JP2019502815A - Non-heat treated wire excellent in strength and cold workability and method for producing the same - Google Patents

Non-heat treated wire excellent in strength and cold workability and method for producing the same Download PDF

Info

Publication number
JP2019502815A
JP2019502815A JP2018524489A JP2018524489A JP2019502815A JP 2019502815 A JP2019502815 A JP 2019502815A JP 2018524489 A JP2018524489 A JP 2018524489A JP 2018524489 A JP2018524489 A JP 2018524489A JP 2019502815 A JP2019502815 A JP 2019502815A
Authority
JP
Japan
Prior art keywords
wire
less
pearlite
heat treated
relational expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018524489A
Other languages
Japanese (ja)
Other versions
JP6600412B2 (en
Inventor
ドン ジュン ムン,
ドン ジュン ムン,
サン ユン イ,
サン ユン イ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2019502815A publication Critical patent/JP2019502815A/en
Application granted granted Critical
Publication of JP6600412B2 publication Critical patent/JP6600412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

【課題】 追加の熱処理を行わなくても、優れた強度及び冷間鍛造性を確保することができる非調質線材及びこれを製造する方法を提供する。
【解決手段】
質量%で、C:0.3〜0.4%、Si:0.05〜0.3%、Mn:0.8〜1.8%、Cr:0.5%以下、P:0.02%以下、S:0.02%以下、sol.Al:0.01〜0.05%、N:0.01%以下、及びO:0.0001〜0.003%を含み、且つNb:0.005〜0.03%及びV:0.05〜0.3%のうち1種以上を含み、残部Fe及び不可避不純物を含み、微細組織として、フェライト(ferrite)及びパーライト(pearlite)を含み、上記パーライトの相分率は下記関係式1及び2を満たし、上記パーライトの平均ラメラ間隔は関係式3及び4を満たす非調質線材が開示される。
PROBLEM TO BE SOLVED: To provide a non-heat treated wire capable of ensuring excellent strength and cold forgeability without performing an additional heat treatment, and a method for producing the same.
[Solution]
In mass%, C: 0.3 to 0.4%, Si: 0.05 to 0.3%, Mn: 0.8 to 1.8%, Cr: 0.5% or less, P: 0.02 % Or less, S: 0.02% or less, sol. Al: 0.01 to 0.05%, N: 0.01% or less, and O: 0.0001 to 0.003%, and Nb: 0.005 to 0.03% and V: 0.05 -1% or more of ~ 0.3%, the balance Fe and unavoidable impurities, ferrite (ferrite) and pearlite as a fine structure, the phase fraction of the pearlite is represented by the following relational expressions 1 and 2 A non-heat treated wire that satisfies the relational expressions 3 and 4 is disclosed.

Description

本発明は、強度及び冷間加工性に優れた非調質線材及びその製造方法に係り、より詳しくは、機械部品用材料として使用するのに適した強度及び冷間加工性に優れた非調質線材及びその製造方法に関する。   The present invention relates to a non-heat treated wire excellent in strength and cold workability and a method for producing the same, and more specifically, a non-heat treated wire excellent in strength and cold workability suitable for use as a material for machine parts. The present invention relates to a wire rod and a manufacturing method thereof.

冷間加工方法は、熱間加工方法や機械切削加工方法に比べて、生産性に優れているだけでなく、熱処理コスト削減の効果が大きいため、ボルトやナットなどの機械部品の製造に広く使用されている。
但し、上記のように、冷間加工方法を用いて機械部品を製造するためには、本質的に鋼材の冷間加工性に優れていることが要求される。より具体的には、冷間加工時の変形抵抗が低く、延性に優れることが要求される。鋼の変形抵抗が高い場合には、冷間加工時に使用する工具の寿命が低下し、鋼の延性が低い場合には、冷間加工時の割れが発生しやすく、不良品発生の原因になるためである。
そのため、通常の冷間加工用鋼材は、冷間加工前に球状化焼鈍熱処理を行うことになる。これは、球状化焼鈍熱処理を行う場合、鋼材が軟化して変形抵抗が減少し、延性が向上して冷間加工性が向上するためである。ところが、この場合、追加費用が発生し、製造効率が低下するため、追加の熱処理を行うことなく優れた冷間加工性を確保することができる非調質線材の開発が求められている。
The cold working method is not only more productive than the hot working method and machine cutting method, but also has a great effect on reducing heat treatment costs, so it is widely used in the manufacture of machine parts such as bolts and nuts. Has been.
However, as described above, in order to manufacture machine parts using the cold working method, it is essential that the cold workability of the steel material is essentially excellent. More specifically, it is required that the deformation resistance during cold working is low and the ductility is excellent. When the deformation resistance of steel is high, the tool life used during cold working is reduced, and when the ductility of steel is low, cracking during cold working is likely to occur, causing defective products. Because.
Therefore, ordinary steel for cold working is subjected to spheroidizing annealing heat treatment before cold working. This is because when the spheroidizing annealing heat treatment is performed, the steel material is softened, the deformation resistance is reduced, the ductility is improved, and the cold workability is improved. However, in this case, additional costs are incurred and the production efficiency is reduced, and therefore there is a demand for the development of a non-heat treated wire that can ensure excellent cold workability without additional heat treatment.

しかし、一般に、0.3質量%以上の炭素を含有する中炭素鋼では、パーライト分率が50%を超えると、パーライト組織によるマトリックス(Matrix)強化が原因で冷間加工性が劣ることが知られている。特に、強度を確保するために、Mn、Crなどの偏析助長元素をともに使用する場合、中心偏析部と非偏析部の組織差が大きくなり、伸線加工により強度を確保する非調質鋼の場合には、伸線加工後の偏差がさらに大きくなるため、冷間鍛造性を確保することが難しくなる。また、中炭素鋼以上の高強度非調質鋼では、中心部偏析による組織不均衡に加え、中心部の酸化物系非金属介在物による影響も非常に大きくなる。
さらに、中心偏析によってマトリックス(Matrix)強化が行われた場合には、かかる非金属介在物の感度はさらに大きくなって冷間加工性に悪影響を与える可能性がある。したがって、中炭素鋼以上の高強度非調質鋼を開発するにあたり、かかる中心部偏析による組織差及び中心部介在物による影響について検討する必要がある。
However, in general, in medium carbon steel containing 0.3% by mass or more of carbon, it is known that when the pearlite fraction exceeds 50%, the cold workability is inferior due to matrix strengthening by the pearlite structure. It has been. In particular, when segregation facilitating elements such as Mn and Cr are used together to ensure strength, the structural difference between the central segregation part and the non-segregation part increases, and the strength of non-heat treated steel that secures strength by wire drawing is increased. In such a case, the deviation after wire drawing is further increased, so that it is difficult to ensure cold forgeability. In addition, in the high-strength non-heat treated steel of medium carbon steel or higher, in addition to the structural imbalance due to segregation at the center, the influence of oxide-based nonmetallic inclusions at the center is very large.
Further, when matrix strengthening is performed by center segregation, the sensitivity of such non-metallic inclusions may be further increased and adversely affect cold workability. Therefore, in developing a high-strength non-tempered steel of medium carbon steel or higher, it is necessary to examine the structural difference due to such center segregation and the influence of center inclusions.

本発明の目的とするところは、追加の熱処理を行わなくても、優れた強度及び冷間鍛造性を確保することができる非調質線材及びこれを製造する方法を提供することである。   An object of the present invention is to provide a non-heat treated wire capable of ensuring excellent strength and cold forgeability without performing an additional heat treatment, and a method for producing the same.

上記目的を達成するために、本発明は、質量%で、C:0.3〜0.4%、Si:0.05〜0.3%、Mn:0.8〜1.8%、Cr:0.5%以下、P:0.02%以下、S:0.02%以下、sol.Al:0.01〜0.05%、N:0.01%以下、及びO:0.0001〜0.003%を含み、且つNb:0.005〜0.03%及びV:0.05〜0.3%のうち1種以上を含み、残部がFe及び不可避不純物であり、微細組織として、フェライト(ferrite)及びパーライト(pearlite)を含み、上記パーライトの相分率は下記関係式1及び2を満たし、上記パーライトの平均ラメラ間隔は下記関係式3及び4を満たすことを特徴とする。
[関係式1]VP/VP≦1.4
[関係式2]50≦(15VP+VP)/16≦70
[関係式3]DL/DL≦1.4
[関係式4]0.1≦(15DL+DL)/16≦0.3
(ここで、VP及びVPはそれぞれ、線材の長さ方向に垂直な断面で、線材の表面から線材の直径(D)方向の3/8Dの位置までの領域におけるパーライト分率(面積%)、及び線材の直径(D)方向の3/8Dの位置から線材の中心までの領域におけるパーライト分率(面積%)を意味し、DL及びDLはそれぞれ、線材の長さ方向に垂直な断面で、線材の表面から線材の直径(D)方向の3/8Dの位置までの領域におけるパーライトの平均ラメラ間隔(μm)、及び線材の直径(D)方向の3/8Dの位置から線材の中心までの領域におけるパーライトの平均ラメラ間隔(μm)を意味する)
In order to achieve the above object, the present invention provides, in mass%, C: 0.3 to 0.4%, Si: 0.05 to 0.3%, Mn: 0.8 to 1.8%, Cr : 0.5% or less, P: 0.02% or less, S: 0.02% or less, sol. Al: 0.01 to 0.05%, N: 0.01% or less, and O: 0.0001 to 0.003%, and Nb: 0.005 to 0.03% and V: 0.05 -1% or more of ~ 0.3%, the balance is Fe and inevitable impurities, and the microstructure includes ferrite and pearlite, the phase fraction of the pearlite is represented by the following relational expression 1 and 2 and the average lamella spacing of the pearlite satisfies the following relational expressions 3 and 4.
[Relational expression 1] VP 2 / VP 1 ≦ 1.4
[Relational expression 2] 50 ≦ (15VP 1 + VP 2 ) / 16 ≦ 70
[Relational expression 3] DL 1 / DL 2 ≦ 1.4
[Relational Expression 4] 0.1 ≦ (15DL 1 + DL 2 ) /16≦0.3
(Here, VP 1 and VP 2 are each a cross section perpendicular to the length direction of the wire, and the pearlite fraction (area%) in the region from the surface of the wire to the position 3 / 8D in the diameter (D) direction of the wire. ), And the pearlite fraction (area%) in the region from the 3 / 8D position in the diameter (D) direction of the wire to the center of the wire, and DL 1 and DL 2 are each perpendicular to the length direction of the wire The average lamella spacing (μm) of pearlite in the region from the surface of the wire to the position of 3 / 8D in the diameter (D) direction of the wire, and the wire from the position of 3 / 8D in the diameter (D) direction of the wire Mean lamella spacing (μm) of pearlite in the region to the center of

