WO2018092735A1 - High strength steel sheet, production method therefor, and high strength galvanized steel sheet - Google Patents

High strength steel sheet, production method therefor, and high strength galvanized steel sheet Download PDF

Info

Publication number
WO2018092735A1
WO2018092735A1 PCT/JP2017/040814 JP2017040814W WO2018092735A1 WO 2018092735 A1 WO2018092735 A1 WO 2018092735A1 JP 2017040814 W JP2017040814 W JP 2017040814W WO 2018092735 A1 WO2018092735 A1 WO 2018092735A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
temperature
ferrite
strength
Prior art date
Application number
PCT/JP2017/040814
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 南
由康 川崎
金子 真次郎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2018092735A1 publication Critical patent/WO2018092735A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc

Definitions

  • the present invention relates to a high-strength steel sheet excellent in formability, which is mainly suitable as a structural member of an automobile, and a method for producing the same, and in particular, has a tensile strength (TS) of 780 MPa or more and is excellent not only in ductility but also in rigidity. Furthermore, the present invention seeks to obtain a high-strength steel sheet that is also excellent in deep drawability.
  • the high-strength steel sheet of the present invention includes a high-strength galvanized steel sheet having a galvanized layer on its surface.
  • the Young's modulus is largely governed by the texture of the steel sheet.
  • the Young's modulus In the case of iron having a body-centered cubic lattice, the Young's modulus is high in the ⁇ 111> direction, which is the atomic dense direction, and conversely low in the ⁇ 100> direction where the atomic density is small It has been known. It is known that the Young's modulus of normal iron with no anisotropy in crystal orientation is about 206 GPa, but by giving anisotropy to the crystal orientation and increasing the atomic density in a specific direction, Young's modulus can be increased. However, when considering the rigidity of an automobile body, since a load is applied from various directions, a steel sheet having a high Young's modulus in each direction is required in addition to a specific direction.
  • Patent Document 1 in mass%, C: 0.02 to 0.15%, Si: 0.3% or less, Mn: 1.0 to 3.5%, P : 0.05% or less, S: 0.01% or less, Al: 1.0% or less, N: 0.01% or less, and Ti: 0.1 to 1.0%, the balance being Fe and inevitable
  • a slab composed of mechanical impurities is hot-rolled, cold-rolled at a rolling reduction of 20 to 85%, and then recrystallized and annealed to have a ferrite single-phase microstructure, TS of 590 MPa or more, and the rolling direction.
  • Patent Document 2 discloses that in mass%, C: 0.05 to 0.15%, Si: 1.5% or less, Mn: 1.5 to 3.0%, P: 0.05% or less, S: 0.01% or less, Al: 0.5% or less, N: 0.01% or less, Nb: 0.02 to 0.15% and Ti: 0.01 to 0.15%, the balance A slab composed of Fe and inevitable impurities is hot-rolled, cold-rolled at a rolling reduction of 40 to 75%, and then recrystallized to have a mixed structure of ferrite and martensite, and TS is 590 MPa. As described above, a method for producing a high-rigidity and high-strength steel sheet having excellent workability and having a Young's modulus in a direction perpendicular to the rolling direction of 230 GPa or more has been proposed.
  • Patent Document 3 by mass%, C: 0.010 to 0.050%, Si: 1.0% or less, Mn: 1.0 to 3.0%, P: 0.005 to 0.00. 1%, S: 0.01% or less, Al: 0.005 to 0.5%, N: 0.01% or less and Nb: 0.03 to 0.3%, the balance being Fe and inevitable
  • a slab made of impurities is cold-rolled after hot rolling, and recrystallized and annealed to have a steel structure including an area ratio of the ferrite phase of 50% or more and an area ratio of the martensite phase of 1% or more.
  • a method for producing a high-strength steel sheet having a Young's modulus in the direction perpendicular to the rolling of 225 GPa or more and an average r value of 1.3 or more has been proposed.
  • Patent Document 3 discloses that the rigidity and workability are excellent, and among the workability, it discloses that the deep drawability is particularly excellent, but TS is as low as about 660 MPa at most. Further, the techniques described in Patent Documents 1 to 3 do not necessarily have the feature of being excellent not only in ductility and rigidity but also in deep drawability.
  • the present invention has been developed in view of such circumstances, and has developed a ferrite texture to ⁇ -fiber (a fiber texture in which the ⁇ 111> axis is parallel to the normal direction of the rolling surface) and utilizes bainite transformation. Then, by dispersing an appropriate amount of retained austenite, an object is to obtain a high-strength steel sheet having not only ductility but also rigidity and further excellent deep drawability while having a TS of 780 MPa or more.
  • excellent ductility that is, El (total elongation) means that the value of TS ⁇ El is 15000 MPa ⁇ % or more.
  • excellent rigidity that is, Young's modulus means that the Young's modulus in the rolling direction and the 45 ° direction with respect to the rolling direction is 205 GPa or more, and the Young's modulus in the direction perpendicular to the rolling direction is 220 GPa or more.
  • being excellent in deep drawability means that the average r value, which is an index of deep drawability, is 0.95 or more regardless of the strength of the steel sheet.
  • the interstitial elements C and N are added due to the effect of promoting precipitation of the added Ti and / or Nb by making the coiling temperature (CT) of the hot rolling relatively high. It is important to deposit as carbides and nitrides with high thermal stability.
  • CT coiling temperature
  • heat treatment is performed to soften the hot-rolled sheet, and then the cold rolling is performed to increase the reduction ratio as much as possible to obtain ⁇ -fiber ( ⁇ 110> axis). It is important to develop a fiber texture that is parallel to the rolling direction) and a ⁇ -fiber texture.
  • the gist configuration of the present invention is as follows. 1. Ingredient composition is mass%, C: 0.08% to 0.35%, Si: 0.50% or more and 2.50% or less, Mn: 1.50% or more and 3.00% or less, P: 0.001% to 0.100%, S: 0.0001% or more and 0.0200% or less and N: 0.0005% or more and 0.0100% or less, Ti: 0.001% or more and 0.200% or less and Nb: 0.001% or more and 0.200% or less containing one or two selected from the balance, the balance consists of Fe and inevitable impurities, Steel structure is area ratio, Ferrite is 20% or more, the average grain size of the ferrite is 10 ⁇ m or more and 20 ⁇ m or less, and bainite is 5% or more, Martensite is 5% or more, The total area ratio of bainite and martensite is 15% or more, In volume ratio, residual austenite is 5% or more, Further, the ferrite texture has a microstructure in which the inverse strength
  • Al 0.01% or more and 1.00% or less
  • V 0.005% or more and 0.100% or less
  • B 0.0001% to 0.0050%
  • Cr 0.05% or more and 1.00% or less
  • Cu 0.05% or more and 1.00% or less
  • Sb 0.0020% or more and 0.2000% or less
  • Sn 0.0020% or more and 0.2000% or less
  • Ta 0.0010% or more and 0.1000% or less
  • Ca 0.0003% or more and 0.0050% or less
  • the method for producing a high-strength steel sheet according to 1 or 2 The steel slab having the component composition of 1 or 2 is heated to 1100 ° C. or higher and 1300 ° C. or lower, hot rolled at a finish rolling exit temperature: 800 ° C. or higher and 1000 ° C. or lower, and a coiling temperature: 300 ° C. or higher. Winding at 800 ° C. or lower, after pickling treatment, as it is or after holding in the temperature range of 450 ° C. or higher and 800 ° C. or lower for 900 s or more and 36000 s or less, cold rolling is performed at a rolling reduction of 40% or more, Subsequently, the obtained cold-rolled sheet is heated to a temperature range of 450 ° C.
  • T1 temperature (° C.) 720 + 29 ⁇ [% Si] -21 ⁇ [% Mn] + 17 ⁇ [% Cr]
  • T2 temperature (° C.) 946 ⁇ 203 ⁇ [% C] 1/2 + 45 ⁇ [% Si] ⁇ 30 ⁇ [% Mn] + 150 ⁇ [% Al] ⁇ 20 ⁇ [% Cu] + 11 ⁇ [% Cr] +350 ⁇ [% Ti] + 104 ⁇ [% V] [% X] is the mass% of the component element X of the steel sheet, and zero for the component elements not contained.
  • the present invention it is possible to effectively obtain a high-strength steel sheet having a TS of 780 MPa or more and excellent not only in ductility but also in rigidity and also in deep drawability. Therefore, by applying the high-strength steel plate obtained by the present invention to, for example, an automobile structural member, fuel efficiency can be improved by reducing the weight of the vehicle body, and the industrial utility value is extremely large.
  • C 0.08% to 0.35%
  • C is an element indispensable for increasing the strength of a steel sheet and ensuring a stable amount of retained austenite, and is an element necessary for ensuring the amount of bainite and martensite and for retaining austenite at room temperature. If the C content is less than 0.08%, it is difficult to secure desired TS and El.
  • the C content is 0.08% or more and 0.35% or less.
  • they are 0.12% or more and 0.33% or less, More preferably, they are 0.15% or more and 0.31% or less, More preferably, they are 0.20% or more and 0.30% or less.
  • Si 0.50% to 2.50%
  • Si is an element useful for improving the El of the steel sheet by suppressing the formation of carbides and promoting the formation of retained austenite. It is also effective in suppressing the formation of carbides due to decomposition of retained austenite. Furthermore, since it has a high solid solution strengthening ability in ferrite, it contributes to improving the strength of steel. Further, Si dissolved in ferrite has an effect of improving work hardening ability and increasing the ductility of the ferrite itself. In order to obtain such an effect, the Si amount needs to be 0.50% or more.
  • the Si amount is set to 0.50% or more and 2.50% or less.
  • they are 0.80% or more and 2.00% or less, More preferably, they are 1.00% or more and 1.80% or less, More preferably, they are 1.10% or more and 1.70% or less.
  • Mn is effective for securing the strength of the steel sheet.
  • the hardenability is improved to facilitate complex organization.
  • Mn acts to suppress the formation of pearlite during the cooling process, and facilitates transformation from austenite to bainite and martensite.
  • the amount of Mn needs to be 1.50% or more.
  • the Mn content is 1.50% or more and 3.00% or less. Preferably they are 1.50% or more and 2.70% or less, More preferably, they are 1.80% or more and 2.50% or less.
  • P 0.001% to 0.100%
  • P is an element that has a solid solution strengthening action and can be added according to a desired strength.
  • it is an element effective for complex organization in order to promote ferrite transformation.
  • P amount 0.001% or more.
  • the amount of P exceeds 0.100%, weldability is deteriorated and, when galvanizing is alloyed, the alloying speed is greatly delayed to impair the quality of galvanizing.
  • impact resistance is deteriorated by embrittlement due to grain boundary segregation. Therefore, the P amount is set to 0.001% or more and 0.100% or less. Preferably it is 0.005% or more and 0.050% or less.
  • the amount of S needs to be 0.0001% or more due to restrictions in production technology. Therefore, the S amount is set to 0.0001% or more and 0.0200% or less. Preferably it is 0.0001% or more and 0.0050% or less.
  • N is an element that greatly deteriorates the aging resistance of steel.
  • the amount of N exceeds 0.0100%, deterioration of aging resistance becomes remarkable, so the amount is preferably as small as possible.
  • the amount of N needs to be 0.0005% or more due to restrictions on production technology. There is. Therefore, the N amount is set to 0.0005% or more and 0.0100% or less. Preferably it is 0.0005% or more and 0.0070% or less.
  • Ti in addition to the above components, in order to obtain a ferrite having an orientation that is advantageous for improving the Young's modulus, Ti: 0.001% to 0.200% and Nb: 0.001% to 0.200 It is necessary to contain any 1 type or 2 types in% or less. [Ti: 0.001% or more and 0.200% or less] Ti forms precipitates with C, S, and N, and not only generates ferrite with an orientation that is advantageous for improving rigidity and deep drawability during annealing, but also suppresses coarsening of recrystallized grains. It also contributes to the improvement of strength. Moreover, when B is added, since N is precipitated as TiN, precipitation of BN is suppressed, and the effect of B described later is effectively expressed.
  • the Ti amount needs to be 0.001% or more.
  • the amount of Ti exceeds 0.200%, carbonitrides cannot be completely dissolved during normal slab reheating, and coarse carbonitrides remain, thereby increasing strength and suppressing recrystallization. The effect is not obtained.
  • the Ti amount is set to 0.001% or more and 0.200% or less. Preferably they are 0.030% or more and 0.170% or less, More preferably, they are 0.050% or more and 0.150% or less.
  • Nb forms fine precipitates at the time of hot rolling or annealing, and not only generates ferrite with an orientation that is advantageous for improving rigidity and deep drawability at the time of annealing, but also coarsens the recrystallized grains. Suppressing and contributing to the improvement of strength.
  • Nb is added in an appropriate amount, the austenite phase generated by reverse transformation at the time of annealing is refined, so that the microstructure after annealing is also refined to increase the strength. In order to obtain such an effect, the Nb amount needs to be 0.001% or more.
  • the Nb amount is set to be 0.001% or more and 0.200% or less. Preferably they are 0.030% or more and 0.170% or less, More preferably, they are 0.050% or more and 0.150% or less.
  • the high-strength steel sheet of the present invention is at least one selected from Al, V, B, Cr, Cu, Sb, Sn, Ta, Ca, Mg, and REM, if necessary, in addition to the above basic components. These elements can be contained alone or in combination.
  • the balance of the component composition of the steel sheet is Fe and inevitable impurities.
  • Al 0.01% or more and 1.00% or less
  • Al is an element effective for suppressing the formation of carbides and promoting the formation of retained austenite.
  • it is an element added as a deoxidizer in the steel making process. In order to obtain such effects, the Al amount needs to be 0.01% or more.
  • the Al content is set to 0.01% or more and 1.00% or less. Preferably they are 0.03% or more and 0.50% or less.
  • V forms fine precipitates during hot rolling or annealing, thereby suppressing coarsening of recrystallized grains, contributing to an increase in strength, and advantageous for improving rigidity and deep drawability during annealing. Produces a well-oriented ferrite. In order to obtain such an effect, the amount of V needs to be added by 0.005% or more. On the other hand, if the amount of V exceeds 0.100%, the moldability deteriorates. Therefore, when adding V, the content is made 0.005% or more and 0.100% or less.
  • B 0.0001% or more and 0.0050% or less
  • B is an element effective for strengthening steel, and the effect of addition is obtained at 0.0001% or more.
  • the B amount is set to 0.0001% or more and 0.0050% or less. Preferably it is 0.0005% or more and 0.0030% or less.
  • [Cu: 0.05% to 1.00%] Cr and Cu not only serve as solid solution strengthening elements, but also stabilize austenite and facilitate complex organization in the cooling process during annealing.
  • the Cr content and the Cu content must each be 0.05% or more.
  • the Cr content and the Cu content exceed 1.00%, the formability of the steel sheet is lowered. Therefore, when adding Cr and Cu, their contents are 0.05% or more and 1.00% or less, respectively.
  • Sb and Sn are added as necessary from the viewpoint of suppressing decarburization in the region of several tens of ⁇ m of the steel sheet surface layer caused by nitriding and oxidation of the steel sheet surface. This is because suppressing such nitriding and oxidation prevents the martensite generation amount on the steel sheet surface from decreasing and is effective in ensuring the strength and material stability of the steel sheet. On the other hand, if any of these elements is added excessively exceeding 0.2000%, the toughness is reduced. Accordingly, when Sb and Sn are added, their contents are within the range of 0.0020% or more and 0.2000% or less, respectively.
  • Ta like Ti and Nb, generates carbides and carbonitrides and contributes to high strength.
  • a part of the Nb carbide or Nb carbonitride is solid-solved to form a composite precipitate such as (Nb, Ta) (C, N), which significantly suppresses the coarsening of the precipitate. It is thought that it contributes effectively to the strength improvement of a steel plate by the object stabilization effect. Therefore, it is preferable to contain Ta.
  • the above-mentioned precipitate stabilization effect can be obtained by setting the Ta content to 0.0010% or more.
  • the precipitate stabilization effect is saturated. , Alloy costs increase. Therefore, when Ta is added, the content is within the range of 0.0010% to 0.1000%.
  • Ca, Mg, and REM are elements used for deoxidation, and are effective elements for spheroidizing the shape of the sulfide and improving the adverse effect of the sulfide on local ductility. In order to obtain these effects, 0.0003% or more must be added. However, when Ca, Mg and REM are added in excess of 0.0050%, inclusions and the like are increased to cause defects on the surface and inside. Therefore, when Ca, Mg and REM are added, their contents are 0.0003% or more and 0.0050% or less, respectively.
  • the high-strength steel sheet of the present invention comprises a composite structure in which retained austenite responsible for ductility and bainite and martensite responsible for strength are dispersed in soft ferrite that contributes to higher Young's modulus and higher r-value.
  • the area ratio of ferrite generated in the second annealing and cooling process needs to be 20% or more.
  • the upper limit of the area ratio of ferrite is not particularly limited, but is preferably 80% or less, more preferably 70% or less, and still more preferably 60% or less for securing the strength.
  • it is important that the average crystal grain size of ferrite is 10 ⁇ m or more and 20 ⁇ m or less. If the average crystal grain size of ferrite is less than 10 ⁇ m, a desired texture cannot be obtained, and a desired Young's modulus and average r value cannot be ensured. On the other hand, if the average crystal grain size of ferrite exceeds 20 ⁇ m, the desired area ratio of bainite and martensite cannot be obtained, and the desired strength cannot be ensured.
  • the average crystal grain size of ferrite is 10 ⁇ m or more and 20 ⁇ m or less. Preferably they are 11 micrometers or more and 17 micrometers or less.
  • Such control of the ferrite grain size can be achieved by appropriately controlling the annealing temperature and the holding time in the manufacturing process, particularly in the first annealing treatment.
  • bainite is necessary for concentrating C in untransformed austenite and obtaining retained austenite that can exhibit the TRIP effect in a high strain region during processing. In order to achieve both high strength and high ductility, it is effective to increase the amount of retained austenite produced.
  • C concentration to austenite in the holding process after the second annealing, when the amount of bainite produced is less than 5%, C concentration to austenite does not sufficiently proceed, so that a residual that exhibits a TRIP effect in a high strain region during processing. The amount of austenite decreases.
  • the area ratio of bainite needs to be 5% or more in terms of the area ratio with respect to the entire steel sheet structure.
  • the upper limit of the area ratio of bainite is not particularly limited, but is preferably 60% or less, more preferably 50%, in order to ensure the area ratio of ferrite that is advantageous for increasing the Young's modulus and the r value. % Or less.
  • the martensite area ratio needs to be 5% or more in order to ensure the strength of the steel sheet.
  • the upper limit of the martensite area ratio is not particularly limited, but in order to ensure a good ductility at the same time as securing an area ratio of ferrite advantageous for increasing the Young's modulus and r value, martensite
  • the area ratio is preferably 50% or less, more preferably 40% or less.
  • the upper limit of the total area ratio of bainite and martensite is not particularly limited, but is preferably 70% or less for securing the area ratio of ferrite that is advantageous for increasing the Young's modulus and increasing the r value. More preferably, it is 60% or less, More preferably, it is 55% or less.
  • the area ratio of ferrite, bainite, and martensite is 1 vol.
  • the area ratio of ferrite, bainite, and martensite was calculated for the three visual fields using Adobe Photoshop from Adobe Systems, and the values were averaged. Can be sought.
  • ferrite has a gray structure (base structure)
  • martensite has a white structure
  • bainite has a structure in which a white structure is mixed with a gray base.
  • the average crystal grain size of ferrite can be obtained as follows. Using the above-mentioned Adobe Photoshop, the value obtained by correcting the length of the line segment drawn on the image to the actual length was divided by the number of crystal grains passing through the line segment drawn on the image.
  • the amount of retained austenite in order to ensure a good ductility and strength-ductility balance, the amount of retained austenite needs to be 5% or more by volume ratio. In order to secure a better ductility and strength-ductility balance, the amount of retained austenite is preferably 8% or more, more preferably 11% or more in terms of volume ratio.
  • the upper limit of the volume ratio of retained austenite is not particularly limited, but is preferably 20% or less. The volume fraction of retained austenite was determined by measuring the X-ray diffraction intensity after grinding and polishing the steel plate to 1 ⁇ 4 of the plate thickness in the plate thickness direction.
  • Co—K ⁇ is used, and the amount of retained austenite is calculated from the intensity ratio of each surface of (200), (220), (311) of austenite to the diffraction intensity of each surface of (200), (211) of ferrite. Calculated.
  • microstructure according to the present invention in addition to the above-described ferrite, bainite, martensite, and retained austenite, carbides such as tempered martensite, tempered bainite, pearlite, cementite, and other known structures may be included.
  • carbides such as tempered martensite, tempered bainite, pearlite, cementite, and other known structures may be included.
  • the effect of the present invention is not impaired even if these total amounts are within the range of 15% or less in terms of area ratio.
  • ⁇ -fiber is a fiber texture whose ⁇ 110> axis is parallel to the rolling direction
  • ⁇ -fiber is a fiber texture whose ⁇ 111> axis is parallel to the normal direction of the rolling surface.
  • the body-centered cubic metal is characterized in that ⁇ -fiber and ⁇ -fiber are strongly developed by rolling deformation and a texture belonging to them is formed even by recrystallization annealing.
  • the inverse strength ratio of ⁇ -fiber to ⁇ -fiber in the ferrite texture when the inverse strength ratio of ⁇ -fiber to ⁇ -fiber in the ferrite texture is 3.0 or less, the degree of integration of ⁇ -fiber suitable for high Young's modulus and high r-value is low. It is difficult to ensure the Young's modulus and the average r value. Therefore, the inverse strength ratio of ⁇ -fiber to ⁇ -fiber in the ferrite texture needs to exceed 3.0.
  • the upper limit of the inverse intensity ratio is not particularly limited, but is preferably 8.0 or less. In the high-strength steel sheet obtained by the conventional general manufacturing method, the inverse strength ratio of ⁇ -fiber to ⁇ -fiber is about 1.0 to 2.5.
  • the inverse strength ratio of ⁇ -fiber to ⁇ -fiber in the ferrite texture was smoothed by wet polishing and buffing using a colloidal silica solution on the plate thickness section (L section) parallel to the rolling direction of the steel sheet. Thereafter, 0.1 vol. Corrosion with% nital reduces asperities on the sample surface as much as possible, and completely removes the work-affected layer, and then corresponds to 1/4 position of the plate thickness (1/4 of the plate thickness in the depth direction from the steel plate surface).
  • the crystal orientation is measured using SEM-EBSD (Electron Back-Scatter Diffraction).
  • any one or two elements of Ti and Nb are added, and the steel slab in which the composition of other alloy elements is appropriately controlled is heated and subjected to hot rolling.
  • the hot rolling coiling temperature (CT) is set to a relatively high temperature, so that the interstitial elements C and N are highly thermally stable due to the precipitation promoting effect of the added Ti and / or Nb. It is important to deposit as carbides and nitrides.
  • heat treatment is performed to soften the hot-rolled sheet. Thereafter, when cold rolling is performed, it is important to develop the texture of ⁇ -fiber and ⁇ -fiber by increasing the reduction ratio as much as possible.
  • the steel sheet structure before the annealing treatment is a structure in which solute C and N are precipitated as carbides and nitrides having high thermal stability, and a texture of ⁇ -fiber and ⁇ -fiber is developed. Then, by recrystallizing the ferrite in the first heating step (first annealing treatment) in the subsequent ferrite single phase region, the texture of the ferrite is developed into ⁇ -fiber and ⁇ -fiber, particularly ⁇ -fiber. As a result, the Young's modulus in all directions can be improved, and the average r value can be improved.
  • the second heating step (second annealing process) in the ferrite + austenite two-phase region, a certain amount of austenite is generated while maintaining the ferrite texture, and bainite and residual austenite are generated in the subsequent cooling process.
  • a high strength steel sheet having a TS of 780 MPa or more excellent in not only ductility but also rigidity, and also excellent in deep drawability is obtained. Is possible.
  • the high-strength galvanized steel sheet of the present invention can be manufactured by subjecting the above-described high-strength steel sheet to a publicly known galvanizing treatment.
  • Heating temperature of steel slab 1100 ° C or higher and 1300 ° C or lower
  • Precipitates present in the heating stage of the steel slab exist as coarse precipitates in the finally obtained steel sheet and do not contribute to strength, so the Ti and Nb-based precipitates precipitated during casting are redissolved.
  • the heating temperature of the steel slab is less than 1100 ° C., not only is it difficult to sufficiently dissolve the precipitate, but there is a problem that the risk of trouble occurring during hot rolling due to an increase in rolling load increases. .
  • the heating temperature of the steel slab of the present invention needs to be 1100 ° C. or higher.
  • the heating temperature of the steel slab exceeds 1300 ° C., the scale loss increases as the oxidation amount increases.
  • the heating temperature of the steel slab needs to be 1300 ° C. or lower. Therefore, the heating temperature of the steel slab is set to 1100 ° C. or higher and 1300 ° C. or lower. Preferably they are 1150 degreeC or more and 1280 degrees C or less, More preferably, they are 1150 degreeC or more and 1250 degrees C or less.
  • the finish rolling exit temperature of hot rolling needs to be 800 ° C. or higher and 1000 ° C. or lower. Preferably they are 820 degreeC or more and 950 degrees C or less.
  • the steel slab is preferably manufactured by a continuous casting method in order to prevent macro segregation, but it can also be manufactured by an ingot-making method or a thin slab casting method.
  • the steel slab is not cooled to room temperature.
  • Energy-saving processes such as direct feed rolling and direct rolling that are rolled immediately after application can also be applied without problems.
  • the slab is made into a sheet bar by rough rolling under normal conditions. However, if the heating temperature is lowered, the sheet is heated using a bar heater before finishing rolling in order to prevent problems during hot rolling. It is preferred to heat the bar.
  • Winding temperature after hot rolling 300 ° C or higher and 800 ° C or lower
  • the coiling temperature after hot rolling exceeds 800 ° C
  • the crystal grain size of ferrite in the hot-rolled sheet structure increases, and the carbonitrides of Ti and Nb become coarse, so that during cold rolling and annealing Of ⁇ -fiber becomes weak, and it becomes difficult to secure a desired Young's modulus and average r value.
  • the coiling temperature after hot rolling is less than 300 ° C., the hot rolled sheet strength increases, the rolling load in cold rolling increases, and the productivity decreases.
  • the coiling temperature after hot rolling needs to be 300 ° C. or higher and 800 ° C. or lower. Preferably they are 350 degreeC or more and 700 degrees C or less, More preferably, they are 380 degreeC or more and 650 degrees C or less.
  • rough rolling sheets may be joined to each other during hot rolling to continuously perform finish rolling. Moreover, you may wind up a rough rolling board once.
  • part or all of the finish rolling may be lubricated rolling.
  • Performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material.
  • the hot-rolled steel sheet thus manufactured is pickled. Since pickling can remove oxides on the surface of the steel sheet, it is important for ensuring good chemical conversion properties and plating quality in the final high-strength steel sheet. Moreover, pickling may be performed once or may be divided into a plurality of times. After the above pickling treatment, it is kept as it is or in a temperature range of 450 ° C. to 800 ° C. for a time of 900 s to 36000 s, and then cold-rolled at a reduction ratio of 40% or more.
  • Heat treatment temperature range and holding time after hot-rolled plate pickling treatment Hold for 900 s to 36000 s in a temperature range of 450 ° C. to 800 ° C.
  • tempering after hot rolling is insufficient, and at least one of ferrite, pearlite, bainite and martensite is mixed during the subsequent cold rolling.
  • the resulting structure becomes uneven, and the uniform refinement becomes insufficient under the influence of the hot-rolled sheet structure.
  • the ratio of the coarse low temperature transformation phase increases in the structure of the final annealed plate, resulting in a non-uniform structure, and the El, Young's modulus, and average r value of the final annealed plate may decrease.
  • productivity may be adversely affected.
  • the heat treatment temperature range exceeds 800 ° C., it becomes a non-uniform and hardened coarse two-phase structure of ferrite and martensite or pearlite, and becomes a non-uniform structure before cold rolling.
  • the ratio of coarse martensite may increase, and the El, Young's modulus, and average r value of the final annealed sheet may also decrease. Therefore, when heat treatment is performed after the hot-rolled sheet pickling treatment, the temperature range needs to be 450 ° C. or higher and 800 ° C. or lower, and the holding time needs to be 900 s or higher and 36000 s or lower.
  • Cold rolling is performed after the hot rolling step to accumulate ⁇ -fiber and ⁇ -fiber effective in improving Young's modulus and average r value. That is, by developing ⁇ -fiber and ⁇ -fiber by cold rolling, the ferrite having ⁇ -fiber and ⁇ -fiber, especially ⁇ -fiber, is increased in the structure after the subsequent annealing process, and Young's modulus and average Increase the r value.
  • the rolling reduction during cold rolling needs to be 40% or more.
  • the rolling reduction is preferably 45% or more, more preferably 50% or more.
  • count of a rolling pass and the rolling reduction for every pass the effect of this invention can be acquired, without being specifically limited.
  • it is about 80% industrially.
  • Temporal range of first annealing treatment 450 ° C. or higher and T1 temperature or lower
  • this is a very important invention constituent element.
  • the annealing temperature range of the first firing treatment is less than 450 ° C., a large amount of unrecrystallized ferrite remains, and the amount of ferrite having ⁇ -fiber formed during recrystallization of ferrite decreases, and the Young's modulus and average r in each direction The value drops.
  • austenite is first nucleated from the nucleation site of recrystallized ferrite having ⁇ -fiber, which is suitable for improvement of Young's modulus and average r value.
  • the area ratio of ferrite having ⁇ -fiber is reduced.
  • the volume fraction of austenite generated during annealing increases, and the volume fraction of ferrite accumulated in ⁇ -fiber and ⁇ -fiber, especially ⁇ -fiber, decreases, resulting in a decrease in Young's modulus and average r value in each direction. To do.
  • the temperature range of the first annealing process needs to be 450 ° C. or higher and T1 temperature or lower.
  • the temperature range of the first annealing treatment is preferably 500 ° C. or higher and T1 temperature or lower, more preferably 550 ° C. or higher and T1 temperature or lower.
  • the T1 temperature means the Ac 1 point.
  • the holding time in the first annealing treatment is less than 300 s, unrecrystallized ferrite remains, and the degree of accumulation in ⁇ -fiber decreases, so that the Young's modulus and average r value in each direction decrease. For this reason, holding time shall be 300 s or more. Further, there is no particular limitation, but if the holding time exceeds 100,000 s, the recrystallized ferrite grain size becomes coarse and it becomes difficult to secure a desired TS. Therefore, the holding time is preferably 100,000 s or less. . Accordingly, the holding time is 300 s or longer. Preferably it is 300 s or more and 100,000 or less, More preferably, it is 300 or more and 36000 s or less, More preferably, it is 300 or more and 21600 s or less.
  • the heat treatment method may be any of continuous annealing and batch annealing. Moreover, when implementing a cooling process after the 1st annealing process, you may cool to room temperature and you may perform the process which passes an overaging zone.
  • the cooling method and cooling rate in the cooling step are not particularly defined, and any cooling such as furnace cooling in batch annealing, air cooling, and gas jet cooling, mist cooling, and water cooling in continuous annealing may be used.
  • the pickling may be performed according to a conventional method. Although there is no particular limitation, since the steel sheet shape may be deteriorated when the average cooling rate to room temperature or overaging zone exceeds 80 ° C./s, the average cooling rate is 80 ° C./s or less. It is preferable to do.
  • the temperature range of the second annealing treatment is set to T1 temperature or more and T2 temperature or less.
  • the holding time of the second annealing treatment is not particularly limited, but is preferably 10 s or more and 1000 s or less.
  • the T2 temperature means the Ac 3 point.
  • the average cooling rate to at least 550 ° C. in the cooling step after reheating is set to 5 ° C./s or more.
  • they are 5 degreeC / s or more and 200 degrees C / s or less, More preferably, they are 8 degreeC / s or more and 80 degrees C / s or less, More preferably, they are 10 degreeC / s or more and 50 degrees C / s or less.
  • the cooling stop temperature after the second annealing treatment is set to 300 ° C. or more and 500 ° C. or less. Furthermore, from the viewpoint of improving the balance between strength and ductility, the cooling stop temperature after the second annealing treatment is preferably set to 300 ° C. or higher and 480 ° C. or lower. More preferably, it is 350 degreeC or more and 460 degreeC or less.
  • the holding time in the reheating temperature region is set to 10 s or more. Preferably, it is 10 seconds or more and 1000 seconds or less.
  • the cooling after the holding does not need to be specified, and may be cooled to a desired temperature by any method.
  • the desired temperature is preferably about room temperature.
  • the galvanizing alloying treatment when the alloying treatment is performed at a temperature exceeding 600 ° C., untransformed austenite is transformed into pearlite, and a desired volume ratio of retained austenite cannot be secured, and El may be lowered. Therefore, when the galvanizing alloying treatment is performed, it is preferable to perform the galvanizing alloying treatment in a temperature range of 470 ° C. or more and 600 ° C. or less. Moreover, you may perform an electrogalvanization process.
  • the plating adhesion amount is preferably 20 to 80 g / m 2 per side (double-sided plating), and the alloyed hot-dip galvanized steel sheet (GA) is subjected to alloying treatment so that the Fe concentration in the plating layer is 7 to 15 mass. % Is preferable.
  • the reduction ratio of the skin pass rolling after the heat treatment is preferably in the range of 0.1% to 2.0%. If it is less than 0.1%, the effect is small and control is difficult, so this is the lower limit of the good range. Moreover, since productivity will fall remarkably when it exceeds 2.0%, this is made the upper limit of a favorable range.
  • Skin pass rolling may be performed online or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps.
  • Other manufacturing method conditions are not particularly limited, but from the viewpoint of productivity, a series of treatments such as annealing, hot dip galvanization, alloying treatment of galvanization, etc. are performed by CGL (Continuous Galvanizing) which is a hot dip galvanizing line. Line). After hot dip galvanization, wiping is possible to adjust the amount of plating.
  • conditions, such as plating other than the above-mentioned conditions can depend on the conventional method of hot dip galvanization.
  • Example 1 Steel having the component composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in a converter and made into a slab by a continuous casting method.
  • the obtained slab was heated under the conditions shown in Table 2 and hot-rolled, and then pickled.
  • Nos. 1 to 11, 13 to 23, 25, 27, 29, 30, 32 to 37, 39, and 41 were subjected to hot-rolled sheet heat treatment.
  • Nos. 29, 30, 32 to 37, 39, and 41 were subjected to pickling treatment after the heat treatment of the plate.
  • annealing was performed twice under the conditions shown in Table 2 to obtain a high-strength cold-rolled steel sheet (CR).
  • GI hot-dip galvanized steel sheets
  • GA galvannealed steel sheets
  • EG electrogalvanized steel sheets
  • the hot dip galvanizing bath uses a zinc bath containing Al: 0.14% by mass or 0.19% by mass in GI, and uses a zinc bath containing Al: 0.14% by mass in GA.
  • GA 470 ° C.
  • GA made Fe density
  • the amount of EG plating adhered was 50 g / m 2 per side (double-sided plating).
  • T1 temperature (degreeC) was calculated
  • T1 temperature (° C.) 720 + 29 ⁇ [% Si] -21 ⁇ [% Mn] + 17 ⁇ [% Cr]
  • [% X] is the mass% of the component element X of the steel sheet, and zero for the component elements not contained.
  • T1 means Ac 1 point and T2 means Ac 3 point.
  • the high-strength cold-rolled steel sheet (CR), hot-dip galvanized steel sheet (GI), alloyed hot-dip galvanized steel sheet (GA) and electrogalvanized steel sheet (EG) obtained as described above were used as test steels. Characteristics were evaluated. The mechanical properties were evaluated by performing a tensile test and Young's modulus measurement as follows. The results are shown in Table 3. Table 3 also shows the thickness of each steel plate as the test steel.
  • the tensile test is based on JIS Z 2241 (2011) using a JIS No. 5 test piece obtained by taking a sample so that the length of the tensile test piece is perpendicular to the rolling direction of the steel sheet (C direction). And TS (tensile strength) and El (total elongation) were measured.
  • TS tensile strength
  • El total elongation
  • Young's modulus measurement is 10 mm ⁇ 50 mm from three directions, ie, the rolling direction of the steel sheet (L direction), the 45 ° direction (D direction) with respect to the rolling direction of the steel sheet, and the direction perpendicular to the rolling direction of the steel sheet (C direction).
  • the test piece was cut out and the Young's modulus was measured using a transverse vibration type resonance frequency measuring device according to the American Society to Testing Materials standard (C1259).
  • the rigidity that is, the Young's modulus is excellent when the Young's modulus in the 45 ° direction with respect to the rolling direction and the rolling direction is 205 GPa or more and the Young's modulus in the direction perpendicular to the rolling direction is 220 GPa or more. is there.
  • the average r-value measurement was taken from three directions, ie, the rolling direction (L direction) of the steel sheet, the 45 ° direction (D direction) with respect to the rolling direction of the steel sheet, and the direction perpendicular to the rolling direction of the steel sheet (C direction).
  • each plastic strain ratio r L , r D , r C was determined according to JIS Z 2254 (2008), and the average r value was calculated by the following formula.
  • Average r value (r L + 2r D + r C ) / 4 Note that the present invention is excellent in deep drawability when the average r value, which is an index of deep drawability, is 0.95 or more regardless of the strength of the steel sheet.
  • TS is 780 MPa or more, excellent in ductility, has a balance between high strength and ductility, and is excellent in rigidity and deep drawability.
  • the comparative example one or more of strength, ductility, balance between strength and ductility, rigidity, and deep drawability was inferior.
  • this invention is not limited by the description which makes a part of indication of this invention by this embodiment. That is, all other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the present embodiment are all included in the technical scope of the present invention.
  • the equipment for performing the heat treatment on the steel sheet is not particularly limited.
  • the present invention it is possible to produce a high-strength steel sheet having a TS of 780 MPa or more and excellent not only in ductility but also in rigidity and also in deep drawability. Therefore, by applying the high-strength steel plate obtained by the present invention to, for example, an automobile structural member, fuel efficiency can be improved by reducing the weight of the vehicle body, and the industrial utility value is extremely large.

