したがって、 Ti含有量は 0. 05〜0. 6%が適正である。より好ましい 下限と上限は、それぞれ 0. 06%および 0. 5%である。  Ti forms carbides and contributes to improving high temperature strength. In the steel of the present invention, it is precipitated as phosphorus deposits by complex addition with P and further contributes to the improvement of creep strength. If its content is less than 0.05%, a sufficient effect cannot be obtained, and if it exceeds 0.6%, weldability and hot workability are deteriorated. Therefore, the appropriate Ti content is 0.05-0.6%. More preferred lower and upper limits are 0.06% and 0.5%, respectively.
[0026] sol.Al: 0. 001〜0. 1% 本発明鋼において含有量を問題にする Alは sol.Al (酸可溶性 Al)である。 A1は、溶 鋼の脱酸剤として添加される元素であり、その効果を発揮させるためには sol. A1とし て 0. 001%以上含有させることが必要である。しかし、その含有量が 0. 1%を超える と高温での使用中に σ相等の金属間化合物析出を促進し、靭性ゃ延性、高温強度 を低下させる。したがって、 sol.Al含有量の適正範囲は 0. 001-0. 1%とする。より 好ましい下限と上限は、それぞれ 0. 005%および 0. 05%である。さらに好ましい下 限と上限は、それぞれ 0. 01%および 0. 03%である。 [0026] sol.Al: 0.001 to 0.1% In the steel of the present invention, Al whose content is a problem is sol.Al (acid-soluble Al). A1 is an element added as a deoxidizer for molten steel, and in order to exert its effect, it is necessary to contain 0.001% or more as sol. A1. However, if its content exceeds 0.1%, it promotes precipitation of intermetallic compounds such as σ phase during use at high temperature, and lowers toughness, ductility and high temperature strength. Therefore, the appropriate range of sol.Al content is 0.001-0. 1%. More preferred lower and upper limits are 0.005% and 0.05%, respectively. Further preferred lower and upper limits are 0.01% and 0.03%, respectively.
[0027] N: 0. 03%以下 [0027] N: 0.03% or less
Tiを含有している本発明鋼においては、 Nの含有量が 0. 03%を超えると高温で Ti Nが析出し、これが粗大な未固溶窒化物として鋼中に残存して熱間加工性および冷 間加工性を低下させる。したがって、 N含有量は 0. 03%以下とするべきである。 Nの 含有量は少ないほど望ましぐより好ましいのは 0. 02%以下、さらに好ましいのは 0. 015%以下である。  In the steel of the present invention containing Ti, when the N content exceeds 0.03%, Ti N precipitates at a high temperature, which remains in the steel as coarse undissolved nitride and is hot-worked. Decrease cold workability and cold workability. Therefore, the N content should be 0.03% or less. The smaller the N content is, the more desirable it is, more preferably 0.02% or less, and even more preferably 0.015% or less.
[0028] REM : 0. 001〜0. 5% [0028] REM: 0.001 to 0.5%
本発明鋼において、 REMは重要な元素の一つである。 REMを添加することにより 高濃度の P添カ卩により劣化したクリープ延性、溶接性ならびに熱間加工性を回復させ ることができる。その効果を発揮させるためには 0. 001%以上含有させることが必要 である。しかし、その含有量が 0. 5%を超えると酸ィ匕物などの介在物を増加させる。し たがって、 REMの含有量の適正範囲は 0. 001〜0. 5%である。なお、より好ましい 下限と上限は、それぞれ 0. 005%および 0. 2%であり、さらに好ましい上限は 0. 1 %未満である。  In the steel of the present invention, REM is one of important elements. By adding REM, the creep ductility, weldability, and hot workability deteriorated by the high concentration P additive can be recovered. In order to exert the effect, it is necessary to contain 0.001% or more. However, when its content exceeds 0.5%, inclusions such as acid inclusions increase. Therefore, the proper range of REM content is 0.001 to 0.5%. More preferable lower and upper limits are 0.005% and 0.2%, respectively, and a more preferable upper limit is less than 0.1%.
REMの中の元素は、単独で添加してもよぐミッシュメタル(mish metal)のような混 合物として添カ卩してもょ 、。 REMの中で特に望まし!/、のは Ndである。  The elements in REM can be added as a mixture, such as mish metal, which can be added alone. Of particular interest in REM! / Is Nd.
[0029] 本発明鋼の一つは、上記の成分のほか、残部が Feと不純物力 なるオーステナイ ト系ステンレス鋼である。本発明鋼のもう一つは、高温強度をより一層向上させるため に、 Mo、 W、 B、 Nb、 V、 Co、 Zr、 Hfおよび Taの中から選んだ 1種以上を含むォー ステナイト系ステンレス鋼である。以下、これらの成分について述べる。  [0029] One of the steels of the present invention is an austenitic stainless steel in which, in addition to the above components, the balance is Fe and impurities. Another steel of the present invention is an austenitic system containing one or more selected from Mo, W, B, Nb, V, Co, Zr, Hf and Ta in order to further improve the high temperature strength. Stainless steel. Hereinafter, these components will be described.
[0030] Mo : 0. 05〜5%、 W: 0. 05〜10%、ただし Mo + (WZ2)で 5%以下 Moおよび Wは、本発明鋼の必須成分ではない。しかし、これらは、高温強度およ びクリープ強度の向上に有効な元素であるから、必要に応じて添加することができる 。単独添加の場合、含有量はそれぞれ 0. 05%以上とする。複合添加する場合は、 合計で 0. 05%以上とするのがよい。し力し Moは 5%、 Wは 10%を超えると強度向 上効果は飽和するとともに σ相などの金属間化合物の生成を招き、組織安定性およ び熱間加工性が劣化する。したがって添加する場合の上限は、 Mo単独で 5%、 W単 独で 10%、 Moと Wを複合添加する場合は、 Mo + (WZ2)で 5%以下とするのがよい 。なお、 Wはフェライト形成元素のため、オーステナイト組織の安定ィ匕のためには、 W の含有量は、 4%未満とするのがより好ましい。 [0030] Mo: 0.05 to 5%, W: 0.05 to 10%, but less than 5% with Mo + (WZ2) Mo and W are not essential components of the steel of the present invention. However, since these are effective elements for improving the high temperature strength and creep strength, they can be added as necessary. In the case of single addition, the content should be 0.05% or more, respectively. In the case of complex addition, the total should be 0.05% or more. However, if Mo exceeds 5% and W exceeds 10%, the strength improvement effect is saturated and the formation of intermetallic compounds such as the σ phase is caused, and the structural stability and hot workability deteriorate. Therefore, the upper limit for addition is preferably 5% for Mo alone, 10% for W alone, and 5% or less for Mo + (WZ2) when Mo and W are added in combination. Since W is a ferrite-forming element, the W content is more preferably less than 4% in order to stabilize the austenite structure.
[0031] B: 0. 0005〜0. 05%  [0031] B: 0.005% to 0.05%
