JPH0379426B2 - - Google Patents

Info

Publication number
JPH0379426B2
JPH0379426B2 JP59202467A JP20246784A JPH0379426B2 JP H0379426 B2 JPH0379426 B2 JP H0379426B2 JP 59202467 A JP59202467 A JP 59202467A JP 20246784 A JP20246784 A JP 20246784A JP H0379426 B2 JPH0379426 B2 JP H0379426B2
Authority
JP
Japan
Prior art keywords
steel
content
corrosion resistance
hardness
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59202467A
Other languages
Japanese (ja)
Other versions
JPS6179751A (en
Inventor
Hajime Ikeda
Kiichi Saito
Takeshi Yoshida
Ko Tajima
Hiromitsu Hoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP20246784A priority Critical patent/JPS6179751A/en
Publication of JPS6179751A publication Critical patent/JPS6179751A/en
Publication of JPH0379426B2 publication Critical patent/JPH0379426B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は、良好な耐摩耗性確保につながる優
れた焼入れ性を有するとともに、高靭性並びに高
耐食性をも兼備していて、オートバイのブレーキ
デイスク用素材として好適な低炭素マルテンサイ
ト系ステンレス鋼に関するものである。 <従来の技術及びその問題点> 近年、オートバイの需要は益々増加する様相を
呈しているが、それとともに性能や外観等に対す
る需要者の要求よりも一段と高度化する傾向をた
どつている。例えば、制動装置を例にとつてみて
も、これらの要望に応えるべくデイスクブレーキ
の採用が一般化してきており、更にその材質等に
も種々の工夫・改良が加えられてきた。 ところで、オートバイに作用されるブレーキデ
イスクには耐摩耗性や靭性に優れていることが要
求されることはもちろんであるが、加えて、使用
環境の多様化や美的要因から、優れた耐食性・耐
銹性を備えていることも欠くことのできない大き
な要件となつてきている。 従来、このような状況に対処すべく、オートバ
イ用ブレーキデイスクには高炭素1Cr鋼(0.3重量
%C−15.5重量%Cr鋼)、或いはSUS 420J2鋼
(0.3重量%C−13重量%Cr鋼)等の高炭素マルテ
ンサイト系ステンレス鋼が採用され、熱処理によ
つて硬さをHRC35±3程度に管理して使用に供さ
れていた。ブレーキデイスクの硬さを特に前記の
如き値に調整するのは、耐摩耗性のみを考慮して
硬度を高くしすぎると(デイスクの耐摩耗性はそ
の硬度とほぼ比例関係にあり、硬度が高くなるほ
ど耐摩耗性も向上する)ブレーキ鳴きを生じるよ
うになるばかりか、制動安定性にも悪影響を及ぼ
すからである。 ところが、前記従来材ではこの硬さ調整に難点
があり、その改善が強く待たれるものであつて、
必ずしも現状又は近い将来に了とされる品質のも
のではなかつた。 なぜなら、オートバイ用ブレーキデイスクに供
されてきた前記高炭素系鋼材は、C及びCr等の
含有量や焼入れ温度のわずかな変動によつて焼入
れ硬さが大きく変化するものであり、従つて、
“焼入れ”のみでHRC35±3と言う狭い範囲の硬
度を得るには苛酷なまでに厳しい材質管理と熱処
理管理を必要とし、実際上、安定した品質の製品
を作業性良く製造するのが極めて困難なものであ
つた。そこで、一般には、“焼入れ”のみによる
硬さ調整をあきらめ、焼入れ処理の後に適当な温
度(550〜650℃)での“焼戻し”を施すことで目
標とする硬さを達成すると言う、多段階の工程を
とらざるを得なかつたのである。 その上、“焼戻し”を伴う前記方法には次のよ
うな問題点もあつた。即ち、この場合の“焼戻
し”とは冶金学的にはCr炭化物の析出によるマ
ルテンサイトからソルバイトへの変態現象である
が、Cr炭化物の析出周辺では局部的にCr濃度が
低くなることは否めず、それに起因するデイスク
材の耐食性低下をどうすることもできなかつたの
である。 このような事情から、最近、“焼入れ”のみに
よつてブレーキデイスクに要求される特性を容易
に得ることができる鋼を目指したところの、Mn
含有量を高めたオートバイデイスクブレーキ用低
炭素マルテンサイト系ステンレス鋼に関する提案
もなされるようになつた(特開昭57−198249号)。 しかしながら、特開昭57−198249号として提案
された前記低炭素マルテンサイト系ステンレス鋼
は、その出願明細書中の実施例の記載からも明ら
かなように、所望の耐食性等を安定して実現する
にはCr含有量を12〜14%程度(以下、%は重量
%とする)と高く設定する必要があり、このため
鋼材の靭性が劣化するばかりか、Mn含有量を高
めたとしてもなおオーステナイトの安定化が不十
分であつて、焼入れ特性や耐食性に難点が残る等
の問題点を有していることが、本発明者等のその
後の研究で明らかとなつたのである。 <問題点を解決するための手段> そこで、本発明者等は、熱処理条件を厳しく管
理せずとも“焼入れ”のみでHRC35±3の硬度が
安定かつ容易に得られ、しかもオートバイ用ブレ
ーキデイスク材として十分に満足できる優れた靭
性並びに耐食性を備えた鋼材を提供すべく、様々
な観点からの基礎的試験・研究を続けた結果、 (a) SUS403として規格化されたマルテンサイト
系ステンレス鋼を基本として、そのC及びNの
総量を低く規制するとともにCr含有量をも低
目に抑え、更に適量のMoを添加すると、焼入
れ性、靭性並びに耐食性がバランス良く向上し
た鋼が得られること、 (b) このような鋼材は、通常の焼入れ処理のみで
オートバイ用ブレーキデイスク材として好適な
硬度(HRC35±3)に安定して調整することが
可能であること、 (c) 該鋼に、適量のNbを更に添加含有せしめる
と、その耐食性が一層向上すること、 以上(a)〜(c)に示されるような知見が得られたの
である。 この発明は、上記知見に基づいてなされたもの
であり、 ステンレス鋼材を、 C:0.08%以下、N:0.04%以下、 (ただし、C+Nの合量で0.06〜0.09%)、 Si:0.5%以下、Mn:0.4〜1.0%、 Cr:10.0〜11.5%、Ni:0.5〜1.0%、 Mo:0.05〜0.5%、 を含有し、更に必要に応じて Nb:0.04〜0.1%、 を含有し、残りがFeと不可避不純物からなる成
分組成(以上重量%、以下%は重量%を示す)で
構成することによつて、優れた焼入れ性、靭性並
びに耐食性を兼備する低炭素マルテンサイト鋼と
した点、 に特徴を有するものである。 次いで、この発明の低炭素マルテンサイト系ス
テンレス鋼において、その成分割合を前記の如く
に数値限定した理由を説明する。 (a) C及びN C及びN成分は、共に鋼の焼入れ硬さを決定
する元素であるが、C+Nの合量で0.06%を下
回つても、またC及びNがそれぞれ0.08%およ
び0.04%を上回り、かつC+Nの合量で0.09%
を上回つても、オーステナイト域からの焼入れ
(通常の焼入れ温度である850〜1000℃からの場
合)の際にHRC35±3の硬さを得ることができ
なくなる上、C及びNの含有量は鋼の靭性にも
著しい影響を及ぼすものであつて、その含有量
がそれぞれC:0.08%およびN:0.04%を越
え、かつC+Nの合量では0.06〜0.09%の範囲
から外れると靭性劣化の傾向をみせることか
ら、その含有量を、C:0.08%以下、N:0.04
%以下にして、C+Nの合量:0.06〜0.09%と
定めた。 第1図は、0.3%Si−0.8%Mn−11.5%Cr−
0.8%Ni−0.3%Mo鋼における〔C+N〕量と
焼入れ硬さとの関係を示す線図であり、第2図