また、本発明は、質量%で、C:0.3〜0.4%、Si:0.05〜0.3%、Mn:0.8〜1.8%、Cr:0.5%以下、P:0.02%以下、S:0.02%以下、sol.Al:0.01〜0.05%、O:0.0001〜0.003%、及びN:0.01%以下を含み、且つNb:0.005〜0.03%及びV:0.05〜0.3%のうち1種以上を含み、残部がFe及び不可避不純物であり、炭素当量(Ceq)が0.6以上0.7以下のブルーム(bloom)を1200℃〜1300℃の加熱温度で加熱し、上記加熱温度で240分以上維持した後、鋼片圧延してビレット(billet)を得る段階と、上記ビレットを再加熱した後、仕上げ圧延温度750℃〜900℃の条件下で線材圧延して線材を得る段階と、上記線材を巻き取った後、0.3℃〜1℃/secの速度で冷却する段階と、を含むことを特徴とする。   Moreover, this invention is mass%, C: 0.3-0.4%, Si: 0.05-0.3%, Mn: 0.8-1.8%, Cr: 0.5% or less , P: 0.02% or less, S: 0.02% or less, sol. Al: 0.01 to 0.05%, O: 0.0001 to 0.003%, and N: 0.01% or less, and Nb: 0.005 to 0.03% and V: 0.05 Heating temperature of 1200 ° C. to 1300 ° C., including one or more of ˜0.3%, the balance being Fe and inevitable impurities, and a carbon equivalent (Ceq) of 0.6 to 0.7 And after maintaining at the above heating temperature for 240 minutes or more, rolling the steel billet to obtain a billet, and after reheating the billet, the wire rod under conditions of a finish rolling temperature of 750 ° C. to 900 ° C. It includes a step of rolling to obtain a wire, and a step of cooling at a rate of 0.3 ° C. to 1 ° C./sec after winding the wire.

本発明によると、球状化焼鈍熱処理を省略しても冷間加工時の変形抵抗を十分に抑制することができる非調質線材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if a spheroidizing annealing heat treatment is abbreviate | omitted, the non-heat treated wire which can fully suppress the deformation resistance at the time of cold working can be provided.

本発明者らは、伸線加工後に所定の強度及び硬度を有するとともに、優れた冷間加工性を確保することができる線材を提供するために、様々な角度から検討した。その結果、中炭素鋼線材の合金組成及び製造方法を最適化することで、線材の微細組織として、フェライトとパーライトの複合組織を確保し、且つ線材の位置別のパーライト相分率やパーライトのラメラ間隔などを適切に制御することにより、伸線加工後にも冷間加工性が劣化しない高強度線材を提供することができる点を見出し、本発明を完成するに至った。   The present inventors have studied from various angles in order to provide a wire having predetermined strength and hardness after wire drawing and capable of ensuring excellent cold workability. As a result, by optimizing the alloy composition and manufacturing method of the medium carbon steel wire, a composite structure of ferrite and pearlite is ensured as the microstructure of the wire, and the pearlite phase fraction and pearlite lamella by position of the wire are secured. The inventors have found that a high-strength wire that does not deteriorate cold workability even after wire drawing can be provided by appropriately controlling the spacing and the like, and the present invention has been completed.

以下、本発明の強度及び冷間加工性に優れた非調質線材について詳細に説明する。
まず、非調質線材の合金成分及び組成範囲について詳細に説明する。後述する各成分の含有量は、特に言及しない限り、いずれも質量基準である。
C:0.3〜0.4%
炭素は、線材の強度を向上させる役割を果たす。本発明では、かかる効果を奏するために、0.3%以上含まれることが好ましい。但し、その含有量が過剰な場合、鋼の変形抵抗が急増し、その結果、冷間加工性が劣化するという問題がある。したがって、上記炭素の含有量の上限は、0.4%であることが好ましい。
Hereinafter, the non-heat treated wire excellent in strength and cold workability of the present invention will be described in detail.
First, the alloy components and composition range of the non-heat treated wire will be described in detail. The content of each component described below is based on mass unless otherwise specified.
C: 0.3 to 0.4%
Carbon plays a role of improving the strength of the wire. In this invention, in order to show this effect, it is preferable to contain 0.3% or more. However, when the content is excessive, there is a problem that the deformation resistance of the steel increases rapidly, and as a result, the cold workability deteriorates. Therefore, the upper limit of the carbon content is preferably 0.4%.

Si:0.05〜0.3%
シリコンは、脱酸剤として有用な元素である。本発明では、かかる効果を奏するために、0.05%以上含まれることが好ましい。但し、その含有量が過剰な場合、固溶強化により鋼の変形抵抗が急増し、その結果、冷間加工性が劣化するという問題がある。したがって、上記シリコンの含有量の上限は、0.3%であることが好ましく、0.25%であることがより好ましい。
Si: 0.05-0.3%
Silicon is an element useful as a deoxidizer. In this invention, in order to show this effect, it is preferable to contain 0.05% or more. However, when the content is excessive, there is a problem that the deformation resistance of the steel rapidly increases due to solid solution strengthening, and as a result, the cold workability deteriorates. Therefore, the upper limit of the silicon content is preferably 0.3%, and more preferably 0.25%.

Mn:0.8〜1.8%
マンガンは、脱酸剤及び脱硫剤として有用な元素である。本発明では、かかる効果を奏するために、0.8%以上含まれることが好ましく、1.0%以上含まれることがより好ましい。但し、その含有量が過剰な場合、鋼自体の強度が過度に高くなって鋼の変形抵抗が急増し、その結果、冷間加工性が劣化するという問題がある。したがって、上記マンガンの含有量の上限は、1.8%であることが好ましく、1.6%であることがより好ましい。
Mn: 0.8 to 1.8%
Manganese is an element useful as a deoxidizer and desulfurizer. In this invention, in order to show this effect, 0.8% or more is contained preferably, and 1.0% or more is more preferred. However, when the content is excessive, the strength of the steel itself becomes excessively high and the deformation resistance of the steel increases rapidly, resulting in a problem that cold workability deteriorates. Therefore, the upper limit of the manganese content is preferably 1.8%, and more preferably 1.6%.

Cr:0.5%以下(0%を含む)
クロムは、熱間圧延時のフェライト及びパーライト変態を促進させる役割を果たす。また、鋼自体の強度を必要以上に高くせず、鋼中の炭化物を析出して、固溶炭素量を低減させることで、固溶炭素による動的ひずみ時効の減少に寄与する。しかし、クロムを添加しなくても、物性の確保の側面においてさほど差し支えはない。一方、その含有量が過剰な場合、鋼自体の強度が過度に高くなって鋼の変形抵抗が急増し、その結果、冷間加工性が劣化するという問題がある。上記クロムの含有量は、0.5%以下であることが好ましく、0.4%であることがより好ましい。
Cr: 0.5% or less (including 0%)
Chromium plays a role in promoting ferrite and pearlite transformation during hot rolling. In addition, the strength of the steel itself is not increased more than necessary, and carbides in the steel are precipitated to reduce the amount of dissolved carbon, thereby contributing to a decrease in dynamic strain aging due to the dissolved carbon. However, even if chromium is not added, there is no problem in securing the physical properties. On the other hand, when the content is excessive, the strength of the steel itself is excessively increased, and the deformation resistance of the steel is rapidly increased. As a result, there is a problem that cold workability is deteriorated. The chromium content is preferably 0.5% or less, and more preferably 0.4%.

P:0.02%以下
リンは、不可避に含有される不純物であって、結晶粒界に偏析して鋼の靭性を低下させ、遅延破壊抵抗性を減少させる主な原因となる元素であるため、その含有量を可能な限り低く制御することが好ましい。理論上、リンの含有量は0%に制御することが有利であるが、製造工程上必然的に含有される。したがって、上限を管理することが重要であり、本発明では、上記リンの含有量の上限を0.02%に管理する。
P: 0.02% or less Phosphorus is an unavoidable impurity, and is an element that is segregated at the grain boundaries to lower the toughness of steel and reduce delayed fracture resistance. It is preferable to control the content as low as possible. Theoretically, the phosphorus content is advantageously controlled to 0%, but is necessarily contained in the production process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the phosphorus content is managed to 0.02%.