Abstract

Provided is a high strength steel sheet that has a composition range including 0.001-0.200% of Ti and/or 0.001-0.200% of Nb among other components and has a steel structure wherein ferrite is present at an area ratio of 20% or more, the ferrite having an average crystalline grain size of 10-20 µm, bainite is present at an area ratio of 5% or more, martensite is present at an area ratio of 5% or more, the total area ratio of bainite and martensite is 15% or more, and residual austenite is present at a volume ratio of 5% or more. The high strength steel sheet has a TS of 780 MPa or more which is achieved by a texture of ferrite formed as a micro structure having an inverse intensity ratio of γ-fibers to α-fibers of more than 3.0, and has excellent ductibility and stiffness as well as deep drawability.

Description

高強度鋼板およびその製造方法並びに高強度亜鉛めっき鋼板High-strength steel sheet, method for producing the same, and high-strength galvanized steel sheet
 本発明は、主に自動車の構造部材として好適な、成形性に優れた高強度鋼板およびその製造方法に関し、特に780MPa以上の引張強度(TS)を有し、延性のみならず、剛性に優れ、さらには深絞り性にも優れる高強度鋼板を得ようとするものである。
 本発明の高強度鋼板は、その表面に亜鉛めっき層を有する高強度亜鉛めっき鋼板を含む。
The present invention relates to a high-strength steel sheet excellent in formability, which is mainly suitable as a structural member of an automobile, and a method for producing the same, and in particular, has a tensile strength (TS) of 780 MPa or more and is excellent not only in ductility but also in rigidity. Furthermore, the present invention seeks to obtain a high-strength steel sheet that is also excellent in deep drawability.
The high-strength steel sheet of the present invention includes a high-strength galvanized steel sheet having a galvanized layer on its surface.
 近年、衝突時における乗員の安全性確保や車体軽量化による燃費改善を目的として、TSを780MPa以上としつつも板厚は薄い高強度鋼板を、自動車構造部材に適用する動きが積極的に進められている。加えて、最近では、980MPa級、1180MPa級のTSを有する極めて強度の高い高強度鋼板の適用も検討されている。
 しかしながら、一般的に鋼板の高強度化は成形性の低下を招くため、高強度と優れた成形性を両立させることは難しく、高強度と優れた成形性を併せ持つ鋼板が望まれていた。
In recent years, for the purpose of ensuring the safety of passengers in the event of a collision and improving fuel efficiency by reducing the weight of the vehicle body, there has been an aggressive movement to apply high-strength steel sheets with a thin plate thickness while maintaining TS of 780 MPa or more to automobile structural members. ing. In addition, recently, application of an extremely high strength high strength steel sheet having TS of 980 MPa class and 1180 MPa class has been studied.
However, in general, increasing the strength of a steel sheet causes a decrease in formability, so it is difficult to achieve both high strength and excellent formability, and a steel sheet having both high strength and excellent formability has been desired.
 また、最近では、鋼板の高強度化が顕著に進んだ結果、TSが780MPa以上で、板厚2.0mmを下回るような薄鋼板を積極的に適用しようという動きがある。しかし、薄肉化による車体剛性の低下が問題になるため、自動車の構造部品の剛性を向上させることが必要になってきている。構造部品の剛性は、断面形状が同じならば鋼板の板厚とヤング率で決まるため、軽量化と構造部品の剛性を両立させるには、鋼板のヤング率を高めることが有効である。 Also, recently, as a result of the remarkable progress in the strengthening of steel sheets, there is a movement to actively apply thin steel sheets having a TS of 780 MPa or more and a thickness of less than 2.0 mm. However, since the reduction in the rigidity of the vehicle body due to the thinning becomes a problem, it is necessary to improve the rigidity of the structural parts of the automobile. Since the rigidity of the structural part is determined by the plate thickness and Young's modulus of the steel sheet if the cross-sectional shape is the same, it is effective to increase the Young's modulus of the steel sheet in order to achieve both weight reduction and rigidity of the structural part.
 ヤング率は、鋼板の集合組織に大きく支配され、体心立方格子である鉄の場合は、原子の稠密方向である<111>方向に高く、逆に原子密度の小さい<100>方向に低いことが知られている。結晶方位に異方性のない通常の鉄のヤング率は約206GPaであることが知られているが、結晶方位に異方性を持たせ、特定方向の原子密度を高めることで、その方向のヤング率を高めることができる。しかし、自動車車体の剛性を考える場合には、様々な方向から荷重が加わるため、特定方向のみでなく、各方向に高いヤング率を有する鋼板が求められる。 The Young's modulus is largely governed by the texture of the steel sheet. In the case of iron having a body-centered cubic lattice, the Young's modulus is high in the <111> direction, which is the atomic dense direction, and conversely low in the <100> direction where the atomic density is small It has been known. It is known that the Young's modulus of normal iron with no anisotropy in crystal orientation is about 206 GPa, but by giving anisotropy to the crystal orientation and increasing the atomic density in a specific direction, Young's modulus can be increased. However, when considering the rigidity of an automobile body, since a load is applied from various directions, a steel sheet having a high Young's modulus in each direction is required in addition to a specific direction.
 このような要望に対して、例えば特許文献1には、質量%で、C:0.02~0.15%、Si:0.3%以下、Mn:1.0~3.5%、P:0.05%以下、S:0.01%以下、Al:1.0%以下、N:0.01%以下およびTi:0.1~1.0%を含有し、残部がFeおよび不可避的不純物からなるスラブを、熱間圧延し、20~85%の圧下率で冷間圧延後、再結晶焼鈍することで、フェライト単相のミクロ組織を有し、TSが590MPa以上、かつ圧延方向に対して90°方向のヤング率が230GPa以上、圧延方向に対して0°、45°、90°方向の平均ヤング率が215GPa以上である、剛性に優れた高強度薄鋼板の製造方法が提案されている。 In response to such a request, for example, in Patent Document 1, in mass%, C: 0.02 to 0.15%, Si: 0.3% or less, Mn: 1.0 to 3.5%, P : 0.05% or less, S: 0.01% or less, Al: 1.0% or less, N: 0.01% or less, and Ti: 0.1 to 1.0%, the balance being Fe and inevitable A slab composed of mechanical impurities is hot-rolled, cold-rolled at a rolling reduction of 20 to 85%, and then recrystallized and annealed to have a ferrite single-phase microstructure, TS of 590 MPa or more, and the rolling direction. Proposed a method for producing a high-strength thin steel sheet with excellent rigidity, whose Young's modulus in the 90 ° direction is 230 GPa or more with respect to the rolling direction, and whose average Young's modulus in the 90 ° direction is 215 GPa or more with respect to the rolling direction. Has been.
 また、特許文献2には、質量%で、C:0.05~0.15%、Si:1.5%以下、Mn:1.5~3.0%、P:0.05%以下、S:0.01%以下、Al:0.5%以下、N:0.01%以下、Nb:0.02~0.15%およびTi:0.01~0.15%を含有し、残部がFeおよび不可避的不純物からなるスラブを、熱間圧延し、40~75%の圧下率で冷間圧延後、再結晶焼鈍することで、フェライトとマルテンサイトの混合組織を有し、TSが590MPa以上、かつ圧延方向に対して直角方向のヤング率が230GPa以上である、加工性に優れた高剛性高強度鋼板の製造方法が提案されている。 Patent Document 2 discloses that in mass%, C: 0.05 to 0.15%, Si: 1.5% or less, Mn: 1.5 to 3.0%, P: 0.05% or less, S: 0.01% or less, Al: 0.5% or less, N: 0.01% or less, Nb: 0.02 to 0.15% and Ti: 0.01 to 0.15%, the balance A slab composed of Fe and inevitable impurities is hot-rolled, cold-rolled at a rolling reduction of 40 to 75%, and then recrystallized to have a mixed structure of ferrite and martensite, and TS is 590 MPa. As described above, a method for producing a high-rigidity and high-strength steel sheet having excellent workability and having a Young's modulus in a direction perpendicular to the rolling direction of 230 GPa or more has been proposed.
 さらに、特許文献3には、質量%で、C:0.010~0.050%、Si:1.0%以下、Mn:1.0~3.0%、P:0.005~0.1%、S:0.01%以下、Al:0.005~0.5%、N:0.01%以下およびNb:0.03~0.3%を含有し、残部がFeおよび不可避的不純物からなるスラブを、熱間圧延後に冷間圧延し、再結晶焼鈍することで、フェライト相の面積率が50%以上、およびマルテンサイト相の面積率が1%以上を含む鋼組織を有し、圧延直角方向のヤング率が225GPa以上、平均r値が1.3以上である、高強度鋼板の製造方法が提案されている。 Further, in Patent Document 3, by mass%, C: 0.010 to 0.050%, Si: 1.0% or less, Mn: 1.0 to 3.0%, P: 0.005 to 0.00. 1%, S: 0.01% or less, Al: 0.005 to 0.5%, N: 0.01% or less and Nb: 0.03 to 0.3%, the balance being Fe and inevitable A slab made of impurities is cold-rolled after hot rolling, and recrystallized and annealed to have a steel structure including an area ratio of the ferrite phase of 50% or more and an area ratio of the martensite phase of 1% or more. A method for producing a high-strength steel sheet having a Young's modulus in the direction perpendicular to the rolling of 225 GPa or more and an average r value of 1.3 or more has been proposed.
特開2007-092130号公報JP 2007-092130 A 特開2008-240125号公報JP 2008-240125 A 特開2005-120472号公報JP 2005-120472 A
 しかしながら、特許文献1に記載の技術では、引張強度780MPa以上を達成するためには、例えばその実施例を参照すると、V:0.4質量%およびW:0.5質量%もの添加が必要である。また、さらなる高強度化を図るには、CrやMo等の高価な元素の活用が必要不可欠であるため、合金コストが増加するという問題があった。
 特許文献2に記載の技術では、鋼板の一方向のみのヤング率を高めることには有効であるが、各方向に高いヤング率を有する鋼板が必要とされる自動車の構造部品の剛性向上には適用できない。
 特許文献3に記載の技術では、剛性と加工性に優れることを開示しており、加工性の中でも、とりわけ深絞り性に優れることを開示しているが、TSが高々660MPa程度と低い。
 さらに、特許文献1~3に記載の技術では、必ずしも延性および剛性のみならず、深絞り性にも優れるという特長を有していない。
However, in the technique described in Patent Document 1, in order to achieve a tensile strength of 780 MPa or more, for example, referring to the examples, addition of V: 0.4 mass% and W: 0.5 mass% is necessary. is there. Moreover, in order to further increase the strength, it is indispensable to use expensive elements such as Cr and Mo, and there is a problem that the alloy cost increases.
In the technique described in Patent Document 2, it is effective to increase the Young's modulus in only one direction of the steel plate, but to improve the rigidity of the structural parts of automobiles that require a steel plate having a high Young's modulus in each direction. Not applicable.
The technology described in Patent Document 3 discloses that the rigidity and workability are excellent, and among the workability, it discloses that the deep drawability is particularly excellent, but TS is as low as about 660 MPa at most.
Further, the techniques described in Patent Documents 1 to 3 do not necessarily have the feature of being excellent not only in ductility and rigidity but also in deep drawability.
 本発明は、かかる事情に鑑み開発されたもので、フェライトの集合組織をγ-fiber(<111>軸が圧延面の法線方向に平行な繊維集合組織)に発達させ、かつベイナイト変態を活用し、適正量の残留オーステナイトを分散させることで、780MPa以上のTSを有しつつ、延性のみならず剛性に優れ、さらには深絞り性に優れる高強度鋼板を得ることを目的とする。 The present invention has been developed in view of such circumstances, and has developed a ferrite texture to γ-fiber (a fiber texture in which the <111> axis is parallel to the normal direction of the rolling surface) and utilizes bainite transformation. Then, by dispersing an appropriate amount of retained austenite, an object is to obtain a high-strength steel sheet having not only ductility but also rigidity and further excellent deep drawability while having a TS of 780 MPa or more.
 なお、本発明において、延性すなわちEl(全伸び)に優れるとは、TS×Elの値が15000MPa・%以上を意味する。
 また、剛性すなわちヤング率に優れるとは、圧延方向、および圧延方向に対して45°方向のヤング率が205GPa以上、かつ圧延方向に対して直角方向のヤング率が220GPa以上を意味する。
 さらに、深絞り性に優れるとは、深絞り性の指標である平均r値が、鋼板の強度に関係なく0.95以上であることを意味する。
In the present invention, excellent ductility, that is, El (total elongation) means that the value of TS × El is 15000 MPa ·% or more.
Also, excellent rigidity, that is, Young's modulus means that the Young's modulus in the rolling direction and the 45 ° direction with respect to the rolling direction is 205 GPa or more, and the Young's modulus in the direction perpendicular to the rolling direction is 220 GPa or more.
Furthermore, being excellent in deep drawability means that the average r value, which is an index of deep drawability, is 0.95 or more regardless of the strength of the steel sheet.
 さて、発明者らは、780MPa以上のTSを有し、延性、剛性、さらには深絞り性に優れる高強度鋼板を開発すべく、鋭意検討を重ねた。
 その結果、以下の知見を得るにいたった。
Now, the inventors have intensively studied to develop a high-strength steel sheet having a TS of 780 MPa or more and excellent in ductility, rigidity, and deep drawability.
As a result, the following knowledge was obtained.
(1)本発明の製造方法では、TiおよびNbのうちのいずれか1種あるいは2種の元素を添加し、その他の合金元素の成分組成を適正に制御した鋼スラブを加熱したのち、熱間圧延を施すが、その際、熱間圧延の巻取温度(CT)を比較的高温にすることで、添加したTiおよび/またはNbの析出促進効果により、侵入型元素であるCおよびNを、熱安定性の高い炭化物および窒化物として析出させることが重要である。
(2)熱間圧延後は、必要に応じて、熱処理を施して熱延板を軟質化させ、その後の冷間圧延にて、圧下率を極力高くして、α-fiber(<110>軸が圧延方向に平行な繊維集合組織)およびγ-fiberの集合組織を発達させることが重要である。
(3)このようにして得られた焼鈍処理前の鋼板組織を、固溶Cおよび固溶Nを熱安定性の高い炭化物および窒化物として析出させ、かつα-fiberおよびγ-fiberの集合組織を発達させた組織とすることで、その後のフェライト単相域での1回目の焼鈍処理によりフェライトを再結晶させる際に、フェライトの集合組織をα-fiberおよびγ-fiber、特にγ-fiberに発達させることができ、その結果、全方向のヤング率を向上させ、また平均r値を向上させることが可能となる。
(4)次いで、フェライト+オーステナイト二相域での2回目の焼鈍処理で、フェライトの集合組織を維持しつつオーステナイトを一定量生成させ、その後の冷却過程で、ベイナイトを生成させ残留オーステナイトを生成させるとともに、フェライト、ベイナイトおよびマルテンサイトを一定の割合以上生成させることにより、所望のTSおよびElを確保することが可能となる。
(5)かくして、780MPa以上のTSを有しつつ、延性のみならず剛性に優れ、さらには深絞り性にも優れる高強度鋼板を得ることができる。
 本発明は、上記知見に基づいてなされたものである。
(1) In the production method of the present invention, after adding steel of any one or two of Ti and Nb and heating the steel slab in which the composition of other alloy elements is appropriately controlled, In this case, the interstitial elements C and N are added due to the effect of promoting precipitation of the added Ti and / or Nb by making the coiling temperature (CT) of the hot rolling relatively high. It is important to deposit as carbides and nitrides with high thermal stability.
(2) After hot rolling, if necessary, heat treatment is performed to soften the hot-rolled sheet, and then the cold rolling is performed to increase the reduction ratio as much as possible to obtain α-fiber (<110> axis). It is important to develop a fiber texture that is parallel to the rolling direction) and a γ-fiber texture.
(3) The steel sheet structure before annealing obtained in this way is precipitated as solute C and solute N as carbides and nitrides with high thermal stability, and a texture of α-fiber and γ-fiber. When the ferrite is recrystallized by the first annealing treatment in the ferrite single phase region thereafter, the ferrite texture is changed to α-fiber and γ-fiber, particularly γ-fiber. As a result, the Young's modulus in all directions can be improved, and the average r value can be improved.
(4) Next, in the second annealing process in the ferrite + austenite two-phase region, a certain amount of austenite is generated while maintaining the texture of ferrite, and in the subsequent cooling process, bainite is generated to generate residual austenite. At the same time, it is possible to secure desired TS and El by generating ferrite, bainite and martensite in a certain ratio or more.
(5) Thus, it is possible to obtain a high-strength steel sheet that has a TS of 780 MPa or more and is excellent not only in ductility but also in rigidity and also in deep drawability.
The present invention has been made based on the above findings.
 すなわち、本発明の要旨構成は次のとおりである。
1.成分組成が、質量%で、
  C:0.08%以上0.35%以下、
  Si:0.50%以上2.50%以下、
  Mn:1.50%以上3.00%以下、
  P:0.001%以上0.100%以下、
  S:0.0001%以上0.0200%以下および
  N:0.0005%以上0.0100%以下
を含有し、さらに、
  Ti:0.001%以上0.200%以下および
  Nb:0.001%以上0.200%以下
のうちから選んだ1種または2種を含有し、残部がFeおよび不可避的不純物からなり、
 鋼組織が、面積率で、
フェライトが20%以上で、該フェライトの平均結晶粒径が10μm以上20μm以下であり、また
ベイナイトが5%以上、
マルテンサイトが5%以上で、
ベイナイトおよびマルテンサイトの面積率が合計で15%以上であり、
 体積率で、残留オーステナイトが5%以上であり、
 さらに、フェライトの集合組織が、α-fiberに対するγ-fiberのインバース強度比で、3.0超であるミクロ組織を有する、
高強度鋼板。
That is, the gist configuration of the present invention is as follows.
1. Ingredient composition is mass%,
C: 0.08% to 0.35%,
Si: 0.50% or more and 2.50% or less,
Mn: 1.50% or more and 3.00% or less,
P: 0.001% to 0.100%,
S: 0.0001% or more and 0.0200% or less and N: 0.0005% or more and 0.0100% or less,
Ti: 0.001% or more and 0.200% or less and Nb: 0.001% or more and 0.200% or less containing one or two selected from the balance, the balance consists of Fe and inevitable impurities,
Steel structure is area ratio,
Ferrite is 20% or more, the average grain size of the ferrite is 10 μm or more and 20 μm or less, and bainite is 5% or more,
Martensite is 5% or more,
The total area ratio of bainite and martensite is 15% or more,
In volume ratio, residual austenite is 5% or more,
Further, the ferrite texture has a microstructure in which the inverse strength ratio of γ-fiber to α-fiber is more than 3.0.
High strength steel plate.
2.前記1に記載の高強度鋼板に、さらに、質量%で、
Al:0.01%以上1.00%以下、
V:0.005%以上0.100%以下、
B:0.0001%以上0.0050%以下、
Cr:0.05%以上1.00%以下、
Cu:0.05%以上1.00%以下、
Sb:0.0020%以上0.2000%以下、
Sn:0.0020%以上0.2000%以下、
Ta:0.0010%以上0.1000%以下、
Ca:0.0003%以上0.0050%以下、
Mg:0.0003%以上0.0050%以下および
REM:0.0003%以上0.0050%以下
のうちから選ばれる少なくとも1種の元素を含有する、高強度鋼板。
2. In the high-strength steel plate according to 1 above, further, in mass%,
Al: 0.01% or more and 1.00% or less,
V: 0.005% or more and 0.100% or less,
B: 0.0001% to 0.0050%,
Cr: 0.05% or more and 1.00% or less,
Cu: 0.05% or more and 1.00% or less,
Sb: 0.0020% or more and 0.2000% or less,
Sn: 0.0020% or more and 0.2000% or less,
Ta: 0.0010% or more and 0.1000% or less,
Ca: 0.0003% or more and 0.0050% or less,
A high-strength steel sheet containing at least one element selected from Mg: 0.0003% to 0.0050% and REM: 0.0003% to 0.0050%.
3.前記1または2に記載の高強度鋼板の製造方法であって、
 前記1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度:800℃以上1000℃以下で熱間圧延し、巻取温度:300℃以上800℃以下で巻き取り、酸洗処理後、そのまま、あるいは450℃以上800℃以下の温度域で900s以上36000s以下の間保持したのち、40%以上の圧下率で冷間圧延を施し、
 ついで得られた冷延板を、450℃以上T1温度以下の温度域に加熱し、該温度域で300s以上保持する1回目の焼鈍処理を施し、
 ついで、T1温度以上T2温度以下の温度域まで再加熱して2回目の焼鈍処理を施したのち、少なくとも550℃までの平均冷却速度を5℃/s以上として、300℃以上500℃以下の冷却停止温度域まで冷却し、該冷却停止温度域で10s以上保持する、高強度鋼板の製造方法。
                記
T1温度(℃)=720+29×[%Si]-21×[%Mn]+17×[%Cr]
T2温度(℃)=946-203×[%C]1/2+45×[%Si]-30×[%Mn]+150×[%Al]-20×[%Cu]+11×[%Cr]+350×[%Ti]+104×[%V]
[%X]は鋼板の成分元素Xの質量%とし、含有しない成分元素については零とする。
3. The method for producing a high-strength steel sheet according to 1 or 2,
The steel slab having the component composition of 1 or 2 is heated to 1100 ° C. or higher and 1300 ° C. or lower, hot rolled at a finish rolling exit temperature: 800 ° C. or higher and 1000 ° C. or lower, and a coiling temperature: 300 ° C. or higher. Winding at 800 ° C. or lower, after pickling treatment, as it is or after holding in the temperature range of 450 ° C. or higher and 800 ° C. or lower for 900 s or more and 36000 s or less, cold rolling is performed at a rolling reduction of 40% or more,
