JP4959161B2 - Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility - Google Patents

Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility Download PDF

Info

Publication number
JP4959161B2
JP4959161B2 JP2005256601A JP2005256601A JP4959161B2 JP 4959161 B2 JP4959161 B2 JP 4959161B2 JP 2005256601 A JP2005256601 A JP 2005256601A JP 2005256601 A JP2005256601 A JP 2005256601A JP 4959161 B2 JP4959161 B2 JP 4959161B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
hot
dip galvanized
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005256601A
Other languages
Japanese (ja)
Other versions
JP2007070659A (en
Inventor
力 岡本
展弘 藤田
利明 溝口
良之 上島
裕一 谷口
貢一 後藤
直樹 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005256601A priority Critical patent/JP4959161B2/en
Publication of JP2007070659A publication Critical patent/JP2007070659A/en
Application granted granted Critical
Publication of JP4959161B2 publication Critical patent/JP4959161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主としてプレス加工されて使用される自動車等の足回り部品や構造材料に好適な耐食性と伸びと穴拡げ性に優れた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板に関するものである。 The present invention is concerned primarily with the stamped galvanized steel sheet excellent in a suitable corrosion resistance and elongation and hole expandability underbody parts and structural materials such as automobile is used and galvannealed steel sheet .

自動車の高級化の傾向を反映して、自動車用部材の耐食性および外観を向上させるために、多くの部材に溶融亜鉛めっき鋼板が使用されている。このような自動車の部材に使用される鋼板には高いプレス加工性と強度が要求される。プレス加工性と高強度とを兼備した溶融亜鉛めっき鋼板として、フェライト・マルテンサイト組織、フェライト・ベイナイト組織からなるもの、あるいは組織中に残留オーステナイトを含有するものなどが知られている。なかでもフェライト地にマルテンサイトを分散させた複合組織鋼板は、低降伏比で引張強度が高く、しかも伸び特性に優れていることから、自動車ホイール等への適用が進められてきた。例えば特許文献1〜3には複合組織鋼板が、特許文献4には複合組織を有する溶融亜鉛めっき鋼板が開示されている。   In order to improve the corrosion resistance and appearance of automobile parts, reflecting the trend of upgrading automobiles, hot dip galvanized steel sheets are used for many parts. High press workability and strength are required for steel plates used for such automobile members. Known hot-dip galvanized steel sheets having both press workability and high strength include those composed of a ferrite / martensite structure, a ferrite / bainite structure, or those containing retained austenite in the structure. In particular, a composite steel sheet in which martensite is dispersed in a ferrite base has been applied to automobile wheels and the like because it has a low yield ratio, high tensile strength, and excellent elongation characteristics. For example, Patent Documents 1 to 3 disclose a composite structure steel sheet, and Patent Document 4 discloses a hot dip galvanized steel sheet having a composite structure.

しかしながら、従来の複合組織型の溶融亜鉛めっき鋼板は、厚み200mm程度のスラブから製造するのが普通であって、スラブの中間部(厚みtのスラブの1/4t位置)における平均冷却速度は、0.1℃/sec程度の小さいものであったので、デンドライトの成長が大きくこのためMnのミクロ偏析が大きいものであった。このミクロ偏析部は圧延に際して伸長されてMnバンドを形成し、この部分は焼き入れ性が高いので、熱間圧延後の冷却においてマルテンサイトがバンド状に生成されてしまう。その結果フェライトとバンド状マルテンサイトの界面に応力が集中して破壊が発生しやすい。このように、従来の複合組織型の溶融亜鉛めっき鋼板においては組織が不均一であるために、特に穴拡げ性が劣るという欠点があった。
特開平6−128688号公報 特開2000−319756号公報 特開2005−120436号公報 特開平9−316592号公報
However, the conventional composite structure type hot dip galvanized steel sheet is usually manufactured from a slab having a thickness of about 200 mm, and the average cooling rate in the middle part of the slab (1/4 t position of the slab having a thickness t) is: Since it was as small as about 0.1 ° C./sec, the growth of dendrite was large, and therefore, the microsegregation of Mn was large. This microsegregation part is elongated during rolling to form a Mn band, and this part has high hardenability, so that martensite is generated in a band shape during cooling after hot rolling. As a result, stress concentrates on the interface between ferrite and band-shaped martensite and breakage is likely to occur. As described above, the conventional composite structure type hot dip galvanized steel sheet has a defect that the hole expandability is particularly poor because the structure is not uniform.
JP-A-6-128688 JP 2000-319756 A JP 2005-120436 A Japanese Patent Laid-Open No. 9-316592

本発明は、組織が均一微細であって、耐食性と伸びと穴拡げ性に優れた複合組織型の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を提供することを課題とする。 It is an object of the present invention to provide a composite structure type hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet having a uniform and fine structure and excellent corrosion resistance, elongation and hole expandability.

上記の課題を解決するためになされた本発明の耐食性と伸びと穴拡げ性に優れた溶融亜鉛めっき鋼板は、
質量%にて、
C:0.01%以上、0.20%以下、Si:2.0%以下、Al:0.010%以上、2.0%以下、Mn:0.5%以上、3.0%以下、P:0.08%以下、S:0.010%以下、N:0.010%以下、を含有し、残部鉄及び不可避的不純物からなる鋼組成を有する溶融亜鉛めっき鋼板であって、
組織が、相分率が50%以上のフェライトと、残部を占めるマルテンサイトとからなるフェライト・マルテンサイト組織であり、
板厚tの1/8t〜3/8tの範囲でのMnミクロ偏析が、式(1)を満たす範囲にある鋼板に、溶融亜鉛めっきが施されたことを特徴とするものである。
0.10≧σ/Mn ・・・(1)
ここでMnは添加量、σはMnミクロ偏析測定における標準偏差である。
The hot-dip galvanized steel sheet excellent in the corrosion resistance, elongation and hole expansibility of the present invention made to solve the above problems is
In mass%
C: 0.01% or more, 0.20% or less, Si: 2.0% or less, Al: 0.010% or more, 2.0% or less, Mn: 0.5% or more, 3.0% or less, P: 0.08% or less, S: 0.010% or less, N: 0.010% or less, a hot-dip galvanized steel sheet having a steel composition composed of the balance iron and inevitable impurities,
The structure is a ferrite martensite structure composed of ferrite having a phase fraction of 50% or more and martensite occupying the balance .
A hot dip galvanizing is performed on a steel sheet in which Mn microsegregation in the range of 1 / 8t to 3 / 8t of the sheet thickness t satisfies the formula (1).
0.10 ≧ σ / Mn (1)
Here, Mn is an addition amount, and σ is a standard deviation in Mn microsegregation measurement.