S:0.02%以下
硫黄は、不可避に含有される不純物であって、結晶粒界に偏析して鋼の延性を大きく低下させ、鋼中硫化物を形成して、遅延破壊抵抗性及び応力弛緩特性を劣化させる主な原因となる元素であるため、その含有量を可能な限り低く制御することが好ましい。理論上、硫黄の含有量は0%に制御することが有利であるが、製造工程上必然的に含有される。したがって、上限を管理することが重要であり、本発明では、上記硫黄の含有量の上限を0.02%に管理する。
S: 0.02% or less Sulfur is an impurity inevitably contained, segregates at the grain boundaries, greatly reduces the ductility of the steel, forms sulfides in the steel, delayed fracture resistance and stress Since it is an element that is a main cause of deteriorating the relaxation properties, it is preferable to control its content as low as possible. Theoretically, the sulfur content is advantageously controlled to 0%, but is necessarily contained in the production process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the sulfur content is controlled to 0.02%.

sol.Al:0.01〜0.05%
可溶アルミニウムは、脱酸剤として有用に作用する元素であって、0.01%以上、好ましくは0.015%以上、より好ましくは0.02%以上添加する。但し、その含有量が0.05%を超えると、AlNの形成によるオーステナイト粒度の微細化効果が大きくなって冷間加工性が低下する。したがって、本発明では、上記可溶アルミニウムの含有量の上限を0.05%に管理する。
sol. Al: 0.01 to 0.05%
Soluble aluminum is an element usefully acting as a deoxidizer, and is added in an amount of 0.01% or more, preferably 0.015% or more, more preferably 0.02% or more. However, if the content exceeds 0.05%, the effect of refining the austenite grain size due to the formation of AlN is increased, and the cold workability is lowered. Therefore, in this invention, the upper limit of content of the said soluble aluminum is managed to 0.05%.

N:0.01%以下
窒素は、不可避的に含有される不純物であって、その含有量が過剰な場合には、固溶窒素量が増加して鋼の変形抵抗が急増し、その結果、冷間加工性が劣化するという問題がある。理論上、窒素の含有量は0%に制御することが有利であるが、製造工程上必然的に含有される。したがって、上限を管理することが重要であり、本発明では、上記窒素の含有量の上限を0.01%に管理することが好ましく、0.008%に管理することがより好ましく、0.007%に管理することがさらに好ましい。
N: 0.01% or less Nitrogen is an inevitably contained impurity, and when its content is excessive, the amount of dissolved nitrogen increases and the deformation resistance of the steel increases rapidly. As a result, There is a problem that cold workability deteriorates. Theoretically, the nitrogen content is advantageously controlled to 0%, but is necessarily contained in the production process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the nitrogen content is preferably managed to 0.01%, more preferably 0.008%, more preferably 0.007 More preferably, it is controlled to%.

O:0.0001〜0.003%
酸素は、非金属介在物の形態で線材内に存在し、通常0.0001%以上含有される。ところで、かかる非金属介在物は、破壊の起点となって鋼の疲労強度及び冷間鍛造性を低下させる。特に非調質鋼のように、伸線加工により強度を確保する場合には、線材の中心部において非金属介在物を起点とした破壊が起こりやすい。また、本発明者らの研究結果によると、鋼中の酸素の含有量が0.003%を超える線材の場合、非金属介在物の量が多くなって、厳格な用途向けの加工材では、断線回避が十分ではない。したがって、本発明では、酸素の上限を0.003%、より好ましくは0.001%、さらに好ましくは0.0008%に管理する。
O: 0.0001 to 0.003%
Oxygen is present in the wire in the form of non-metallic inclusions and is usually contained in an amount of 0.0001% or more. By the way, such a non-metallic inclusion becomes a starting point of fracture, and reduces the fatigue strength and cold forgeability of steel. In particular, when strength is ensured by wire drawing as in the case of non-heat treated steel, breakage starting from non-metallic inclusions tends to occur at the center of the wire. In addition, according to the research results of the present inventors, in the case of a wire with an oxygen content exceeding 0.003% in steel, the amount of non-metallic inclusions increases, and in a processed material for strict use, The disconnection avoidance is not enough. Therefore, in the present invention, the upper limit of oxygen is controlled to 0.003%, more preferably 0.001%, and still more preferably 0.0008%.

Nb:0.005〜0.03%及びV:0.05〜0.3%のうち1種以上
ニオブは、炭窒化物を形成して、オーステナイト及びフェライトの粒界移動を制限する役割を果たす元素であって、0.005%以上添加する。しかし、上記炭窒化物は、破壊起点として作用して、衝撃靭性、特に低温衝撃靭性を低下させる可能性があるため、溶解度限界を守って添加することが好ましい。また、その含有量が過剰な場合には、固溶限界を超えるため、粗大な析出物を形成するという問題がある。したがって、ニオブの含有量は0.03%以下に制限することが好ましい。
One or more of Nb: 0.005 to 0.03% and V: 0.05 to 0.3% Niobium forms carbonitrides and plays a role in limiting grain boundary migration of austenite and ferrite It is an element, and 0.005% or more is added. However, since the carbonitride functions as a fracture starting point and may reduce impact toughness, particularly low temperature impact toughness, it is preferable to add the carbonitride while keeping the solubility limit. In addition, when the content is excessive, the solid solution limit is exceeded, so that there is a problem that coarse precipitates are formed. Therefore, the niobium content is preferably limited to 0.03% or less.

一方、バナジウムは、ニオブと同様に炭窒化物を形成して、オーステナイト及びフェライトの粒界移動を制限する役割を果たす元素であって、0.05%以上添加する。但し、上記炭窒化物は、破壊起点として作用して、衝撃靭性、特に低温衝撃靭性を低下させる可能性があるため、溶解度限界(solubility limit)を守って添加することが好ましい。したがって、バナジウムの含有量は0.3%以下に制限することが好ましい。   On the other hand, vanadium is an element that forms carbonitrides like niobium and plays a role in restricting the grain boundary movement of austenite and ferrite, and is added at 0.05% or more. However, the carbonitride functions as a fracture starting point and may reduce impact toughness, particularly low temperature impact toughness. Therefore, it is preferable to add the carbonitride while keeping the solubility limit. Accordingly, the vanadium content is preferably limited to 0.3% or less.

上記合金組成の他の残部は鉄(Fe)である。さらに、本発明の非調質線材は、通常鋼の工業的生産過程でその他の不純物からなることもある。かかる不純物は、本発明が属する技術分野において通常の知識を有する者であれば、誰でも分かる内容であるため、本発明では、特にその種類と含有量を制限しない。
但し、Tiは、本発明の効果を得るために、その含有量を極力抑えなければならない代表的な不純物に該当するため、これについて簡単に説明すると、次のとおりである。
The other balance of the alloy composition is iron (Fe). Furthermore, the non-heat treated wire of the present invention may be composed of other impurities during the industrial production process of normal steel. Since such impurities can be understood by anyone who has ordinary knowledge in the technical field to which the present invention belongs, the present invention does not particularly limit the type and content thereof.
However, since Ti corresponds to a typical impurity whose content must be suppressed as much as possible in order to obtain the effects of the present invention, this will be briefly described as follows.

Ti:0.005%以下
チタンは、炭窒化物の形成元素であって、Nb及びVよりも高い温度で炭窒化物を形成する。したがって、鋼中にチタンが含まれると、C及びNの固定には有利であり得るが、Tiの炭窒化物を核として、Nb及び/またはVが析出して基地内に粗大な炭窒化物が多量形成されるため、冷間加工性が劣化する可能性がある。したがって、その上限を管理することが重要であり、本発明では、上記チタンの含有量の上限を0.005%に管理することが好ましく、0.004%に管理することがより好ましい。
Ti: 0.005% or less Titanium is an element forming carbonitride, and forms carbonitride at a temperature higher than Nb and V. Therefore, when titanium is contained in the steel, it may be advantageous for fixing C and N, but Nb and / or V precipitates with the carbonitride of Ti as a nucleus and coarse carbonitride in the base. Since a large amount of is formed, cold workability may be deteriorated. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the titanium content is preferably managed to 0.005%, more preferably 0.004%.

一例によると、本発明の非調質線材の炭素当量(Ceq)は、0.6以上0.7以下である。ここで、炭素当量(Ceq)は、下記式1で定義されるる。炭素当量(Ceq)が0.6未満であるか、または0.7を超えると、目標とする強度を確保することが難しくなる。
[式1]Ceq=[C]+[Si]/9+[Mn]/5+[Cr]/12
(ここで、[C]、[Si]、[Mn]及び[Cr]はそれぞれ、該当元素の含有量(%)を意味する)
According to an example, the carbon equivalent (Ceq) of the non-heat treated wire of the present invention is 0.6 or more and 0.7 or less. Here, the carbon equivalent (Ceq) is defined by the following formula 1. If the carbon equivalent (Ceq) is less than 0.6 or exceeds 0.7, it is difficult to ensure the target strength.
[Formula 1] Ceq = [C] + [Si] / 9 + [Mn] / 5 + [Cr] / 12
(Here, [C], [Si], [Mn] and [Cr] each mean the content (%) of the corresponding element)

本発明の非調質線材は、その微細組織として、フェライト(ferrite)及びパーライト(pearlite)を含む。
また、本発明の非調質線材は、パーライトの相分率(体積%)が下記関係式1及び2を満たす。
[関係式1]VP/VP≦1.4
[関係式2]50≦(15VP+VP)/16≦70
(ここで、VP及びVPはそれぞれ、線材の長さ方向に垂直な断面で、線材の表面から線材の直径(D)方向の3/8Dの位置までの領域におけるパーライト分率(面積%)、及び線材の直径(D)方向の3/8Dの位置から線材の中心までの領域におけるパーライト分率(面積%)を意味する)
The non-heat treated wire of the present invention includes ferrite and pearlite as its microstructure.
In the non-heat treated wire of the present invention, the pearlite phase fraction (% by volume) satisfies the following relational expressions 1 and 2.
[Relational expression 1] VP 2 / VP 1 ≦ 1.4
[Relational expression 2] 50 ≦ (15VP 1 + VP 2 ) / 16 ≦ 70
(Here, VP 1 and VP 2 are each a cross section perpendicular to the length direction of the wire, and the pearlite fraction (area%) in the region from the surface of the wire to the position 3 / 8D in the diameter (D) direction of the wire. ), And the pearlite fraction (area%) in the region from the 3 / 8D position in the diameter (D) direction of the wire to the center of the wire)