は同様の鋼における〔C+N〕量と衝撃値との
関係を示す線図であるが、これらの線図から
も、HRC35±3の硬度を安定して現実し、かつ
良好な靭性を示す鋼を得るためには、〔C+N〕
量を0.06〜0.09%とする必要があることが明ら
かである。 (b) Si Siは、フエライト生成元素であつて鋼の焼入
れ硬度を低下させるばかりか、靭性にも悪影響
を及ぼすので、合金元素としては好ましくない
ものである。そして、その含有量が0.5%を越
えると特に前記弊害が著しくなることから、Si
含有量はSUSの13Cr鋼(例えばSUS403)と同
様に0.5%以下と定めたが、製鋼上、脱酸が十
分になされるならば低いほど好ましい。 (c) Mn Mn成分には、オーステナイト生成元素であ
ることから焼入れ硬さを安定にする作用があ
り、また脱酸の面からも欠かせないものであ
る。しかし、本発明鋼の場合は、後述する如
く、焼入れ硬化性を安定せしめる元素として
Niを著しい効果を与えており、過剰にMnを添
加しても該効果向上の度合が少ないばかりか経
済性を損うことにもなるため、Mn含有量は1.0
%以下と定めた。なお、Mn含有量は極く微量
であつても所望の効果を得られるが、前記作用
に十分な効果を得るためには0.4%以上の添加
が好ましい。 (d) Cr Cr成分にはステンレス鋼としての耐食性を
確保する作用があるが、その含有量が10.0%未
満では前記作用に所望の効果を得ることができ
ず、一方、11.5%を越えて含有させると靭性の
劣化を来たすことから、Cr含有量は10.0%〜
11.5%と定めた。 第3図は、0.3%Si−0.8%Mn−0.8%Ni−0.3
%Mo鋼におけるCr量と耐食性(JIS Z2371に
規定された塩水噴霧試験による10段階評価のレ
イテングナンバーで示した)との関係を示す線
図であり、第4図は同様の鋼におけるCr量と
衝撃値との関係を示す線図であるが、これらの
線図からも、Cr含有量が10.0〜11.5%の範囲で
良好な耐食性と靭性とを兼備することが明らか
である。 なお、この発明のマルテンサイト系ステンレ
ス鋼はCr含有量が低いため、Fe−Cr状態図か
らも明らかなように、高温においてもオーステ
ナイト安定度が高く、焼入れ特性、靭性及び耐
食性がともに優れているが、この点もこの発明
の大きな特徴の1つである。 (e) Ni Ni成分は、強いオーステナイト生成元素で
あることから有効な焼入れ安定性向上作用を有
しており、また靭性向上作用をも有している
が、その含有量が0.5%未満では焼入れ安定性
向上作用に所望の効果が得られず、一方1.0%
を越えて含有させてもその効果が飽和してしま
い経済的にも好ましくないことから、Ni含有
量は0.5〜1.0%と定めた。 第5図は、0.3%Si−0.8%Mn−11.5%Cr−
0.3%Mo鋼におけるNi量と焼入れ硬さとの関
係を示す線図であり、第6図は同様の鋼におけ
るNi量と衝撃値との関係を示す線図であるが、
これらの線図からも0.5〜1.0%のNi添加が有効
であることは明らかである。 (f) Mo Mo成分は、鋼の耐食性を著しく向上する作
用を有しており、Cr含有量を低減したこの発
明のステンレス鋼ではMo添加による耐食性の
補償は欠かせないものであるが、その含有量が
0.5%を越えると耐食性向上効果が飽和してし
まうことから、Mo含有量は0.5%以下と定め
た。なお、Moは極く微量でもそれなりの耐食
性向上効果を発揮するが、できれば0.05%以上
を含有せしめるのが良い。 第7図は、0.3%Si−0.8%Mn−11.5%Cr−
0.8%Ni鋼におけるMo含有量と耐食性(JIS
Z2371に規定された塩水噴霧試験による10段階
評価のレイテングナンバーで示した)との関係
を示す線図であるが、該線図からも、Mo添加
によつて耐食性が著しく向上することがわか
る。 (g) Nb Nb成分にもこの発明のステンレス鋼の耐食
性を向上する作用があるので、より高い耐食性
を要求される場合に添加されるものであるが、
その含有量が0.1%を越えると経済性を著しく
損うばかりか耐食性向上効果が飽和してしまう
ことから、Nb含有量は0.1%以下と定めた。な
お、Nbも極く微量の添加でそれなりの耐食性
向上作用を示すものであるが、好ましくは0.04
%以上を含有せしめるのが良い。 この発明の低炭素マルテンサイト系ステンレ
ス鋼は、以上に示した成分組成を特徴とするも
のであり、不可避的に混入する不純物元素は極
力少ない方が良いことは言うまでもないが、特
にSを低減することが好ましく、0.001%以下
にS含有量を抑制することが推奨される。 次いで、この発明を実施例により説明する。 <実施例> まず、第1表に示す如き化学成分組成の鋼を
100Kg高周波溶解炉で大気溶解し、これらに常法
通りの鋼塊皮剥、熱間圧延及び焼鈍を施して厚さ
が6mmの熱延板を得た。 次に、これらを750℃にて十分に軟化焼鈍し、
<Industrial Application Field> The present invention has excellent hardenability leading to good wear resistance, as well as high toughness and high corrosion resistance, and is a low carbon material suitable for use as a material for motorcycle brake discs. This relates to martensitic stainless steel. <Prior art and its problems> In recent years, the demand for motorcycles has been increasing more and more, and at the same time, customer demands for performance, appearance, etc. are becoming more sophisticated. For example, in the case of braking devices, in order to meet these demands, the use of disc brakes has become commonplace, and various innovations and improvements have also been made to the materials etc. of the brakes. By the way, brake discs used on motorcycles are of course required to have excellent wear resistance and toughness, but in addition, due to the diversification of usage environments and aesthetic factors, excellent corrosion resistance and resistance are required. Having toughness is also becoming an essential requirement. Conventionally, in order to deal with this situation, motorcycle brake discs have been made of high carbon 1Cr steel (0.3wt%C-15.5wt%Cr steel) or SUS 420J2 steel (0.3wt%C-13wt%Cr steel). High-carbon martensitic stainless steels such as those used for this purpose were used, and the hardness was controlled to about H R C35±3 through heat treatment. Adjusting the hardness of the brake disc to the value mentioned above is difficult because the hardness is too high considering only the wear resistance (the wear resistance of the disc is almost proportional to its hardness, so if the hardness is too high) This is because not only does this result in brake squeal, but also has a negative effect on braking stability. However, with the conventional materials, there are difficulties in adjusting the hardness, and improvements in this are strongly awaited.