上記した発明において鋼組成中にさらに、
Nb:0.005%以上、0.10%以下、Ti:0.03%以上、0.20%以下、V:0.005%以上、0.10%以下、Mo:0.02%以上、0.5%以下、Cr:0.1%以上、5.0%以下、Co:0.01%以上、5.0%以下、W:0.01%以上、5.0%以下の1種または2種以上を含有することができ、
鋼組成中にさらに、
Ca、Mg、Zr、REMの1種または2種以上を0.0005%以上、0.08%以下含有することができ、
鋼組成中にさらに、
Cu:0.04%以上、2.0%以下、Ni:0.02%以上、1.0%以下、B:0.0003%以上、0.007%以下の1種または2種以上を含有することができる。
In the above-described invention, during the steel composition,
Nb: 0.005% or more, 0.10% or less, Ti: 0.03% or more, 0.20% or less, V: 0.005% or more, 0.10% or less, Mo: 0.02% or more, 0.5% or less, Cr: 0.1% or more, 5.0% or less, Co: 0.01% or more, 5.0% or less, W: 0.01% or more, 5.0% or less Or can contain two or more,
Further during the steel composition
One or more of Ca, Mg, Zr, and REM can be contained 0.0005% or more and 0.08% or less,
Further during the steel composition
Cu: 0.04% or more, 2.0% or less, Ni: 0.02% or more, 1.0% or less, B: 0.0003% or more, 0.007% or less can do.

また、本発明の耐食性と伸びと穴拡げ性に優れた合金化溶融亜鉛めっき鋼板は、請求項1〜4の何れかに記載の溶融亜鉛めっき鋼板に合金化処理を施こして、鋼板表面に合金化溶融亜鉛めっき層を形成したことを特徴とするものである。   Moreover, the alloyed hot-dip galvanized steel sheet excellent in corrosion resistance, elongation and hole expansibility of the present invention is obtained by subjecting the hot-dip galvanized steel sheet according to any one of claims 1 to 4 to alloying treatment on the steel sheet surface. An alloyed hot-dip galvanized layer is formed.

本発明の溶融亜鉛めっき鋼板は、Mnのミクロ偏析が小さいので、Mnバンドが小さい。従って、Mnバンド部分に発生するマルテンサイトを微細にして鋼組織を均一なものとすることができる。よって、マルテンサイトとフェライトの界面に局部的応力が集中しないので、従来の溶融亜鉛めっき鋼板よりも伸びと穴拡げ性に優れる。また、鋼板表面に溶融亜鉛めっきが施されているので耐食性にも優れる。
また、本発明の合金化溶融亜鉛めっき鋼板は、上記した溶融亜鉛めっき鋼板に合金化処理を施したものであるので、Mnバンドが小さく穴拡げ性に優れ、且つ耐食性に優れる。
The hot-dip galvanized steel sheet of the present invention has a small Mn band because of a small Mn microsegregation. Therefore, the martensite generated in the Mn band portion can be made fine to make the steel structure uniform. Therefore, since local stress is not concentrated on the interface between martensite and ferrite, the elongation and hole expansibility are superior to those of conventional hot-dip galvanized steel sheets. Moreover, since the hot dip galvanization is given to the steel plate surface, it is excellent also in corrosion resistance.
Moreover, since the alloyed hot-dip galvanized steel sheet of the present invention is obtained by subjecting the hot-dip galvanized steel sheet to an alloying treatment, the Mn band is small, the hole expandability is excellent, and the corrosion resistance is excellent.

本発明の溶融亜鉛めっき鋼板は、板厚tの1/8t〜3/8tの範囲におけるMnのミクロ偏析が、式(1)を満たすことを特徴とするものである。
0.10≧σ/Mn ・・・(1)
ここで、Mnは添加量、σはMnミクロ偏析測定における標準偏差である。標準偏差σは、EPMA(X線マイクロアナライザー)を用いて、板厚断面を研磨した試料を板厚方向に線分析することにより得られたMn濃度分布データから求めた。
The hot-dip galvanized steel sheet of the present invention is characterized in that the microsegregation of Mn in the range of 1 / 8t to 3 / 8t of the sheet thickness t satisfies the formula (1).
0.10 ≧ σ / Mn (1)
Here, Mn is an addition amount, and σ is a standard deviation in Mn microsegregation measurement. The standard deviation σ was obtained from Mn concentration distribution data obtained by performing line analysis in the plate thickness direction on a sample having a plate thickness polished using EPMA (X-ray microanalyzer).

σが、0.10<σ/Mnの場合には、Mn濃度のばらつきが大きく、Mnのミクロ偏析が十分小さくない。このためMnのミクロ偏析が圧延方向に伸ばされて比較的大きなMnバンドを形成するので、組織を均一微細なフェライト・マルテンサイトを有するものとすることができない。また、板厚方向に強度が大きくばらつくことになって、穴拡げ性に優れた溶融亜鉛めっき鋼板を得ることができない。したがって、Mnのミクロ偏析は、0.10≧σ/Mn、の関係を満たさねばならない。成形性の要求が高い場合には、ミクロ偏析は、(2)式を満たすものとするのが望ましい。これによって、組織をさらに均一化して穴拡げ性を高めることができるからである。
0.05≧σ/Mn ・・・(2)
この条件は冷却の遅い板厚tの1/8t〜3/8tの範囲において満たされる必要がある。
When σ is 0.10 <σ / Mn, variation in Mn concentration is large, and microsegregation of Mn is not sufficiently small. For this reason, since the microsegregation of Mn is extended in the rolling direction to form a relatively large Mn band, the structure cannot have uniform fine ferrite and martensite. Moreover, since the strength greatly varies in the plate thickness direction, a hot-dip galvanized steel plate excellent in hole expansibility cannot be obtained. Therefore, the microsegregation of Mn must satisfy the relationship of 0.10 ≧ σ / Mn. When the demand for formability is high, it is desirable that the microsegregation satisfies the formula (2). This is because the structure can be made more uniform and the hole expansibility can be improved.
0.05 ≧ σ / Mn (2)
This condition needs to be satisfied in the range of 1 / 8t to 3 / 8t of the plate thickness t with slow cooling.

以下に本発明における化学成分の限定理由を説明する。
Cは、マルテンサイト相を強化して鋼の強度を高めるのに重要な元素である。Cの含有量が0.01%未満では強度を十分高めることができない。一方、0.20%を超えると延性の低下が大きくなるので、Cの範囲は、0.01%以上、0.20%以下とする。なお、穴拡げ性の要求が高い場合にはCの上限は、0.05%とするのが望ましい。
The reasons for limiting the chemical components in the present invention will be described below.
C is an important element for strengthening the martensite phase and increasing the strength of the steel. If the C content is less than 0.01%, the strength cannot be sufficiently increased. On the other hand, if it exceeds 0.20%, the ductility decreases greatly, so the range of C is 0.01% or more and 0.20% or less. When the demand for hole expansibility is high, the upper limit of C is preferably 0.05%.

