JP4360319B2 - High tensile hot dip galvanized steel sheet and its manufacturing method - Google Patents

High tensile hot dip galvanized steel sheet and its manufacturing method Download PDF

Info

Publication number
JP4360319B2
JP4360319B2 JP2004349887A JP2004349887A JP4360319B2 JP 4360319 B2 JP4360319 B2 JP 4360319B2 JP 2004349887 A JP2004349887 A JP 2004349887A JP 2004349887 A JP2004349887 A JP 2004349887A JP 4360319 B2 JP4360319 B2 JP 4360319B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
hot
dip galvanized
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004349887A
Other languages
Japanese (ja)
Other versions
JP2006161064A (en
Inventor
知明 倉永
浩行 中川
一彦 岸
宏太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004349887A priority Critical patent/JP4360319B2/en
Publication of JP2006161064A publication Critical patent/JP2006161064A/en
Application granted granted Critical
Publication of JP4360319B2 publication Critical patent/JP4360319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、自動車車体用構造材のようにプレス成形、曲げ加工、スポット溶接等を施す用途に好適な高張力溶融亜鉛めっき鋼板とその製造方法に関する。   The present invention relates to a high-tensile hot-dip galvanized steel sheet suitable for applications such as press forming, bending, spot welding, and the like, and a manufacturing method thereof.

環境負荷削減のための自動車における燃費向上手段として、車両の軽量化が進められている。そのため、自動車用鋼板においては、軽量化と安全性を両立するため、引張強度(TS)が750MPa以上である高張力鋼板へのニーズが高まっている。   Vehicle weight reduction is being promoted as a means of improving fuel consumption in automobiles for reducing environmental impact. Therefore, in steel sheets for automobiles, in order to achieve both weight reduction and safety, there is an increasing need for high-tensile steel sheets having a tensile strength (TS) of 750 MPa or more.

また高張力鋼板の用途も多岐に渡り、自動車構造用部品として使用される部位によって、延性、曲げ性、強度、降伏比、さらに溶接性などの特性を調整した材料が必要である。また防錆性を要求される部位での使用ニーズも増えており、それを実現するために溶融亜鉛めっき、あるいは合金化溶融亜鉛めっきを施した高張力鋼板が求められている。   In addition, high-strength steel sheets are used for various purposes, and materials with adjusted properties such as ductility, bendability, strength, yield ratio, and weldability are required depending on the parts used as automotive structural parts. In addition, there is an increasing need for use in parts where rust prevention is required, and in order to realize this, a high-tensile steel sheet subjected to hot dip galvanizing or alloying hot dip galvanizing is required.

高張力とするための鋼の強化手法としては固溶強化、析出強化、および変態強化があり、通常は複数の手法を組み合わせることによって所定の引張強度を達成する。これらの組合せのバランスによっては、同一引張強度であっても、降伏比、延性、曲げ性、溶融めっき密着性が異なる。従って、自動車用途として、上述の要求性能を満たすためには強化手法を適正にバランスさせることが重要である。   Steel strengthening techniques for achieving high tension include solid solution strengthening, precipitation strengthening, and transformation strengthening, and a predetermined tensile strength is usually achieved by combining a plurality of techniques. Depending on the balance of these combinations, the yield ratio, ductility, bendability, and hot dip plating adhesion differ even with the same tensile strength. Therefore, in order to satisfy the above-mentioned required performance for automobile applications, it is important to properly balance the strengthening methods.

しかしながら、前述した強化機構をバランスさせて作成した超高強度鋼板に溶融亜鉛めっきを施し、曲げ加工を実施した場合、曲げの稜線に沿ってスジ状の凹凸が発生し、めっきの密着性および美観を著しく損ねる上、凹凸を起点としてワレが発生するという問題を生じる場合があった。   However, when hot-dip galvanizing is applied to the ultra-high-strength steel sheet created by balancing the strengthening mechanisms described above and bending is performed, streaks are formed along the ridgeline of the bending, resulting in adhesion and aesthetics of the plating. In addition, the problem of cracking starting from unevenness may occur.