It was not necessarily of the quality that would be achieved at present or in the near future. This is because the quenching hardness of the high carbon steel materials that have been used for motorcycle brake discs changes greatly depending on the content of C and Cr, etc. and slight variations in the quenching temperature.
Obtaining a hardness in the narrow range of H R C35 ± 3 by “quenching” alone requires extremely strict material control and heat treatment control, and in practice, it is difficult to manufacture products of stable quality with good workability. It was extremely difficult. Therefore, in general, we give up on hardness adjustment by "quenching" alone, and instead achieve the target hardness by "tempering" at an appropriate temperature (550-650℃) after quenching. This process had no choice but to be taken. Moreover, the above-mentioned method involving "tempering" had the following problems. In other words, in metallurgical terms, "tempering" in this case is a transformation phenomenon from martensite to sorbite due to the precipitation of Cr carbides, but it is undeniable that the Cr concentration locally decreases around the precipitation of Cr carbides. However, there was nothing that could be done to prevent the corrosion resistance of the disk material from decreasing due to this. Due to these circumstances, we have recently been working on a steel that can easily obtain the characteristics required for brake discs only by "quenching", and we have developed Mn.
Proposals have also been made regarding low carbon martensitic stainless steel for motorcycle disc brakes with increased carbon content (Japanese Patent Application Laid-open No. 198249/1983). However, the low carbon martensitic stainless steel proposed in JP-A No. 57-198249 stably achieves the desired corrosion resistance, etc., as is clear from the description of the examples in the application specification. It is necessary to set the Cr content as high as 12 to 14% (hereinafter, % is by weight), which not only deteriorates the toughness of the steel material, but also makes it difficult to maintain austenite even if the Mn content is increased. Subsequent research by the present inventors has revealed that the stabilization of the steel is insufficient and there are problems such as problems with hardening characteristics and corrosion resistance. <Means for Solving the Problems> Therefore, the inventors of the present invention have discovered that a hardness of H R C35±3 can be stably and easily obtained only by "quenching" without strictly controlling the heat treatment conditions, and that a brake for motorcycles can be obtained. In order to provide a steel material with excellent toughness and corrosion resistance that can be used as a disc material, we continued basic testing and research from various perspectives, and as a result, (a) martensitic stainless steel standardized as SUS403. Based on this, by regulating the total amount of C and N, keeping the Cr content low, and adding an appropriate amount of Mo, it is possible to obtain steel with well-balanced improvements in hardenability, toughness, and corrosion resistance. (b) It is possible to stably adjust the hardness of such steel to a suitable hardness (H R C35±3) for motorcycle brake disc materials