Siは有害な炭化物の生成を押さえフェライト組織主体で残部マルテンサイトの複合組織を得るのに重要な元素である。しかし、2.0%を超える添加により延性が低下するほか化成処理性も低下するので、Siの添加量は2.0%以下とする。なお、化成処理性の要求が高い場合には、Siは1.3%以下とするのが望ましい。また、Siは脱酸のために添加されるが、0.01 %未満では脱酸効果が十分でないので、Siの下限は、0.01%とするのが望ましい。   Si is an important element for suppressing the formation of harmful carbides and obtaining a composite structure of the remaining martensite mainly composed of ferrite structure. However, addition of more than 2.0% lowers the ductility and also reduces the chemical conversion property, so the amount of Si added is made 2.0% or less. In addition, when the chemical conversion property requirement is high, Si is desirably 1.3% or less. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, so the lower limit of Si is desirably 0.01%.

Alは、脱酸剤として添加される。この目的のためにはAlは0.010%以上添加する必要がある。一方、Alを過度に添加しても上記効果は飽和するのみならず、アルミナの増大により鋼を脆化させるため、その上限を2.0%とした。なお、化成処理性の要求が高い場合には、1.0%以下とするのが望ましい。   Al is added as a deoxidizer. For this purpose, Al needs to be added in an amount of 0.010% or more. On the other hand, even if Al is added excessively, the above effect is not only saturated, but also the steel is embrittled by an increase in alumina, so the upper limit was made 2.0%. In addition, when the request | requirement of chemical conversion property is high, it is desirable to set it as 1.0% or less.

Mnは焼入れ性を高めて鋼を強化するのに重要な元素である。Mnが0.5%未満では、強度を十分高めることができない。しかし、Mnが3.0%を超えると、焼入れ性が必要以上に高まるため強度上昇を招きこれにより延性が低下することとなる。なお、伸びの要求が高い場合には、Mnの添加量は2.0%以下とする。   Mn is an important element for enhancing the hardenability and strengthening the steel. If Mn is less than 0.5%, the strength cannot be sufficiently increased. However, if Mn exceeds 3.0%, the hardenability is increased more than necessary, so that the strength is increased and the ductility is decreased. If the elongation requirement is high, the amount of Mn added is 2.0% or less.

Pは含有量が多いと粒界へ偏析するために局部延性を劣化させるとともに、溶接性を劣化させる。従って、上限を0.08%とする。なお、Pをいたずらに低減させることは、精錬時のコストアップにつながるので、下限は0.001%とする。   When P is contained in a large amount, it segregates to the grain boundary, so that the local ductility is degraded and the weldability is degraded. Therefore, the upper limit is made 0.08%. In addition, since it will lead to the cost increase at the time of refining to reduce P unnecessarily, a minimum is made into 0.001%.

Sは、MnSを形成して局部延性、溶接性を著しく劣化させる元素である。従って、上限を0.010%とする。また、精錬コストの問題から下限を0.001%とするのが望ましい。   S is an element that forms MnS and significantly deteriorates local ductility and weldability. Therefore, the upper limit is made 0.010%. Moreover, it is desirable that the lower limit is 0.001% due to the problem of refining costs.

Nは、AlN等を析出して結晶粒を微細化するのに重要である。しかし、Nが0.010%を超えて含有すると固溶窒素が残存して延性が低下することとなるので、上限を0.010%とする。なお、精錬時のコストの問題から下限を0.0010%とするのが望ましい。   N is important for refining crystal grains by precipitating AlN or the like. However, if the N content exceeds 0.010%, solid solution nitrogen remains and the ductility decreases, so the upper limit is made 0.010%. In addition, it is desirable that the lower limit is 0.0010% because of cost problems during refining.

Nb、Ti、Vは、微細な窒化物または炭窒化物を析出して鋼を強化する。また、Mo、Cr、Co、Wは焼き入れ性を高めて鋼を強化する。鋼を強化する目的のためにはNb:0.005%以上、Ti:0.03%以上、V:0.005%以上、Mo:0.02%以上、Cr:0.1%以上、Co:0.01%以上、W:0.01%以上、の1種または2種以上を含有する必要がある。しかし、Nb:0.10%超、Ti:0.20%超、V:0.10%超、Mo:0.5%超、Cr:5.0%超、Co:5.0%超、W:5.0%超を添加しても、強度上昇の効果は飽和するのみならず、延性の低下をもたらすこととなる。   Nb, Ti and V precipitate fine nitrides or carbonitrides to strengthen the steel. Mo, Cr, Co, and W enhance the hardenability and strengthen the steel. For the purpose of strengthening steel, Nb: 0.005% or more, Ti: 0.03% or more, V: 0.005% or more, Mo: 0.02% or more, Cr: 0.1% or more, Co It is necessary to contain 1 type or 2 types or more of: 0.01% or more and W: 0.01% or more. However, Nb: more than 0.10%, Ti: more than 0.20%, V: more than 0.10%, Mo: more than 0.5%, Cr: more than 5.0%, Co: more than 5.0%, Even if W: more than 5.0% is added, the effect of increasing the strength is not only saturated but also the ductility is decreased.

鋼はさらに、Ca、Mg、Zr、REM(希土類元素)の1種または2種以上を、単独または合計で0.0005%以上、0.02%以下含有することができる。Ca、Mg、Zr、REMは、酸化物,硫化物の形状を制御して衝撃特性と遅れ破壊特性を向上させる。この目的のためには、これらの元素の1種または2種以上を単独または合計で0.0005%以上添加する必要がある。しかし、過度の添加は加工性を劣化させるため、その上限を0.05%とした。   The steel can further contain one or more of Ca, Mg, Zr, and REM (rare earth elements) alone or in total of 0.0005% to 0.02%. Ca, Mg, Zr, and REM improve the impact characteristics and delayed fracture characteristics by controlling the shapes of oxides and sulfides. For this purpose, it is necessary to add one or more of these elements alone or in total of 0.0005% or more. However, excessive addition deteriorates workability, so the upper limit was made 0.05%.

鋼はさらに、Cu:0.04%以上、2.0%以下、Ni:0.02%以上、1.0%以下、B:0.0003%以上、0.007%以下の1種または2種以上を含有することができる。これらの元素も焼入れ性を向上させて鋼の強度を高めることができるが、Cu:0.04%未満、Ni:0.02%未満、B:0.0003%未満では鋼を強化する効果が小さい。一方、Cu:2.0%超、Ni:1.0%超、B:0.007%超添加しても、強度上昇の効果は飽和するし、延性の低下をもたらすこととなる。   Further, the steel is Cu: 0.04% or more, 2.0% or less, Ni: 0.02% or more, 1.0% or less, B: 0.0003% or more, 0.007% or less. More than seeds can be contained. Although these elements can also improve the hardenability and increase the strength of the steel, Cu: less than 0.04%, Ni: less than 0.02%, B: less than 0.0003% has an effect of strengthening the steel. small. On the other hand, even if Cu: more than 2.0%, Ni: more than 1.0%, and B: more than 0.007%, the effect of increasing the strength is saturated and the ductility is lowered.