Subsequently, the obtained cold-rolled sheet is heated to a temperature range of 450 ° C. or more and T1 temperature or less, and subjected to a first annealing treatment for holding at this temperature range for 300 s or more,
Next, after reheating to a temperature range of T1 temperature or more and T2 temperature or less and performing the second annealing treatment, cooling is performed at 300 ° C or more and 500 ° C or less at an average cooling rate of at least 550 ° C at 5 ° C / s or more. A method for producing a high-strength steel sheet, which is cooled to a stop temperature range and held for 10 s or longer in the cooling stop temperature range.
T1 temperature (° C.) = 720 + 29 × [% Si] -21 × [% Mn] + 17 × [% Cr]
T2 temperature (° C.) = 946−203 × [% C] 1/2 + 45 × [% Si] −30 × [% Mn] + 150 × [% Al] −20 × [% Cu] + 11 × [% Cr] +350 × [% Ti] + 104 × [% V]
[% X] is the mass% of the component element X of the steel sheet, and zero for the component elements not contained.
4.前記1または2に記載の高強度鋼板の表面に、亜鉛めっき層を有する、高強度亜鉛めっき鋼板。 4). A high-strength galvanized steel sheet having a galvanized layer on the surface of the high-strength steel sheet according to 1 or 2.
 本発明によれば、780MPa以上のTSを有し、延性のみならず剛性に優れ、さらには深絞り性にも優れる高強度鋼板を効果的に得ることができる。
 従って、本発明により得られた高強度鋼板を、例えば自動車構造部材に適用することによって車体軽量化による燃費改善を図ることができ、産業上の利用価値は極めて大きい。
According to the present invention, it is possible to effectively obtain a high-strength steel sheet having a TS of 780 MPa or more and excellent not only in ductility but also in rigidity and also in deep drawability.
Therefore, by applying the high-strength steel plate obtained by the present invention to, for example, an automobile structural member, fuel efficiency can be improved by reducing the weight of the vehicle body, and the industrial utility value is extremely large.
 以下、本発明を具体的に説明する。
 まず、本発明において、高強度鋼板の成分組成を前記の範囲に限定した理由について説明する。なお、以下の説明において、鋼の成分元素の含有量を表す「%」は、特に明記しない限り「質量%」を意味する。
[C:0.08%以上0.35%以下]
 Cは、鋼板の高強度化および安定した残留オーステナイト量を確保するのに必要不可欠な元素であり、ベイナイト量およびマルテンサイト量の確保および室温でオーステナイトを残留させるために必要な元素である。
 C量が0.08%未満では、所望のTSとElを確保することが難しい。一方、C量が0.35%を超えると、鋼板の脆化や遅れ破壊の懸念が生じ、また、溶接部および熱影響部の硬化が著しく溶接性が劣化する。従って、C量は0.08%以上0.35%以下とする。好ましくは0.12%以上0.33%以下、より好ましくは0.15%以上0.31%以下、さらに好ましくは0.20%以上0.30%以下である。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the high-strength steel sheet is limited to the above range in the present invention will be described. In the following description, “%” representing the content of the constituent elements of steel means “mass%” unless otherwise specified.
[C: 0.08% to 0.35%]
C is an element indispensable for increasing the strength of a steel sheet and ensuring a stable amount of retained austenite, and is an element necessary for ensuring the amount of bainite and martensite and for retaining austenite at room temperature.
If the C content is less than 0.08%, it is difficult to secure desired TS and El. On the other hand, when the amount of C exceeds 0.35%, there is a concern of embrittlement or delayed fracture of the steel sheet, and the weldability and the heat-affected zone are remarkably hardened and the weldability deteriorates. Therefore, the C content is 0.08% or more and 0.35% or less. Preferably they are 0.12% or more and 0.33% or less, More preferably, they are 0.15% or more and 0.31% or less, More preferably, they are 0.20% or more and 0.30% or less.
[Si:0.50%以上2.50%以下]
 Siは、炭化物の生成を抑制し、残留オーステナイトの生成を促進することで、鋼板のElを向上させるのに有用な元素である。また、残留オーステナイトが分解することによる炭化物の生成を抑制するのにも有効である。さらに、フェライト中で高い固溶強化能を有するため、鋼の強度向上に寄与する。また、フェライトに固溶したSiは、加工硬化能を向上させて、フェライト自身の延性を高める効果がある。
 こうした効果を得るには、Si量を0.50%以上とする必要がある。一方、Si量が2.50%を超えると、フェライト中への固溶量の増加による加工性、靭性の劣化を招き、また赤スケール等の発生による表面性状の劣化や、溶融めっきを施す場合には、めっき付着性および密着性の劣化を引き起こす。従って、Si量は0.50%以上2.50%以下とする。好ましくは0.80%以上2.00%以下、より好ましくは1.00%以上1.80%以下、さらに好ましくは1.10%以上1.70%以下である。
[Si: 0.50% to 2.50%]
Si is an element useful for improving the El of the steel sheet by suppressing the formation of carbides and promoting the formation of retained austenite. It is also effective in suppressing the formation of carbides due to decomposition of retained austenite. Furthermore, since it has a high solid solution strengthening ability in ferrite, it contributes to improving the strength of steel. Further, Si dissolved in ferrite has an effect of improving work hardening ability and increasing the ductility of the ferrite itself.
In order to obtain such an effect, the Si amount needs to be 0.50% or more. On the other hand, if the amount of Si exceeds 2.50%, workability and toughness will deteriorate due to the increase in the amount of solid solution in ferrite, and surface properties will deteriorate due to the occurrence of red scale, etc. Causes degradation of plating adhesion and adhesion. Therefore, the Si amount is set to 0.50% or more and 2.50% or less. Preferably they are 0.80% or more and 2.00% or less, More preferably, they are 1.00% or more and 1.80% or less, More preferably, they are 1.10% or more and 1.70% or less.
[Mn:1.50%以上3.00%以下]
 Mnは、鋼板の強度確保のために有効である。また、焼入れ性を向上させて複合組織化を容易にする。同時に、Mnは、冷却過程でのパーライトの生成を抑制する作用があり、オーステナイトからベイナイトおよびマルテンサイトへの変態を容易にする。こうした効果を得るには、Mn量を1.50%以上にする必要がある。一方、Mn量が3.00%を超えると、板厚方向のMn偏析が顕著となって、材質安定性の低下を招く。また、鋳造性の劣化などを引き起こす。従って、Mn量は1.50%以上3.00%以下とする。好ましくは1.50%以上2.70%以下、より好ましくは1.80%以上2.50%以下である。
[Mn: 1.50% to 3.00%]
Mn is effective for securing the strength of the steel sheet. In addition, the hardenability is improved to facilitate complex organization. At the same time, Mn acts to suppress the formation of pearlite during the cooling process, and facilitates transformation from austenite to bainite and martensite. In order to obtain such an effect, the amount of Mn needs to be 1.50% or more. On the other hand, if the amount of Mn exceeds 3.00%, Mn segregation in the thickness direction becomes remarkable, leading to a decrease in material stability. In addition, castability is deteriorated. Accordingly, the Mn content is 1.50% or more and 3.00% or less. Preferably they are 1.50% or more and 2.70% or less, More preferably, they are 1.80% or more and 2.50% or less.
[P:0.001%以上0.100%以下]
 Pは、固溶強化の作用を有し、所望の強度に応じて添加できる元素である。また、フェライト変態を促進するために複合組織化にも有効な元素である。こうした効果を得るためには、P量を0.001%以上にする必要がある。一方、P量が0.100%を超えると、溶接性の劣化を招くとともに、亜鉛めっきを合金化処理する場合には、合金化速度を大幅に遅延させて亜鉛めっきの品質を損なう。また、粒界偏析により脆化することによって耐衝撃性を劣化させる。従って、P量は0.001%以上0.100%以下とする。好ましくは0.005%以上0.050%以下である。
[P: 0.001% to 0.100%]
P is an element that has a solid solution strengthening action and can be added according to a desired strength. In addition, it is an element effective for complex organization in order to promote ferrite transformation. In order to acquire such an effect, it is necessary to make P amount 0.001% or more. On the other hand, if the amount of P exceeds 0.100%, weldability is deteriorated and, when galvanizing is alloyed, the alloying speed is greatly delayed to impair the quality of galvanizing. Moreover, impact resistance is deteriorated by embrittlement due to grain boundary segregation. Therefore, the P amount is set to 0.001% or more and 0.100% or less. Preferably it is 0.005% or more and 0.050% or less.
[S:0.0001%以上0.0200%以下]
 Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して局部変形能を低下させる。そのため、鋼中含有量は0.0200%以下とする必要がある。一方、生産技術上の制約からは、S量を0.0001%以上にする必要がある。従って、S量は0.0001%以上0.0200%以下とする。好ましくは0.0001%以上0.0050%以下である。
[S: 0.0001% to 0.0200%]
S segregates at the grain boundaries and embrittles the steel during hot working, and also exists as a sulfide and reduces local deformability. Therefore, the steel content needs to be 0.0200% or less. On the other hand, the amount of S needs to be 0.0001% or more due to restrictions in production technology. Therefore, the S amount is set to 0.0001% or more and 0.0200% or less. Preferably it is 0.0001% or more and 0.0050% or less.
[N:0.0005%以上0.0100%以下]
 Nは、鋼の耐時効性を最も大きく劣化させる元素である。特に、N量が0.0100%を超えると、耐時効性の劣化が顕著となるため、その量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上にする必要がある。従って、N量は0.0005%以上0.0100%以下とする。好ましくは0.0005%以上0.0070%以下である。
[N: 0.0005% to 0.0100%]
N is an element that greatly deteriorates the aging resistance of steel. In particular, when the amount of N exceeds 0.0100%, deterioration of aging resistance becomes remarkable, so the amount is preferably as small as possible. However, the amount of N needs to be 0.0005% or more due to restrictions on production technology. There is. Therefore, the N amount is set to 0.0005% or more and 0.0100% or less. Preferably it is 0.0005% or more and 0.0070% or less.
 本発明では、上記成分に加えて、ヤング率の向上に有利な方位の発達したフェライトを得るため、さらにTi:0.001%以上0.200%以下およびNb:0.001%以上0.200%以下のうちのいずれか1種または2種を含有させる必要がある。
 [Ti:0.001%以上0.200%以下]
 Tiは、C、S、Nと析出物を形成して、焼鈍時に剛性および深絞り性の向上に有利な方位の発達したフェライトを生成させるだけでなく、再結晶粒の粗大化を抑制して、強度の向上にも有効に寄与する。また、Bを添加した場合は、NをTiNとして析出させるため、BNの析出が抑制され、後述するBの効果が有効に発現される。こうした効果を得るには、Ti量を0.001%以上とする必要がある。一方、Ti量が0.200%を超えると、通常のスラブ再加熱時において炭窒化物を全固溶させることができず、粗大な炭窒化物が残るため、高強度化や再結晶抑制の効果が得られない。また、連続鋳造されたスラブを、一旦冷却したのち再加熱を行う工程を経ることなく、そのまま熱間圧延する場合においてもTi量が0.200%を超えた分の再結晶抑制効果の寄与分は小さく、合金コストの増加も招いてしまう。したがって、Ti量は0.001%以上0.200%以下とする。好ましくは0.030%以上0.170%以下、さらに好ましくは0.050%以上0.150%以下である。
In the present invention, in addition to the above components, in order to obtain a ferrite having an orientation that is advantageous for improving the Young's modulus, Ti: 0.001% to 0.200% and Nb: 0.001% to 0.200 It is necessary to contain any 1 type or 2 types in% or less.
[Ti: 0.001% or more and 0.200% or less]
Ti forms precipitates with C, S, and N, and not only generates ferrite with an orientation that is advantageous for improving rigidity and deep drawability during annealing, but also suppresses coarsening of recrystallized grains. It also contributes to the improvement of strength. Moreover, when B is added, since N is precipitated as TiN, precipitation of BN is suppressed, and the effect of B described later is effectively expressed. In order to obtain such an effect, the Ti amount needs to be 0.001% or more. On the other hand, if the amount of Ti exceeds 0.200%, carbonitrides cannot be completely dissolved during normal slab reheating, and coarse carbonitrides remain, thereby increasing strength and suppressing recrystallization. The effect is not obtained. In addition, even when the continuously cast slab is cooled and then hot-rolled without being subjected to reheating, the contribution of the recrystallization suppression effect to the amount of Ti exceeding 0.200%. Is small, which increases the alloy cost. Therefore, the Ti amount is set to 0.001% or more and 0.200% or less. Preferably they are 0.030% or more and 0.170% or less, More preferably, they are 0.050% or more and 0.150% or less.
[Nb:0.001%以上0.200%以下]
 Nbは、熱間圧延時あるいは焼鈍時に微細な析出物を形成して、焼鈍時に剛性および深絞り性の向上に有利な方位の発達したフェライトを生成させるだけでなく、再結晶粒の粗大化を抑制して、強度の向上にも有効に寄与する。特にNbは添加量を適切な量とすることで、焼鈍時に逆変態で生成するオーステナイト相を微細化するため、焼鈍後のミクロ組織も微細化し、強度を上昇させる効果がある。このような効果を得るには、Nb量を0.001%以上とする必要がある。一方、Nb量が0.200%を超えると、通常のスラブ再加熱時において炭窒化物を全固溶させることができず、粗大な炭窒化物が残るため、高強度化や再結晶抑制の効果が得られない。また、連続鋳造されたスラブを、一旦冷却したのち再加熱を行う工程を経ることなく、そのまま熱間圧延する場合においてもNb量が0.200%を超えた分の再結晶抑制効果の寄与分は小さく、合金コストの増加も招いてしまう。したがって、Nb量は0.001%以上0.200%以下とする。好ましくは0.030%以上0.170%以下、さらに好ましくは0.050%以上0.150%以下である。
[Nb: 0.001% or more and 0.200% or less]
Nb forms fine precipitates at the time of hot rolling or annealing, and not only generates ferrite with an orientation that is advantageous for improving rigidity and deep drawability at the time of annealing, but also coarsens the recrystallized grains. Suppressing and contributing to the improvement of strength. In particular, when Nb is added in an appropriate amount, the austenite phase generated by reverse transformation at the time of annealing is refined, so that the microstructure after annealing is also refined to increase the strength. In order to obtain such an effect, the Nb amount needs to be 0.001% or more. On the other hand, if the Nb content exceeds 0.200%, the carbonitride cannot be completely dissolved at the time of normal slab reheating, and coarse carbonitrides remain, which increases the strength and suppresses recrystallization. The effect is not obtained. In addition, even when the continuously cast slab is cooled and then hot-rolled without being subjected to reheating, the contribution of the recrystallization suppressing effect to the amount of Nb exceeding 0.200%. Is small, which increases the alloy cost. Therefore, the Nb amount is set to be 0.001% or more and 0.200% or less. Preferably they are 0.030% or more and 0.170% or less, More preferably, they are 0.050% or more and 0.150% or less.
 本発明の高強度鋼板は、上記の基本成分に加え、必要に応じて、さらにAl、V、B、Cr、Cu、Sb、Sn、Ta、Ca、MgおよびREMのうちから選ばれる少なくとも1種の元素を、単独または複合して含有させることができる。なお、鋼板の成分組成の残部は、Feおよび不可避的不純物である。
〔Al:0.01%以上1.00%以下〕
 Alは、炭化物の生成を抑制し、残留オーステナイトの生成を促進するのに有効な元素である。また、製鋼工程で脱酸剤として添加される元素である。こうした効果を得るには、Al量を0.01%以上にする必要がある。一方、Al量が1.00%を超えると、鋼板中の介在物が多くなり延性を劣化させる。従って、Al量は0.01%以上1.00%以下とする。好ましくは0.03%以上0.50%以下である。
The high-strength steel sheet of the present invention is at least one selected from Al, V, B, Cr, Cu, Sb, Sn, Ta, Ca, Mg, and REM, if necessary, in addition to the above basic components. These elements can be contained alone or in combination. The balance of the component composition of the steel sheet is Fe and inevitable impurities.
[Al: 0.01% or more and 1.00% or less]
Al is an element effective for suppressing the formation of carbides and promoting the formation of retained austenite. Moreover, it is an element added as a deoxidizer in the steel making process. In order to obtain such effects, the Al amount needs to be 0.01% or more. On the other hand, when the Al content exceeds 1.00%, inclusions in the steel sheet increase and ductility deteriorates. Therefore, the Al content is set to 0.01% or more and 1.00% or less. Preferably they are 0.03% or more and 0.50% or less.
〔V:0.005%以上0.100%以下〕
 Vは、熱間圧延時あるいは焼鈍時に微細な析出物を形成することで、再結晶粒の粗大化を抑制し、強度の上昇に寄与するとともに、焼鈍時に剛性および深絞り性の向上に有利な方位の発達したフェライトを生成させる。こうした効果を得るためには、V量は、0.005%以上添加する必要がある。一方、V量が0.100%を超えると、成形性が低下する。従って、Vを添加する場合、その含有量は0.005%以上0.100%以下とする。
[V: 0.005% to 0.100%]
V forms fine precipitates during hot rolling or annealing, thereby suppressing coarsening of recrystallized grains, contributing to an increase in strength, and advantageous for improving rigidity and deep drawability during annealing. Produces a well-oriented ferrite. In order to obtain such an effect, the amount of V needs to be added by 0.005% or more. On the other hand, if the amount of V exceeds 0.100%, the moldability deteriorates. Therefore, when adding V, the content is made 0.005% or more and 0.100% or less.
〔B:0.0001%以上0.0050%以下〕
 Bは、鋼の強化に有効な元素であり、その添加効果は、0.0001%以上で得られる。一方、Bは0.0050%を超えて過剰に添加すると、マルテンサイトの生成量が過大となって、著しい強度上昇による延性の低下の懸念が生じる。従って、B量は0.0001%以上0.0050%以下とする。好ましくは0.0005%以上0.0030%以下である。
[B: 0.0001% or more and 0.0050% or less]
B is an element effective for strengthening steel, and the effect of addition is obtained at 0.0001% or more. On the other hand, if B is added excessively over 0.0050%, the amount of martensite produced becomes excessive, and there is a concern that the ductility will decrease due to a significant increase in strength. Therefore, the B amount is set to 0.0001% or more and 0.0050% or less. Preferably it is 0.0005% or more and 0.0030% or less.
〔Cr:0.05%以上1.00%以下〕、〔Cu:0.05%以上1.00%以下〕
 CrおよびCuは、固溶強化元素としての役割のみならず、焼鈍時の冷却過程において、オーステナイトを安定化し、複合組織化を容易にする。こうした効果を得るには、Cr量およびCu量は、それぞれ0.05%以上にする必要がある。一方、Cr量およびCu量が1.00%を超えると、鋼板の成形性が低下する。従って、CrおよびCuを添加する場合、それらの含有量はそれぞれ0.05%以上1.00%以下とする。
[Cr: 0.05% to 1.00%], [Cu: 0.05% to 1.00%]
Cr and Cu not only serve as solid solution strengthening elements, but also stabilize austenite and facilitate complex organization in the cooling process during annealing. In order to obtain such an effect, the Cr content and the Cu content must each be 0.05% or more. On the other hand, if the Cr content and the Cu content exceed 1.00%, the formability of the steel sheet is lowered. Therefore, when adding Cr and Cu, their contents are 0.05% or more and 1.00% or less, respectively.
〔Sb:0.0020%以上0.2000%以下〕、〔Sn:0.0020%以上0.2000%以下〕
 SbおよびSnは、鋼板表面の窒化や酸化によって生じる鋼板表層の数十μm程度の領域の脱炭を抑制する観点から、必要に応じて添加する。このような窒化や酸化を抑制すると、鋼板表面におけるマルテンサイトの生成量が減少するのを防止して、鋼板の強度や材質安定性の確保に有効だからである。一方で、これらいずれの元素についても、0.2000%を超えて過剰に添加すると靭性の低下を招く。従って、SbおよびSnを添加する場合、それらの含有量は、それぞれ0.0020%以上0.2000%以下の範囲内とする。
[Sb: 0.0020% or more and 0.2000% or less], [Sn: 0.0020% or more and 0.2000% or less]
Sb and Sn are added as necessary from the viewpoint of suppressing decarburization in the region of several tens of μm of the steel sheet surface layer caused by nitriding and oxidation of the steel sheet surface. This is because suppressing such nitriding and oxidation prevents the martensite generation amount on the steel sheet surface from decreasing and is effective in ensuring the strength and material stability of the steel sheet. On the other hand, if any of these elements is added excessively exceeding 0.2000%, the toughness is reduced. Accordingly, when Sb and Sn are added, their contents are within the range of 0.0020% or more and 0.2000% or less, respectively.
〔Ta:0.0010%以上0.1000%以下〕
 Taは、TiやNbと同様に、炭化物や炭窒化物を生成して高強度化に寄与する。加えて、Nb炭化物やNb炭窒化物に一部固溶し、(Nb,Ta)(C,N)のような複合析出物を生成して、析出物の粗大化を著しく抑制し、かかる析出物安定化効果により鋼板の強度向上に有効に寄与すると考えられる。そのため、Taを含有することが好ましい。
 ここで、上述の析出物安定化効果は、Taの含有量を0.0010%以上とすることで得られる一方で、Taを過剰に添加しても、析出物安定化効果が飽和する上に、合金コストが増加する。従って、Taを添加する場合、その含有量は0.0010%以上0.1000%以下の範囲内とする。
[Ta: 0.0010% to 0.1000%]