上記関係式1は、線材の位置別のパーライトの相分率に係る制御式である。一般に、本発明のような中炭素鋼では、MnやCrなどという偏析助長元素を積極的に活用する場合、中心偏析部と非偏析部の組織差が非常に大きくなり、伸線加工により強度を確保する非調質鋼は、伸線加工後のかかる偏差がさらに大きくなる。その結果、冷間加工性が劣化するという結果をもたらす。したがって、本発明では、VP/VPを1.4以下に制御することで優れた冷間加工性を確保する。
一方、上記のようにVP/VPを1.4以下に制御する方法は様々であるため、本発明の独立請求項では特に制限しない。但し、一例として、後述のように、ブルームの加熱温度及び保持時間を適切に制御することにより、上記のようにVP/VPを1.4以下に制御することができる。
The relational expression 1 is a control expression related to the phase fraction of pearlite for each position of the wire. In general, in the case of medium carbon steel such as the present invention, when the segregation facilitating elements such as Mn and Cr are actively used, the structural difference between the central segregation part and the non-segregation part becomes very large, and the strength is increased by wire drawing. The non-heat treated steel to be secured further increases the deviation after the wire drawing. As a result, the cold workability is deteriorated. Therefore, in the present invention, excellent cold workability is ensured by controlling VP 2 / VP 1 to 1.4 or less.
On the other hand, since there are various methods for controlling VP 2 / VP 1 to 1.4 or less as described above, there is no particular limitation in the independent claims of the present invention. However, as an example, VP 2 / VP 1 can be controlled to 1.4 or less as described above by appropriately controlling the heating temperature and holding time of the bloom as described later.

上記関係式2は、線材の平均パーライトの相分率に係る制御式である。(15VP+VP)/16の値が50未満であるか、または70を超えると、目的とする冷間加工性及び強度をともに確保することが難しくなる。
また、本発明の非調質線材は、パーライトの平均ラメラ間隔(μm)が下記関係式3及び4を満たす。
[関係式3]DL/DL≦1.4
[関係式4]0.1≦(15DL+DL)/16≦0.3
(ここで、DL及びDLはそれぞれ、線材の長さ方向に垂直な断面で、線材の表面から線材の直径(D)方向の3/8Dの位置までの領域におけるパーライトの平均ラメラ間隔(μm)、及び線材の直径(D)方向の3/8Dの位置から線材の中心までの領域におけるパーライトの平均ラメラ間隔(μm)を意味する)
The relational expression 2 is a control expression relating to the phase fraction of the average pearlite of the wire. If the value of (15VP 1 + VP 2 ) / 16 is less than 50 or exceeds 70, it is difficult to ensure both the desired cold workability and strength.
In the non-heat treated wire of the present invention, the average lamella spacing (μm) of pearlite satisfies the following relational expressions 3 and 4.
[Relational expression 3] DL 1 / DL 2 ≦ 1.4
[Relational Expression 4] 0.1 ≦ (15DL 1 + DL 2 ) /16≦0.3
(Here, DL 1 and DL 2 are each a cross section perpendicular to the length direction of the wire, and the average lamella spacing of pearlite in the region from the surface of the wire to the position 3 / 8D in the diameter (D) direction of the wire ( μm), and the average lamella spacing (μm) of pearlite in the region from the 3 / 8D position in the diameter (D) direction of the wire to the center of the wire)

上記関係式3は、線材の位置別のパーライトのラメラ間隔に係る制御式である。パーライト組織を積極的に活用する中炭素鋼では、パーライト分率とともに、パーライトのラメラ間隔も物性に大きな影響を及ぼす。すなわち、ラメラ間隔が微細であるほど線材の強度が増加し、中心偏析部と非偏析部のラメラ間隔の差が大きくなればなるほど物性差が激しくなる。したがって、本発明では、DL/DLを1.4以下に制御することで、優れた冷間加工性を確保する。
一方、上記のようにDL/DLを1.4以下に制御する方法は様々であるため、本発明の独立請求項では特に制限しない。但し、一例として、後述のように、線材の圧延温度及び冷却速度を適切に制御することにより、上記のようにDL/DLを1.4以下に制御することができる。
The relational expression 3 is a control expression relating to the lamella spacing of the pearlite for each position of the wire. In medium-carbon steel that actively uses the pearlite structure, the pearlite lamella spacing has a great influence on the physical properties as well as the pearlite fraction. That is, the finer the lamella spacing, the greater the strength of the wire, and the greater the difference in the lamella spacing between the central segregation part and the non-segregation part, the greater the difference in physical properties. Therefore, in the present invention, by controlling the DL 1 / DL 2 to 1.4 or less, to ensure excellent cold workability.
On the other hand, since there are various methods for controlling DL 1 / DL 2 to 1.4 or less as described above, there is no particular limitation in the independent claims of the present invention. However, as an example, DL 1 / DL 2 can be controlled to 1.4 or less as described above by appropriately controlling the rolling temperature and cooling rate of the wire as described later.

上記関係式4は、線材の平均ラメラ間隔に係る制御式である。(15DL+DL)/16の値が0.1未満であるか、または0.3を超えると、目的とする冷間加工性及び強度をともに確保することが難しくなる。
一例によると、上記パーライトの強度差は下記関係式5を満たすことができる。
[関係式5](VP/VP)×(√(DL/DL))≦1.5
The relational expression 4 is a control expression related to the average lamella spacing of the wire. If the value of (15DL 1 + DL 2 ) / 16 is less than 0.1 or exceeds 0.3, it is difficult to ensure both the desired cold workability and strength.
According to an example, the intensity difference of the pearlite can satisfy the following relational expression 5.
[Relational Expression 5] (VP 2 / VP 1 ) × (√ (DL 1 / DL 2 )) ≦ 1.5

上述のように、一般の中炭素非調質鋼において、強度及び冷間加工性を確保するためにMnとCrを積極的に活用する場合には、MnとCrの中心部偏析によって線材のC断面にわたって物性差がもたらされる。これは、伸線加工後にさらに大きくなり、最終製品を製造するための鍛造加工時における内部割れの発生可能性を大幅に高めるようになる。上記関係式5は、線材の位置別のパーライトの強度差に係る制御式である。本発明者らは、数多くの実験を通じて(VP/VP)×(√(DL/DL))の値が1.5以下であると、大きい伸線加工量にもかかわらず内部割れが発生することなく、冷間鍛造による成形が可能であることを確認した。 As described above, in general medium carbon non-tempered steel, when Mn and Cr are actively used to ensure strength and cold workability, the C of the wire is caused by segregation at the center of Mn and Cr. Differences in physical properties are introduced across the cross section. This becomes larger after the wire drawing process, and greatly increases the possibility of occurrence of internal cracks during the forging process for manufacturing the final product. The relational expression 5 is a control expression related to the difference in the intensity of pearlite according to the position of the wire. Through many experiments, the present inventors have found that the value of (VP 2 / VP 1 ) × (√ (DL 1 / DL 2 )) is 1.5 or less, but internal cracks despite a large amount of wire drawing. It was confirmed that forming by cold forging was possible without the occurrence of.

一例によると、線材の長さ方向に垂直な断面で、線材の直径(D)方向の3/8Dの位置から線材の中心までの領域における酸化物系介在物の平均組成は下記関係式6〜8を満たす。
[関係式6]30≦[Al]≦70
[関係式7]20≦[SiO]≦40
[関係式8]10≦[CaO]+[MgO]≦20
(ここで、[Al]、[SiO]、[CaO]及び[MgO]はそれぞれ、該当介在物の含有量(質量%)を意味する)
According to an example, the average composition of the oxide inclusions in the region from the position of 3 / 8D in the diameter (D) direction of the wire to the center of the wire in the cross section perpendicular to the length direction of the wire is expressed by the following relational expression 6 to Satisfy 8
[Relational Expression 6] 30 ≦ [Al 2 O 3 ] ≦ 70
[Relational Expression 7] 20 ≦ [SiO 2 ] ≦ 40
[Relational Expression 8] 10 ≦ [CaO] + [MgO] ≦ 20
(Here, [Al 2 O 3 ], [SiO 2 ], [CaO] and [MgO] each mean the content (mass%) of the corresponding inclusion)

この際、非金属介在物の組成を制御する理由は、線材内の硬質介在物(非粘性介在物)を最小限に減少させることで、線材に対して連続的に鋼線引き抜きを行う際に、さらに向上した絞り性及び冷間加工性を有する線材を提供するためである。特に、本発明者らは、鋼材中に不可避に混入する酸化物系介在物のうち、特定の酸化物の含有量が多くなると介在物が硬質化して、冷間加工性が劣化することを確認した。   At this time, the reason for controlling the composition of the non-metallic inclusions is that the hard inclusions (non-viscous inclusions) in the wire are reduced to the minimum, and when the steel wire is continuously drawn to the wire. In order to provide a wire having further improved drawability and cold workability. In particular, the present inventors have confirmed that among oxide-based inclusions inevitably mixed in steel materials, inclusions harden and cold workability deteriorates when the content of specific oxides increases. did.