曲げ性を向上させる従来の発明として、例えば特許文献1では、焼き戻しマルテンサイトを得ることにより、曲げ加工性と高強度化を達成している。
特許文献2では、めっき層直下のC濃度に注目してめっき密着性の良好な高強度鋼板を得る方法が示されている。
特開平6−108152号公報 特開2002−88459号公報
As a conventional invention for improving bendability, for example, Patent Document 1 achieves bending workability and high strength by obtaining tempered martensite.
Patent Document 2 discloses a method for obtaining a high-strength steel sheet having good plating adhesion by paying attention to the C concentration immediately below the plating layer.
JP-A-6-108152 JP 2002-88459 A

しかしながら、特許文献1では、曲げ加工性は穴拡げ試験で評価される穴拡げ率による特性であって、めっき鋼板の曲げ表面に関する記述はない。また、特許文献2では、めっき層直下のC濃度を0.02%以下にする必要が有り、C濃度の高い鋼種で実現させるためには表面に脱炭層を生成させるプロセスが必要である。その製造方法の一例として鋼板を高い露点雰囲気で焼鈍することで脱炭する方法が示されているが、現在一般的に用いられている連続焼鈍ラインでは、雰囲気制御が困難で、目的の脱炭層を定量的かつ、安定的に得ることは困難である。また、その効果についてもめっき密着性のみに着目しており、曲げ加工時に発生する表面凹凸に関する記述はない。   However, in patent document 1, bending workability is a characteristic by the hole expansion rate evaluated by a hole expansion test, and there is no description regarding the bending surface of a plated steel plate. Moreover, in patent document 2, it is necessary to make C density | concentration immediately under a plating layer 0.02% or less, and in order to implement | achieve with a steel grade with high C density | concentration, the process of producing | generating a decarburization layer on the surface is required. As an example of the manufacturing method, a method of decarburizing by annealing a steel sheet in a high dew point atmosphere is shown. However, in a currently used continuous annealing line, it is difficult to control the atmosphere, and the target decarburized layer Is difficult to obtain quantitatively and stably. In addition, the effect is focused only on the plating adhesion, and there is no description about the surface irregularities generated during bending.

本発明の課題は、上記のように従来では困難であった引張強度が750MPa以上の高張力溶融亜鉛めっき鋼板における、曲げ加工時の曲げ特性の向上と、めっき密着性と表面性状に優れる高張力溶融亜鉛めっき鋼板とその製造方法を提案することにある。   The problem of the present invention is that, as described above, in the high-tensile hot dip galvanized steel sheet having a tensile strength of 750 MPa or more, which has been difficult in the prior art, improvement in bending characteristics during bending, and high tension excellent in plating adhesion and surface properties. The object is to propose a hot-dip galvanized steel sheet and a method for producing the same.

本発明は、鋼の強化方法のバランスを見直すことにより、引張強度750MPa以上で、良好な曲げ性ならびに曲げ加工時の表面性状およびめっき密着性能を具備した溶融亜鉛めっき鋼板とその製造方法にある。   The present invention lies in a hot dip galvanized steel sheet having a tensile strength of 750 MPa or more, a good bendability, a surface property during bending, and a plating adhesion performance, and a method for producing the same, by reexamining the balance of the steel strengthening method.

本発明者らは、高張力鋼板の曲げ加工時の表面に関する研究を鋭意進めた結果、表面近傍部の組織をフェライト相からなるものとするとともに、鋼板の表面近傍と内部とのC濃度比率が一定以下であれば、良好な曲げ加工特性と表面性状が得られることを見出した。すなわち、鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部における平均C濃度が、鋼板の表面から板厚中心方向に向かって深さ0.1mmまでの部分を除いた内部の平均C濃度の85%以下であり、かつ上記表面近傍部のフェライト面積率が80%以上である鋼板を用いれば、めっき層直下のC濃度が0.02%超であっても良好な曲げ性とめっき付着性を得ることが出来ることを見出し、本発明を完成した。   As a result of diligent research on the surface of the high-tensile steel sheet during bending, the inventors of the present invention assumed that the structure in the vicinity of the surface is composed of a ferrite phase, and that the C concentration ratio between the surface vicinity and the inside of the steel sheet is It has been found that if it is below a certain level, good bending properties and surface properties can be obtained. That is, the average C concentration in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the center of the plate thickness is excluded from the surface from the surface of the steel plate to the depth of 0.1 mm. If a steel sheet having an inner average C concentration of 85% or less and a ferrite area ratio in the vicinity of the surface of 80% or more is used, it is good even if the C concentration directly below the plating layer is more than 0.02%. The inventors have found that bendability and plating adhesion can be obtained, and have completed the present invention.