Ta, like Ti and Nb, generates carbides and carbonitrides and contributes to high strength. In addition, a part of the Nb carbide or Nb carbonitride is solid-solved to form a composite precipitate such as (Nb, Ta) (C, N), which significantly suppresses the coarsening of the precipitate. It is thought that it contributes effectively to the strength improvement of a steel plate by the object stabilization effect. Therefore, it is preferable to contain Ta.
Here, the above-mentioned precipitate stabilization effect can be obtained by setting the Ta content to 0.0010% or more. On the other hand, even if Ta is added excessively, the precipitate stabilization effect is saturated. , Alloy costs increase. Therefore, when Ta is added, the content is within the range of 0.0010% to 0.1000%.
〔Ca:0.0003%以上0.0050%以下〕、〔Mg:0.0003%以上0.0050%以下〕、〔REM:0.0003%以上0.0050%以下〕
 Ca、MgおよびREMは、脱酸に用いる元素であるとともに、硫化物の形状を球状化し、局部延性への硫化物の悪影響を改善するために有効な元素である。これらの効果を得るためには、それぞれ0.0003%以上の添加が必要である。しかしながら、Ca、MgおよびREMは、0.0050%を超えて過剰に添加すると、介在物等の増加を引き起こして表面や内部に欠陥などを引き起こす。従って、Ca、MgおよびREMを添加する場合、それらの含有量はそれぞれ0.0003%以上0.0050%以下とする。
[Ca: 0.0003% or more and 0.0050% or less], [Mg: 0.0003% or more and 0.0050% or less], [REM: 0.0003% or more and 0.0050% or less]
Ca, Mg, and REM are elements used for deoxidation, and are effective elements for spheroidizing the shape of the sulfide and improving the adverse effect of the sulfide on local ductility. In order to obtain these effects, 0.0003% or more must be added. However, when Ca, Mg and REM are added in excess of 0.0050%, inclusions and the like are increased to cause defects on the surface and inside. Therefore, when Ca, Mg and REM are added, their contents are 0.0003% or more and 0.0050% or less, respectively.
 次に、本発明の高強度鋼板のミクロ組織(鋼組織)について説明する。
[フェライトの面積率:20%以上、フェライトの平均結晶粒径:10μm以上20μm以下]
 本発明において、極めて重要な発明構成要件である。本発明の高強度鋼板は、高ヤング率化および高r値化に寄与する軟質なフェライト中に、主として延性を担う残留オーステナイトと強度を担うベイナイトおよびマルテンサイトとを分散させた複合組織からなる。そして、十分な延性および強度-延性バランスを確保するためには、2回目の焼鈍およびその冷却過程で生成するフェライトの面積率を20%以上にする必要がある。
 なお、フェライトの面積率の上限は、特に限定はしないが、強度確保のためには80%以下が好ましく、より好ましくは70%以下、さらに好ましくは60%以下である。
 また、フェライトの平均結晶粒径を10μm以上20μm以下とすることが重要である。フェライトの平均結晶粒径が10μm未満では、所望の集合組織が得られず、所望のヤング率および平均r値を確保できない。一方、フェライトの平均結晶粒径が20μmを超えると、所望のベイナイトおよびマルテンサイトの面積率が得られず、所望の強度を確保できない。したがって、フェライトの平均結晶粒径は10μm以上20μm以下とする。好ましくは11μm以上17μm以下である。かかるフェライト粒径の制御は、製造工程中、特に1回目の焼鈍処理における焼鈍温度および保持時間を適切に制御することによって達成することができる。
Next, the microstructure (steel structure) of the high-strength steel sheet of the present invention will be described.
[Area ratio of ferrite: 20% or more, average grain size of ferrite: 10 μm or more and 20 μm or less]
In the present invention, this is a very important invention constituent element. The high-strength steel sheet of the present invention comprises a composite structure in which retained austenite responsible for ductility and bainite and martensite responsible for strength are dispersed in soft ferrite that contributes to higher Young's modulus and higher r-value. In order to ensure a sufficient ductility and strength-ductility balance, the area ratio of ferrite generated in the second annealing and cooling process needs to be 20% or more.
The upper limit of the area ratio of ferrite is not particularly limited, but is preferably 80% or less, more preferably 70% or less, and still more preferably 60% or less for securing the strength.
In addition, it is important that the average crystal grain size of ferrite is 10 μm or more and 20 μm or less. If the average crystal grain size of ferrite is less than 10 μm, a desired texture cannot be obtained, and a desired Young's modulus and average r value cannot be ensured. On the other hand, if the average crystal grain size of ferrite exceeds 20 μm, the desired area ratio of bainite and martensite cannot be obtained, and the desired strength cannot be ensured. Therefore, the average crystal grain size of ferrite is 10 μm or more and 20 μm or less. Preferably they are 11 micrometers or more and 17 micrometers or less. Such control of the ferrite grain size can be achieved by appropriately controlling the annealing temperature and the holding time in the manufacturing process, particularly in the first annealing treatment.
[ベイナイトの面積率:5%以上]
 本発明において、極めて重要な発明構成要件である。ベイナイトの生成は、未変態オーステナイト中のCを濃化させ、加工時に高ひずみ域でTRIP効果を発現できる残留オーステナイトを得るために必要である。また、高強度および高延性を両立するためには、残留オーステナイトの生成量を増大することが有効である。
 本発明において、2回目の焼鈍後の保持過程で、ベイナイトの生成量が5%未満の場合、オーステナイトへのC濃化が十分に進まないため、加工時に高ひずみ域でTRIP効果を発現する残留オーステナイト量が減少する。また、2回目焼鈍後の保持過程での未変態オーステナイトの分率が上昇し、冷却後のマルテンサイトの分率が上昇するため、TSは上昇するものの、延性が低下する。そのため、ベイナイトの面積率は、鋼板組織全体に対する面積率で5%以上が必要である。
 なお、ベイナイトの面積率の上限は、特に限定はしないが、高ヤング率化および高r値化に有利なフェライトの面積率確保のためには60%以下とすることが好ましく、より好ましくは50%以下である。
[Bainite area ratio: 5% or more]
In the present invention, this is a very important invention constituent element. The formation of bainite is necessary for concentrating C in untransformed austenite and obtaining retained austenite that can exhibit the TRIP effect in a high strain region during processing. In order to achieve both high strength and high ductility, it is effective to increase the amount of retained austenite produced.
In the present invention, in the holding process after the second annealing, when the amount of bainite produced is less than 5%, C concentration to austenite does not sufficiently proceed, so that a residual that exhibits a TRIP effect in a high strain region during processing. The amount of austenite decreases. Moreover, since the fraction of untransformed austenite in the holding process after the second annealing is increased and the fraction of martensite after cooling is increased, TS is increased, but ductility is decreased. Therefore, the area ratio of bainite needs to be 5% or more in terms of the area ratio with respect to the entire steel sheet structure.
The upper limit of the area ratio of bainite is not particularly limited, but is preferably 60% or less, more preferably 50%, in order to ensure the area ratio of ferrite that is advantageous for increasing the Young's modulus and the r value. % Or less.
[マルテンサイトの面積率:5%以上]
 本発明では、鋼板の強度確保のため、マルテンサイトの面積率を5%以上にする必要がある。
 なお、マルテンサイトの面積率の上限は、特に限定はしないが、高ヤング率化および高r値化に有利なフェライトの面積率を確保すると同時に、良好な延性を確保するためには、マルテンサイトの面積率は50%以下が好ましく、より好ましくは40%以下である。
[Martensite area ratio: 5% or more]
In the present invention, the martensite area ratio needs to be 5% or more in order to ensure the strength of the steel sheet.
The upper limit of the martensite area ratio is not particularly limited, but in order to ensure a good ductility at the same time as securing an area ratio of ferrite advantageous for increasing the Young's modulus and r value, martensite The area ratio is preferably 50% or less, more preferably 40% or less.
[ベイナイトおよびマルテンサイトの面積率:合計で15%以上]
 本発明において、極めて重要な発明構成要件である。低温変態相であるベイナイトおよびマルテンサイトの面積率が15%未満の場合は、鋼板の強度を確保することができない。従って、所望のTSを確保するためには、ベイナイトおよびマルテンサイトの面積率を合計で15%以上にする必要がある。
 なお、ベイナイトおよびマルテンサイトの合計面積率の上限は、特に限定はしないが、高ヤング率化および高r値化に有利なフェライトの面積率確保のためには70%以下が好ましい。より好ましくは60%以下、さらに好ましくは55%以下である。
[Area ratio of bainite and martensite: 15% or more in total]
In the present invention, this is a very important invention constituent element. When the area ratio of bainite and martensite, which are low-temperature transformation phases, is less than 15%, the strength of the steel sheet cannot be ensured. Therefore, in order to secure a desired TS, the area ratio of bainite and martensite needs to be 15% or more in total.
The upper limit of the total area ratio of bainite and martensite is not particularly limited, but is preferably 70% or less for securing the area ratio of ferrite that is advantageous for increasing the Young's modulus and increasing the r value. More preferably, it is 60% or less, More preferably, it is 55% or less.
 なお、フェライト、ベイナイトおよびマルテンサイトの面積率は、鋼板の圧延方向に平行な板厚断面(L断面)を研磨後、1vol.%ナイタールで腐食し、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、SEM(Scanning Electron Microscope;走査電子顕微鏡)を用いて3000倍の倍率で3視野観察し、得られた組織画像を、Adobe Systems社のAdobe Photoshopを用いて、構成相(フェライト、ベイナイトおよびマルテンサイト)の面積率を3視野分算出し、それらの値を平均して求めることができる。また、上記の組織画像において、フェライトは灰色の組織(基地組織)、マルテンサイトは白色の組織、そしてベイナイトは灰色の下地に一部白色の組織が混在した組織を呈している。
 さらに、フェライトの平均結晶粒径は次のようにして求めることができる。上述のAdobe Photoshopを用いて、画像上に引いた線分の長さを実際の長さに補正した値を、画像上に引いた線分が通る結晶粒の数で割ることで算出した。
The area ratio of ferrite, bainite, and martensite is 1 vol. After polishing the plate thickness section (L section) parallel to the rolling direction of the steel sheet. Corrosion with% nital, and a plate thickness of 1/4 position (position corresponding to 1/4 of the plate thickness in the depth direction from the steel plate surface) using a scanning electron microscope (SEM) at a magnification of 3000 times The area ratio of the constituent phases (ferrite, bainite and martensite) was calculated for the three visual fields using Adobe Photoshop from Adobe Systems, and the values were averaged. Can be sought. In the above structure image, ferrite has a gray structure (base structure), martensite has a white structure, and bainite has a structure in which a white structure is mixed with a gray base.
Further, the average crystal grain size of ferrite can be obtained as follows. Using the above-mentioned Adobe Photoshop, the value obtained by correcting the length of the line segment drawn on the image to the actual length was divided by the number of crystal grains passing through the line segment drawn on the image.
[残留オーステナイトの体積率:5%以上]
 本発明では、良好な延性および強度-延性バランスを確保するため、残留オーステナイトの量は体積率で5%以上とする必要がある。より良好な延性および強度-延性バランスを確保するためには、残留オーステナイトの量は体積率で8%以上とすることが好ましく、より好ましくは11%以上である。ここに、残留オーステナイトの体積率の上限については特に限定しないが、20%以下とするのが好ましい。
 なお、残留オーステナイトの体積率は、鋼板を板厚方向に板厚の1/4まで研削・研磨し、X線回折強度測定により求めた。入射X線には、Co-Kαを用い、フェライトの(200)、(211)各面の回折強度に対するオーステナイトの(200)、(220)、(311)各面の強度比から残留オーステナイト量を計算した。
[Volume ratio of retained austenite: 5% or more]
In the present invention, in order to ensure a good ductility and strength-ductility balance, the amount of retained austenite needs to be 5% or more by volume ratio. In order to secure a better ductility and strength-ductility balance, the amount of retained austenite is preferably 8% or more, more preferably 11% or more in terms of volume ratio. Here, the upper limit of the volume ratio of retained austenite is not particularly limited, but is preferably 20% or less.
The volume fraction of retained austenite was determined by measuring the X-ray diffraction intensity after grinding and polishing the steel plate to ¼ of the plate thickness in the plate thickness direction. For incident X-rays, Co—Kα is used, and the amount of retained austenite is calculated from the intensity ratio of each surface of (200), (220), (311) of austenite to the diffraction intensity of each surface of (200), (211) of ferrite. Calculated.
 また、本発明に従うミクロ組織では、上記したフェライト、ベイナイト、マルテンサイトおよび残留オーステナイト以外に、焼戻しマルテンサイト、焼戻しベイナイト、パーライト、セメンタイト等の炭化物やその他鋼板の組織として公知のものが含まれる場合があるが、これらの合計量が面積率で15%以下の範囲であれば、含まれていても、本発明の効果が損なわれることはない。 Further, in the microstructure according to the present invention, in addition to the above-described ferrite, bainite, martensite, and retained austenite, carbides such as tempered martensite, tempered bainite, pearlite, cementite, and other known structures may be included. However, the effect of the present invention is not impaired even if these total amounts are within the range of 15% or less in terms of area ratio.
 次に、鋼板の集合組織について説明する。
[フェライトの集合組織のα-fiberに対するγ-fiberのインバース強度比:3.0超]
 α-fiberとは<110>軸が圧延方向に平行な繊維集合組織であり、またγ-fiberとは<111>軸が圧延面の法線方向に平行な繊維集合組織である。体心立方金属では、圧延変形によりα-fiberおよびγ-fiberが強く発達し、再結晶焼鈍でもそれらに属する集合組織が形成するという特徴がある。
 本発明において、フェライトの集合組織のα-fiberに対するγ-fiberのインバース強度比が3.0以下の場合、高ヤング率化および高r値化に好適なγ-fiberの集積度が低く、所望のヤング率および平均r値を確保することが困難となる。従って、フェライトの集合組織のα-fiberに対するγ-fiberのインバース強度比は3.0超とする必要がある。また、かかるインバース強度比の上限は、特に制限されることはないが、8.0以下とすることが好ましい。
 なお、従来の一般的な製造方法で得られる高強度鋼板では、α-fiberに対するγ-fiberのインバース強度比は1.0~2.5程度である。
Next, the texture of the steel plate will be described.
[Inverse strength ratio of γ-fiber to α-fiber of ferrite texture: more than 3.0]
α-fiber is a fiber texture whose <110> axis is parallel to the rolling direction, and γ-fiber is a fiber texture whose <111> axis is parallel to the normal direction of the rolling surface. The body-centered cubic metal is characterized in that α-fiber and γ-fiber are strongly developed by rolling deformation and a texture belonging to them is formed even by recrystallization annealing.
In the present invention, when the inverse strength ratio of γ-fiber to α-fiber in the ferrite texture is 3.0 or less, the degree of integration of γ-fiber suitable for high Young's modulus and high r-value is low. It is difficult to ensure the Young's modulus and the average r value. Therefore, the inverse strength ratio of γ-fiber to α-fiber in the ferrite texture needs to exceed 3.0. The upper limit of the inverse intensity ratio is not particularly limited, but is preferably 8.0 or less.
In the high-strength steel sheet obtained by the conventional general manufacturing method, the inverse strength ratio of γ-fiber to α-fiber is about 1.0 to 2.5.
 フェライトの集合組織のα-fiberに対するγ-fiberのインバース強度比は、鋼板の圧延方向に平行な板厚断面(L断面)を湿式研磨およびコロイダルシリカ溶液を用いたバフ研磨により表面を平滑化した後、0.1vol.%ナイタールで腐食することで、試料表面の凹凸を極力低減し、かつ加工変質層を完全に除去し、ついで板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、SEM-EBSD(Electron Back-Scatter Diffraction;電子線後方散乱回折)法を用いて結晶方位を測定する。ついで、得られたデータを、AMETEK EDAX社のOIM Analysisを用いて、まずハイライトのグレイン機能により類似方位の隣接フェライトを含むベイナイトおよびマルテンサイトを選択し、次にチャート機能によりベイナイトおよびマルテンサイトの方位情報のみを抽出することで、フェライトと、ベイナイトおよびマルテンサイトの集合組織情報を分離し、分離したフェライトのα-fiberおよびγ-fiberのインバース強度を求めることにより、算出することができる。 The inverse strength ratio of γ-fiber to α-fiber in the ferrite texture was smoothed by wet polishing and buffing using a colloidal silica solution on the plate thickness section (L section) parallel to the rolling direction of the steel sheet. Thereafter, 0.1 vol. Corrosion with% nital reduces asperities on the sample surface as much as possible, and completely removes the work-affected layer, and then corresponds to 1/4 position of the plate thickness (1/4 of the plate thickness in the depth direction from the steel plate surface). The crystal orientation is measured using SEM-EBSD (Electron Back-Scatter Diffraction). Next, using the OIM Analysis of AMETEK EDAX, first select bainite and martensite containing adjacent ferrites of similar orientation using the highlight grain function, and then select the bainite and martensite using the chart function. By extracting only azimuth information, it can be calculated by separating the texture information of ferrite and bainite and martensite, and determining the inverse strength of α-fiber and γ-fiber of the separated ferrite.
 次に、本発明の高強度鋼板の製造方法について説明する。
 本発明では、TiおよびNbのうちのいずれか1種あるいは2種の元素を添加し、その他の合金元素の成分組成を適正に制御した鋼スラブを加熱し、熱間圧延を施す。その際、熱間圧延の巻取温度(CT)を比較的高温にすることで、添加したTiおよび/またはNbの析出促進効果により、侵入型元素であるCおよびNを、熱安定性の高い炭化物および窒化物として析出させることが重要である。
 また、熱間圧延後は、必要に応じて、熱処理を施して熱延板を軟質化させる。その後、冷間圧延を施す場合には、圧下率を極力高くして、α-fiberおよびγ-fiberの集合組織を発達させることが重要である。
 このように、焼鈍処理前の鋼板組織を、固溶CおよびNを熱安定性の高い炭化物および窒化物として析出させ、かつα-fiberおよびγ-fiberの集合組織を発達させた組織とすることで、その後のフェライト単相域での第1加熱工程(1回目の焼鈍処理)でフェライトを再結晶させることで、フェライトの集合組織をα-fiberおよびγ-fiber、特にγ-fiberに発達させることができ、その結果、全方向のヤング率を向上させ、また平均r値を向上させることが可能となる。
 次いで、フェライト+オーステナイト二相域での第2加熱工程(2回目の焼鈍処理)で、フェライトの集合組織を維持しつつオーステナイトを一定量生成させ、その後の冷却過程で、ベイナイトおよび残留オーステナイトを生成させるとともに、フェライト、ベイナイトおよびマルテンサイトを一定の割合以上生成させることにより、780MPa以上のTSを有しつつ、延性のみならず剛性に優れ、さらには深絞り性にも優れる高強度鋼板を得ることが可能となる。
 また、本発明の高強度亜鉛めっき鋼板は、上述した高強度鋼板に、公知公用の亜鉛めっき処理を施すことにより製造することができる。
Next, the manufacturing method of the high strength steel plate of this invention is demonstrated.
In the present invention, any one or two elements of Ti and Nb are added, and the steel slab in which the composition of other alloy elements is appropriately controlled is heated and subjected to hot rolling. At that time, the hot rolling coiling temperature (CT) is set to a relatively high temperature, so that the interstitial elements C and N are highly thermally stable due to the precipitation promoting effect of the added Ti and / or Nb. It is important to deposit as carbides and nitrides.
Moreover, after hot rolling, if necessary, heat treatment is performed to soften the hot-rolled sheet. Thereafter, when cold rolling is performed, it is important to develop the texture of α-fiber and γ-fiber by increasing the reduction ratio as much as possible.
As described above, the steel sheet structure before the annealing treatment is a structure in which solute C and N are precipitated as carbides and nitrides having high thermal stability, and a texture of α-fiber and γ-fiber is developed. Then, by recrystallizing the ferrite in the first heating step (first annealing treatment) in the subsequent ferrite single phase region, the texture of the ferrite is developed into α-fiber and γ-fiber, particularly γ-fiber. As a result, the Young's modulus in all directions can be improved, and the average r value can be improved.
Next, in the second heating step (second annealing process) in the ferrite + austenite two-phase region, a certain amount of austenite is generated while maintaining the ferrite texture, and bainite and residual austenite are generated in the subsequent cooling process. At the same time, by producing ferrite, bainite and martensite at a certain ratio or more, a high strength steel sheet having a TS of 780 MPa or more, excellent in not only ductility but also rigidity, and also excellent in deep drawability is obtained. Is possible.