鋼は、以上の元素のほかSn、Asなどの不可避的に混入する元素を含み、残部鉄からなる。   In addition to the above elements, steel contains elements inevitably mixed such as Sn and As, and is made of the remaining iron.

本発明の溶融亜鉛めっき高強度鋼板は、組織がフェライトを主体とするフェライト・マルテンサイトからなる。フェライトの量が少ないと延性の低下が大きくなるため,フェライト相分率を50%以上とし、残部がマルテンサイトからなるものとする。 The hot-dip galvanized high-strength steel sheet of the present invention is composed of ferrite martensite whose structure is mainly composed of ferrite. When the amount of ferrite is small, the ductility decreases greatly, so the ferrite phase fraction is 50% or more and the balance is martensite.

以下に本発明に係る溶融亜鉛めっき鋼板の製造方法について説明する。
本発明の高強度薄鋼板を製造するに際しては、鋳造スラブを、液相線温度から固相線温度の間を100℃/min以上の平均冷却速度で冷却する。ここでの平均冷却速度は、スラブの中間部(厚みtのスラブの1/4tの位置)における平均冷却速度を指す。本発明においては、凝固時の冷却速度が100℃/minより高くできれば、どのような手法で鋳造しても良い。例えば,連続鋳造において、スラブ厚を薄くすることや、インゴット鋳造において、インゴットのサイズを小さくすること、また、通常のスラブのうち、冷却速度の速い表層部分を切り出し、これを用いても良い。例えば、連鋳スラブの厚さを変化させる場合には、スラブの厚みを、100〜30mmとするのが望ましい。厚みが100を超えるとスラブを十分大きい冷却速度で冷却することができないからであり、30mm未満とすると鋳造速度が大きくなって湯面変動、ブレークアウトなどを引き起こし、スラブを安定して鋳造することが困難となるからである。
Below, the manufacturing method of the hot dip galvanized steel sheet concerning this invention is demonstrated.
In producing the high strength thin steel sheet of the present invention, the cast slab is cooled at an average cooling rate of 100 ° C./min or more between the liquidus temperature and the solidus temperature. Here, the average cooling rate refers to the average cooling rate in the middle part of the slab (the position of 1/4 t of the slab of thickness t). In the present invention, casting may be performed by any method as long as the cooling rate during solidification can be higher than 100 ° C./min. For example, the thickness of the slab may be reduced in continuous casting, the size of the ingot may be reduced in ingot casting, or a surface layer portion having a high cooling rate may be cut out from a normal slab and used. For example, when the thickness of the continuous cast slab is changed, the thickness of the slab is preferably 100 to 30 mm. This is because when the thickness exceeds 100, the slab cannot be cooled at a sufficiently high cooling rate. When the thickness is less than 30 mm, the casting speed increases, causing fluctuations in the molten metal surface, breakout, etc., and stable slab casting. This is because it becomes difficult.

液相線温度から固相線温度の間の平均冷却速度が、100℃/min未満の場合には、溶鋼を急速に凝固させることができず、Mnのミクロ偏析を、0.10≧σ/Mn、の関係を満たすような小さいものとすることができない。したがって、当該平均冷却速度は100℃/min以上とする。特に高い穴拡げ性が求められる場合は、更にミクロ偏析を低減させるために200℃/min以上とすることが望ましい。   When the average cooling rate between the liquidus temperature and the solidus temperature is less than 100 ° C./min, the molten steel cannot be rapidly solidified, and Mn microsegregation is reduced to 0.10 ≧ σ / It cannot be made small enough to satisfy the relationship of Mn. Therefore, the said average cooling rate shall be 100 degrees C / min or more. In particular, when high hole expansibility is required, it is desirable to set it at 200 ° C./min or more in order to further reduce microsegregation.

冷却後のスラブは、そのまま熱間圧延に供することができる。あるいは、1100℃未満に冷却されていた場合には、トンネル炉などの加熱炉で1100℃以上、1300℃以下に再加熱することができる。1100℃未満の温度では熱間圧延における変形抵抗が大きいからであり、1300℃超ではスケールの生成が大きくなって鋼板の表面性状を良好なものとすることができないからである。   The slab after cooling can be directly subjected to hot rolling. Alternatively, when it is cooled to less than 1100 ° C., it can be reheated to 1100 ° C. or higher and 1300 ° C. or lower in a heating furnace such as a tunnel furnace. This is because the deformation resistance in hot rolling is large at a temperature below 1100 ° C., and the generation of scale is large at temperatures exceeding 1300 ° C., and the surface properties of the steel sheet cannot be made favorable.

次いで、仕上げ温度を850℃以上、970℃以下としてスラブを熱間圧延する。仕上げ温度が、850℃未満では(α+γ)2相域圧延となり、板の形状を損ねる場合があるからであり、970℃を超えるとオーステナイト粒径が粗大になって、延性が低下するからである。   Next, the slab is hot-rolled at a finishing temperature of 850 ° C. or higher and 970 ° C. or lower. This is because if the finishing temperature is less than 850 ° C., it becomes (α + γ) two-phase rolling, which may impair the shape of the plate, and if it exceeds 970 ° C., the austenite grain size becomes coarse and ductility decreases. .

熱間圧延後、鋼は10〜100℃/sec以上の平均冷却速度で650℃以下まで冷却し、650℃以下の温度で巻き取って熱延鋼板となす。冷却速度が10℃/sec未満の場合には、延性低下の原因となるパーライトが生成しやすくなるからであり、100℃/secまでの冷却速度でパーライトの生成を抑えることができ、それ以上は冷却速度のコントロールが困難となるからである。また、巻取り温度が650℃を超えるとフェライト変態が十分進行せずパーライトが生成しやすくなるので、巻取り温度は650℃以下とする。   After hot rolling, the steel is cooled to 650 ° C. or less at an average cooling rate of 10 to 100 ° C./sec or more, and wound at a temperature of 650 ° C. or less to form a hot rolled steel sheet. When the cooling rate is less than 10 ° C./sec, pearlite that causes a decrease in ductility is likely to be generated, and the generation of pearlite can be suppressed at a cooling rate of up to 100 ° C./sec. This is because it becomes difficult to control the cooling rate. Further, when the coiling temperature exceeds 650 ° C., ferrite transformation does not proceed sufficiently and pearlite is easily generated, so the coiling temperature is set to 650 ° C. or less.

以上のようにして製造した熱延鋼板を、酸洗後圧下率40%以上の冷間圧延を施し、最高温度を0.1×(Ac−Ac)+Ac以上、Ar+50℃以下の温度で焼鈍した後に、0.1〜100℃/secの平均冷却速度で300℃以下に冷却し、引き続いて同温度域で1秒〜1000秒保持することによって、耐食性と伸びと穴拡げ性に優れた溶融亜鉛めっき鋼板を製造することができる。 The hot-rolled steel sheet produced as described above is cold-rolled at a reduction rate of 40% or more after pickling, and the maximum temperature is 0.1 × (Ac 3 -Ac 1 ) + Ac 1 or more, Ar 3 + 50 ° C. or less. After annealing at a temperature of 0.1 to 100 ° C./sec, the steel is cooled to 300 ° C. or lower, and subsequently held in the same temperature range for 1 to 1000 seconds, thereby providing corrosion resistance, elongation and hole expansibility. It is possible to produce a hot dip galvanized steel sheet.