Bは、炭窒化物中に、または B単体で粒界に存在し、高温使用中における炭窒化 物の微細分散析出を促進し、粒界強化による粒界すべりの抑制によって高温強度お よびクリープ強度を改善する。その効果を発揮させるには 0. 0005%以上の含有が 必要であるが、 0. 05%を超えると溶接性が劣化する。したがって添加する場合の B 含有量の適正範囲は 0. 0005-0. 05%である。より好ましい下限と上限は、それぞ れ 0. 001%および 0. 01%である。さらに好ましい上限は 0. 005%である。  B exists in the grain boundary in carbonitride or by itself, promotes fine dispersion precipitation of carbonitride during use at high temperature, and suppresses intergranular slip by strengthening the grain boundary, thereby increasing high temperature strength and creep strength. To improve. In order to exert its effect, it is necessary to contain 0.0005% or more, but if it exceeds 0.05%, the weldability deteriorates. Therefore, the appropriate range of B content when added is 0.0005-0.05%. More preferred lower and upper limits are 0.001% and 0.01%, respectively. A more preferred upper limit is 0.005%.
[0032] Nb : 0. 05〜0. 8%  [0032] Nb: 0.05-0.8%
Nbも Tiと同様に炭窒化物を形成し、クリープ破断強度を向上させる。その含有量 が 0. 05%未満では十分な効果が得られず、 0. 8%を超えると溶接性や未固溶窒化 物の増加による機械的性質の劣化にカ卩えて熱間加工性、特に 1200°C以上での高 温延性が著しく低下する。従って、 Nb含有量は 0. 05〜0. 8%が適正である。より好 ましい上限は 0. 6%である。  Nb also forms carbonitrides like Ti and improves creep rupture strength. If its content is less than 0.05%, a sufficient effect cannot be obtained, and if it exceeds 0.8%, hot workability, in addition to deterioration of mechanical properties due to increase in weldability and undissolved nitride, In particular, the high hot ductility at 1200 ° C or higher is significantly reduced. Therefore, the appropriate Nb content is 0.05-0.8%. A more preferred upper limit is 0.6%.
[0033] V: 0. 02〜: L . 5%  [0033] V: 0.02 ~: L. 5%
Vは、炭化物を形成し、高温強度およびクリープ強度の向上に有効な元素である。 添加する場合、その含有量が 0. 02%未満では効果がなぐ 1. 5%を超えると耐高 温腐食性が劣化し、また脆ィ匕相析出に起因して延性および靭性が劣化する。したが つて、 V含有量は 0. 02〜: L 5%が適正である。より好ましい下限と上限は、それぞ れ 0. 04%および 1%である。 [0034] Co : 0. 05〜5% V is an element that forms carbides and is effective in improving high temperature strength and creep strength. When added, the effect is not good if its content is less than 0.02%. If it exceeds 1.5%, the hot corrosion resistance deteriorates, and ductility and toughness deteriorate due to brittle soot phase precipitation. Therefore, the appropriate V content is 0.02 ~: L 5%. More preferred lower and upper limits are 0.04% and 1%, respectively. [0034] Co: 0.05--5%
Coは、 Niと同様にオーステナイト組織を安定にし、クリープ強度向上にも寄与する 。その含有量が 0. 05%未満では効果がなぐ 5%を超えると効果が飽和し、経済性 も低下する。従って、添加する場合の Co含有量は 0. 05〜5%とするべきである。  Co, like Ni, stabilizes the austenite structure and contributes to improved creep strength. If the content is less than 0.05%, the effect is not sufficient. If the content exceeds 5%, the effect is saturated and the economic efficiency is lowered. Therefore, the Co content when added should be 0.05 to 5%.
[0035] Zr: 0. 0005〜0. 2%  [0035] Zr: 0.0005% to 0.2%
Zrは、粒界強化に寄与し高温強度およびクリープ強度を向上させる。さらに、 Sを固 着して熱間加工性を改善する効果も有する。その効果を発揮させるには 0. 0005% 以上の含有が必要である力 0. 2%を超えると延性、靭性等の機械的性質が劣化す る。したがって、添加する場合の Zr含有量は 0. 0005-0. 2%が適正である。なお、 より好ましい下限と上限は、それぞれ 0. 01%および 0. 1%、さらに好ましい上限は 0 . 05%である。  Zr contributes to grain boundary strengthening and improves high temperature strength and creep strength. Furthermore, it has the effect of improving the hot workability by fixing S. In order to bring out the effect, the mechanical properties such as ductility and toughness are deteriorated when the force exceeds 0.205%, which is required to contain 0.0005% or more. Therefore, the appropriate Zr content when added is 0.0005-0. 2%. A more preferable lower limit and upper limit are 0.01% and 0.1%, respectively, and a more preferable upper limit is 0.05%.
[0036] Hf : 0. 0005〜1%  [0036] Hf: 0.0005% to 1%
Hfは、主として粒界強化に寄与し、クリープ強度を向上させる。その含有量が 0. 0 005%未満では効果がない。一方、その含有量が 1%を超えるとカ卩ェ性および溶接 性を損なう。したがって、 Zrを添加する場合は、その含有量は 0. 0005〜1%が適正 である。より好ましい下限と上限は、それぞれ 0. 01%および 0. 8%、さらに好ましい 下限と上限は、それぞれ 0. 02%および 0. 5%である。  Hf mainly contributes to grain boundary strengthening and improves creep strength. If the content is less than 0.0 005%, there is no effect. On the other hand, if its content exceeds 1%, the caulking property and weldability are impaired. Therefore, when Zr is added, the appropriate content is 0.0005 to 1%. More preferred lower and upper limits are 0.01% and 0.8%, respectively, and more preferred lower and upper limits are 0.02% and 0.5%, respectively.
[0037] Ta: 0. 01〜8%  [0037] Ta: 0.01-8%
Taは、炭窒化物を形成するとともに固溶強化元素として高温強度、クリープ強度を 向上させる。その含有量が 0. 01%未満の場合は効果がない。一方、 Taの含有量が 8%を超えるとカ卩ェ性および機械的性質を損なう。したがって、 Taを添加する場合は 、その含有量を 0. 01〜8%とするべきである。より好ましい下限と上限は、それぞれ 0 . 1%および 7%、さらに好ましい下限と上限は、それぞれ 0. 5%および 6%である。  Ta forms carbonitride and improves the high temperature strength and creep strength as a solid solution strengthening element. If the content is less than 0.01%, there is no effect. On the other hand, if the Ta content exceeds 8%, the cache properties and mechanical properties are impaired. Therefore, when Ta is added, its content should be 0.01 to 8%. More preferred lower and upper limits are 0.1% and 7%, respectively, and more preferred lower and upper limits are 0.5% and 6%, respectively.
[0038] 本発明鋼のさらにもう一つは、上記の成分に加えてさらに Caおよび Mgの一方また は両方を含むオーステナイト系ステンレス鋼である。 Caおよび Mgは、以下に述べる とおり、本発明鋼の熱間加工性向上を改善する。  [0038] Yet another steel of the present invention is an austenitic stainless steel further containing one or both of Ca and Mg in addition to the above components. As described below, Ca and Mg improve the hot workability of the steel of the present invention.
[0039] Mgおよび Ca:それぞれ 0. 0005〜0. 05%  [0039] Mg and Ca: 0.005% to 0.05% each
Mgおよび Caは、熱間加工性を阻害する Sを硫ィ匕物として固着し熱間加工性を改 善する。それぞれの含有量が 0. 0005%未満では効果がない。一方、それぞれ 0. 0 5%を超える含有量の Mgおよび Caは、鋼質を害し、力えって熱間加工性や延性を 低下させる。したがって、添加する場合の Mgおよび Caの含有量は、それぞれ 0. 00 05-0. 05%とするのがよい。より好ましい下限と上限は、それぞれ 0. 001%および 0. 02%である。さらに好ましい上限は 0. 01%である。 Mg and Ca improve the hot workability by adhering S, which inhibits hot workability, as sulfides. Be good. If each content is less than 0.0005%, there is no effect. On the other hand, Mg and Ca in a content exceeding 0.05% each harm the steel quality and reduce hot workability and ductility. Therefore, the content of Mg and Ca when added is preferably 0.005-0.05%. More preferred lower and upper limits are 0.001% and 0.02%, respectively. A more preferred upper limit is 0.01%.