Moreover, the high-strength galvanized steel sheet of the present invention can be manufactured by subjecting the above-described high-strength steel sheet to a publicly known galvanizing treatment.
 以下、各製造工程について説明する。
[鋼スラブの加熱温度:1100℃以上1300℃以下]
 鋼スラブの加熱段階で存在している析出物は、最終的に得られる鋼板内では粗大な析出物として存在し、強度に寄与しないため、鋳造時に析出したTi、Nb系析出物を再溶解させる必要がある。
 ここに、鋼スラブの加熱温度が1100℃未満では、析出物の十分な溶解が困難であるだけでなく、圧延荷重の増大による熱間圧延時のトラブル発生の危険が増大するなどの問題が生じる。また、スラブ表層の気泡、偏析などの欠陥をスケールオフし、鋼板表面の亀裂、凹凸を減少し、平滑な鋼板表面を達成する必要性も生じる。さらに、鋳造時に生成した析出物が再溶解せず、粗大な析出物として残る場合、El、ヤング率および平均r値が低下する問題も生じる。さらには、効果的に残留オーステナイトを生成できず、延性が低下する懸念がある。従って、本発明の鋼スラブの加熱温度は1100℃以上にする必要がある。一方、鋼スラブの加熱温度が1300℃超では、酸化量の増加に伴いスケールロスが増大してしまう。そのため、鋼スラブの加熱温度は1300℃以下にする必要がある。
 従って、鋼スラブの加熱温度は1100℃以上1300℃以下とする。好ましくは1150℃以上1280℃以下、さらに好ましくは1150℃以上1250℃以下である。
Hereinafter, each manufacturing process will be described.
[Heating temperature of steel slab: 1100 ° C or higher and 1300 ° C or lower]
Precipitates present in the heating stage of the steel slab exist as coarse precipitates in the finally obtained steel sheet and do not contribute to strength, so the Ti and Nb-based precipitates precipitated during casting are redissolved. There is a need.
Here, when the heating temperature of the steel slab is less than 1100 ° C., not only is it difficult to sufficiently dissolve the precipitate, but there is a problem that the risk of trouble occurring during hot rolling due to an increase in rolling load increases. . In addition, it is necessary to scale off defects such as bubbles and segregation in the surface layer of the slab, reduce cracks and irregularities on the steel sheet surface, and achieve a smooth steel sheet surface. Furthermore, when the precipitate produced | generated at the time of casting does not melt | dissolve but remains as a coarse precipitate, the problem that El, Young's modulus, and average r value fall also arises. Furthermore, there is a concern that residual austenite cannot be produced effectively and ductility is lowered. Therefore, the heating temperature of the steel slab of the present invention needs to be 1100 ° C. or higher. On the other hand, when the heating temperature of the steel slab exceeds 1300 ° C., the scale loss increases as the oxidation amount increases. Therefore, the heating temperature of the steel slab needs to be 1300 ° C. or lower.
Therefore, the heating temperature of the steel slab is set to 1100 ° C. or higher and 1300 ° C. or lower. Preferably they are 1150 degreeC or more and 1280 degrees C or less, More preferably, they are 1150 degreeC or more and 1250 degrees C or less.
[仕上げ圧延出側温度:800℃以上1000℃以下]
 加熱後の鋼スラブは、粗圧延および仕上げ圧延により熱間圧延され熱延鋼板となる。このとき、仕上げ圧延出側温度が1000℃を超えると、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する傾向にある。また、酸洗後に熱延スケールの取れ残りなどが一部に存在すると、延性に悪影響を及ぼす。さらに、結晶粒径が過度に粗大となり、加工時にプレス品表面荒れを生じる場合がある。
 一方、仕上げ圧延出側温度が800℃未満では圧延荷重が増大し、圧延負荷が大きくなる。また、オーステナイトの未再結晶状態での圧下率が高くなり、異常な集合組織が発達し、最終製品における面内異方性が顕著となり、材質の均一性や材質安定性が損なわれるだけでなく、El、ヤング率および平均r値そのものも低下する。
 従って、熱間圧延の仕上げ圧延出側温度は800℃以上1000℃以下にする必要がある。好ましくは820℃以上950℃以下である。
[Finishing rolling delivery temperature: 800 ° C or higher and 1000 ° C or lower]
The heated steel slab is hot-rolled by rough rolling and finish rolling to form a hot-rolled steel sheet. At this time, when the finish rolling exit temperature exceeds 1000 ° C., the amount of oxide (scale) generated increases rapidly, the interface between the base iron and the oxide becomes rough, and the surface quality after pickling and cold rolling is high. It tends to deteriorate. In addition, if there is a part of the hot rolled scale remaining after pickling, the ductility is adversely affected. Furthermore, the crystal grain size becomes excessively coarse, and the surface of the pressed product may be roughened during processing.
On the other hand, if the finish rolling exit temperature is less than 800 ° C., the rolling load increases and the rolling load increases. In addition, the reduction ratio of austenite in an unrecrystallized state increases, abnormal texture develops, in-plane anisotropy in the final product becomes remarkable, and material uniformity and material stability are not only impaired. , El, Young's modulus, and average r value itself also decrease.
Therefore, the finish rolling exit temperature of hot rolling needs to be 800 ° C. or higher and 1000 ° C. or lower. Preferably they are 820 degreeC or more and 950 degrees C or less.
 なお、鋼スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法や薄スラブ鋳造法などにより製造することも可能である。また、鋼スラブを製造した後、一旦室温まで冷却し、その後再度加熱する従来法に加え、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいは、わずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。また、スラブは通常の条件で粗圧延によりシートバーとされるが、加熱温度を低めにした場合は、熱間圧延時のトラブルを防止する観点から、仕上げ圧延前にバーヒーターなどを用いてシートバーを加熱することが好ましい。 Incidentally, the steel slab is preferably manufactured by a continuous casting method in order to prevent macro segregation, but it can also be manufactured by an ingot-making method or a thin slab casting method. In addition to the conventional method in which the steel slab is manufactured and then cooled to room temperature and then heated again, the steel slab is not cooled to room temperature. Energy-saving processes such as direct feed rolling and direct rolling that are rolled immediately after application can also be applied without problems. The slab is made into a sheet bar by rough rolling under normal conditions. However, if the heating temperature is lowered, the sheet is heated using a bar heater before finishing rolling in order to prevent problems during hot rolling. It is preferred to heat the bar.
[熱間圧延後の巻取温度:300℃以上800℃以下]
 熱間圧延後の巻取温度が800℃を超えると、熱延板組織のフェライトの結晶粒径が大きくなるとともに、TiやNbの炭窒化物が粗大化することで、冷間圧延および焼鈍時のγ-fiberへの方位集積が弱くなり、所望のヤング率および平均r値を確保することが困難となる。一方、熱間圧延後の巻取温度が300℃未満では、熱延板強度が上昇し、冷間圧延における圧延負荷が増大し、生産性が低下する。また、マルテンサイトを主体とする硬質な熱延板に冷間圧延を施すと、マルテンサイトの旧オーステナイト粒界に沿った微小な内部割れ(脆性割れ)が生じやすく、最終焼鈍板の延性が低下する。従って、熱間圧延後の巻取温度は300℃以上800℃以下にする必要がある。好ましくは350℃以上700℃以下、より好ましくは380℃以上650℃以下である。
 なお、熱延時に粗圧延板同士を接合して連続的に仕上げ圧延を行っても良い。また、粗圧延板を一旦巻き取っても構わない。また、熱間圧延時の圧延荷重を低減するために仕上げ圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延時の摩擦係数は、0.10以上0.25以下の範囲とすることが好ましい。
[Winding temperature after hot rolling: 300 ° C or higher and 800 ° C or lower]
When the coiling temperature after hot rolling exceeds 800 ° C, the crystal grain size of ferrite in the hot-rolled sheet structure increases, and the carbonitrides of Ti and Nb become coarse, so that during cold rolling and annealing Of γ-fiber becomes weak, and it becomes difficult to secure a desired Young's modulus and average r value. On the other hand, when the coiling temperature after hot rolling is less than 300 ° C., the hot rolled sheet strength increases, the rolling load in cold rolling increases, and the productivity decreases. Also, if cold rolling is performed on a hard hot-rolled sheet mainly composed of martensite, minute internal cracks (brittle cracks) are likely to occur along the former austenite grain boundaries of martensite, and the ductility of the final annealed sheet decreases. To do. Therefore, the coiling temperature after hot rolling needs to be 300 ° C. or higher and 800 ° C. or lower. Preferably they are 350 degreeC or more and 700 degrees C or less, More preferably, they are 380 degreeC or more and 650 degrees C or less.
Note that rough rolling sheets may be joined to each other during hot rolling to continuously perform finish rolling. Moreover, you may wind up a rough rolling board once. Moreover, in order to reduce the rolling load during hot rolling, part or all of the finish rolling may be lubricated rolling. Performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material. In addition, it is preferable to make the friction coefficient at the time of lubrication rolling into the range of 0.10 or more and 0.25 or less.
 このようにして製造した熱延鋼板に、酸洗を行う。酸洗は鋼板表面の酸化物の除去が可能であることから、最終製品の高強度鋼板における良好な化成処理性やめっき品質の確保のために重要である。また、酸洗は、一回でも良いし、複数回に分けても良い。
 上記の酸洗処理後、そのまま、あるいは450℃以上800℃以下の温度域で900s以上36000s以下の時間保持したのち、圧下率:40%以上で冷間圧延を施す。
The hot-rolled steel sheet thus manufactured is pickled. Since pickling can remove oxides on the surface of the steel sheet, it is important for ensuring good chemical conversion properties and plating quality in the final high-strength steel sheet. Moreover, pickling may be performed once or may be divided into a plurality of times.
After the above pickling treatment, it is kept as it is or in a temperature range of 450 ° C. to 800 ° C. for a time of 900 s to 36000 s, and then cold-rolled at a reduction ratio of 40% or more.
[熱延板酸洗処理後の熱処理温度域と保持時間:450℃以上800℃以下の温度域で900s以上36000s以下の間保持]
 熱処理温度域が450℃未満または熱処理保持時間が900s未満の場合、熱延後の焼戻しが不十分なため、その後の冷間圧延時にフェライト、パーライト、ベイナイトおよびマルテンサイトのいずれか1つ以上が混在した不均一な組織となり、かかる熱延板組織の影響を受けて、均一微細化が不十分となる。その結果、最終焼鈍板の組織において、粗大な低温変態相の割合が増加し、不均一な組織となって、最終焼鈍板のEl、ヤング率および平均r値が低下する場合がある。
 一方、熱処理保持時間が36000s超の場合は、生産性に悪影響を及ぼす場合がある。また、熱処理温度域が800℃を超える場合は、フェライトとマルテンサイトまたはパーライトの不均一かつ硬質化した粗大な2相組織となって、冷間圧延前に不均一な組織となり、最終焼鈍板の粗大なマルテンサイトの割合が増加して、やはり最終焼鈍板のEl、ヤング率および平均r値が低下する場合がある。
 従って、熱延板酸洗処理後に熱処理を施す場合、温度域は450℃以上800℃以下とし、保持時間は900s以上36000s以下とする必要がある。
[Heat treatment temperature range and holding time after hot-rolled plate pickling treatment: Hold for 900 s to 36000 s in a temperature range of 450 ° C. to 800 ° C.]
When the heat treatment temperature range is less than 450 ° C. or the heat treatment holding time is less than 900 s, tempering after hot rolling is insufficient, and at least one of ferrite, pearlite, bainite and martensite is mixed during the subsequent cold rolling. The resulting structure becomes uneven, and the uniform refinement becomes insufficient under the influence of the hot-rolled sheet structure. As a result, the ratio of the coarse low temperature transformation phase increases in the structure of the final annealed plate, resulting in a non-uniform structure, and the El, Young's modulus, and average r value of the final annealed plate may decrease.
On the other hand, when the heat treatment holding time exceeds 36000 s, productivity may be adversely affected. In addition, when the heat treatment temperature range exceeds 800 ° C., it becomes a non-uniform and hardened coarse two-phase structure of ferrite and martensite or pearlite, and becomes a non-uniform structure before cold rolling. The ratio of coarse martensite may increase, and the El, Young's modulus, and average r value of the final annealed sheet may also decrease.
Therefore, when heat treatment is performed after the hot-rolled sheet pickling treatment, the temperature range needs to be 450 ° C. or higher and 800 ° C. or lower, and the holding time needs to be 900 s or higher and 36000 s or lower.
[冷間圧延時の圧下率:40%以上]
 熱間圧延工程後に冷間圧延を行って、ヤング率および平均r値の向上に有効なα-fiberおよびγ-fiberを集積させる。すなわち、冷間圧延によりα-fiberおよびγ-fiberを発達させることによって、その後の焼鈍工程後の組織でも、α-fiberおよびγ-fiber、特にγ-fiberを持つフェライトを増やし、ヤング率および平均r値を高くする。このような効果を得るには、冷間圧延時の圧下率を40%以上とする必要がある。さらに、ヤング率および平均r値を向上させる観点からは、圧下率を45%以上とすることが好ましく、より好ましくは50%以上とする。なお、圧延パスの回数、各パス毎の圧下率については、とくに限定されることなく本発明の効果を得ることができる。また、上記圧下率の上限に特に限定はないが、工業上80%程度である。
[Draft ratio during cold rolling: 40% or more]
Cold rolling is performed after the hot rolling step to accumulate α-fiber and γ-fiber effective in improving Young's modulus and average r value. That is, by developing α-fiber and γ-fiber by cold rolling, the ferrite having α-fiber and γ-fiber, especially γ-fiber, is increased in the structure after the subsequent annealing process, and Young's modulus and average Increase the r value. In order to obtain such an effect, the rolling reduction during cold rolling needs to be 40% or more. Further, from the viewpoint of improving the Young's modulus and the average r value, the rolling reduction is preferably 45% or more, more preferably 50% or more. In addition, about the frequency | count of a rolling pass and the rolling reduction for every pass, the effect of this invention can be acquired, without being specifically limited. Moreover, although there is no limitation in particular in the upper limit of the said rolling reduction, it is about 80% industrially.
[1回目の焼鈍処理の温度域:450℃以上T1温度以下]
 本発明において、極めて重要な発明構成要件である。1回目の焼処理の鈍温度域が450℃未満の場合、未再結晶フェライトが多く残存し、フェライトの再結晶時に形成するγ-fiberを有するフェライトが少なくなり、各方向のヤング率および平均r値が低下する。一方、1回目の焼鈍処理の温度がT1温度を超えた場合、γ-fiberを有する再結晶フェライトの核生成サイトからオーステナイトが先に核生成するため、ヤング率および平均r値の向上に好適なγ-fiberを有するフェライトの面積率が低下する。また、焼鈍中に生成したオーステナイトの体積率が増加し、α-fiberおよびγ-fiber、特にγ-fiberに集積したフェライトの体積率が減少するため、各方向のヤング率および平均r値が低下する。さらに、加熱後の冷却工程を実施する場合には、冷却時にオーステナイトが変態して生成するフェライト、マルテンサイト、焼戻しマルテンサイト、ベイナイト、焼戻しベイナイト、あるいはパーライト、セメンタイト等の炭化物等が増大し、γ-fiberに集積したフェライトの面積率が低下するため、α-fiberおよびγ-fiber、特にγ-fiberに集積することが難しくなる。従って、1回目の焼鈍処理の温度域は450℃以上T1温度以下にする必要がある。さらに、ヤング率および平均r値を向上させる観点からは、1回目の焼鈍処理の温度域を500℃以上T1温度以下にするのが好ましく、より好ましくは550℃以上T1温度以下である。ここに、T1温度とはAc1点を意味する。
[Temperature range of first annealing treatment: 450 ° C. or higher and T1 temperature or lower]
In the present invention, this is a very important invention constituent element. When the annealing temperature range of the first firing treatment is less than 450 ° C., a large amount of unrecrystallized ferrite remains, and the amount of ferrite having γ-fiber formed during recrystallization of ferrite decreases, and the Young's modulus and average r in each direction The value drops. On the other hand, when the temperature of the first annealing treatment exceeds the T1 temperature, austenite is first nucleated from the nucleation site of recrystallized ferrite having γ-fiber, which is suitable for improvement of Young's modulus and average r value. The area ratio of ferrite having γ-fiber is reduced. In addition, the volume fraction of austenite generated during annealing increases, and the volume fraction of ferrite accumulated in α-fiber and γ-fiber, especially γ-fiber, decreases, resulting in a decrease in Young's modulus and average r value in each direction. To do. Furthermore, when carrying out the cooling step after heating, ferrite, martensite, tempered martensite, bainite, tempered bainite, or carbides such as pearlite, cementite, etc. that are generated by transformation of austenite during cooling increase, γ Since the area ratio of ferrite accumulated in -fiber decreases, it becomes difficult to accumulate in α-fiber and γ-fiber, particularly γ-fiber. Therefore, the temperature range of the first annealing process needs to be 450 ° C. or higher and T1 temperature or lower. Furthermore, from the viewpoint of improving the Young's modulus and the average r value, the temperature range of the first annealing treatment is preferably 500 ° C. or higher and T1 temperature or lower, more preferably 550 ° C. or higher and T1 temperature or lower. Here, the T1 temperature means the Ac 1 point.
[1回目の焼鈍処理での保持時間:300s以上]
 本発明において、極めて重要な発明構成要件である。1回目の焼鈍処理での保持時間が300s未満の場合、未再結晶フェライトが残存し、γ-fiberへの集積度が低下することで、各方向のヤング率および平均r値が低下する。このため、保持時間は300s以上とする。また、特に限定する必要はないが、保持時間が100000sを超えると、再結晶フェライト粒径が粗大化し、所望のTSを確保するのが困難となるため、保持時間は100000s以下であることが好ましい。したがって、保持時間は300s以上とする。好ましくは300s以上100000s以下、より好ましくは300s以上36000s以下、さらに好ましくは300s以上21600s以下である。
[Retention time in the first annealing treatment: 300 s or more]
In the present invention, this is a very important invention constituent element. When the holding time in the first annealing treatment is less than 300 s, unrecrystallized ferrite remains, and the degree of accumulation in γ-fiber decreases, so that the Young's modulus and average r value in each direction decrease. For this reason, holding time shall be 300 s or more. Further, there is no particular limitation, but if the holding time exceeds 100,000 s, the recrystallized ferrite grain size becomes coarse and it becomes difficult to secure a desired TS. Therefore, the holding time is preferably 100,000 s or less. . Accordingly, the holding time is 300 s or longer. Preferably it is 300 s or more and 100,000 or less, More preferably, it is 300 or more and 36000 s or less, More preferably, it is 300 or more and 21600 s or less.
 なお、熱処理方法は連続焼鈍やバッチ焼鈍のいずれの焼鈍方法でも構わない。また、1回目の焼鈍処理後、冷却工程を実施する場合には、室温まで冷却してもよく、また、過時効帯を通過させる処理を施してもよい。なお、冷却工程の冷却方法および冷却速度は特に規定せず、バッチ焼鈍における炉冷、空冷および連続焼鈍におけるガスジェット冷却、ミスト冷却、水冷などのいずれの冷却でも構わない。また、酸洗は常法に従えばよい。なお、特に限定する必要はないが、室温または過時効帯までの平均冷却速度が80℃/sを超えると、鋼板形状が悪化する可能性があるため、平均冷却速度が80℃/s以下とすることが好ましい。 The heat treatment method may be any of continuous annealing and batch annealing. Moreover, when implementing a cooling process after the 1st annealing process, you may cool to room temperature and you may perform the process which passes an overaging zone. The cooling method and cooling rate in the cooling step are not particularly defined, and any cooling such as furnace cooling in batch annealing, air cooling, and gas jet cooling, mist cooling, and water cooling in continuous annealing may be used. The pickling may be performed according to a conventional method. Although there is no particular limitation, since the steel sheet shape may be deteriorated when the average cooling rate to room temperature or overaging zone exceeds 80 ° C./s, the average cooling rate is 80 ° C./s or less. It is preferable to do.
[2回目の焼鈍処理の温度域:T1温度以上T2温度以下]
 2回目の焼鈍温度がT1温度未満の場合は、焼鈍中にオーステナイトの生成が不十分となり、結果として、2回目焼鈍処理後の冷却およびその後の保持過程で十分な量の低温変態相が得られず、所望のTSを確保するのが困難となる。また、保持中のベイナイト変態が遅延するため、十分な量の残留オーステナイトを確保することができず、延性の向上が困難となる。一方、2回目の焼鈍温度がT2温度を超えた場合は、オーステナイト単相の温度域になるため、加熱工程および加熱後の保持工程で形成したフェライトの集合組織がランダム化し、最終的に得られる鋼板のヤング率および平均r値が低下する。また、延性向上に寄与するフェライトの面積率も低下するため、所望のElの確保が困難となる。従って、2回目の焼鈍処理の温度域はT1温度以上T2温度以下とする。なお、2回目の焼鈍処理の保持時間は、特に限定はしないが、10s以上1000s以下が好ましい。ここに、T2温度とはAc3点を意味する。