以下では、酸化物系介在物を構成する各酸化物の含有量を定めた理由などについて詳しく説明する。本発明で目的とする非粘性介在物数の低減及び軟質化には多元系酸化物の組成の組み合わせが必要である。まず、Al及びSiOを必ず含み、且つCaOまたはMgOのいずれかを含む3元系以上の酸化物の組み合わせが最適である。 Below, the reason etc. which determined content of each oxide which comprises an oxide type inclusion are demonstrated in detail. In order to reduce and soften the number of non-viscous inclusions aimed at in the present invention, a combination of the composition of multi-component oxides is necessary. First, a combination of ternary or higher oxides that always contains Al 2 O 3 and SiO 2 and contains either CaO or MgO is optimal.

Al:30〜70%
Alは、酸化物系介在物をより低融点且つ軟質であるようにするために有用な成分である。鋼またはスラグのうちAlは必然的に存在するようになるが、スラグ内のAlの含有量を適宜管理する場合、介在物の融点が低くなり、その結果、延伸性が確保されて圧延過程中に微細となって、最終素材の健全性に有利であると知られている。このような作用を有効にすべく、Alの含有量を30%以上、好ましくは35%以上、より好ましくは40%以上とする。しかし、Alの含有量が多すぎるようになると、硬質であるため微細化しにくいアルミナ介在物となり、熱延工程で微細化し難くなって破壊または破損の基点となるため、その上限を70%、好ましくは65%、より好ましくは60%とする。
Al 2 O 3 : 30 to 70%
Al 2 O 3 is a useful component for making the oxide inclusions have a lower melting point and a softness. Al 2 O 3 is inevitably present in steel or slag, but when the content of Al 2 O 3 in the slag is appropriately controlled, the melting point of inclusions is lowered, and as a result, stretchability is reduced. It is known that it is secured and becomes fine during the rolling process, which is advantageous for the soundness of the final material. In order to make such an effect effective, the content of Al 2 O 3 is set to 30% or more, preferably 35% or more, more preferably 40% or more. However, if the content of Al 2 O 3 is too large, alumina inclusions that are hard and difficult to be miniaturized are obtained, and are difficult to miniaturize in the hot rolling process, which becomes the starting point of destruction or breakage. %, Preferably 65%, more preferably 60%.

SiO:20〜40%
SiOは、上記Alとともに、鋼またはスラグ内に必然的に存在するようになり、多元系酸化物のベースとなる重要な酸化物である。SiOの含有量が20%未満の場合には、多元系酸化物の介在物としてその他の酸化物との優れた組み合わせを得ることができない。一方、40%を超えると、硬質の介在物が形成される可能性が高くなる。したがって、その下限を20%、上限を40%とすることが好ましい。
SiO 2: 20~40%
SiO 2 is inevitably present in the steel or slag together with the Al 2 O 3 and is an important oxide serving as a base of the multi-component oxide. When the content of SiO 2 is less than 20%, an excellent combination with other oxides cannot be obtained as inclusions of multi-component oxides. On the other hand, if it exceeds 40%, there is a high possibility that hard inclusions are formed. Therefore, it is preferable that the lower limit is 20% and the upper limit is 40%.

CaO+MgO:10〜20%
MgO及びCaOは、介在物を最適な複合組成にして低融点化するために必要な成分である。MgO及びCaOは、単独では両方とも高融点であるが、多元系酸化物の融点を低下させるという効果を奏する。かかる効果を発現するためには、合計10%以上含有させる必要がある。但し、CaO+MgOの合計含有量が多すぎると、介在物の融点が高くなるか、またはMgO及びCaOの結晶が生成されて、熱延工程で微細化し難くなって破壊または破損の起点となり得るため、その合計含有量の上限を20%以下とする。
一例によると、酸化物系介在物の平均直径は8μm以下(0μmを除く)であればよく、酸化物系介在物の最大直径は15μm以下(0μmを除く)であればよい。
CaO + MgO: 10-20%
MgO and CaO are components necessary for making inclusions into an optimal composite composition and lowering the melting point. Both MgO and CaO have a high melting point, but have the effect of lowering the melting point of the multi-component oxide. In order to exhibit such an effect, it is necessary to contain 10% or more in total. However, if the total content of CaO + MgO is too large, the melting point of inclusions is increased, or crystals of MgO and CaO are generated, and it is difficult to refine in the hot rolling process, which can be the starting point of destruction or breakage. The upper limit of the total content is 20% or less.
According to an example, the average diameter of the oxide inclusions may be 8 μm or less (excluding 0 μm), and the maximum diameter of the oxide inclusions may be 15 μm or less (excluding 0 μm).

このように、酸化物からなる非金属介在物を微細化することにより、破壊の起点を減少させることができる。ここで、非金属介在物の平均直径及び最大直径とは、線材の長さ方向の一断面を観察して検出した粒子の平均または最大円相当直径(equivalent circular diameter)を意味する。非金属介在物の最大直径は以下の方法を用いて求めた。光学顕微鏡により、400倍で800視野の観察を行い、各視野における非金属介在物の最大直径をガンベル(Gumbel)確率紙上に示し、50000mm相当の極値を算出して最大直径とした。 In this way, by starting to refine non-metallic inclusions made of oxide, the starting point of destruction can be reduced. Here, the average diameter and the maximum diameter of non-metallic inclusions mean the average or maximum equivalent circular diameter of particles detected by observing one cross section in the length direction of the wire. The maximum diameter of nonmetallic inclusions was determined using the following method. An 800 field of view was observed with an optical microscope at a magnification of 400 times, the maximum diameter of non-metallic inclusions in each field of view was shown on a Gumbel probability paper, and an extreme value equivalent to 50000 mm 2 was calculated to be the maximum diameter.

一方、上記のように、酸化物系介在物の平均組成及び直径を制御する方法は様々であるため、本発明では特に制限しない。但し、一例として、溶鋼中の溶存Al、Siの濃度と溶存Mg、Caの濃度を調整することにより、形成される酸化物系介在物の平均組成及び直径を制御することができる。
以上で説明した本発明の非調質線材は、様々な方法で製造することができ、その製造方法は特に制限されない。但し、一実施例として、次のような方法により製造することができる。
On the other hand, as described above, since there are various methods for controlling the average composition and diameter of the oxide inclusions, the present invention is not particularly limited. However, as an example, the average composition and diameter of the oxide inclusions formed can be controlled by adjusting the concentrations of dissolved Al and Si in the molten steel and the concentrations of dissolved Mg and Ca.
The non-heat treated wire of the present invention described above can be manufactured by various methods, and the manufacturing method is not particularly limited. However, as an example, it can be manufactured by the following method.

以下、本発明の強度及び衝撃靭性に優れた非調質線材の製造方法について詳細に説明する。
まず、上記成分系を満たすブルーム(bloom)を加熱した後、鋼片圧延してビレット(billet)を得る。
ブルーム(bloom)の加熱温度は、1200℃〜1300℃であることが好ましく、1200℃〜1250℃であることがより好ましい。ブルームの加熱温度が1200℃未満の場合には、熱間圧延性が低下する可能性がある。さらに、C、Mn、Crなどの中心部偏析を助長する元素の拡散が十分に行われず偏析部と非偏析部の組織差が大きくなって冷間加工性の劣化をもたらすことがある。一方、1300℃を超えると、オーステナイトの粗大化により延性が劣化するおそれがある。
Hereinafter, the manufacturing method of the non-heat-treated wire excellent in strength and impact toughness of the present invention will be described in detail.
First, a bloom satisfying the above component system is heated, and then billet is obtained by rolling a billet.
The heating temperature of the bloom is preferably 1200 ° C to 1300 ° C, and more preferably 1200 ° C to 1250 ° C. If the heating temperature of the bloom is less than 1200 ° C., the hot rollability may be reduced. Further, the diffusion of elements such as C, Mn, and Cr that promote segregation in the central portion is not sufficiently performed, and the structural difference between the segregated portion and the non-segregated portion may increase, resulting in deterioration of cold workability. On the other hand, when the temperature exceeds 1300 ° C., ductility may be deteriorated due to coarsening of austenite.

一例によると、ブルームの加熱時に、加熱温度における保持時間は240分以上である。その保持時間が240分未満の場合には、均質化処理が十分でないおそれがある。一方、加熱温度における保持時間が長ければ長いほど均質化に有利であり偏析の低減にも有利となるため、本発明では、その保持時間の上限については特に限定しない。   According to one example, when the bloom is heated, the holding time at the heating temperature is 240 minutes or more. If the holding time is less than 240 minutes, homogenization may not be sufficient. On the other hand, the longer the holding time at the heating temperature, the more advantageous for homogenization and the reduction of segregation. Therefore, in the present invention, the upper limit of the holding time is not particularly limited.

次に、上記ビレット(billet)を再加熱した後、線材圧延して非調質線材を得る。
ビレットの再加熱温度は1050℃〜1250℃であることが好ましく、1100℃〜1200℃であることがより好ましい。もし、ビレットの再加熱温度が1050℃未満の場合には、熱間変形抵抗が増加して、生産性の低下をもたらす可能性がある。一方、再加熱温度が1250℃を超えると、フェライト結晶粒が過度に粗大となり、延性が低下するおそれがある。
Next, after re-heating the billet, the wire rod is rolled to obtain a non-heat treated wire.
The reheating temperature of the billet is preferably 1050 ° C to 1250 ° C, and more preferably 1100 ° C to 1200 ° C. If the reheating temperature of the billet is less than 1050 ° C., the hot deformation resistance increases, which may cause a decrease in productivity. On the other hand, when the reheating temperature exceeds 1250 ° C., the ferrite crystal grains become excessively coarse and the ductility may be lowered.