[0040] 本発明鋼を製造する場合は、以下の方法によることが推奨される。  [0040] When producing the steel of the present invention, the following method is recommended.
まず、上記の化学組成の鋼塊を通常のステンレス鋼の溶製および铸造方法で製造 する。得られた鋼塊を铸造のまま、または鍛造や分塊圧延でビレットとした後、熱間押 出しや熱間圧延等の熱間加工を行う。熱間加工前の加熱温度は 1160°C以上、 125 0°C以下が望ましい。熱間加工終了温度は 1150°C以上が望ましい。また、加工終了 後は、粗大な炭窒化物の析出を抑えるため、少なくとも 500°Cまでは 0. 25°CZ秒以 上の極力早 、冷却速度で冷却させるのがよ!/、。  First, a steel ingot having the above-mentioned chemical composition is produced by a normal stainless steel melting and forging method. The obtained steel ingot is forged or formed into billets by forging or split rolling, and then subjected to hot working such as hot extrusion or hot rolling. The heating temperature before hot working is preferably 1160 ° C or higher and 1250 ° C or lower. The hot working finish temperature is preferably 1150 ° C or higher. In addition, after processing is completed, to prevent precipitation of coarse carbonitrides, it is recommended to cool at a cooling rate of at least 0.25 ° CZ seconds or more until at least 500 ° C! /.
[0041] 熱間加工後、最終熱処理を行ってもよぐまた、必要に応じて冷間加工を加えても よい。冷間加工前には途中熱処理により炭窒化物を固溶させておく必要があり、熱 間加工前の加熱温度または熱間加工終了温度の低い方以上の温度でこの途中熱 処理を行うのがよい。  [0041] After the hot working, a final heat treatment may be performed, or a cold working may be added if necessary. Before cold working, it is necessary to dissolve carbonitride by intermediate heat treatment, and this intermediate heat treatment is performed at a temperature higher than the lower one of the heating temperature before hot working or the end temperature of hot working. Good.
[0042] 冷間加工では 10%以上の歪みを加えるのが好ましぐ 2回以上の冷間加工を施し てもよい。最終製品の熱処理は、 1170〜1300°Cの範囲で、熱間加工終了温度また は上述の途中熱処理温度より 10°C以上高!、温度で実施するのが好ま 、。粗大な 炭窒化物の析出を抑制するために最終熱処理後にも 0. 25°CZ秒以上の極力早い 冷却速度で冷却するのがよ 、。  [0042] In cold working, it is preferable to apply a strain of 10% or more. Two or more cold workings may be applied. The heat treatment of the final product is preferably carried out at a temperature in the range of 1170 to 1300 ° C, at a temperature higher than the hot working finish temperature or 10 ° C above the intermediate heat treatment temperature mentioned above! In order to suppress the precipitation of coarse carbonitrides, it is recommended to cool at a cooling rate as fast as 0.25 ° CZ seconds or more even after the final heat treatment.
実施例  Example
[0043] 表 1に示す化学組成の鋼を高周波真空溶解炉で溶製し、外径 120mmの 30kgィ ンゴットとした。表中の No.l〜19の鋼は本発明鋼、 A〜Fは比較鋼である。  [0043] Steel having the chemical composition shown in Table 1 was melted in a high-frequency vacuum melting furnace to obtain a 30 kg ingot having an outer diameter of 120 mm. Steels Nos. 1 to 19 in the table are invention steels and A to F are comparative steels.
得られたインゴットを熱間鍛造して厚さ 40mmの板材とし、高温延性を評価するた めの丸棒引張試験片(直径 10mm、長さ 130mm)を機械加工により作製した。さらに 熱間鍛造により厚さ 15mmの板材とし、軟化熱処理の後、厚さ 10mmまで冷間圧延し 、 1150°Cで 15分保持した後、水冷した。 [0044] 上記の板材力 機械加工によりクリープ試験片およびバレストレイン試験片を作製 した。クリープ試験片の形状は直径 6mm、標点間距離 30mmの丸棒試験片、バレス トレイン試験片は厚さ 4mm、幅 100mm、長さ 100mmの板状試験片である。 The obtained ingot was hot forged into a 40 mm thick plate, and a round bar tensile test piece (diameter 10 mm, length 130 mm) for evaluating high temperature ductility was produced by machining. Further, a plate material having a thickness of 15 mm was formed by hot forging, and after softening heat treatment, it was cold-rolled to a thickness of 10 mm, held at 1150 ° C. for 15 minutes, and then water-cooled. [0044] Creep test pieces and ballast train test pieces were produced by the above plate material force machining. The shape of the creep test piece is a round bar test piece with a diameter of 6 mm and a distance between the gauge points of 30 mm, and the Valestrain test piece is a plate-like test piece with a thickness of 4 mm, a width of 100 mm and a length of 100 mm.
[0045] 高温での延性の評価のために、上記の高温延性評価用試験片を用い、 1220°Cに 加熱して 3分間保持し、歪速度 5Zsの高速引張試験を行い、試験後の破断面から絞 り率を求めた。当該温度で絞り率 60%以上であれば熱間押出し等の熱間加工に特 に大きな問題が生じないことが判明している。したがって、絞り率 60%以上の鋼を良 好な熱間加工性を有する鋼とした。  [0045] For the evaluation of ductility at high temperature, using the above-mentioned test piece for high temperature ductility evaluation, heating to 1220 ° C and holding for 3 minutes, conducting a high-speed tensile test with a strain rate of 5Zs, The squeezing rate was obtained from the cross section. It has been found that if the drawing rate is 60% or more at that temperature, no major problem occurs in hot working such as hot extrusion. Therefore, steel with a drawing ratio of 60% or more was selected as steel with good hot workability.
[0046] 上記のクリープ破断試験片を用い、 700°Cの大気中で応力 147MPaの条件でタリ 一プ破断試験を実施し、破断寿命と破断絞りを求め、破断寿命カゝらクリープ強度を、 破断絞りからクリープ延性を、それぞれ評価した。  [0046] Using the above-mentioned creep rupture test piece, a tape rupture test was performed in the atmosphere of 700 ° C under a stress of 147 MPa to obtain a rupture life and a squeeze squeeze. The creep ductility was evaluated from the drawing at break.
[0047] 溶接性を評価するバレストレイン試験は、 TIG法で入熱 19kjZcm、付加ひずみ量 1. 5%で行い、全割れ長さから溶接性を評価した。  [0047] The ballast train test for evaluating weldability was performed by the TIG method with a heat input of 19 kjZcm and an applied strain of 1.5%, and the weldability was evaluated from the total crack length.
上記の各試験の結果を表 2に示す。  Table 2 shows the results of the above tests.
[0048] [表 1] [0048] [Table 1]
OAV _ _/:1£■■ OAV _ _ /: 1 £
9100 frOO ειοο 6 0 061. SOL - Ι ΟΌ seo £80 ζ,εο 0 d9100 frOO ειοο 6 0 061. SOL-Ι ΟΌ seo £ 80 ζ, εο 0 d
Ζ.10Ό zoo ο'ο 5Z0 LSI SOI 1000 600 160 ivo zvo aΖ.10Ό zoo ο'ο 5Z0 LSI SOI 1000 600 160 ivo zvo a
SIOO zoo ειοο - LLl 801 εοοο ΟΙΌ ίΊ Ι oso 010 a 瞻? r no'o - Ζ.ΟΟΌ dLl ΖΈ - ΖΟΟΌ U0 09Ό 600 o SIOO zoo ειοο-LLl 801 εοοο ΟΙΌ ίΊ Ι oso 010 a 瞻? r no'o-Ζ.ΟΟΌ dLl ΖΈ-ΖΟΟΌ U0 09 Ό 600 o
szoo 一 ηο'ο SZO VSl 66 - ζοοο S00 QVl ζ,εο no a szoo i ηο'ο SZO VSl 66-ζοοο S00 QVl ζ, εο no a