冷延鋼板の製造において、圧下率が40%未満では焼鈍後の結晶粒を微細なものとすることができないので、圧下率は40%以上とする。
また、焼鈍の最高温度は、0.1×(Ac−Ac)+Ac(℃)以上、Ar+50℃以下とする必要がある。最高温度が、0.1×(Ac3−Ac1 )+Ac1 (℃)未満の場合には、焼鈍温度で得られるオーステナイト量が少ないので、鋼板中に所望の量のマルテンサイトを生成することができない。また、焼鈍温度の高温化は粒界酸化層の生成が促進されるうえ、製造コストの上昇をまねくために、焼鈍温度の上限をAr+50℃とした。
In the production of a cold-rolled steel sheet, if the rolling reduction is less than 40%, crystal grains after annealing cannot be made fine, so the rolling reduction is set to 40% or more.
Further, the maximum temperature of the annealing, 0.1 × (Ac 3 -Ac 1 ) + Ac 1 (℃) or higher, it is necessary to Ar 3 + 50 ° C. or less. When the maximum temperature is less than 0.1 × (Ac 3 −Ac 1 ) + Ac 1 (° C.), the amount of austenite obtained at the annealing temperature is small, so that a desired amount of martensite is generated in the steel sheet. I can't. In addition, increasing the annealing temperature promotes the formation of a grain boundary oxide layer and increases the manufacturing cost, so that the upper limit of the annealing temperature is Ar 3 + 50 ° C.

焼鈍後の冷却は、フェライトを析出させ、所望の量の未変態オーステナイトを確保するのに重要である。この冷却速度を0.1℃/sec未満にすることは、粒界酸化層の生成が促進されるうえ、必要な生産ライン長を長くしたり、生産速度を極めて遅くするといった製造上のデメリットを生じる。また、フェライト変態、パーライト変態が進行して未変態オーステナイトを残すことができないので、冷却速度の下限を0.1℃/secとした。一方、冷却速度が100℃/sec超の場合にはフェライト変態を十分進行させることができないので、焼鈍後の冷却速度は、0.1〜100℃/secとする。   Cooling after annealing is important for precipitating ferrite and ensuring the desired amount of untransformed austenite. Setting this cooling rate to less than 0.1 ° C / sec promotes the formation of a grain boundary oxide layer, and also has manufacturing disadvantages such as lengthening the required production line length and extremely slowing the production rate. Arise. Further, since ferrite transformation and pearlite transformation proceed and untransformed austenite cannot be left, the lower limit of the cooling rate was set to 0.1 ° C./sec. On the other hand, when the cooling rate exceeds 100 ° C./sec, the ferrite transformation cannot sufficiently proceed, so the cooling rate after annealing is 0.1-100 ° C./sec.

その後、300℃以下、又は500℃超まで冷却し、その温度域で1〜1000秒保持することができる。300℃以下、又は500℃超の温度ではベイナイトの生成が遅いため、マルテンサイトを確保しやすいためである。また、鋼板を1秒未満では、熱収縮による残留歪が残り伸びが低下するためであり、1000秒超保持すると、ベイナイトなどが生成し目的とするマルテンサイト量を生成させることができなくなるからである。   Then, it can cool to 300 degrees C or less or more than 500 degreeC, and can hold | maintain for 1 to 1000 seconds in the temperature range. This is because the formation of bainite is slow at temperatures of 300 ° C. or lower or over 500 ° C., so that martensite is easily secured. Also, if the steel sheet is less than 1 second, the residual strain due to thermal shrinkage remains and the elongation decreases, and if it is maintained for more than 1000 seconds, bainite or the like is generated and the target martensite amount cannot be generated. is there.

一方、350℃以上、500℃以下で10秒未満の保持によっても同様の鋼板製造が可能である。この温度域ではベイナイトの生成が容易であるため、10秒以上保持すると組織中にベイナイトが生成し、マルテンサイト組織分率が低下し、延性が低下するためである。   On the other hand, the same steel sheet can be produced by holding at 350 ° C. or more and 500 ° C. or less for less than 10 seconds. This is because, in this temperature range, bainite is easily generated, and if held for 10 seconds or longer, bainite is generated in the structure, the martensite structure fraction is reduced, and ductility is reduced.

以上のようにして製造した冷延鋼板を溶融亜鉛のめっき浴に浸漬してめっきを施す。浴の温度は450〜475℃とする。450℃より低い場合には、溶融亜鉛の粘度が高くワイピングでの払拭に適さない、ボトムドロスを生じやすいなどの問題があるからであり、一方、475℃を超えて高い場合には酸化亜鉛の生成の増大、亜鉛蒸発量の増大などの問題を生ずるからである。溶融亜鉛めっき後に常温まで冷却される間に、マルテンサイトが生成される。 The cold-rolled steel sheet produced as described above is immersed in a hot dip zinc plating bath for plating. The temperature of the bath is 450 to 475 ° C. If the temperature is lower than 450 ° C, the viscosity of the molten zinc is high and unsuitable for wiping, and bottom dross is likely to occur. On the other hand, if the temperature is higher than 475 ° C, zinc oxide is generated. This is because problems such as an increase in zinc and an increase in the amount of zinc evaporation occur. Martensite is generated during cooling to normal temperature after hot dip galvanization.

以上に述べたように、スラブを高速で冷却した後に、温度を制御して熱延鋼板を製造し、この熱延鋼板を冷延、焼鈍した後、さらに溶融亜鉛めっきを施すことによって、Mnのミクロ偏析が小さくフェライト・マルテンサイト組織が均一な、耐食性と伸びと穴拡げ性に優れた溶融亜鉛めっき鋼板を得ることができる。   As described above, after cooling the slab at a high speed, a hot-rolled steel sheet is manufactured by controlling the temperature, and after cold-rolling and annealing the hot-rolled steel sheet, by further performing hot dip galvanizing, A hot-dip galvanized steel sheet having a small microsegregation and a uniform ferrite / martensite structure and excellent corrosion resistance, elongation and hole expansibility can be obtained.

溶融亜鉛めっき鋼板は、引き続いて500〜580℃の温度で合金化処理を行うことができる。合金化の処理温度が500℃未満の場合には、合金化が進行しないか、或いは合金化の進行が不十分で鋼板表面に合金化溶融亜鉛めっき層が形成されず、加工性の劣るη相やζ相で覆われるためである。また、処理温度が580℃を超えて高い場合には、合金化が進み過ぎて加工時におけるめっき密着力が低下するためである。この場合には、合金化処理後に常温まで冷却される間に、マルテンサイトが生成される。 The hot dip galvanized steel sheet can be subsequently alloyed at a temperature of 500 to 580 ° C. When the alloying treatment temperature is less than 500 ° C., the alloying does not proceed or the alloying is not progressed sufficiently, and the alloyed hot-dip galvanized layer is not formed on the steel sheet surface, and the workability is inferior η phase This is because it is covered with ζ phase. In addition, when the processing temperature is higher than 580 ° C., alloying progresses too much and the plating adhesion during processing decreases. In this case, martensite is generated during cooling to room temperature after the alloying treatment.