[Temperature range of second annealing treatment: T1 temperature or more and T2 temperature or less]
When the second annealing temperature is lower than the T1 temperature, austenite formation is insufficient during annealing, and as a result, a sufficient amount of low-temperature transformation phase is obtained in the cooling and subsequent holding processes after the second annealing treatment. Therefore, it becomes difficult to secure a desired TS. Further, since the bainite transformation during holding is delayed, a sufficient amount of retained austenite cannot be secured, and it becomes difficult to improve ductility. On the other hand, when the annealing temperature of the second time exceeds the T2 temperature, it becomes an austenite single-phase temperature range, so that the ferrite texture formed in the heating step and the holding step after heating is randomized and finally obtained. The Young's modulus and average r value of the steel sheet are lowered. Moreover, since the area ratio of the ferrite which contributes to ductility improvement also falls, it becomes difficult to ensure desired El. Therefore, the temperature range of the second annealing treatment is set to T1 temperature or more and T2 temperature or less. The holding time of the second annealing treatment is not particularly limited, but is preferably 10 s or more and 1000 s or less. Here, the T2 temperature means the Ac 3 point.
[2回目の焼鈍処理後の550℃までの平均冷却速度:5℃/s以上]
 2回目の焼鈍処理後の冷却工程において、少なくとも550℃までの平均冷却速度が5℃/s未満では、未変態オーステナイトがパーライトに変態し、所望量のベイナイトおよびマルテンサイトを確保できず、所望のTSおよびElを確保するのが困難となる。また、特に限定する必要はないが、上記した平均冷却速度が200℃/sを超えると、鋼板形状の悪化や、冷却到達温度の制御が困難となる可能性があるため、上記した平均冷却速度は200℃/s以下とすることが好ましい。従って、再加熱後の冷却工程での、少なくとも550℃までの平均冷却速度は5℃/s以上とする。好ましくは5℃/s以上200℃/s以下、より好ましくは8℃/s以上80℃/s以下、さらに好ましくは10℃/s以上50℃/s以下である。
[Average cooling rate to 550 ° C. after second annealing treatment: 5 ° C./s or more]
In the cooling step after the second annealing treatment, if the average cooling rate to at least 550 ° C. is less than 5 ° C./s, the untransformed austenite is transformed into pearlite, and a desired amount of bainite and martensite cannot be secured, and the desired It becomes difficult to secure TS and El. Moreover, although it is not necessary to specifically limit, since the above-described average cooling rate exceeds 200 ° C./s, the shape of the steel sheet may be deteriorated and it may be difficult to control the cooling reaching temperature. Is preferably 200 ° C./s or less. Therefore, the average cooling rate to at least 550 ° C. in the cooling step after reheating is set to 5 ° C./s or more. Preferably they are 5 degreeC / s or more and 200 degrees C / s or less, More preferably, they are 8 degreeC / s or more and 80 degrees C / s or less, More preferably, they are 10 degreeC / s or more and 50 degrees C / s or less.
[2回目の焼鈍処理後の冷却停止温度:300℃以上500℃以下]
 2回目の焼鈍処理後の冷却停止温度が300℃未満では、2回目の焼鈍処理後の冷却停止時に未変態のオーステナイトがマルテンサイトのみに変態するため、所望のベイナイト量を確保することができず、所望のElを確保することができない。一方、2回目の焼鈍処理後の冷却停止温度が500℃超では、未変態オーステナイトがパーライトに変態し、所望量のベイナイトおよびマルテンサイトが確保できず、所望のTSおよびElを確保するのが困難となる。従って、2回目の焼鈍処理後の冷却停止温度は300℃以上500℃以下とする。さらに、強度と延性のバランスを向上させる観点からは、2回目の焼鈍処理後の冷却停止温度を300℃以上480℃以下とすることが好ましい。より好ましくは350℃以上460℃以下である。
[Cooling stop temperature after second annealing treatment: 300 ° C. or more and 500 ° C. or less]
If the cooling stop temperature after the second annealing treatment is less than 300 ° C., the untransformed austenite is transformed into only martensite when cooling is stopped after the second annealing treatment, so that the desired amount of bainite cannot be secured. The desired El cannot be secured. On the other hand, if the cooling stop temperature after the second annealing treatment exceeds 500 ° C., untransformed austenite is transformed into pearlite, and a desired amount of bainite and martensite cannot be secured, and it is difficult to secure desired TS and El. It becomes. Therefore, the cooling stop temperature after the second annealing treatment is set to 300 ° C. or more and 500 ° C. or less. Furthermore, from the viewpoint of improving the balance between strength and ductility, the cooling stop temperature after the second annealing treatment is preferably set to 300 ° C. or higher and 480 ° C. or lower. More preferably, it is 350 degreeC or more and 460 degreeC or less.
[冷却停止温度域での保持時間:10s以上]
 上記再加熱温度域での保持時間が10s未満では、オーステナイトへのC濃化が進行する時間が不十分となって、最終的に所望の残留オーステナイトの体積率の確保が困難になる。なお、特に限定する必要はないが、1000sを超えて滞留した場合、残留オーステナイトの体積率は増加せず、延性の顕著な向上は確認されず飽和傾向となるため、1000s以下が好ましい。従って、上記冷却停止温度域での保持時間は10s以上とする。好ましくは10s以上1000s以下である。
 保持後の冷却はとくに規定する必要がなく、任意の方法により所望の温度に冷却してよい。なお、上記所望の温度は、室温程度が望ましい。
[Holding time in cooling stop temperature range: 10s or more]
When the holding time in the reheating temperature region is less than 10 s, the time for C concentration to austenite to proceed becomes insufficient, and it becomes difficult to finally secure a desired volume ratio of retained austenite. Although it is not necessary to specifically limit, when it stays for more than 1000 s, the volume ratio of retained austenite does not increase, and a remarkable improvement in ductility is not confirmed, so that it tends to be saturated. Accordingly, the holding time in the cooling stop temperature region is set to 10 s or more. Preferably, it is 10 seconds or more and 1000 seconds or less.
The cooling after the holding does not need to be specified, and may be cooled to a desired temperature by any method. The desired temperature is preferably about room temperature.
[亜鉛めっき処理]
 溶融亜鉛めっき処理を施すときは、前記焼鈍処理を施した鋼板を、440℃以上500℃以下の亜鉛めっき浴中に浸漬して溶融亜鉛めっき処理を施した後、ガスワイピング等によって、めっき付着量を調整する。溶融亜鉛めっきはAl量が0.10質量%以上0.23質量%以下である亜鉛めっき浴を用いることが好ましい。また、亜鉛めっきの合金化処理を施すときは、溶融亜鉛めっき処理後に、470℃以上600℃以下の温度域で亜鉛めっきの合金化処理を施す。600℃を超える温度で合金化処理を行うと、未変態オーステナイトがパーライトへ変態し、所望の残留オーステナイトの体積率を確保できず、Elが低下する場合がある。したがって、亜鉛めっきの合金化処理を行うときは、470℃以上600℃以下の温度域で亜鉛めっきの合金化処理を施すことが好ましい。また、電気亜鉛めっき処理を施してもよい。なお、めっき付着量は片面当たり20~80g/m2(両面めっき)が好ましく、合金化溶融亜鉛めっき鋼板(GA)は、合金化処理を施すことによりめっき層中のFe濃度を7~15質量%とすることが好ましい。
[Zinc plating treatment]
When hot dip galvanizing treatment is performed, the steel plate subjected to the annealing treatment is immersed in a galvanizing bath at 440 ° C. or higher and 500 ° C. or lower to perform hot dip galvanizing treatment, followed by gas wiping etc. Adjust. For hot dip galvanization, it is preferable to use a galvanizing bath having an Al content of 0.10 mass% or more and 0.23 mass% or less. In addition, when the galvanizing alloying treatment is performed, the galvanizing alloying treatment is performed in the temperature range of 470 ° C. or more and 600 ° C. or less after the hot dip galvanizing treatment. When the alloying treatment is performed at a temperature exceeding 600 ° C., untransformed austenite is transformed into pearlite, and a desired volume ratio of retained austenite cannot be secured, and El may be lowered. Therefore, when the galvanizing alloying treatment is performed, it is preferable to perform the galvanizing alloying treatment in a temperature range of 470 ° C. or more and 600 ° C. or less. Moreover, you may perform an electrogalvanization process. In addition, the plating adhesion amount is preferably 20 to 80 g / m 2 per side (double-sided plating), and the alloyed hot-dip galvanized steel sheet (GA) is subjected to alloying treatment so that the Fe concentration in the plating layer is 7 to 15 mass. % Is preferable.
 前記した熱処理後のスキンパス圧延の圧下率は、0.1%以上2.0%以下の範囲が好ましい。0.1%未満では効果が小さく、制御も困難であることから、これが良好範囲の下限となる。また、2.0%を超えると、生産性が著しく低下するので、これを良好範囲の上限とする。
 スキンパス圧延は、オンラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。その他の製造方法の条件は、特に限定しないが、生産性の観点から、上記の焼鈍、溶融亜鉛めっき、亜鉛めっきの合金化処理などの一連の処理は、溶融亜鉛めっきラインであるCGL(Continuous Galvanizing Line)で行うのが好ましい。溶融亜鉛めっき後は、めっきの目付け量を調整するために、ワイピングが可能である。なお、上記した条件以外のめっき等の条件は、溶融亜鉛めっきの常法に依ることができる。
The reduction ratio of the skin pass rolling after the heat treatment is preferably in the range of 0.1% to 2.0%. If it is less than 0.1%, the effect is small and control is difficult, so this is the lower limit of the good range. Moreover, since productivity will fall remarkably when it exceeds 2.0%, this is made the upper limit of a favorable range.
Skin pass rolling may be performed online or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps. Other manufacturing method conditions are not particularly limited, but from the viewpoint of productivity, a series of treatments such as annealing, hot dip galvanization, alloying treatment of galvanization, etc. are performed by CGL (Continuous Galvanizing) which is a hot dip galvanizing line. Line). After hot dip galvanization, wiping is possible to adjust the amount of plating. In addition, conditions, such as plating other than the above-mentioned conditions, can depend on the conventional method of hot dip galvanization.
(実施例1)
 表1に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉にて溶製し、連続鋳造法にてスラブとした。得られたスラブを、表2に示す条件で加熱して熱間圧延後、酸洗処理を施し、表2に示したNo.1~11、13~23、25、27、29、30、32~37、39、41は熱延板熱処理を施し、さらに、その中から、No.29、30、32~37、39、41は延板熱処理後に酸洗処理を施した。
 ついで、表2に示した条件で冷間圧延したのち、表2に示した条件で2回の焼鈍処理を施し、高強度冷延鋼板(CR)を得た。
 さらに、一部の高強度冷延鋼板(CR)に亜鉛めっき処理を施し、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、電気亜鉛めっき鋼板(EG)などを得た。溶融亜鉛めっき浴は、GIでは、Al:0.14質量%または0.19質量%含有亜鉛浴を使用し、また、GAでは、Al:0.14質量%含有亜鉛浴を使用し、浴温は470℃とした。めっき付着量は、GIでは、片面当たり72g/m2または45g/m2(両面めっき)とし、またGAでは、片面当たり45g/m2(両面めっき)とした。また、GAは、めっき層中のFe濃度を9質量%以上12質量%以下とした。さらに、EGのめっき付着量は、片面当たり50g/m2(両面めっき)とした。
Example 1
Steel having the component composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in a converter and made into a slab by a continuous casting method. The obtained slab was heated under the conditions shown in Table 2 and hot-rolled, and then pickled. Nos. 1 to 11, 13 to 23, 25, 27, 29, 30, 32 to 37, 39, and 41 were subjected to hot-rolled sheet heat treatment. Nos. 29, 30, 32 to 37, 39, and 41 were subjected to pickling treatment after the heat treatment of the plate.
Next, after cold rolling under the conditions shown in Table 2, annealing was performed twice under the conditions shown in Table 2 to obtain a high-strength cold-rolled steel sheet (CR).
Furthermore, some high-strength cold-rolled steel sheets (CR) were galvanized to obtain hot-dip galvanized steel sheets (GI), galvannealed steel sheets (GA), electrogalvanized steel sheets (EG), and the like. The hot dip galvanizing bath uses a zinc bath containing Al: 0.14% by mass or 0.19% by mass in GI, and uses a zinc bath containing Al: 0.14% by mass in GA. Was 470 ° C. Coating weight, the GI, and per side 72 g / m 2 or 45 g / m 2 (two-sided plating), also in GA, and per one surface 45 g / m 2 (two-sided plating). Moreover, GA made Fe density | concentration in a plating layer 9 mass% or more and 12 mass% or less. Furthermore, the amount of EG plating adhered was 50 g / m 2 per side (double-sided plating).
 なお、T1温度(℃)は、以下の式を用いて求めた。
T1温度(℃)=720+29×[%Si]-21×[%Mn]+17×[%Cr]
 また、T2温度(℃)は、
T2温度(℃)=946-203×[%C]1/2+45×[%Si]-30×[%Mn]+150×[%Al]-20×[%Cu]+11×[%Cr]+350×[%Ti]+104×[%V]
によって算出することができる。ここに、[%X]は鋼板の成分元素Xの質量%とし、含有しない成分元素については零とする。
 なお、T1はAc1点、T2はAc3点を意味する。
In addition, T1 temperature (degreeC) was calculated | required using the following formula | equation.
T1 temperature (° C.) = 720 + 29 × [% Si] -21 × [% Mn] + 17 × [% Cr]
The T2 temperature (° C) is
T2 temperature (° C.) = 946−203 × [% C] 1/2 + 45 × [% Si] −30 × [% Mn] + 150 × [% Al] −20 × [% Cu] + 11 × [% Cr] +350 × [% Ti] + 104 × [% V]
Can be calculated. Here, [% X] is the mass% of the component element X of the steel sheet, and zero for the component elements not contained.
T1 means Ac 1 point and T2 means Ac 3 point.
 以上のようにして得られた高強度冷延鋼板(CR)、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)および電気亜鉛めっき鋼板(EG)を供試鋼として、機械的特性を評価した。機械的特性は、以下のように引張試験およびヤング率測定を行い評価した。その結果を表3に示す。また、供試鋼である各鋼板の板厚も表3に示す。 The high-strength cold-rolled steel sheet (CR), hot-dip galvanized steel sheet (GI), alloyed hot-dip galvanized steel sheet (GA) and electrogalvanized steel sheet (EG) obtained as described above were used as test steels. Characteristics were evaluated. The mechanical properties were evaluated by performing a tensile test and Young's modulus measurement as follows. The results are shown in Table 3. Table 3 also shows the thickness of each steel plate as the test steel.
 引張試験は、引張試験片の長手が、鋼板の圧延方向に対して直角方向(C方向)となるようにサンプルを採取したJIS5号試験片を用いて、JIS Z 2241(2011年)に準拠して行い、TS(引張強度)およびEl(全伸び)を測定した。なお、本発明で、延性すなわちElに優れるとは、TS×Elの値が15000MPa・%以上の場合である。 The tensile test is based on JIS Z 2241 (2011) using a JIS No. 5 test piece obtained by taking a sample so that the length of the tensile test piece is perpendicular to the rolling direction of the steel sheet (C direction). And TS (tensile strength) and El (total elongation) were measured. In addition, in this invention, it is a case where the value of TSxEl is 15000 MPa *% or more that it is excellent in ductility, ie El.
 ヤング率測定は、鋼板の圧延方向(L方向)、鋼板の圧延方向に対して45°方向(D方向)、鋼板の圧延方向に対して直角方向(C方向)の3方向から10mm×50mmの試験片を切り出し、横振動型の共振周波数測定装置を用いて、American Society to Testing Materialsの基準(C1259)に従い、ヤング率を測定した。なお、本発明で、剛性すなわちヤング率に優れるとは、圧延方向および圧延方向に対して45°方向のヤング率が205GPa以上、かつ圧延方向に対して直角方向のヤング率が220GPa以上の場合である。 Young's modulus measurement is 10 mm × 50 mm from three directions, ie, the rolling direction of the steel sheet (L direction), the 45 ° direction (D direction) with respect to the rolling direction of the steel sheet, and the direction perpendicular to the rolling direction of the steel sheet (C direction). The test piece was cut out and the Young's modulus was measured using a transverse vibration type resonance frequency measuring device according to the American Society to Testing Materials standard (C1259). In the present invention, the rigidity, that is, the Young's modulus is excellent when the Young's modulus in the 45 ° direction with respect to the rolling direction and the rolling direction is 205 GPa or more and the Young's modulus in the direction perpendicular to the rolling direction is 220 GPa or more. is there.
 平均r値測定は、鋼板の圧延方向(L方向)、鋼板の圧延方向に対して45°方向(D方向)、鋼板の圧延方向に対して直角方向(C方向)の3方向からそれぞれ採取したJIS5号試験片を用いて、JIS Z 2254(2008年)に準拠して、それぞれの塑性歪比rL,rD,rを求め、以下の式により平均r値を算出した。
  平均r値=(rL+2rD+rC)/4
 なお、本発明は、深絞り性に優れるとは、深絞り性の指標である平均r値が、鋼板の強度に関係なく0.95以上の場合である。
The average r-value measurement was taken from three directions, ie, the rolling direction (L direction) of the steel sheet, the 45 ° direction (D direction) with respect to the rolling direction of the steel sheet, and the direction perpendicular to the rolling direction of the steel sheet (C direction). Using the JIS No. 5 test piece, each plastic strain ratio r L , r D , r C was determined according to JIS Z 2254 (2008), and the average r value was calculated by the following formula.
Average r value = (r L + 2r D + r C ) / 4
Note that the present invention is excellent in deep drawability when the average r value, which is an index of deep drawability, is 0.95 or more regardless of the strength of the steel sheet.
 また、前述した方法に従って、フェライト、ベイナイトおよびマルテンサイトの面積率、残留オーステナイトの体積率、さらに鋼板の板厚1/4位置におけるフェライトのα-fiberに対するγ-fiberのインバース強度比を求めた。この結果も表3に併記する。 Further, according to the above-described method, the area ratio of ferrite, bainite and martensite, the volume ratio of retained austenite, and the inverse strength ratio of γ-fiber to α-fiber of ferrite at the 1/4 thickness position of the steel sheet were obtained. The results are also shown in Table 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示したように、発明例では、TSが780MPa以上であり、延性に優れ、高い強度と延性のバランスを有し、かつ剛性および深絞り性にも優れている。一方、比較例では、強度、延性、強度と延性のバランス、剛性、深絞り性のいずれか一つ以上が劣っていた。
 以上、本発明の実施の形態について説明したが、本発明は、本実施の形態による本発明の開示の一部をなす記述により限定されるものではない。すなわち、本実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術などは全て本発明の技術的範囲に含まれる。例えば、上記した製造方法における一連の熱処理においては、熱履歴条件さえ満足すれば、鋼板に熱処理を施す設備等は特に限定されるものではない。
As shown in Table 3, in the inventive examples, TS is 780 MPa or more, excellent in ductility, has a balance between high strength and ductility, and is excellent in rigidity and deep drawability. On the other hand, in the comparative example, one or more of strength, ductility, balance between strength and ductility, rigidity, and deep drawability was inferior.
As mentioned above, although embodiment of this invention was described, this invention is not limited by the description which makes a part of indication of this invention by this embodiment. That is, all other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the present embodiment are all included in the technical scope of the present invention. For example, in the series of heat treatments in the above-described manufacturing method, as long as the heat history condition is satisfied, the equipment for performing the heat treatment on the steel sheet is not particularly limited.
 本発明によれば、780MPa以上のTSを有し、延性のみならず剛性に優れ、さらには深絞り性にも優れる高強度鋼板の製造が可能になる。従って、本発明により得られた高強度鋼板を、例えば自動車構造部材に適用することによって車体軽量化による燃費改善を図ることができ、産業上の利用価値は極めて大きい。 According to the present invention, it is possible to produce a high-strength steel sheet having a TS of 780 MPa or more and excellent not only in ductility but also in rigidity and also in deep drawability. Therefore, by applying the high-strength steel plate obtained by the present invention to, for example, an automobile structural member, fuel efficiency can be improved by reducing the weight of the vehicle body, and the industrial utility value is extremely large.