一例によると、ビレットの再加熱時に、再加熱温度における保持時間は60〜240分以上である。その保持時間が60分未満の場合には、均質化処理が十分でない可能性がある。一方、再加熱温度における保持時間が長ければ長いほど偏析を助長する元素の均質化には有利であるが、オーステナイト組織が過度に成長して延性が低下するおそれがあるため、その保持時間の上限は240分に限定する。   According to an example, when the billet is reheated, the holding time at the reheating temperature is 60 to 240 minutes or more. If the retention time is less than 60 minutes, the homogenization process may not be sufficient. On the other hand, the longer the holding time at the reheating temperature, the more advantageous for the homogenization of elements that promote segregation, but the austenite structure grows excessively and the ductility may decrease, so the upper limit of the holding time. Is limited to 240 minutes.

線材圧延時の仕上げ圧延温度は750℃〜900℃、好ましくは800℃〜880℃である。仕上げ圧延温度が750℃未満の場合には、フェライト結晶粒微細化により強度が上昇して変形抵抗が増加する可能性がある。一方、900℃を越えると、フェライト結晶粒が過度に粗大となって延性が劣化し、パーライトのラメラ間隔が微細となって冷間加工性が劣化するおそれがある。   The finish rolling temperature during wire rod rolling is 750 to 900 ° C, preferably 800 to 880 ° C. When the finish rolling temperature is less than 750 ° C., the ferrite crystal grain refinement may increase the strength and increase the deformation resistance. On the other hand, when it exceeds 900 ° C., ferrite crystal grains are excessively coarse and ductility is deteriorated, and the lamella spacing of pearlite is fine and cold workability may be deteriorated.

その後、上記非調質線材を巻き取った後、冷却する。
一例によると、非調質線材の巻取温度は750〜900であり、より好ましくは800〜850である。巻取温度が750未満の場合には、冷却時に発生した表層部のマルテンサイトが復熱によって回復せず、焼戻マルテンサイトが生成されて硬くて脆い鋼となるため、冷間加工性が低下するおそれがある。一方、巻取温度が900を超えると、その表面に厚いスケールが形成されて、脱スケール時にトラブルが発生しやすいだけでなく、冷却時間が長くなり、生産性が低下するおそれがある。
Thereafter, the non-heat treated wire is wound up and then cooled.
According to an example, the winding temperature of the non-heat treated wire is 750 to 900, and more preferably 800 to 850. When the coiling temperature is less than 750, martensite in the surface layer generated during cooling is not recovered by recuperation, and tempered martensite is generated to form a hard and brittle steel, resulting in a decrease in cold workability. There is a risk. On the other hand, when the coiling temperature exceeds 900, a thick scale is formed on the surface, and not only trouble is likely to occur at the time of descaling, but also the cooling time becomes long, and the productivity may be lowered.

非調質線材の冷却時の冷却速度は、0.3〜1/secであり、好ましくは0.3〜0.8/sec以下である。これは、フェライトとパーライトの複合組織を安定的に形成するためである。冷却速度が0.3/sec未満の場合には、パーライト組織のラメラ間隔が広くなって延性が足りない可能性があり、1/secを超えると、フェライト分率が減少し、パーライトのラメラ間隔が微細となって冷間鍛造性が劣化するおそれがある。   The cooling rate during cooling of the non-heat treated wire is 0.3 to 1 / sec, preferably 0.3 to 0.8 / sec or less. This is to stably form a composite structure of ferrite and pearlite. If the cooling rate is less than 0.3 / sec, the lamella spacing of the pearlite structure may be widened and the ductility may be insufficient. If it exceeds 1 / sec, the ferrite fraction decreases and the pearlite lamella spacing is reduced. There is a possibility that the cold forgeability may be deteriorated due to the fineness.

以下、本発明の実施例をより詳細に説明する。しかし、かかる実施例の記載は、本発明の実施を例示するためのものであって、かかる実施例の記載によって本発明が制限されるものではない。本発明の権利範囲は、特許請求の範囲に記載された事項とそれから合理的に類推される事項によって決定されるためである。
(実施例)
Hereinafter, examples of the present invention will be described in more detail. However, the description of the embodiment is for illustrating the practice of the present invention, and the present invention is not limited by the description of the embodiment. This is because the scope of rights of the present invention is determined by matters described in the claims and matters reasonably inferred therefrom.
(Example)

表1のような合金組成を有するブルーム(bloom)を1250℃で5時間加熱した後、1150℃の仕上げ圧延温度条件下で鋼片圧延してビレット(billet)を得た。その後、上記ビレット(billet)を1200℃で3時間加熱した後、熱間圧延してΦ25mmの線材を製造した。この際、仕上げ圧延温度850℃、圧延比80%を一定に維持した。続いて、800℃の温度で巻き取った後、0.5℃/secの速度で冷却した。
その後、冷却された線材のフェライト分率や、ラメラ間隔、介在物の組成及び大きさなどを測定して表2及び3に示した。
A bloom having an alloy composition as shown in Table 1 was heated at 1250 ° C. for 5 hours and then rolled into a billet under a finish rolling temperature condition of 1150 ° C. to obtain a billet. Thereafter, the billet was heated at 1200 ° C. for 3 hours, and then hot-rolled to produce a Φ25 mm wire. At this time, the finish rolling temperature of 850 ° C. and the rolling ratio of 80% were kept constant. Then, after winding up at the temperature of 800 degreeC, it cooled at the speed | rate of 0.5 degree-C / sec.
Thereafter, the ferrite fraction, the lamellar spacing, the composition and size of inclusions, etc. of the cooled wire were measured and shown in Tables 2 and 3.

また、冷却された線材の冷間加工性を評価し、表4にともに示した。冷間加工性は、切欠き圧縮試験片に対して真ひずみ0.7の圧縮試験を行って、割れが発生したか否かを評価した。この際、割れが発生していない場合を「GO」、割れが発生した場合を「NG」と評価した。
一方、各線材にそれぞれ10%、15%、20%の伸線加工量を印加して鋼線を製造した。また、製造された鋼線の冷間加工性を評価し、表4にともに示した。具体的な評価方法は上述のとおりである。
Moreover, the cold workability of the cooled wire was evaluated and is shown in Table 4. Cold workability evaluated whether the crack generate | occur | produced by performing the compression test of true distortion 0.7 with respect to the notch compression test piece. At this time, the case where no cracks occurred was evaluated as “GO”, and the case where cracks occurred was evaluated as “NG”.
On the other hand, a steel wire was manufactured by applying a wire drawing amount of 10%, 15%, and 20% to each wire. Moreover, the cold workability of the manufactured steel wire was evaluated and is shown in Table 4 together. The specific evaluation method is as described above.

Figure 2019502815
Figure 2019502815

Figure 2019502815
Figure 2019502815

Figure 2019502815
Figure 2019502815

Figure 2019502815
Figure 2019502815

表4に示す通り、本発明で提案する合金組成及び製造条件を満たす発明例1〜8の場合には、関係式1〜5の条件をすべて満たすだけでなく、非金属介在物の組成、平均直径、及び最大直径が本発明で提案する条件で制御されて、伸線加工後に内部に割れが発生しなかったことから、優れた強度及び冷間加工性を確保できることが確認できた。一方、比較例1〜5は、本発明で提案する条件を少なくとも一つ以上満たさない場合であって、伸線加工後に内部に割れが発生したことから、発明例に比べて冷間加工性が劣ることが分かる。   As shown in Table 4, in the case of Invention Examples 1 to 8 satisfying the alloy composition and manufacturing conditions proposed in the present invention, not only all the conditions of the relational expressions 1 to 5 are satisfied, but also the composition and average of nonmetallic inclusions The diameter and the maximum diameter were controlled under the conditions proposed in the present invention, and no cracks were generated in the interior after wire drawing, so it was confirmed that excellent strength and cold workability could be secured. On the other hand, Comparative Examples 1 to 5 are cases in which at least one of the conditions proposed in the present invention is not satisfied, and cracks occurred inside after wire drawing, so that cold workability is higher than that of the inventive examples. You can see that it is inferior.

以下、本発明の強度及び冷間加工性に優れた非調質線材の製造方法について詳細に説明する。
まず、上記成分系を満たすブルーム(bloom)を加熱した後、鋼片圧延してビレット(billet)を得る。
ブルーム(bloom)の加熱温度は、1200℃〜1300℃であることが好ましく、1200℃〜1250℃であることがより好ましい。ブルームの加熱温度が1200℃未満の場合には、熱間圧延性が低下する可能性がある。さらに、C、Mn、Crなどの中心部偏析を助長する元素の拡散が十分に行われず偏析部と非偏析部の組織差が大きくなって冷間加工性の劣化をもたらすことがある。一方、1300℃を超えると、オーステナイトの粗大化により延性が劣化するおそれがある。
Hereinafter, the manufacturing method of the non-heat treated wire excellent in strength and cold workability of the present invention will be described in detail.
First, a bloom satisfying the above component system is heated, and then billet is obtained by rolling a billet.
The heating temperature of the bloom is preferably 1200 ° C to 1300 ° C, and more preferably 1200 ° C to 1250 ° C. If the heating temperature of the bloom is less than 1200 ° C., the hot rollability may be reduced. Further, the diffusion of elements such as C, Mn, and Cr that promote segregation in the central portion is not sufficiently performed, and the structural difference between the segregated portion and the non-segregated portion may increase, resulting in deterioration of cold workability. On the other hand, when the temperature exceeds 1300 ° C., ductility may be deteriorated due to coarsening of austenite.