only by ordinary quenching; (c) The findings as shown in (a) to (c) above were obtained that when an appropriate amount of Nb is further added, the corrosion resistance is further improved. This invention was made based on the above knowledge, and stainless steel material is made of C: 0.08% or less, N: 0.04% or less (however, the total amount of C + N is 0.06 to 0.09%), and Si: 0.5% or less. , Mn: 0.4 to 1.0%, Cr: 10.0 to 11.5%, Ni: 0.5 to 1.0%, Mo: 0.05 to 0.5%, and if necessary, Nb: 0.04 to 0.1%, and the remainder is a low carbon martensitic steel that has excellent hardenability, toughness and corrosion resistance by having a composition consisting of Fe and unavoidable impurities (the above % indicates weight %), It has the following characteristics. Next, the reason why the component proportions of the low carbon martensitic stainless steel of the present invention are numerically limited as described above will be explained. (a) C and N Both C and N components are elements that determine the quenching hardness of steel, but even if the total amount of C + N is less than 0.06%, C and N are 0.08% and 0.04%, respectively. , and the total amount of C+N is 0.09%
Even if the hardness is exceeded, it will not be possible to obtain a hardness of H R C35±3 during quenching from the austenite region (from the normal quenching temperature of 850 to 1000℃), and the content of C and N The amount has a significant effect on the toughness of steel, and if the content exceeds C: 0.08% and N: 0.04%, and the total amount of C + N falls outside the range of 0.06 to 0.09%, the toughness will deteriorate. Therefore, the content should be reduced to C: 0.08% or less, N: 0.04%
% or less, and the total amount of C+N was set at 0.06 to 0.09%. Figure 1 shows 0.3%Si-0.8%Mn-11.5%Cr-
FIG. 2 is a diagram showing the relationship between the [C+N] amount and quenching hardness in 0.8%Ni-0.3%Mo steel, and FIG. 2 is a diagram showing the relationship between the [C+N] amount and impact value in a similar steel. However, from these diagrams, in order to stably achieve a hardness of H R C35±3 and obtain a steel that exhibits good toughness, [C+N]
It is clear that the amount should be between 0.06 and 0.09%. (b) Si Si is a ferrite-forming element that not only lowers the quenching hardness of steel but also has a negative effect on toughness, so it is not preferred as an alloying element. When the content exceeds 0.5%, the above-mentioned adverse effects become particularly severe, so Si
The content was set at 0.5% or less, similar to SUS 13Cr steel (for example, SUS403), but from the viewpoint of steel manufacturing, the lower the content, the better, as long as sufficient deoxidation can be achieved. (c) Mn Since the Mn component is an austenite-forming element, it has the effect of stabilizing hardening hardness, and is also essential from the viewpoint of deoxidation. However, in the case of the steel of the present invention, as described later, as an element that stabilizes the quench hardenability,
The Mn content is set at 1.0.
% or less. Although the desired effect can be obtained even if the Mn content is extremely small, it is preferable to add 0.4% or more in order to obtain a sufficient effect for the above-mentioned effect. (d) Cr The Cr component has the effect of ensuring the corrosion resistance of stainless steel, but if the content is less than 10.0%, the desired effect cannot be obtained in this effect; on the other hand, if the content exceeds 11.5%, The Cr content should be 10.0% or more, as this will cause deterioration of toughness.
It was set at 11.5%. Figure 3 shows 0.3%Si-0.8%Mn-0.8%Ni-0.3