Claims (4)

  1.  成分組成が、質量%で、
      C:0.08%以上0.35%以下、
      Si:0.50%以上2.50%以下、
      Mn:1.50%以上3.00%以下、
      P:0.001%以上0.100%以下、
      S:0.0001%以上0.0200%以下および
      N:0.0005%以上0.0100%以下
    を含有し、さらに、
      Ti:0.001%以上0.200%以下および
      Nb:0.001%以上0.200%以下
    のうちから選んだ1種または2種を含有し、残部がFeおよび不可避的不純物からなり、
     鋼組織が、面積率で、
    フェライトが20%以上で、該フェライトの平均結晶粒径が10μm以上20μm以下であり、また
    ベイナイトが5%以上、
    マルテンサイトが5%以上で、
    ベイナイトおよびマルテンサイトの面積率が合計で15%以上であり、
     体積率で、残留オーステナイトが5%以上であり、
     さらに、フェライトの集合組織が、α-fiberに対するγ-fiberのインバース強度比で、3.0超であるミクロ組織を有する、
    高強度鋼板。
    Ingredient composition is mass%,
    C: 0.08% to 0.35%,
    Si: 0.50% or more and 2.50% or less,
    Mn: 1.50% or more and 3.00% or less,
    P: 0.001% to 0.100%,
    S: 0.0001% or more and 0.0200% or less and N: 0.0005% or more and 0.0100% or less,
    Ti: 0.001% or more and 0.200% or less and Nb: 0.001% or more and 0.200% or less containing one or two selected from the balance, the balance consists of Fe and inevitable impurities,
    Steel structure is area ratio,
    Ferrite is 20% or more, the average grain size of the ferrite is 10 μm or more and 20 μm or less, and bainite is 5% or more,
    Martensite is 5% or more,
    The total area ratio of bainite and martensite is 15% or more,
    In volume ratio, residual austenite is 5% or more,
    Further, the ferrite texture has a microstructure in which the inverse strength ratio of γ-fiber to α-fiber is more than 3.0.
    High strength steel plate.
  2.  請求項1に記載の高強度鋼板に、さらに、質量%で、
    Al:0.01%以上1.00%以下、
    V:0.005%以上0.100%以下、
    B:0.0001%以上0.0050%以下、
    Cr:0.05%以上1.00%以下、
    Cu:0.05%以上1.00%以下、
    Sb:0.0020%以上0.2000%以下、
    Sn:0.0020%以上0.2000%以下、
    Ta:0.0010%以上0.1000%以下、
    Ca:0.0003%以上0.0050%以下、
    Mg:0.0003%以上0.0050%以下および
    REM:0.0003%以上0.0050%以下
    のうちから選ばれる少なくとも1種の元素を含有する、高強度鋼板。
    In the high-strength steel sheet according to claim 1, further in mass%,
    Al: 0.01% or more and 1.00% or less,
    V: 0.005% or more and 0.100% or less,
    B: 0.0001% to 0.0050%,
    Cr: 0.05% or more and 1.00% or less,
    Cu: 0.05% or more and 1.00% or less,
    Sb: 0.0020% or more and 0.2000% or less,
    Sn: 0.0020% or more and 0.2000% or less,
    Ta: 0.0010% or more and 0.1000% or less,
    Ca: 0.0003% or more and 0.0050% or less,
    A high-strength steel sheet containing at least one element selected from Mg: 0.0003% to 0.0050% and REM: 0.0003% to 0.0050%.
  3.  請求項1または2に記載の高強度鋼板の製造方法であって、
     請求項1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度:800℃以上1000℃以下で熱間圧延し、巻取温度:300℃以上800℃以下で巻き取り、酸洗処理後、そのまま、あるいは450℃以上800℃以下の温度域で900s以上36000s以下の間保持したのち、40%以上の圧下率で冷間圧延を施し、
     ついで得られた冷延板を、450℃以上T1温度以下の温度域に加熱し、該温度域で300s以上保持する1回目の焼鈍処理を施し、
     ついで、T1温度以上T2温度以下の温度域まで再加熱して2回目の焼鈍処理を施したのち、少なくとも550℃までの平均冷却速度を5℃/s以上として、300℃以上500℃以下の冷却停止温度域まで冷却し、該冷却停止温度域で10s以上保持する、高強度鋼板の製造方法。
                    記
    T1温度(℃)=720+29×[%Si]-21×[%Mn]+17×[%Cr]
    T2温度(℃)=946-203×[%C]1/2+45×[%Si]-30×[%Mn]+150×[%Al]-20×[%Cu]+11×[%Cr]+350×[%Ti]+104×[%V]
    [%X]は鋼板の成分元素Xの質量%とし、含有しない成分元素については零とする。
    It is a manufacturing method of the high strength steel plate according to claim 1 or 2,
    The steel slab having the component composition according to claim 1 or 2 is heated to 1100 ° C or higher and 1300 ° C or lower, hot rolled at a finish rolling exit temperature: 800 ° C or higher and 1000 ° C or lower, and a coiling temperature: 300 ° C. Winding at 800 ° C. or lower, after pickling treatment, or after holding at 900 ° C. or higher and 36000 s or lower in the temperature range of 450 ° C. or higher and 800 ° C. or lower, then cold rolling at a rolling reduction of 40% or higher,
    Subsequently, the obtained cold-rolled sheet is heated to a temperature range of 450 ° C. or more and T1 temperature or less, and subjected to a first annealing treatment for holding at this temperature range for 300 s or more,
    Next, after reheating to a temperature range of T1 temperature or more and T2 temperature or less and performing the second annealing treatment, cooling is performed at 300 ° C or more and 500 ° C or less at an average cooling rate of at least 550 ° C at 5 ° C / s or more. A method for producing a high-strength steel sheet, which is cooled to a stop temperature range and held for 10 s or longer in the cooling stop temperature range.
    T1 temperature (° C.) = 720 + 29 × [% Si] -21 × [% Mn] + 17 × [% Cr]
    T2 temperature (° C.) = 946−203 × [% C] 1/2 + 45 × [% Si] −30 × [% Mn] + 150 × [% Al] −20 × [% Cu] + 11 × [% Cr] +350 × [% Ti] + 104 × [% V]
    [% X] is the mass% of the component element X of the steel sheet, and zero for the component elements not contained.
  4.  請求項1または2に記載の高強度鋼板の表面に、亜鉛めっき層を有する、高強度亜鉛めっき鋼板。 A high-strength galvanized steel sheet having a galvanized layer on the surface of the high-strength steel sheet according to claim 1 or 2.
PCT/JP2017/040814 2016-11-15 2017-11-13 High strength steel sheet, production method therefor, and high strength galvanized steel sheet WO2018092735A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016222611A JP6344454B2 (en) 2016-11-15 2016-11-15 High-strength steel sheet, method for producing the same, and high-strength galvanized steel sheet
JP2016-222611 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018092735A1 true WO2018092735A1 (en) 2018-05-24