その後、上記非調質線材を巻き取った後、冷却する。
一例によると、非調質線材の巻取温度は750〜900であり、より好ましくは800〜850である。巻取温度が750未満の場合には、冷却時に発生した表層部のマルテンサイトが復熱によって回復せず、焼戻マルテンサイトが生成されて硬くて脆い鋼となるため、冷間加工性が低下するおそれがある。一方、巻取温度が900を超えると、その表面に厚いスケールが形成されて、脱スケール時にトラブルが発生しやすいだけでなく、冷却時間が長くなり、生産性が低下するおそれがある。
Thereafter, the non-heat treated wire is wound up and then cooled.
According to one example, the coiling temperature of microalloyed wire is 750 to 900 ° C., more preferably 800 to 850 ° C.. When the coiling temperature is less than 750 ° C. , the martensite in the surface layer generated during cooling is not recovered by recuperation, and tempered martensite is generated to form a hard and brittle steel. May decrease. On the other hand, when the coiling temperature exceeds 900 ° C. , a thick scale is formed on the surface, and not only troubles are likely to occur at the time of descaling, but also the cooling time becomes long and productivity may be lowered.

非調質線材の冷却時の冷却速度は、0.3〜1/secであり、好ましくは0.3〜0.8/sec以下である。これは、フェライトとパーライトの複合組織を安定的に形成するためである。冷却速度が0.3/sec未満の場合には、パーライト組織のラメラ間隔が広くなって延性が足りない可能性があり、1/secを超えると、フェライト分率が減少し、パーライトのラメラ間隔が微細となって冷間鍛造性が劣化するおそれがある。
Cooling rate during cooling of microalloyed wire is 0.3 to 1 ° C. / sec, preferably not more than 0.3 to 0.8 ° C. / sec. This is to stably form a composite structure of ferrite and pearlite. If the cooling rate is less than 0.3 ° C / sec, the lamella spacing of the pearlite structure may be widened and the ductility may be insufficient. If it exceeds 1 ° C / sec, the ferrite fraction decreases, There is a possibility that the lamella spacing becomes fine and the cold forgeability deteriorates.

Claims (11)

質量%で、C:0.3〜0.4%、Si:0.05〜0.3%、Mn:0.8〜1.8%、Cr:0.5%以下、P:0.02%以下、S:0.02%以下、sol.Al:0.01〜0.05%、N:0.01%以下、及びO:0.0001〜0.003%を含み、且つNb:0.005〜0.03%及びV:0.05〜0.3%のうち1種以上を含み、残部がFe及び不可避不純物からなり、
微細組織として、フェライト(ferrite)及びパーライト(pearlite)を含み、
前記パーライトの相分率は下記関係式1及び2を満たし、前記パーライトの平均ラメラ間隔は下記関係式3及び4を満たすことを特徴とする非調質線材。
[関係式1]VP/VP≦1.4
[関係式2]50≦(15VP+VP)/16≦70
[関係式3]DL/DL≦1.4
[関係式4]0.1≦(15DL+DL)/16≦0.3
(ここで、VP及びVPはそれぞれ、線材の長さ方向に垂直な断面で、線材の表面から線材の直径(D)方向の3/8Dの位置までの領域におけるパーライト分率(面積%)、及び線材の直径(D)方向の3/8Dの位置から線材の中心までの領域におけるパーライト分率(面積%)を意味し、DL及びDLはそれぞれ、線材の長さ方向に垂直な断面で、線材の表面から線材の直径(D)方向の3/8Dの位置までの領域におけるパーライトの平均ラメラ間隔(μm)、及び線材の直径(D)方向の3/8Dの位置から線材の中心までの領域におけるパーライトの平均ラメラ間隔(μm)を意味する)
In mass%, C: 0.3 to 0.4%, Si: 0.05 to 0.3%, Mn: 0.8 to 1.8%, Cr: 0.5% or less, P: 0.02 % Or less, S: 0.02% or less, sol. Al: 0.01 to 0.05%, N: 0.01% or less, and O: 0.0001 to 0.003%, and Nb: 0.005 to 0.03% and V: 0.05 Including one or more of ~ 0.3%, the balance consisting of Fe and inevitable impurities,
As a microstructure, ferrite (ferrite) and pearlite (pearlite),
The pearlite phase fraction satisfies the following relational expressions 1 and 2, and the average lamella spacing of the pearlite satisfies the following relational expressions 3 and 4.
[Relational expression 1] VP 2 / VP 1 ≦ 1.4
[Relational expression 2] 50 ≦ (15VP 1 + VP 2 ) / 16 ≦ 70
[Relational expression 3] DL 1 / DL 2 ≦ 1.4
[Relational Expression 4] 0.1 ≦ (15DL 1 + DL 2 ) /16≦0.3
(Here, VP 1 and VP 2 are each a cross section perpendicular to the length direction of the wire, and the pearlite fraction (area%) in the region from the surface of the wire to the position 3 / 8D in the diameter (D) direction of the wire. ), And the pearlite fraction (area%) in the region from the 3 / 8D position in the diameter (D) direction of the wire to the center of the wire, and DL 1 and DL 2 are each perpendicular to the length direction of the wire The average lamella spacing (μm) of pearlite in the region from the surface of the wire to the position of 3 / 8D in the diameter (D) direction of the wire, and the wire from the position of 3 / 8D in the diameter (D) direction of the wire Mean lamella spacing (μm) of pearlite in the region to the center of
前記パーライトの強度差は下記関係式5を満たすことを特徴とする請求項1に記載の非調質線材。
[関係式5](VP/VP)×(√(DL/DL))≦1.5
The non-heat treated wire according to claim 1, wherein the intensity difference of the pearlite satisfies the following relational expression 5.
[Relational Expression 5] (VP 2 / VP 1 ) × (√ (DL 1 / DL 2 )) ≦ 1.5
前記不可避不純物は、Tiを含み、質量%で、Ti:0.005%以下に抑えられることを特徴とする請求項1に記載の非調質線材。   2. The non-heat treated wire according to claim 1, wherein the inevitable impurities include Ti and are suppressed to Ti: 0.005% or less by mass%. 炭素当量(Ceq)が0.6以上0.7以下であることを特徴とする請求項1に記載の非調質線材。   The non-heat treated wire according to claim 1, wherein a carbon equivalent (Ceq) is 0.6 or more and 0.7 or less. 線材の長さ方向に垂直な断面で、線材の直径(D)方向の3/8Dの位置から線材の中心までの領域における酸化物系介在物の平均組成は下記関係式6〜8を満たすことを特徴とする請求項1に記載の非調質線材。
[関係式6]30≦[Al]≦70
[関係式7]20≦[SiO]≦40
[関係式8]10≦[CaO]+[MgO]≦20
(ここで、[Al]、[SiO]、[CaO]及び[MgO]はそれぞれ、該当介在物の含有量(質量%)を意味する)
The average composition of oxide inclusions in the region from the position of 3 / 8D in the diameter (D) direction of the wire to the center of the wire in the cross section perpendicular to the length direction of the wire satisfies the following relational expressions 6-8. The non-heat treated wire according to claim 1.
[Relational Expression 6] 30 ≦ [Al 2 O 3 ] ≦ 70
[Relational Expression 7] 20 ≦ [SiO 2 ] ≦ 40
[Relational Expression 8] 10 ≦ [CaO] + [MgO] ≦ 20
(Here, [Al 2 O 3 ], [SiO 2 ], [CaO] and [MgO] each mean the content (mass%) of the corresponding inclusion)
前記酸化物系介在物の平均直径は8μm以下であることを特徴とする請求項5に記載の非調質線材。   6. The non-heat treated wire according to claim 5, wherein an average diameter of the oxide inclusions is 8 μm or less. 前記酸化物系介在物の最大直径は15μm以下であることを特徴とする請求項5に記載の非調質線材。   The non-heat treated wire according to claim 5, wherein the oxide inclusions have a maximum diameter of 15 µm or less. 質量%で、C:0.3〜0.4%、Si:0.05〜0.3%、Mn:0.8〜1.8%、Cr:0.5%以下、P:0.02%以下、S:0.02%以下、sol.Al:0.01〜0.05%、O:0.0001〜0.003%、及びN:0.01%以下を含み、且つNb:0.005〜0.03%及びV:0.05〜0.3%のうち1種以上を含み、残部がFe及び不可避不純物からなり、炭素当量(Ceq)が0.6以上0.7以下のブルーム(bloom)を1200℃〜1300℃の加熱温度で加熱し、前記加熱温度で240分以上維持した後、鋼片圧延してビレット(billet)を得る段階と、
前記ビレットを再加熱した後、仕上げ圧延温度750℃〜900℃の条件下で線材圧延して線材を得る段階と、
前記線材を巻き取った後、0.3℃〜1℃/secの速度で冷却する段階と、を含むことを特徴とする非調質線材の製造方法。
In mass%, C: 0.3 to 0.4%, Si: 0.05 to 0.3%, Mn: 0.8 to 1.8%, Cr: 0.5% or less, P: 0.02 % Or less, S: 0.02% or less, sol. Al: 0.01 to 0.05%, O: 0.0001 to 0.003%, and N: 0.01% or less, and Nb: 0.005 to 0.03% and V: 0.05 A heating temperature of 1200 ° C. to 1300 ° C. with a bloom containing at least one of ˜0.3%, the balance being Fe and inevitable impurities, and a carbon equivalent (Ceq) of 0.6 to 0.7 And maintaining at the heating temperature for 240 minutes or more, then rolling the steel billet to obtain a billet;
Reheating the billet, and then rolling the wire under a finish rolling temperature of 750 ° C to 900 ° C to obtain a wire,
And a step of cooling at a rate of 0.3 ° C. to 1 ° C./sec after winding the wire.
前記不可避不純物は、Tiを含み、質量%で、Ti:0.005%以下に抑えられることを特徴とする請求項8に記載の非調質線材。   The non-heat treated wire according to claim 8, wherein the inevitable impurities include Ti and are suppressed to Ti: 0.005% or less by mass%. 前記ビレットの再加熱温度は1050℃〜1200℃であることを特徴とする請求項8に記載の非調質線材。   The non-heat treated wire according to claim 8, wherein a reheating temperature of the billet is 1050C to 1200C. 前記線材の巻取温度は750℃〜900℃であることを特徴とする請求項8に記載の非調質線材。   The non-heat treated wire according to claim 8, wherein a winding temperature of the wire is 750C to 900C.
JP2018524489A 2015-12-17 2016-06-20 Non-heat treated wire excellent in strength and cold workability and method for producing the same Active JP6600412B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150181027A KR101758491B1 (en) 2015-12-17 2015-12-17 Non-quenched and tempered wire rod having excellent strength and cold workability and method for manufacturing same
KR10-2015-0181027 2015-12-17
PCT/KR2016/006498 WO2017104920A1 (en) 2015-12-17 2016-06-20 Non-heat treated wire rod excellent in strength and cold workability and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2019502815A true JP2019502815A (en) 2019-01-31
JP6600412B2 JP6600412B2 (en) 2019-10-30