%Mo steel is a diagram showing the relationship between the amount of Cr and corrosion resistance (indicated by a 10-level rating rating based on the salt spray test specified in JIS Z2371), and Figure 4 shows the amount of Cr in similar steel. It is clear from these diagrams that good corrosion resistance and toughness are achieved when the Cr content is in the range of 10.0 to 11.5%. Furthermore, since the martensitic stainless steel of this invention has a low Cr content, it has high austenite stability even at high temperatures, as is clear from the Fe-Cr phase diagram, and has excellent hardenability, toughness, and corrosion resistance. However, this point is also one of the major features of this invention. (e) Ni Since Ni is a strong austenite-forming element, it has an effective effect on improving quenching stability and also has an effect on improving toughness, but if its content is less than 0.5%, it will cause hardening. The desired stability improvement effect was not obtained, while 1.0%
The Ni content was determined to be 0.5 to 1.0% because the effect would be saturated and it would be economically unfavorable if the Ni content exceeded 0.5% to 1.0%. Figure 5 shows 0.3%Si−0.8%Mn−11.5%Cr−
FIG. 6 is a diagram showing the relationship between Ni content and quenching hardness in 0.3% Mo steel, and FIG. 6 is a diagram showing the relationship between Ni content and impact value in similar steel.
It is clear from these diagrams that Ni addition of 0.5 to 1.0% is effective. (f) Mo The Mo component has the effect of significantly improving the corrosion resistance of steel, and it is essential to compensate for the corrosion resistance by adding Mo in the stainless steel of this invention with reduced Cr content. The content is
If it exceeds 0.5%, the effect of improving corrosion resistance will be saturated, so the Mo content was set at 0.5% or less. Although Mo exhibits a certain effect of improving corrosion resistance even in a very small amount, it is preferably contained in an amount of 0.05% or more. Figure 7 shows 0.3%Si−0.8%Mn−11.5%Cr−
Mo content and corrosion resistance in 0.8% Ni steel (JIS
This is a diagram showing the relationship between the corrosion resistance (denoted by a 10-level latency number based on the salt spray test specified in Z2371), and it can be seen from the diagram that corrosion resistance is significantly improved by adding Mo. . (g) Nb Since the Nb component also has the effect of improving the corrosion resistance of the stainless steel of this invention, it is added when higher corrosion resistance is required.
If the Nb content exceeds 0.1%, it not only significantly impairs economic efficiency but also saturates the effect of improving corrosion resistance, so the Nb content was set at 0.1% or less. Note that Nb also exhibits a certain degree of corrosion resistance improvement effect when added in a very small amount, but preferably 0.04
% or more is preferable. The low carbon martensitic stainless steel of this invention is characterized by the above-mentioned composition, and although it goes without saying that it is better to have as few impurity elements as possible that are inevitably mixed in, it is especially desirable to reduce S. It is preferable to suppress the S content to 0.001% or less. Next, the present invention will be explained by examples. <Example> First, steel with the chemical composition shown in Table 1 was prepared.
The steel ingots were melted in the atmosphere in a 100Kg high-frequency melting furnace, and then subjected to conventional peeling, hot rolling, and annealing to obtain hot rolled sheets with a thickness of 6 mm. Next, these were sufficiently softened and annealed at 750℃,