8Ι Ό 一 ο'ο 6 0 LSY 66 - Ι-ΟΟΌ εοο 99Ό 920 60Ό V8Ι Ό 1 ο'ο 6 0 LSY 66-Ι-ΟΟΌ εοο 99Ό 920 60Ό V
SWO:30'SOO.O:e"l 3200 一 Ζ.ΟΟΌ 8に 0 Ydl 001 - ΙΟΟΌ ΟΓΟ 8Ζ.Ό 0Γ0 61SWO: 30'SOO.O: e "l 3200 1 Ζ.ΟΟΌ 8 to 0 Ydl 001-ΙΟΟΌ ΟΓΟ 8 Ζ.Ό 0Γ0 61
Z00O:eO 'ZH:M 2100 100 2Ι.00 6Ι.Ό s ZOl - Ι ΟΌ 0 sen εεο 0に 0 81 Z00O: eO 'ZH : M 2100 100 2Ι.00 6Ι.Ό s ZOl-Ι ΟΌ 0 sen εεο 0 to 0 81
Ζ00Ό:ΒΟ ΖΙ Ό ΙΟΌ ζιοο 810 981 SOI. - Ι-ΟΟΌ 0 Z60 8εο 600 LI eooo:3w εζοο ΙΟΌ 8000 220 581. ε·οΐ· - 200Ό 600 U l (ΗΌ 91 Ζ00Ό: Β Ο ΖΙ Ό ζ ζιοο 810 981 SOI.- Ι-ΟΟΌ 0 Z60 8εο 600 LI eooo : 3 w εζοο ΙΟΌ 8000 220 581. ε · οΐ ·-200
Ζ.Ζ0Ό 200 800Ό 6に 0 081. QZ\ - ΙΟΟΌ 800 ZOl ΐ·ε·ο 210 SI  Ζ.Ζ0Ό 200 800Ό 6 to 0 081.QZ \-ΙΟΟΌ 800 ZOl ΐ · ε · ο 210 SI
zoo 600Ό 6 0 1 SI 66 一 ΙΟΟΌ 0Π3 86Ό QIO 0Γ0 PI zoo 600Ό 6 0 1 SI 66 1 一 0Π3 86Ό QIO 0Γ0 PI
ZOO Z εζοο εοο Ζ.ΟΟΌ ΙΖΟ z - ΙΟΟΌ 0 0 S0 "Ό ει ζ·ε:οο 8000 zoo 600Ό εζΌ VSl 「01· - 200Ό ειο ε8Ό 9εο 600 ZOO Z εζοο εοο Ζ.ΟΟΌ ΙΖΟ z-ΙΟΟΌ 0 0 S0 "Ό ει ζ · ε: ο ο 8000 zoo 600Ό εζΌ VSl '01 ·-200 Ό
6ΖΌ:Λ oo 200 ειθΌ ZZQ LLl 801 - εοοο "Ό Vi 090 800 u o:qN οεοο 100 8000 LZQ 26 - εοοο U0 980 150 UO 01 6ΖΌ: Λ oo 200 ειθΌ ZZQ LLl 801-εοοο "Ό Vi 090 800 u o: qN οεοο 100 8000 LZQ 26-εοοο U0 980 150 UO 01
Ζ00Ό:Ο l-ZOO εοο ΡΙΟΟ L10 S6 - 200Ό "0 LOl εζο O 6 Ζ00Ό : Ο l-ZOO εοο ΡΙΟΟ L10 S6-200Ό "0 LOl εζο O 6
1200 wo 800Ό QZO LSI YOl 一 Ι ΟΌ 010 99Ό wo oro 8 ao'o zoo ειο—ο S 0 381. S'(U 一 εοοο 60Ό Ζ.8Ό 600 L 1200 wo 800Ό QZO LSI YOl Ι ΟΌ 010 99Ό wo oro 8 ao'o zoo ειο—ο S 0 381. S '(U ε οοο 60Ό Ζ.8Ό 600 L
9200 ΖΟΌ 910Ό 9 0 681 ¥01 ん ·!· εοοο ζιο £90 azo 800 Θ εΐ-οο εοο ZO VSl 601- 80 2000 no on 6Y0 0 0 99200 ΖΟΌ 910Ό 9 0 681 ¥ 01! Οοο ζιο £ 90 azo 800 Θ εΐ-οο εοο ZO VSl 601- 80 2000 no on 6Y0 0 0 9
ΖΙ.ΟΌ ι ο 9000 6ΖΌ 081. 66 一 εοοο οζο 80· 1· 990 81.0 ΖΙ.ΟΌ ι ο 9000 6ΖΌ 081. 66 One εοοο οζο 80 · 1 · 990 81.0
ao'o zoo t o—o Ι.2Ό 181 601 一 εοοο S 0 LOl ζεο ZIO ε ao'o zoo t o—o Ι.2Ό 181 601 One εοοο S 0 LOl ζεο ZIO ε
ΖΖΟΌ tO'O 910Ό 820 ZGl Y6 - εοοο 0 66Ό ん SO 0Γ0 zΖΖΟΌ tO'O 910Ό 820 ZGl Y6-εοοο 0 66Ό SO 0Γ0 z
6100 900Ό 800Ό LZQ 6'8l Z"6 - 3000 Ζ.ΟΌ 980 9S0 0Γ0 l6100 900Ό 800Ό LZQ 6'8l Z "6-3000 Ζ.ΟΌ 980 9S0 0Γ0 l
IV'I0S ΡΝ Ν !丄 JO !N no S d !S o IV'I 0S ΡΝ Ν!丄 JO! N no S d! S o
'o  'o
( |Bq:sd、%晷葛) m 嚷  (| Bq: sd,% 晷 katsu) m 嚷
600 表 2 600 Table 2
Figure imgf000013_0001
Figure imgf000013_0001
[0050] 比較鋼 A、 Bおよび Cでは Pの含有量を変化させて 、る。ボイラの熱交換に用いられ るステンレス鋼管では、例えば JIS G3463で規定されているように、 Pは 0. 040%以下 に制限されている。したがって、比較鋼 Aが一般的なステンレス鋼の P含有量に相当 する。表 2に示すとおり、 P添加量の増加によりクリープ破断寿命は向上するものの、 破断絞り、溶接性および高温延性が著しく低下する。 [0050] In the comparative steels A, B and C, the P content is changed. For stainless steel pipes used for boiler heat exchange, for example, as specified in JIS G3463, P is limited to 0.040% or less. Therefore, comparative steel A corresponds to the P content of general stainless steel. As shown in Table 2, the creep rupture life is improved by increasing the amount of P added, but the fracture drawing, weldability and hot ductility are significantly reduced.
[0051] 本発明鋼である No.l〜4および No.19の鋼は、比較鋼 Bおよび Cと同様に Pを添カロ してクリープ破断寿命が向上させた鋼である。これらの鋼では Nd、または Laおよび C eの添カ卩により、比較鋼にみられるようなクリープ延性、溶接性および高温延性の低 下は全く見られず、クリープ延性においては逆に P含有量が一般的なレベルである比 較鋼 Aよりも向上している。  [0051] Steels No. 1 to No. 4 and No. 19 that are the steels of the present invention are steels that have been improved in creep rupture life by adding P in the same manner as comparative steels B and C. In these steels, due to the addition of Nd or La and Ce, there was no decrease in creep ductility, weldability and hot ductility as seen in comparative steels. This is an improvement over comparative steel A, which is a general level.
[0052] 比較鋼 Dは、 Ti無添加で本発明鋼の鋼記号 2と同等の Pおよび Ndを含有させてい る力 Tiの添カ卩がないためクリープ特性に劣る。鋼記号 5および 6は、さらに Cuを添 加してクリープ強度を高めたものである。比較鋼 Eは、 3. 0%を超える Cuを含有する ものである力 ここに見られるように過剰の Cuを添加すると Nd添カ卩によるクリープ延 性、溶接性および高温延性の改善効果が失われる。このことからも Cu含有量は 3. 0 %以下にする必要があることがわかる。 [0052] Comparative steel D is inferior in creep characteristics because it does not contain Ti and does not contain Ti, which does not contain Ti and contains P and Nd equivalent to steel symbol 2 of the steel of the present invention. Steel symbols 5 and 6 are obtained by further adding Cu to increase the creep strength. Comparative Steel E contains more than 3.0% Cu As shown here, the addition of excess Cu loses the creep ductility, weldability, and hot ductility improvement effects of Nd additive. This also shows that the Cu content needs to be 3.0% or less.
[0053] 本発明鋼は、前述のように、 W、 Mo、 B、 Nb、 V、 Co、 Zr、 Hf、 Ta、 Mgおよび Ca の内の 1種以上をさらに含有することができる。鋼記号 7〜18に示すとおり、これらの 元素の添加で高温延性やクリープ破断強度が一層改善される。 As described above, the steel of the present invention can further contain one or more of W, Mo, B, Nb, V, Co, Zr, Hf, Ta, Mg and Ca. As indicated by steel symbols 7-18, the addition of these elements further improves high temperature ductility and creep rupture strength.
産業上の利用可能性  Industrial applicability
[0054] 本発明のオーステナイト系ステンレス鋼は、 Pと REM、特に Ndを複合添加されてい ることによって、大きな高温強度を有するだけでなぐ熱間加工性が著しく改善された 鋼である。さらには高温長時間側の靭性向上も達成されて 、る。 [0054] The austenitic stainless steel of the present invention is a steel in which P and REM, particularly Nd, are added in combination, and the hot workability is remarkably improved in addition to having a large high-temperature strength. Furthermore, improved toughness on the high temperature and long time side has also been achieved.
本発明の鋼は、 650°C〜700°C以上の高温下で使用される耐熱耐圧部材として好 適である。この鋼を用いたプラントでは、操業の高効率ィ匕が可能であるから、そのブラ ントで製造される製品の製造コストの削減も可能となる。  The steel of the present invention is suitable as a heat and pressure resistant member used at a high temperature of 650 ° C to 700 ° C or higher. Since the plant using this steel can operate with high efficiency, the manufacturing cost of the product manufactured with the plant can be reduced.