Family

ID=62145449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040814 WO2018092735A1 (en) 2016-11-15 2017-11-13 High strength steel sheet, production method therefor, and high strength galvanized steel sheet

Country Status (2)

Country Link
JP (1) JP6344454B2 (en)
WO (1) WO2018092735A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205943A1 (en) * 2020-04-07 2021-10-14 日本製鉄株式会社 Steel plate
EP4166685A4 (en) * 2020-06-11 2023-11-22 Baoshan Iron & Steel Co., Ltd. Ultra-high-strength steel having excellent plasticity and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024980A (en) * 2006-07-20 2008-02-07 Nippon Steel Corp High-strength galvannealed steel sheet and producing method therefor
WO2013047836A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 Galvanized steel sheet and method of manufacturing same
JP2015145518A (en) * 2014-02-03 2015-08-13 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
WO2016125463A1 (en) * 2015-02-03 2016-08-11 Jfeスチール株式会社 High-strength steel sheet and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024980A (en) * 2006-07-20 2008-02-07 Nippon Steel Corp High-strength galvannealed steel sheet and producing method therefor
WO2013047836A1 (en) * 2011-09-30 2013-04-04 新日鐵住金株式会社 Galvanized steel sheet and method of manufacturing same
JP2015145518A (en) * 2014-02-03 2015-08-13 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
WO2016125463A1 (en) * 2015-02-03 2016-08-11 Jfeスチール株式会社 High-strength steel sheet and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205943A1 (en) * 2020-04-07 2021-10-14 日本製鉄株式会社 Steel plate
EP4134464A4 (en) * 2020-04-07 2023-08-23 Nippon Steel Corporation Steel plate
JP7425359B2 (en) 2020-04-07 2024-01-31 日本製鉄株式会社 steel plate
EP4166685A4 (en) * 2020-06-11 2023-11-22 Baoshan Iron & Steel Co., Ltd. Ultra-high-strength steel having excellent plasticity and method for manufacturing same

Also Published As

Publication number Publication date
JP6344454B2 (en) 2018-06-20
JP2018080362A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6179677B2 (en) High strength steel plate and manufacturing method thereof
JP6179675B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-plated steel sheet, high-strength electrogalvanized steel sheet, and methods for producing them
JP6032300B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, and methods for producing them
JP6179676B2 (en) High strength steel plate and manufacturing method thereof
JP6179674B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-plated steel sheet, high-strength electrogalvanized steel sheet, and methods for producing them
JP6315044B2 (en) High strength steel plate and manufacturing method thereof
JP5709151B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5800098B2 (en) High strength high Young&#39;s modulus steel plate and method for producing the same
WO2017183349A1 (en) Steel plate, plated steel plate, and production method therefor
JP6315160B1 (en) High strength steel plate and manufacturing method thereof
JP6032298B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, and methods for producing them
JP5737485B1 (en) High strength high Young&#39;s modulus steel plate and method for producing the same
JP6032299B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, and methods for producing them
WO2018092817A1 (en) High-strength steel sheet and method for producing same
WO2017183348A1 (en) Steel plate, plated steel plate, and production method therefor
JPWO2017168961A1 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
JP6372632B1 (en) High strength steel plate and manufacturing method thereof
JP6344454B2 (en) High-strength steel sheet, method for producing the same, and high-strength galvanized steel sheet
JP6210184B1 (en) Steel sheet, plated steel sheet, and manufacturing method thereof
JP6210183B1 (en) Steel sheet, plated steel sheet, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872100

Country of ref document: EP

Kind code of ref document: A1