【表】【table】

【表】 デイスクブレーキ材及びラボ試験片を採取した。 このようにして得られた試験片について、焼入
れ性、靭性及び耐食性を調査し、その結果を第8
図、第9図、第10図及び第2表に示した。 一般に、ブレーキデイスク材では、能率向上や
酸化防止のために高周波焼入れが実施されている
が、第8図に示される本発明鋼1(試験片寸法:
6mmφ×100mm)についての迅速焼入れ試験(昇
温:10秒、均熱時間:7秒、冷却手段:放冷)の
結果は、本発明鋼が極く短時間の昇温並びに均熱
であつても十分に目標とする硬さに達し、しかも
表層部及び中心部ともほぼ均一な硬さとなるなど
極めて優れた焼入れ性を有していることを明示し
ており、この点からもブレーキデイスク材として
好適であることがわかる。なお、このような焼入
れ特性は、本発明鋼1に限られるものではなく、
本発明鋼2〜15においても同様であることが確
認された。 また、ブレーキデイスクへの装飾用材のCuブ
レージング接合と焼入れ用熱処理とを同時に実施
する場合は、1150〜1200℃程度への加熱が必要で
あるが、第8図に示される結果は、このような温
度からの焼入れによつてもHRC35±3の焼入れ硬
さが得られることを明示するものでもあり、この
ことは、打抜き、装飾用材の付着接合、焼入れ等
の処理を施す側のオートバイメーカー等に材料選
定上大きな自由度を持たせ得ることを意味してい
る。 そして、本発明鋼1及び15、並びに従来鋼1
6についての高温焼入れ試験結果を示す第9図か
らも、これらの事実は明瞭に裏付けられる。 これに対して、従来鋼16は、通常、1100〜
1200℃ではオーステナイト相1相とはならず、フ
エライト相が析出するために焼入れ状態では「マ
ルテンサイト相+フエライト相」の2相組織とな
つてしまつて十分な“焼き”が入らず、耐食性の
低下や靭性低下をきたすものであつた。 なお、本発明鋼が十分に安定した焼入れ硬さを
得られるのは、Cr含有量が低いために1200℃を
越える高温までフエライト相が析出せず、前記温
度範囲ではオーステナイト1相であるので、焼入
れ後も十分にマルテンサイト1相を確保できるか
らである。 第10図は、本発明鋼1及び15、並びに従来
鋼16についての焼入れ温度と靭性との関係を示
した線図であるが、本発明鋼は800〜1000℃の焼
入れ温度でいずれも5Kg−m以上の衝撃値を示し
ているのに対して(なお、このことは鋼種1及び
15以外の本発明鋼についても確認された)、従
来鋼16は靭性が低く、特に850℃焼入れについ
ては約2Kg−m程度の衝撃値しか示さず、安全性
に支障のあることがわかる。 更に、第2表は、本発明鋼1〜15並びに従来
鋼16における、各種温度でのシヤルピー衝撃試
験結果(950℃焼入れ)並びに塩水噴霧試験結果
(JIS Z 2371に規定された塩水噴霧試験による
10段階評価のレイテングナンバーで示した)を表
わしたものであるが、該第2表からも、本発明鋼
は−25℃の低温でも十分な靭性を有していて、オ
ートバイデイスクとして使用した場合
[Table] Disc brake materials and laboratory test pieces were collected. The hardenability, toughness, and corrosion resistance of the test pieces thus obtained were investigated, and the results were reported in the 8th section.
, FIG. 9, FIG. 10, and Table 2. In general, brake disc materials are subjected to induction hardening to improve efficiency and prevent oxidation.
6mmφ It clearly shows that it has extremely excellent hardenability, reaching the target hardness and having almost uniform hardness in both the surface layer and the center.From this point of view, it is suitable as a brake disc material. It can be seen that this is suitable. Note that such quenching characteristics are not limited to Invention Steel 1;
It was confirmed that the same holds true for Invention Steels 2 to 15. In addition, when performing Cu brazing bonding of decorative materials to brake discs and heat treatment for hardening at the same time, heating to approximately 1150 to 1200°C is required, but the results shown in Figure 8 are based on such heat treatment. It also clearly shows that a hardening hardness of H R C35±3 can be obtained even by hardening at a high temperature. This means that it is possible to have a large degree of freedom in material selection. Invention steels 1 and 15 and conventional steel 1
These facts are clearly supported by FIG. 9, which shows the high temperature quenching test results for No. 6. On the other hand, conventional steel 16 usually has a
At 1200℃, the austenite phase does not form as a single phase, but the ferrite phase precipitates, resulting in a two-phase structure of "martensite phase + ferrite phase" in the quenched state. This resulted in a decrease in the toughness and toughness. Furthermore, the reason why the steel of the present invention can obtain sufficiently stable quenching hardness is that the ferrite phase does not precipitate even at high temperatures exceeding 1200°C due to the low Cr content, and only austenite phase exists in the above temperature range. This is because martensite 1 phase can be sufficiently secured even after quenching. FIG. 10 is a diagram showing the relationship between quenching temperature and toughness for Inventive Steels 1 and 15 and Conventional Steel 16. The Inventive Steels are all 5Kg- However, conventional steel 16 has low toughness, especially when quenched at 850°C. It shows an impact value of only about 2 kg-m, which indicates that there is a problem with safety. Furthermore, Table 2 shows the results of the Charpy impact test at various temperatures (quenched at 950°C) and the salt spray test results (according to the salt spray test specified in JIS Z 2371) of the present invention steels 1 to 15 and conventional steel 16.
Table 2 shows that the steel of the present invention has sufficient toughness even at a low temperature of -25°C, making it suitable for use as a motorcycle disc. case