Claims

請求の範囲 The scope of the claims
[1] 質量0 /0で、 C:0.05〜0. 15%、 Si: 2%以下、 Mn:0.1〜3%、 P:0.05〜0.30 %、 S:0.03%以下、 Cr:15〜28%、 Ni:8〜55%、 Cu:0〜3.0%、Ti:0.05〜0 .6%、REM:0.001〜0.5%、sol.Al:0.001〜0.1%、N:0.03%以下を含有し 、残部が Feおよび不可避的不純物力 なるオーステナイト系ステンレス鋼。 [1] in a weight 0/0, C:. 0.05~0 15%, Si: 2% or less, Mn: 0.1~3%, P: 0.05~0.30%, S: 0.03% or less, Cr: 15 to 28% , Ni: 8-55%, Cu: 0-3.0%, Ti: 0.05-0.6%, REM: 0.001-0.5%, sol.Al: 0.001-0.1%, N: 0.03% or less, the balance Austenitic stainless steel in which Fe and unavoidable impurity powers.
[2] Feの一部に代えて、質量0 /0で、さらに Mo: 0.05〜5%、 W:0.05〜10%、ただし[2] instead of a part of Fe, by mass 0/0, further Mo: 0.05~5%, W: 0.05~10 %, provided that
Mo+(WZ2)は 5%以下、 B:0.0005〜0.05%、Nb:0.05〜0.8%、V:0.02 〜1.5%、Co:0.05〜5%、Zr:0.0005〜0.2%、Hf:0.0005〜1%および Ta: 0.01〜8%のうちの 1種以上を含有する請求項 1に記載のオーステナイト系ステンレ ス鋼。 Mo + (WZ2) is 5% or less, B: 0.0005-0.05%, Nb: 0.05-0.8%, V: 0.02-1.5%, Co: 0.05-5%, Zr: 0.0005-0.2%, Hf: 0.0005-1% 2. The austenitic stainless steel according to claim 1, containing at least one of Ta and 0.01 to 8%.
[3] Feの一部に代えて、質量0 /0で、さらに Mg:0.0005〜0.05%および Ca:0.000[3] instead of a part of Fe, by mass 0/0, further Mg: 0.0005 to 0.05% and Ca: 0.000
5〜0.05%の一方または両方を含有する請求項 1または請求項 2に記載のオーステ ナイト系ステンレス鋼。 The austenitic stainless steel according to claim 1 or 2, which contains one or both of 5 to 0.05%.
[4] REMが Ndである請求項 1から請求項 3までの!/、ずれかに記載のオーステナイト系 ステンレス ί岡。  [4] The austenitic stainless steel ίoka according to any one of claims 1 to 3, wherein REM is Nd.
PCT/JP2006/306894 2005-04-04 2006-03-31 Austenitic stainless steel WO2006106944A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK06730842.9T DK1867743T5 (en) 2005-04-04 2006-03-31 Austenitic stainless steel
JP2007511185A JP4803174B2 (en) 2005-04-04 2006-03-31 Austenitic stainless steel
EP20060730842 EP1867743B9 (en) 2005-04-04 2006-03-31 Austenitic stainless steel
KR1020077022019A KR100931448B1 (en) 2005-04-04 2006-03-31 Austenitic Stainless Steels
CA2603681A CA2603681C (en) 2005-04-04 2006-03-31 Austenitic stainless steel
US11/905,707 US7731895B2 (en) 2005-04-04 2007-10-03 Austenitic Fe-Ni-Cr alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-107469 2005-04-04
JP2005107469 2005-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/905,707 Continuation US7731895B2 (en) 2005-04-04 2007-10-03 Austenitic Fe-Ni-Cr alloy