以上のように溶融亜鉛めっき鋼板に合金化処理を行うことによって、耐食性と伸びと穴拡げ性に優れた合金化溶融亜鉛めっき鋼板を得ることができる。   By alloying the hot dip galvanized steel sheet as described above, an galvannealed steel sheet having excellent corrosion resistance, elongation and hole expandability can be obtained.

以下、実施例に基づき本発明を詳細に説明する。
表1に示す化学成分の鋼を転炉で溶製した後にスラブに鋳造した。このとき、スラブの1/4t部における液相線温度から固相線温度の冷却速度を表2に示すように変化させた。これらのスラブに熱延鋼板、冷間圧延、ならびに溶融亜鉛めっきと合金化処理を施して合金化溶融亜鉛めっき鋼板を製造して、種々の特性を調査した。製造条件、材料特性を表2に示す。なお、溶融亜鉛めっき鋼板表面の欠陥発生率に基づき耐食試験前の外観を不めっきや傷や模様の有無の程度により5段階評価した。また、耐食試験は、めっき後試料表面にカッターナイフで長さ1cmのキズをつけて、乾・湿繰り返しのサイクル試験を100サイクルまでおこない、再度外観を発錆の程度により5段階評価をした。評点1〜5はそれぞれ、めっきの外観は不めっきの発生状態および傷や模様の欠陥発生状態や腐食生成物形態を目視または拡大鏡や顕微鏡を用いて評価した。評価指標は以下の通りである。
評点5:不めっき、傷や模様、腐食試験後の発錆はほとんど無し。
評点4:不めっき、傷や模様、腐食試験後の発錆は微小(面積率で数%以下)。
評点3:不めっき、傷や模様、腐食試験後の発錆は小(面積率で数%超)。
評点2:不めっき、傷や模様、腐食試験後の発錆は多数(面積率で50%超)。
評点1:めっき濡れずまたは、腐食試験後、全面で錆発生。
Hereinafter, the present invention will be described in detail based on examples.
Steels having chemical components shown in Table 1 were melted in a converter and cast into slabs. At this time, the cooling rate of the solidus temperature was changed as shown in Table 2 from the liquidus temperature at the 1/4 t portion of the slab. These slabs were hot-rolled steel sheets, cold-rolled, and hot-dip galvanized and alloyed to produce alloyed hot-dip galvanized steel sheets, and various properties were investigated. Production conditions and material properties are shown in Table 2. The appearance before the corrosion resistance test was evaluated based on the degree of occurrence of non-plating, scratches and patterns based on the defect occurrence rate on the surface of the hot dip galvanized steel sheet. In addition, the corrosion resistance test was made by scratching the surface of the sample after plating with a cutter knife with a length of 1 cm, repeating a dry / wet cycle test up to 100 cycles, and again reassessing the appearance in five stages according to the degree of rusting. In each of the grades 1 to 5, the appearance of plating was evaluated by visual observation or using a magnifying glass or a microscope for the state of occurrence of non-plating, the state of occurrence of defects of scratches and patterns, and the form of corrosion products. The evaluation index is as follows.
Score 5: No plating, scratches or patterns, almost no rust after corrosion test.
Score 4: Non-plating, scratches and patterns, and rusting after corrosion test is very small (less than several percent in area ratio).
Score 3: Unplated, scratches and patterns, and rusting after corrosion test is small (over several percent in area ratio).
Score 2: Unplated, scratches and patterns, many rusting after corrosion test (over 50% in area ratio).
Grade 1: The plating did not get wet or rust occurred on the entire surface after the corrosion test.

また、Ac1、Ac3 は以下の式より求めた。(参考文献「鉄鋼材料学」:W.C.Leslie著、幸田成康監訳、丸善P273)
Ac1 =723−10.7×Mn%―16.9×Ni%+29.1×Si%+16.9×Cr%+6.38×W%。
Ac3 =910−203×√(C%)−15.2×Ni%+44.7×Si%+104×V%+31.5×Mo%+13.1×W%−30×Mn%−11×Cr%+20×Cu%+700×P%+400×Al%。
Ac 1 and Ac 3 were determined from the following equations. (Reference: “Steel Materials Science”: W. C. Leslie, translated by Koyasu Naruyasu, Maruzen P273)
Ac 1 = 723-10.7 × Mn% -16.9 × Ni% + 29.1 × Si% + 16.9 × Cr% + 6.38 × W%.
Ac 3 = 910−203 × √ (C%) − 15.2 × Ni% + 44.7 × Si% + 104 × V% + 31.5 × Mo% + 13.1 × W% −30 × Mn% −11 × Cr % + 20 × Cu% + 700 × P% + 400 × Al%.

Figure 0004959161
Figure 0004959161

Figure 0004959161
Figure 0004959161

Figure 0004959161
Figure 0004959161

以下に、試験結果について説明する。
鋼A〜Jは、化学成分が本発明の範囲内にある鋼である。これに対し、鋼kはC,Mnが本発明の範囲より高く、このため試験番号28に示すとおり、強度は高いが伸び、穴拡げ率が著しく低いものとなってしまった。
鋼lはNが本発明の範囲より高いので、結晶粒が微細化してフェライトの量が多くなってしまい、試験番号29に示すとおり強度,伸びの低いものであった。
鋼mはSi、Crが本発明の範囲より高いので、試験番号30に示すとおり、伸びが低い。
鋼nはNb、Tiが高いので、試験番号31に示すとおり、伸び、穴拡げ率が低いものとなってしまった。
鋼m、nはSiが高いので、試験番号30、31に示すように外観評点や塩水噴霧試験語の発錆の評点が低い。
The test results will be described below.
Steels A to J are steels whose chemical components are within the scope of the present invention. On the other hand, C and Mn of steel k are higher than the range of the present invention. Therefore, as shown in Test No. 28, the strength is high but the hole expansion rate is extremely low.
In Steel l, since N is higher than the range of the present invention, the crystal grains are refined and the amount of ferrite increases, and as shown in Test No. 29, the strength and elongation are low.
Since steel m has higher Si and Cr than the range of the present invention, as shown in test number 30, the elongation is low.
Since steel n is high in Nb and Ti, as shown in test number 31, the elongation and the hole expansion rate were low.
Since steels m and n have high Si, as shown in test numbers 30 and 31, the appearance score and the rusting score of the salt spray test word are low.