【表】 の寒冷地での走行を一層安定確実なものとできる
ことがわかり、また耐食性に優れていて銹の発生
が少なく、美観保持性能や耐久性に十分優れてい
ることもわかる。 <総括的な効果> 以上説明したように、この発明によれば、850
〜1200℃程度の広い範囲の温度からの焼入れのみ
で硬さをHRC35±3に安定して調整し得、また迅
速焼入れによつてもバラツキのない焼入れ硬さが
実現される上、靭性並びに耐食性ともに極めて優
れた、オートバイ用ブレーキデイスク材として好
適な低炭素マルテンサイト系ステンレス鋼が得ら
れるなど、産業上極めて有用な効果がもたらされ
るのである。
It can be seen that the [Table] can be made to run more stably and reliably in cold regions, and that it also has excellent corrosion resistance, less occurrence of rust, and is sufficiently superior in appearance retention performance and durability. <Overall Effects> As explained above, according to this invention, 850
The hardness can be stably adjusted to H R C35 ± 3 only by quenching from a wide temperature range of ~1200℃, and even rapid quenching can achieve uniform hardness and improve toughness. In addition, extremely useful effects are brought about industrially, such as the production of a low carbon martensitic stainless steel that has excellent corrosion resistance and is suitable as a brake disc material for motorcycles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、〔C+N〕量と焼入れ硬さとの関係
を示す線図、第2図は、〔C+N〕量と衝撃値と
の関係を示す線図、第3図は、Cr含有量と耐食
性との関係を示す線図、第4図は、Cr含有量と
衝撃値との関係を示す線図、第5図は、Ni含有
量と焼入れ硬さとの関係を示す線図、第6図は、
Ni含有量と衝撃値との関係を示す線図、第7図
は、Mo含有量と耐食性との関係を示す線図、第
8図は、迅速焼入れ試験での焼入れ温度と表層
部、中心部の硬さとの関係を示す線図、第9図
は、高温焼入れ試験での焼入れ温度と硬さとの関
係を示す線図、第10図は、焼入れ温度と靭性と
の関係を示す線図である。
Figure 1 is a diagram showing the relationship between [C+N] amount and hardening hardness, Figure 2 is a diagram showing the relationship between [C+N] amount and impact value, and Figure 3 is a diagram showing the relationship between Cr content and corrosion resistance. Figure 4 is a diagram showing the relationship between Cr content and impact value, Figure 5 is a diagram showing the relationship between Ni content and quenching hardness, and Figure 6 is a diagram showing the relationship between Cr content and impact value. ,
Figure 7 is a diagram showing the relationship between Ni content and impact value, Figure 7 is a diagram showing the relationship between Mo content and corrosion resistance, and Figure 8 is a diagram showing the relationship between quenching temperature and surface layer and center area in the rapid quenching test. Figure 9 is a diagram showing the relationship between quenching temperature and hardness in a high temperature quenching test. Figure 10 is a diagram showing the relationship between quenching temperature and toughness. .

Claims (1)