Publications (1)

Publication Number Publication Date
WO2006106944A1 true WO2006106944A1 (en) 2006-10-12

Family

ID=37073494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306894 WO2006106944A1 (en) 2005-04-04 2006-03-31 Austenitic stainless steel

Country Status (8)

Country Link
US (1) US7731895B2 (en)
EP (1) EP1867743B9 (en)
JP (1) JP4803174B2 (en)
KR (1) KR100931448B1 (en)
CN (1) CN100577844C (en)
CA (1) CA2603681C (en)
DK (1) DK1867743T5 (en)
WO (1) WO2006106944A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030076A (en) * 2006-07-27 2008-02-14 Sumitomo Metal Ind Ltd Austenitic stainless steel welded joint and austenitic stainless steel welding material
WO2008087807A1 (en) 2007-01-15 2008-07-24 Sumitomo Metal Industries, Ltd. Austenitic stainless steel welded joint and austenitic stainless steel welding material
WO2009044802A1 (en) * 2007-10-04 2009-04-09 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
WO2009044796A1 (en) * 2007-10-03 2009-04-09 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
WO2009093676A1 (en) 2008-01-25 2009-07-30 Sumitomo Metal Industries, Ltd. Welding material and welded joint structures
WO2012153814A1 (en) * 2011-05-11 2012-11-15 株式会社神戸製鋼所 Heat-resistant austenitic stainless steel having excellent cyclic oxidation resistance
WO2013147027A1 (en) 2012-03-30 2013-10-03 新日鐵住金ステンレス株式会社 Heat-resistant austenitic stainless steel sheet
US8865060B2 (en) 2007-10-04 2014-10-21 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel
WO2016195106A1 (en) * 2015-06-05 2016-12-08 新日鐵住金株式会社 Austenitic stainless steel
US11866814B2 (en) 2007-10-04 2024-01-09 Nippon Steel Corporation Austenitic stainless steel