試験番号7,8,16,20,23のものは、鋼は本発明の範囲内にある化学成分を有するが、鋳造時のスラブの冷却において、液相線温度から固相線温度の間の冷却速度が100℃/minより大幅に小さい。このため式(1)の右辺、即ちMnのミクロ偏析の指数σ/Mnが0.1より大きくなって大きなMnバンドが形成されてしまい組織が不均一となって穴拡率の低い鋼板となってしまった。   For test numbers 7, 8, 16, 20, and 23, the steel has chemical components that are within the scope of the present invention, but in the cooling of the slab during casting, between the liquidus temperature and the solidus temperature. The cooling rate is significantly lower than 100 ° C / min. For this reason, the right side of formula (1), that is, the Mn microsegregation index σ / Mn is larger than 0.1 and a large Mn band is formed, resulting in a non-uniform structure and a steel plate with a low hole expansion rate. I have.

試験番号2のものは、焼鈍の最高加熱温度が700℃と低く、冷延率も低い。このため十分再結晶が進行せず、伸びが低い。
試験番号10のものは、熱延前の加熱温度および冷延の圧下率が低い。このため、結晶粒が粗大なものとなって、伸びが低い。
Test No. 2 has a low maximum heating temperature for annealing at 700 ° C. and a low cold rolling rate. For this reason, recrystallization does not proceed sufficiently and elongation is low.
Test No. 10 has a low heating temperature before hot rolling and a cold rolling reduction. For this reason, a crystal grain becomes coarse and elongation is low.

以上のような比較例に対して、試験番号1,3〜6,9,11〜15,17〜19,21,22,24〜27のものは、供試鋼の化学成分が適正であって、スラブの冷却、熱延、焼鈍、めっき等の諸条件が本発明の範囲内であったので、Mnのミクロ偏析が小さく、均一微細なフェライト・マルテンサイト組織を得ることができた。その結果、耐食性と伸びと穴拡げ性に優れた合金化溶融亜鉛めっき鋼板を製造することができた。
なお、図1には本発明鋼の伸びを比較鋼と比較して、図2には本発明鋼の穴拡げ率を比較鋼と比較して示す。本発明に係る合金化溶融亜鉛めっき鋼板は比較鋼に対して優れた伸びと穴拡げ率を有することが分かる。
Compared to the comparative examples as described above, those having test numbers 1, 3 to 6, 9, 11 to 15, 17 to 19, 21, 22, 24 to 27 have appropriate chemical components of the test steel. Since various conditions such as slab cooling, hot rolling, annealing, and plating were within the scope of the present invention, Mn microsegregation was small, and a uniform and fine ferrite-martensite structure could be obtained. As a result, an alloyed hot-dip galvanized steel sheet excellent in corrosion resistance, elongation and hole expansibility could be produced.
FIG. 1 shows the elongation of the steel of the present invention in comparison with the comparative steel, and FIG. 2 shows the hole expansion ratio of the steel of the present invention in comparison with the comparative steel. It can be seen that the alloyed hot-dip galvanized steel sheet according to the present invention has excellent elongation and hole expansion ratio with respect to the comparative steel.

本発明に係る合金化溶融亜鉛めっき鋼板の伸びを比較鋼と比較して示すグラフである。It is a graph which shows the elongation of the galvannealed steel plate concerning this invention compared with comparative steel. 本発明に係る合金化溶融亜鉛めっき鋼板の穴拡げ率を比較鋼と比較して示すグラフである。It is a graph which shows the hole expansion rate of the galvannealed steel plate based on this invention compared with comparative steel.

Claims (5)

質量%にて、
C:0.01%以上、0.20%以下、Si:2.0%以下、Al:0.010%以上、2.0%以下、Mn:0.5%以上、3.0%以下、P:0.08%以下、S:0.010%以下、N:0.010%以下、を含有し、残部鉄及び不可避的不純物からなる鋼組成を有する溶融亜鉛めっき鋼板であって、
組織が、相分率が50%以上のフェライトと、残部を占めるマルテンサイトとからなるフェライト・マルテンサイト組織であり、
板厚tの1/8t〜3/8tの範囲でのMnミクロ偏析が、式(1)を満たす範囲にある鋼板に、溶融亜鉛めっきが施されたことを特徴とする耐食性と伸びと穴拡げ性に優れた溶融亜鉛めっき鋼板。
0.10≧σ/Mn ・・・(1)
ここでMnは添加量、σはMnミクロ偏析測定における標準偏差である。
In mass%
C: 0.01% or more, 0.20% or less, Si: 2.0% or less, Al: 0.010% or more, 2.0% or less, Mn: 0.5% or more, 3.0% or less, P: 0.08% or less, S: 0.010% or less, N: 0.010% or less, a hot-dip galvanized steel sheet having a steel composition composed of the balance iron and inevitable impurities,
The structure is a ferrite martensite structure composed of ferrite having a phase fraction of 50% or more and martensite occupying the balance .
Corrosion resistance, elongation and hole expansion, characterized by hot dip galvanizing applied to steel sheets whose Mn microsegregation in the range of 1 / 8t to 3 / 8t of thickness t satisfies the formula (1) Hot-dip galvanized steel sheet with excellent properties.
0.10 ≧ σ / Mn (1)
Here, Mn is an addition amount, and σ is a standard deviation in Mn microsegregation measurement.
鋼組成中にさらに、
Nb:0.005%以上、0.10%以下、Ti:0.03%以上、0.20%以下、V:0.005%以上、0.10%以下、Mo:0.02%以上、0.5%以下、Cr:0.1%以上、5.0%以下、Co:0.01%以上、5.0%以下、W:0.01%以上、5.0%以下の1種または2種以上を含有することを特徴とする請求項1に記載の耐食性と伸びと穴拡げ性に優れた溶融亜鉛めっき鋼板。
Further during the steel composition
Nb: 0.005% or more, 0.10% or less, Ti: 0.03% or more, 0.20% or less, V: 0.005% or more, 0.10% or less, Mo: 0.02% or more, 0.5% or less, Cr: 0.1% or more, 5.0% or less, Co: 0.01% or more, 5.0% or less, W: 0.01% or more, 5.0% or less Or the hot-dip galvanized steel plate excellent in corrosion resistance, elongation, and hole expansibility of Claim 1 characterized by containing 2 or more types.
鋼組成中にさらに、
Ca、Mg、Zr、REMの1種または2種以上を0.0005%以上、0.05%以下含有することを特徴とする請求項1または2に記載の耐食性と伸びと穴拡げ性に優れた溶融亜鉛めっき鋼板。
Further during the steel composition
It contains 0.0005% or more and 0.05% or less of one or more of Ca, Mg, Zr, and REM, and is excellent in corrosion resistance, elongation, and hole expansibility according to claim 1 or 2. Hot dip galvanized steel sheet.
鋼組成中にさらに、
Cu:0.04%以上、2.0%以下、Ni:0.02%以上、1.0%以下、B:0.0003%以上、0.007%以下の1種または2種以上を含有することを特徴とする請求項1〜3の何れかに記載の耐食性と伸びと穴拡げ性に優れた溶融亜鉛めっき鋼板。
Further during the steel composition
Cu: 0.04% or more, 2.0% or less, Ni: 0.02% or more, 1.0% or less, B: 0.0003% or more, 0.007% or less A hot-dip galvanized steel sheet excellent in corrosion resistance, elongation and hole expansibility according to any one of claims 1 to 3.
請求項1〜4の何れかに記載の溶融亜鉛めっき鋼板に合金化処理を施こして、鋼板表面に合金化溶融亜鉛めっき層を形成したことを特徴とする耐食性と伸びと穴拡げ性に優れた合金化溶融亜鉛めっき鋼板。   The galvanized steel sheet according to any one of claims 1 to 4 is subjected to an alloying treatment to form an alloyed galvanized layer on the surface of the steel sheet, and is excellent in corrosion resistance, elongation and hole expansibility Alloyed galvanized steel sheet.
JP2005256601A 2005-09-05 2005-09-05 Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility Active JP4959161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256601A JP4959161B2 (en) 2005-09-05 2005-09-05 Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256601A JP4959161B2 (en) 2005-09-05 2005-09-05 Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility

Publications (2)

Publication Number Publication Date
JP2007070659A JP2007070659A (en) 2007-03-22
JP4959161B2 true JP4959161B2 (en) 2012-06-20

Family

ID=37932378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256601A Active JP4959161B2 (en) 2005-09-05 2005-09-05 Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility

Country Status (1)

Country Link
JP (1) JP4959161B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103988B2 (en) * 2007-03-30 2012-12-19 Jfeスチール株式会社 High strength hot dip galvanized steel sheet
EP2123786A1 (en) * 2008-05-21 2009-11-25 ArcelorMittal France Method of manufacturing very high-resistance, cold-laminated dual-phase steel sheets, and sheets produced thereby
KR101009796B1 (en) 2008-06-26 2011-01-21 현대제철 주식회사 Method for manufacturing high-strength hot-dip galvanized steel sheet
JP5239562B2 (en) * 2008-07-03 2013-07-17 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
ES2672070T3 (en) * 2008-11-19 2018-06-12 Nippon Steel & Sumitomo Metal Corporation Steel sheet and surface treated steel sheet
CN101509102B (en) * 2009-03-27 2011-01-05 攀钢集团研究院有限公司 Steel for hot-rolled low carbon punching and producing method thereof
KR101149193B1 (en) 2009-04-27 2012-05-24 현대제철 주식회사 Steel sheet having excellent formability and galvanizing property, and method for producing the same
JP4962594B2 (en) 2010-04-22 2012-06-27 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
CA2821703C (en) * 2010-12-17 2016-08-09 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel sheet and manufacturing method thereof
JP6032173B2 (en) * 2013-10-15 2016-11-24 新日鐵住金株式会社 High-strength steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet having a maximum tensile strength of 980 MPa and excellent delayed fracture resistance
MX2017002580A (en) * 2014-08-28 2017-05-25 Jfe Steel Corp High-strength hot-dip galvanized steel sheet having superb stretch-flangeability, in-plane stability of stretch-flangeability, and bendability, and method for producing same.
US10400300B2 (en) 2014-08-28 2019-09-03 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and method for manufacturing the same
US10907235B2 (en) 2016-09-13 2021-02-02 Nippon Steel Corporation Steel sheet
WO2018138791A1 (en) * 2017-01-25 2018-08-02 新日鐵住金株式会社 Steel sheet
KR102222904B1 (en) 2017-01-30 2021-03-04 닛폰세이테츠 가부시키가이샤 Grater
US11753693B2 (en) 2018-09-28 2023-09-12 Posco Co., Ltd High-strength cold rolled steel sheet having high hole expansion ratio, highstrength hot-dip galvanized steel sheet, and manufacturing methods therefor
MX2021003246A (en) * 2018-10-04 2021-05-12 Nippon Steel Corp Alloyed hot-dipped galvanized steel sheet.
JP6784344B1 (en) * 2019-03-06 2020-11-11 日本製鉄株式会社 Hot-rolled steel sheet
JP7173303B2 (en) * 2019-04-11 2022-12-08 日本製鉄株式会社 Steel plate and its manufacturing method
WO2021020787A1 (en) * 2019-07-29 2021-02-04 주식회사 포스코 High-strength steel sheet and manufacturing method therefor
KR102237628B1 (en) * 2019-08-26 2021-04-07 현대제철 주식회사 High-strength steel sheet and method of manufacturing the same
CN111996456A (en) * 2020-08-20 2020-11-27 马鞍山钢铁股份有限公司 Thick hot-dip galvanized steel with excellent bending property and production method thereof
KR20230091461A (en) * 2021-12-16 2023-06-23 주식회사 포스코 Cold rolled steel sheet and method of manufacturing thereof
CN114525452B (en) * 2022-02-08 2023-04-28 邯郸钢铁集团有限责任公司 Hot-dip galvanized low-alloy high-strength steel with yield strength of 700Mpa level and preparation method thereof
CN114959491B (en) * 2022-06-20 2023-05-02 武汉钢铁有限公司 350MPa grade high corrosion-resistant coated steel sheet produced by short process and method

Also Published As

Publication number Publication date
JP2007070659A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4959161B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility
JP6052471B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR101930186B1 (en) High-strength galvanized steel sheet and method for producing the same
US9970092B2 (en) Galvanized steel sheet and method of manufacturing the same
JP5403185B2 (en) High-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in plating adhesion, formability and hole expansibility having a tensile strength of 980 MPa or more, and a method for producing the same
JP5857909B2 (en) Steel sheet and manufacturing method thereof
KR101528080B1 (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP4751152B2 (en) Hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and hole expansibility, alloyed hot-dip galvanized high-strength steel sheet, and methods for producing them
JP5487916B2 (en) High-strength galvanized steel sheet having a tensile maximum strength of 900 MPa or more excellent in impact absorption energy and a method for producing the same
JP5250939B2 (en) Method for producing galvannealed steel sheet
JP5699764B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4867256B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP5741456B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2008156680A (en) High-strength cold rolled steel sheet having high yield ratio, and its production method
KR101989726B1 (en) High-strength steel sheet and production method therefor
JP4644077B2 (en) Hot-dip galvanized high-strength steel sheet and alloyed hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and formability, and methods for producing them
JP4528135B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
JP5790443B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP4000943B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4227431B2 (en) High strength and high ductility steel sheet and method for producing the same
JP6168144B2 (en) Galvanized steel sheet and manufacturing method thereof
JP4360319B2 (en) High tensile hot dip galvanized steel sheet and its manufacturing method
JP2005206919A (en) High-tensile-strength hot-dip galvanized hot-rolled steel sheet with composite structure superior in ductility and extension flange, and manufacturing method therefor
JP3921101B2 (en) Manufacturing method of high strength and high ductility hot dip galvanized steel sheet with excellent shape freezing property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110310

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4959161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350