【特許請求の範囲】 1 重量%で、 C:0.08%以下、N:0.04%以下、 (ただし、C+Nの合量で0.06〜0.09%)、 Si:0.5%以下、Mn:0.4〜1.0%、 Cr:10.0〜11.5%、Ni:0.5〜1.0%、 Mo:0.05〜0.5%、 を含有し、残りがFeとその他の不可避不純物か
らなる組成を有することを特徴とする、焼入れ
性、靭性、並びに耐食性の優れた低炭素マルテン
サイト系ステンレス鋼。 2 重量%で、 C:0.08%以下、N:0.04%以下、 (ただし、C+Nの合量で0.06〜0.09%)、 Si:0.5%以下、Mn:0.4〜1.0%、 Cr:10.0〜11.5%、Ni:0.5〜1.0%、 Mo:0.05〜0.5%、 を含有し、さらに、 Nb:0.04〜0.1%、 を含有し、残りがFeとその他の不可避不純物か
らなる組成を有することを特徴とする、焼入れ
性、靭性、並びに耐食性の優れた低炭素マルテン
サイト系ステンレス鋼。
[Claims] 1% by weight: C: 0.08% or less, N: 0.04% or less (however, the total amount of C + N is 0.06 to 0.09%), Si: 0.5% or less, Mn: 0.4 to 1.0%, Cr: 10.0 to 11.5%, Ni: 0.5 to 1.0%, Mo: 0.05 to 0.5%, and the remainder is Fe and other unavoidable impurities. Low carbon martensitic stainless steel with excellent corrosion resistance. 2% by weight: C: 0.08% or less, N: 0.04% or less (however, the total amount of C + N is 0.06 to 0.09%), Si: 0.5% or less, Mn: 0.4 to 1.0%, Cr: 10.0 to 11.5% , Ni: 0.5 to 1.0%, Mo: 0.05 to 0.5%, and further contains Nb: 0.04 to 0.1%, with the remainder consisting of Fe and other inevitable impurities. , low carbon martensitic stainless steel with excellent hardenability, toughness, and corrosion resistance.
JP20246784A 1984-09-27 1984-09-27 Low-carbon martensitic stainless steel Granted JPS6179751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20246784A JPS6179751A (en) 1984-09-27 1984-09-27 Low-carbon martensitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20246784A JPS6179751A (en) 1984-09-27 1984-09-27 Low-carbon martensitic stainless steel

Publications (2)

Publication Number Publication Date
JPS6179751A JPS6179751A (en) 1986-04-23
JPH0379426B2 true JPH0379426B2 (en) 1991-12-18

Family

ID=16458005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20246784A Granted JPS6179751A (en) 1984-09-27 1984-09-27 Low-carbon martensitic stainless steel

Country Status (1)

Country Link
JP (1) JPS6179751A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453912B1 (en) * 2000-06-28 2004-10-20 주식회사 포스코 Method For Manufacturing Martensite Stainless Steel With Low Hardness
JP4496659B2 (en) * 2001-03-27 2010-07-07 Jfeスチール株式会社 Martensitic stainless steel with excellent punchability

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211553A (en) * 1983-05-16 1984-11-30 Mitsubishi Heavy Ind Ltd High cr steel with superior toughness and superior strength at high temperature
JPS59211552A (en) * 1983-05-16 1984-11-30 Mitsubishi Heavy Ind Ltd Martensitic high cr steel with high toughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211553A (en) * 1983-05-16 1984-11-30 Mitsubishi Heavy Ind Ltd High cr steel with superior toughness and superior strength at high temperature
JPS59211552A (en) * 1983-05-16 1984-11-30 Mitsubishi Heavy Ind Ltd Martensitic high cr steel with high toughness

Also Published As

Publication number Publication date
JPS6179751A (en) 1986-04-23

Similar Documents

Publication Publication Date Title
JP3491030B2 (en) Stainless steel for disk shakers
JP5714185B2 (en) Stainless steel brake disc and its manufacturing method
JP4946092B2 (en) High-strength steel and manufacturing method thereof
WO2010140696A1 (en) Steel sheet for brake disc, and brake disc
JP6786418B2 (en) Martensitic stainless steel for brake discs and brake discs
JP2007070713A (en) High toughness wear resistant steel small in hardness change during using, and producing method therefor
CN101981217A (en) Martensitic stainless steel for disk brake with excellent non-rusting property
JP7252761B2 (en) Precipitation hardening steel and its manufacture
WO2007129651A1 (en) Martensitic stainless steel with excellent non-rusting property for disk brake
EP0081592B1 (en) Brake discs of low-carbon martensitic stainless steel
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
CN101333625A (en) High temperature resistant and abrasion resistant martensitic stainless steel and preparation method
WO2007029626A1 (en) Martensitic stainless steel sheet for heat-resistant disc brake having excellent hardenability
JP4496908B2 (en) Brake disc excellent in tempering softening resistance and manufacturing method thereof
JP4202573B2 (en) Martensitic stainless steel for disc brakes
JPH0379426B2 (en)
JP2001003141A (en) Martensitic stainless steel for disk brake
JP3273391B2 (en) Manufacturing method of good workability wear-resistant steel plate
JPH04308058A (en) Steel having superior wear resistance
JPS6362568B2 (en)
JP3900169B2 (en) Martensitic stainless steel for disc brakes
JPH0317245A (en) High strength non-magnetic stainless steel having excellent machinability
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
KR101225384B1 (en) High hardness heat treated rail using cooling condition, and method for manufacturing the same
JPH07278747A (en) Spring steel reduced in decarburization characteristic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term