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176561B2 (en) * 2007-07-02 2013-04-03 新日鐵住金株式会社 Manufacturing method of high alloy pipe
ES2728670T3 (en) 2008-06-16 2019-10-28 Nippon Steel Corp Austenitic heat-resistant alloy, heat-resistant pressure member comprising the alloy, and method for manufacturing the same member
JP5463527B2 (en) * 2008-12-18 2014-04-09 独立行政法人日本原子力研究開発機構 Welding material made of austenitic stainless steel, stress corrosion cracking preventive maintenance method and intergranular corrosion preventive maintenance method using the same
JP4780189B2 (en) 2008-12-25 2011-09-28 住友金属工業株式会社 Austenitic heat-resistant alloy
KR101091863B1 (en) * 2009-03-06 2011-12-12 포스코특수강 주식회사 Stainless steel having excellent high temperature strength and manufacturing method for the same
CN101633999B (en) * 2009-05-26 2011-06-01 山西太钢不锈钢股份有限公司 Austenitic stainless steel, steel tube thereof and manufacturing method thereof
JP5552284B2 (en) * 2009-09-14 2014-07-16 信越化学工業株式会社 Polycrystalline silicon manufacturing system, polycrystalline silicon manufacturing apparatus, and polycrystalline silicon manufacturing method
EP2583763B1 (en) * 2010-06-15 2018-08-08 Nippon Steel & Sumitomo Metal Corporation Drawing method of metallic tube and producing method of metallic tube using same
CN101947870B (en) * 2010-11-01 2012-10-03 山东大学 Corrosion-resistant rod composite material and preparation method thereof
BR112013018100B1 (en) 2011-03-28 2022-04-05 Nippon Steel Corporation High strength austenitic stainless steel for high pressure hydrogen gas, container or tube for hydrogen gas and method for producing austenitic stainless steel for high pressure hydrogen gas
CN102212734B (en) * 2011-06-03 2013-01-02 武汉德荣机电设备有限责任公司 Steel for furnace bottom roll
CN102492895B (en) * 2011-12-24 2013-02-13 王崇高 Heat resistant steel for high temperature furnace tube
JP5296186B2 (en) * 2011-12-27 2013-09-25 株式会社神戸製鋼所 Heat-resistant austenitic stainless steel and stainless steel pipe with excellent scale peeling resistance
EP2617858B1 (en) * 2012-01-18 2015-07-15 Sandvik Intellectual Property AB Austenitic alloy
MX354334B (en) * 2012-03-26 2018-02-26 Nippon Steel & Sumitomo Metal Corp Stainless steel for oil wells and stainless steel pipe for oil wells.
UA111115C2 (en) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. cost effective ferritic stainless steel
KR101475679B1 (en) * 2012-12-14 2014-12-23 한국에너지기술연구원 Hydrogen membrane module for carbon dioxide capture
CN103173698B (en) * 2013-04-09 2015-02-25 北京科技大学 Dispersed precipitated phase strengthened austenitic stainless steel with high Cr and high Ni and thermal processing method
DE102013214863A1 (en) * 2013-07-30 2015-02-05 Schott Ag Tubular body made of austenitic steel
CN103451569A (en) * 2013-08-02 2013-12-18 安徽三联泵业股份有限公司 Corrosion-resistant and high-strength stainless steel material for pump covers and manufacturing method thereof
CN103695806B (en) * 2013-12-10 2016-08-17 江苏武进不锈股份有限公司 A kind of austenitic heat-resistance steel
JP6289941B2 (en) * 2014-03-05 2018-03-07 株式会社神戸製鋼所 Austenitic heat resistant steel
CN104278207B (en) * 2014-07-22 2016-08-24 安徽省三方新材料科技有限公司 A kind of heat resisting steel containing rare earth element
CN104195460B (en) * 2014-09-02 2016-08-17 江苏武进不锈股份有限公司 Austenitic heat-resistance steel
WO2016043199A1 (en) 2014-09-19 2016-03-24 新日鐵住金株式会社 Austenitic stainless steel sheet
CN104561821A (en) * 2014-11-13 2015-04-29 江苏大学 Austenitic stainless steel and preparation method thereof
JP6308123B2 (en) * 2014-12-16 2018-04-11 セイコーエプソン株式会社 Metal powder for powder metallurgy, compound, granulated powder and sintered body
JP6095237B2 (en) 2015-01-26 2017-03-15 日立金属Mmcスーパーアロイ株式会社 Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy
US11149324B2 (en) 2015-03-26 2021-10-19 Nippon Steel Stainless Steel Corporation High strength austenitic stainless steel having excellent resistance to hydrogen embrittlement, method for manufacturing the same, and hydrogen equipment used for high-pressure hydrogen gas and liquid hydrogen environment
ES2839079T3 (en) * 2015-03-26 2021-07-05 Nippon Steel & Sumikin Sst Stainless steel that has excellent weldability
KR20170128549A (en) 2015-06-15 2017-11-22 신닛테츠스미킨 카부시키카이샤 High Cr austenitic stainless steel
CN105154786A (en) * 2015-10-23 2015-12-16 何鹏 Wear-resistant vanadium-titanium gear and preparation method thereof
CN105154790A (en) * 2015-10-23 2015-12-16 何鹏 High-strength wear-resistant nonmagnetic stainless steel and preparation method thereof
BE1023692B1 (en) * 2015-11-27 2017-06-16 Cockerill Maintenance & Ingenierie S.A. BIMETALLIC TUBE FOR SOLAR RECEIVER
CN105568177A (en) * 2015-12-31 2016-05-11 钢铁研究总院 Cu composite reinforced high-strength and toughness secondary hardening heat resistant steel and preparation method
CN106282840A (en) * 2016-08-25 2017-01-04 郑州三众耐磨技术有限公司 CFB boiler deflector XFR material
CN106579880B (en) * 2016-11-30 2020-02-07 宁波市新光货架有限公司 Wear-resisting corrosion-resistant goods shelves
CN106724418A (en) * 2016-11-30 2017-05-31 宁波市新光货架有限公司 A kind of shelf
CN106756621A (en) * 2016-12-02 2017-05-31 南京悠谷知识产权服务有限公司 A kind of magnaflux Nanoalloy and preparation method thereof
CN106756616A (en) * 2016-12-02 2017-05-31 南京悠谷知识产权服务有限公司 A kind of high temperature resistant aviation Nanoalloy and preparation method thereof
JP6384638B1 (en) * 2017-01-23 2018-09-05 Jfeスチール株式会社 Ferritic / austenitic duplex stainless steel sheet
RU2639173C1 (en) * 2017-05-04 2017-12-20 Юлия Алексеевна Щепочкина Steel
CN107299292B (en) * 2017-08-08 2018-09-11 永兴特种不锈钢股份有限公司 A kind of austenitic heat-resistance steel of the anti-steam corrosion of high-lasting strength
EP3683324A4 (en) * 2017-09-13 2021-03-03 Maruichi Stainless Tube Co., Ltd. Austenitic stainless steel and method for producing same
CN107858589A (en) * 2017-09-20 2018-03-30 常州凯旺金属材料有限公司 The stainless iron and heat treatment method of a kind of corrosion-and high-temp-resistant
CN109554609B (en) * 2017-09-26 2022-03-15 宝钢德盛不锈钢有限公司 Surface peeling-free austenitic heat-resistant steel and manufacturing method thereof
CN107829039A (en) * 2017-09-26 2018-03-23 宁国市恒铸新型材料科技有限公司 A kind of crust beating hammer for aluminium electrolysis alloy material and new crust-breaking chips surface increase the moulding process of material
CN118308663A (en) * 2017-10-03 2024-07-09 日本制铁株式会社 Austenitic stainless steel weld metal and welded structure
CN107699793B (en) * 2017-10-23 2019-07-05 中国电建集团河南工程有限公司 Austenitic heat-resistance steel Super304H connector wlding and its welding procedure
JP7110629B2 (en) * 2018-03-08 2022-08-02 セイコーエプソン株式会社 Metal powders, compounds, granulated powders and sintered bodies for powder metallurgy
CN108330405A (en) * 2018-03-30 2018-07-27 四川六合锻造股份有限公司 A kind of excellent anti-corrosion performance and the good high duty alloy of high temperature resistance
CN108468000A (en) * 2018-07-05 2018-08-31 赵云飞 A kind of preparation method of ferrochrome material
CN109355558B (en) * 2018-11-01 2021-01-26 中广核研究院有限公司 Austenitic stainless steel, and preparation method and application thereof
CN110484836B (en) * 2019-09-24 2021-01-05 南京佑天金属科技有限公司 Hafnium zirconium titanium molybdenum reinforced austenitic stainless steel and preparation method thereof
KR102711663B1 (en) * 2019-10-17 2024-10-02 닛폰세이테츠 가부시키가이샤 Austenitic stainless steel sheet
CN112609126A (en) * 2020-11-13 2021-04-06 宁波宝新不锈钢有限公司 Austenitic stainless steel for nuclear power equipment and preparation method thereof
CN113549820B (en) * 2021-06-29 2022-05-17 鞍钢股份有限公司 High-carbon low-ferrite-content austenitic stainless steel plate and production method thereof
CN113755753B (en) * 2021-08-24 2022-06-17 北京科技大学 Heterogeneous structure based multi-type strengthened austenitic stainless steel and manufacturing method thereof
CN116024489A (en) * 2021-10-27 2023-04-28 江苏新华合金有限公司 316H plate and production process thereof
CN114196880B (en) * 2021-12-06 2022-08-30 山西太钢不锈钢股份有限公司 High-strength low-yield-ratio austenitic stainless steel and preparation method thereof
CN116200668B (en) * 2023-04-17 2023-11-14 宁波晴力紧固件有限公司 Heat-resistant high-strength fastener material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3717113B1 (en) * 1961-02-06 1962-10-22
US4141762A (en) 1976-05-15 1979-02-27 Nippon Steel Corporation Two-phase stainless steel
JPS62243742A (en) 1986-04-17 1987-10-24 Nippon Kokan Kk <Nkk> Austenitic stainless steel having superior creep rupture strength
JPH06228713A (en) * 1993-02-03 1994-08-16 Hitachi Metals Ltd Austenitic heat resistant cast steel excellent in strength at high temperature and machinability and exhaust system parts using same
JPH07118810A (en) 1993-10-20 1995-05-09 Kawasaki Steel Corp Austenitic stainless steel excellent in thermal fatigue strength and high temperature salt damage resistance
JPH11293412A (en) * 1998-04-08 1999-10-26 Pacific Metals Co Ltd Austenitic stainless steel excellent in hot workability
EP1342807A2 (en) 2002-03-08 2003-09-10 Sumitomo Metal Industries, Ltd. Austenitic stainless steel tube and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1015002B (en) * 1990-09-24 1991-12-04 冶金工业部钢铁研究总院 Magnetism-free stainless steel
JPH0748655A (en) * 1993-08-05 1995-02-21 Kawasaki Steel Corp Austenitic stainless steel excellent in thermal fatigue characteristics
JP3424599B2 (en) * 1999-05-11 2003-07-07 住友金属工業株式会社 Austenitic stainless steel with excellent hot workability
JP2001234297A (en) * 2000-02-23 2001-08-28 Nippon Steel Corp Austenitic free cutting stainless steel excellent in environmental affinity
JP3838216B2 (en) * 2003-04-25 2006-10-25 住友金属工業株式会社 Austenitic stainless steel
WO2007080856A1 (en) * 2006-01-11 2007-07-19 Sumitomo Metal Industries, Ltd. Metallic material having excellent metal dusting resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3717113B1 (en) * 1961-02-06 1962-10-22
US4141762A (en) 1976-05-15 1979-02-27 Nippon Steel Corporation Two-phase stainless steel
JPS62243742A (en) 1986-04-17 1987-10-24 Nippon Kokan Kk <Nkk> Austenitic stainless steel having superior creep rupture strength
JPH06228713A (en) * 1993-02-03 1994-08-16 Hitachi Metals Ltd Austenitic heat resistant cast steel excellent in strength at high temperature and machinability and exhaust system parts using same
JPH07118810A (en) 1993-10-20 1995-05-09 Kawasaki Steel Corp Austenitic stainless steel excellent in thermal fatigue strength and high temperature salt damage resistance
JPH11293412A (en) * 1998-04-08 1999-10-26 Pacific Metals Co Ltd Austenitic stainless steel excellent in hot workability
EP1342807A2 (en) 2002-03-08 2003-09-10 Sumitomo Metal Industries, Ltd. Austenitic stainless steel tube and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1867743A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030076A (en) * 2006-07-27 2008-02-14 Sumitomo Metal Ind Ltd Austenitic stainless steel welded joint and austenitic stainless steel welding material
WO2008087807A1 (en) 2007-01-15 2008-07-24 Sumitomo Metal Industries, Ltd. Austenitic stainless steel welded joint and austenitic stainless steel welding material
US8137613B2 (en) 2007-01-15 2012-03-20 Sumitomo Metal Industries, Ltd. Austenitic stainless steel welded joint and austenitic stainless steel welding material
WO2009044796A1 (en) * 2007-10-03 2009-04-09 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
US8865060B2 (en) 2007-10-04 2014-10-21 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel
WO2009044802A1 (en) * 2007-10-04 2009-04-09 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
US11866814B2 (en) 2007-10-04 2024-01-09 Nippon Steel Corporation Austenitic stainless steel
CN102317489A (en) * 2007-10-04 2012-01-11 住友金属工业株式会社 Austenitic stainless steel
US8133431B2 (en) 2007-10-04 2012-03-13 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
WO2009093676A1 (en) 2008-01-25 2009-07-30 Sumitomo Metal Industries, Ltd. Welding material and welded joint structures
US8158274B2 (en) 2008-01-25 2012-04-17 Sumitomo Metal Industries, Ltd. Welding material and welded joint structure
US7951469B2 (en) 2008-01-25 2011-05-31 Sumitomo Metal Industries, Ltd. Welding material and welded joint structure
WO2012153814A1 (en) * 2011-05-11 2012-11-15 株式会社神戸製鋼所 Heat-resistant austenitic stainless steel having excellent cyclic oxidation resistance
JP2013076156A (en) * 2011-05-11 2013-04-25 Kobe Steel Ltd Heat-resistant austenitic stainless steel having excellent high-temperature strength and cyclic oxidation resistance
WO2013147027A1 (en) 2012-03-30 2013-10-03 新日鐵住金ステンレス株式会社 Heat-resistant austenitic stainless steel sheet
WO2016195106A1 (en) * 2015-06-05 2016-12-08 新日鐵住金株式会社 Austenitic stainless steel
JP6112270B1 (en) * 2015-06-05 2017-04-12 新日鐵住金株式会社 Austenitic stainless steel
JP2017089013A (en) * 2015-06-05 2017-05-25 新日鐵住金株式会社 Austenitic stainless steel