Family

ID=59056832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018524489A Active JP6600412B2 (en) 2015-12-17 2016-06-20 Non-heat treated wire excellent in strength and cold workability and method for producing the same

Country Status (7)

Country Link
US (1) US20180305787A1 (en)
JP (1) JP6600412B2 (en)
KR (1) KR101758491B1 (en)
CN (1) CN108368586B (en)
DE (1) DE112016005827T5 (en)
MX (1) MX2018006715A (en)
WO (1) WO2017104920A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022537538A (en) * 2020-02-24 2022-08-26 ポスコ Untempered wire rod with excellent wire drawability and impact toughness, and method for producing the same
JP2023507947A (en) * 2019-12-17 2023-02-28 ポスコホールディングス インコーポレーティッド Untempered wire rod with excellent drawability and impact toughness, and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110457729B (en) * 2019-05-17 2023-04-14 陕西飞机工业(集团)有限公司 Optimization method and device for semi-closed structural steel heat treatment part and shaft part

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790485A (en) * 1993-06-30 1995-04-04 Samsung Heavy Ind Co Ltd High-toughness high-strength nonrefined steel and its production
JPH0949018A (en) * 1995-05-29 1997-02-18 Kobe Steel Ltd Production of steel wire for reinforcing rubber
JP2001192771A (en) * 2000-01-13 2001-07-17 Nippon Steel Corp Hot rolled wire rod with fine diameter
JP2002003998A (en) * 2000-06-20 2002-01-09 Daido Steel Co Ltd Wire rod and its manufacturing method
JP2008127596A (en) * 2006-11-17 2008-06-05 Kobe Steel Ltd High strength cold forged non-heat treated steel having excellent fatigue limit ratio
WO2011055651A1 (en) * 2009-11-05 2011-05-12 住友金属工業株式会社 Hot-rolled steel bar or wire rod
US20120037283A1 (en) * 2009-04-23 2012-02-16 Posco High-Strength, High-Toughness Steel Wire Rod, and Method for Manufacturing Same
WO2015029553A1 (en) * 2013-08-26 2015-03-05 新日鐵住金株式会社 Rolled round steel material for steering rack bar, and steering rack bar
WO2015119247A1 (en) * 2014-02-06 2015-08-13 新日鐵住金株式会社 Steel wire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713257B2 (en) * 1990-05-30 1995-02-15 新日本製鐵株式会社 Method for manufacturing soft wire without as-rolled surface abnormal phase
JP4435953B2 (en) * 1999-12-24 2010-03-24 新日本製鐵株式会社 Bar wire for cold forging and its manufacturing method
JP5231101B2 (en) * 2008-06-27 2013-07-10 株式会社神戸製鋼所 Machine structural steel with excellent fatigue limit ratio and machinability
JP5521885B2 (en) * 2010-08-17 2014-06-18 新日鐵住金株式会社 Steel wire for machine parts with high strength and excellent hydrogen embrittlement resistance, machine parts and method for producing the same
WO2013035848A1 (en) * 2011-09-09 2013-03-14 新日鐵住金株式会社 Medium carbon steel sheet, quenched member, and method for manufacturing medium carbon steel sheet and quenched member
JP5790517B2 (en) * 2012-01-25 2015-10-07 新日鐵住金株式会社 Rolled steel bar or wire rod for hot forging
KR101461716B1 (en) * 2012-09-11 2014-11-14 주식회사 포스코 Ultra high strength wire rod with excellent drawability and manufacturing method of the same
JP7013257B2 (en) * 2018-01-26 2022-01-31 タキロンシーアイ株式会社 Installation structure of support pillars for waterstop and its installation method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790485A (en) * 1993-06-30 1995-04-04 Samsung Heavy Ind Co Ltd High-toughness high-strength nonrefined steel and its production
JPH0949018A (en) * 1995-05-29 1997-02-18 Kobe Steel Ltd Production of steel wire for reinforcing rubber
JP2001192771A (en) * 2000-01-13 2001-07-17 Nippon Steel Corp Hot rolled wire rod with fine diameter
JP2002003998A (en) * 2000-06-20 2002-01-09 Daido Steel Co Ltd Wire rod and its manufacturing method
JP2008127596A (en) * 2006-11-17 2008-06-05 Kobe Steel Ltd High strength cold forged non-heat treated steel having excellent fatigue limit ratio
US20120037283A1 (en) * 2009-04-23 2012-02-16 Posco High-Strength, High-Toughness Steel Wire Rod, and Method for Manufacturing Same
WO2011055651A1 (en) * 2009-11-05 2011-05-12 住友金属工業株式会社 Hot-rolled steel bar or wire rod
WO2015029553A1 (en) * 2013-08-26 2015-03-05 新日鐵住金株式会社 Rolled round steel material for steering rack bar, and steering rack bar
WO2015119247A1 (en) * 2014-02-06 2015-08-13 新日鐵住金株式会社 Steel wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023507947A (en) * 2019-12-17 2023-02-28 ポスコホールディングス インコーポレーティッド Untempered wire rod with excellent drawability and impact toughness, and method for producing the same
JP2022537538A (en) * 2020-02-24 2022-08-26 ポスコ Untempered wire rod with excellent wire drawability and impact toughness, and method for producing the same
JP7475374B2 (en) 2020-02-24 2024-04-26 ポスコ カンパニー リミテッド Non-tempered wire rod with excellent wiredrawability and impact toughness and its manufacturing method

Also Published As

Publication number Publication date
US20180305787A1 (en) 2018-10-25
KR20170072996A (en) 2017-06-28
WO2017104920A1 (en) 2017-06-22
CN108368586B (en) 2020-05-26
DE112016005827T5 (en) 2018-08-23
MX2018006715A (en) 2018-08-01
KR101758491B1 (en) 2017-07-17
CN108368586A (en) 2018-08-03
JP6600412B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6605141B2 (en) Non-tempered wire rod excellent in cold workability and manufacturing method thereof
JP6626571B2 (en) Wire rod excellent in cold forgeability and its manufacturing method
US20120037283A1 (en) High-Strength, High-Toughness Steel Wire Rod, and Method for Manufacturing Same
WO2001048257A1 (en) Bar or wire product for use in cold forging and method for producing the same
KR102178711B1 (en) Non-heat treated wire rod having excellent strength and impact toughness and method for manufacturing thereof
KR102318036B1 (en) Non-heat treated wire rod having excellent machinability and impact toughness and method for manufacturing thereof
JP6600412B2 (en) Non-heat treated wire excellent in strength and cold workability and method for producing the same
JP2022510212A (en) High-strength steel with excellent ductility and low-temperature toughness and its manufacturing method
JP2004027334A (en) Steel for induction tempering and method of producing the same
CN113966404B (en) Non-heat-treated wire rod having excellent drawability and impact toughness and method for manufacturing the same
KR101518571B1 (en) Non heat treated wire rod having excellent high strength and impact toughness and method for manafacturing the same
KR101382754B1 (en) Hot rolled high-phosphorus steel having superior impact property and method for manufacturing the same
JPH11199926A (en) Production of bar steel for high strength bolt, excellent in cold workability and delayed fracture resistance
KR102175586B1 (en) Non-heat treated wire rod having excellent drawability and impact toughness and method for manufacturing thereof
KR101568494B1 (en) Medium carbon soft wire rod and method for manufaturing the same
JP2004124190A (en) Induction-tempered steel having excellent twisting property
KR102318035B1 (en) Non-heat treated wire rod having excellent drawability and impact toughness and method for manufacturing thereof
JP2000219915A (en) Production of seamless steel pipe having high strength and high toughness
KR102448753B1 (en) Non-heat treated steel with improved machinability and toughness and the method for manufacturing the same
JPH0949020A (en) Production of steel material for low temperature reinforcement
KR20150025910A (en) High strength hot-rolled steel sheet and method of manufacturing the same
KR101736618B1 (en) High strength steel wire rod and steel wire having excellent formability, and method for manufacturing thereof
KR101657800B1 (en) High strength cold rolled steel sheet having excellent stretch flange ability and method for manufacturing the same
KR20230091620A (en) Medium carbon wire rod having excelent strength and elongation, and method for manufacturing the same
KR100833068B1 (en) Fine-grained hot-rolled steel with low yield ratio

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191004

R150 Certificate of patent or registration of utility model

Ref document number: 6600412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250