Also Published As

Publication number Publication date
KR100931448B1 (en) 2009-12-11
EP1867743A4 (en) 2013-04-03
CN101151394A (en) 2008-03-26
CA2603681A1 (en) 2006-10-12
JPWO2006106944A1 (en) 2008-09-11
DK1867743T3 (en) 2014-05-19
EP1867743B1 (en) 2014-05-07
US7731895B2 (en) 2010-06-08
JP4803174B2 (en) 2011-10-26
EP1867743B9 (en) 2015-04-29
CN100577844C (en) 2010-01-06
KR20070107166A (en) 2007-11-06
EP1867743A1 (en) 2007-12-19
DK1867743T5 (en) 2014-09-29
US20080089803A1 (en) 2008-04-17
CA2603681C (en) 2011-07-05

Similar Documents

Publication Publication Date Title
WO2006106944A1 (en) Austenitic stainless steel
US5298093A (en) Duplex stainless steel having improved strength and corrosion resistance
JP5685198B2 (en) Ferritic-austenitic stainless steel
KR100596660B1 (en) Austenitic stainless steel
KR101259686B1 (en) Nickel-based alloy
EP3575427B1 (en) Dual-phase stainless clad steel and method for producing same
WO2002040728A1 (en) Ni-base heat-resistant alloy and weld joint using the same
KR20050044557A (en) Super-austenitic stainless steel
KR20090078813A (en) Duplex stainless steel alloy and use of this alloy
WO2016204005A1 (en) HIGH-Cr AUSTENITIC STAINLESS STEEL
JP5838933B2 (en) Austenitic heat resistant steel
EP1001044B1 (en) Use of a heat-resisting cast steel
JP4816642B2 (en) Low alloy steel
EP2865776A1 (en) Duplex stainless steel
JP4614547B2 (en) Martensitic heat resistant alloy with excellent high temperature creep rupture strength and ductility and method for producing the same
JPWO2019070001A1 (en) Austenitic Stainless Steel Welded Metals and Welded Structures
JP3424599B2 (en) Austenitic stainless steel with excellent hot workability
JP3955719B2 (en) Heat resistant steel, heat treatment method of heat resistant steel and heat resistant steel parts
JP7502623B2 (en) Low alloy heat-resistant steel and steel pipes
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JPS59211553A (en) High cr steel with superior toughness and superior strength at high temperature
JPS59211552A (en) Martensitic high cr steel with high toughness
JP7256374B2 (en) Austenitic heat-resistant alloy member
JP2017145437A (en) Ferritic stainless steel
US20240318289A1 (en) Heat-resistant ferritic steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010751.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007511185

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006730842

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077022019

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2603681

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11905707

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730842

Country of ref document: EP