また、そのような鋼板を安定して得ることができる製造方法として、鋳片の表面C濃度の変化に注目し、経済的かつ容易に実現する手段として、連続鋳造時に鋳型内へ投入するパウダーの成分を調整する方法を見出し、本発明を完成した。   In addition, as a production method capable of stably obtaining such a steel sheet, attention is paid to the change in the surface C concentration of the slab, and as a means to realize economically and easily, the powder to be put into the mold at the time of continuous casting A method for adjusting the ingredients was found and the present invention was completed.

なお、特許文献2に記載された発明のように、焼鈍工程における脱炭処理のみよりめっき被膜直下の炭素含有量を0.02%以下となるようにしたのでは、板厚方向に安定した脱炭層厚みを形成できずに、曲げ加工時の表面凹凸を防止することができない場合がある。また、過剰に脱炭を進めた結果、曲げ加工性は確保できるものの、引張強度が750MPa未満となり、目的とする高強度を得ることができない場合がある。   Note that, as in the invention described in Patent Document 2, if the carbon content immediately below the plating film is 0.02% or less by only the decarburization process in the annealing step, the thickness of the decarburized layer is stable in the plate thickness direction. In some cases, surface irregularities during bending cannot be prevented. Further, as a result of excessive decarburization, although bending workability can be ensured, the tensile strength is less than 750 MPa, and the intended high strength may not be obtained.

本発明は上記新知見に基づくものであり、本発明の要旨は、下記発明(1)〜(4)に示す引張強度750MPa以上である高張力溶融亜鉛めっき鋼板および(5)〜(7)に示すその製造方法にある。   The present invention is based on the above-mentioned new knowledge, and the gist of the present invention is the high-tensile hot-dip galvanized steel sheet having a tensile strength of 750 MPa or more and (5) to (7) shown in the following inventions (1) to (4). It is in its manufacturing method shown.

(1) 鋼板の表面に溶融亜鉛めっき層を備える溶融亜鉛めっき鋼板であって、前記鋼板は、質量%で、C:0.05〜0.20%、Si:0.5%以下、Mn:1.0〜3.0%、P:0.05%以下、S:0.05%以下、sol.Al:0.1%以下およびN:0.01%以下を含有し、さらにTi:0.5%以下およびNb:0.5%以下の1種または2種を合計で0.05%以上含有し、残部がFeおよび不純物からなる鋼組成を備え、前記鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部における平均C濃度([C])と前記鋼板の表面から板厚中心方向に向かって深さ0.1mmまでの部分を除いた内部の平均C濃度([C])との比([C]/[C])が0.6以上0.85以下であり、かつ前記鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部におけるフェライトの面積率が80%以上であることを特徴とする引張強度が750MPa以上の高張力溶融亜鉛めっき鋼板。 (1) A hot dip galvanized steel sheet provided with a hot dip galvanized layer on the surface of the steel sheet, wherein the steel sheet is in mass%, C: 0.05 to 0.20%, Si: 0.5% or less, Mn: 1.0-3.0%, P: 0.05% or less, S: 0.05% or less, sol. Al: 0.1% or less and N: 0.01% or less, and Ti: 0.5% or less and Nb: 0.5% or less, or a total of 0.05% or more And the balance of the steel composition comprising Fe and impurities, and the average C concentration ([C] S ) in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the center of the plate thickness, and the surface of the steel plate The ratio ([C] S / [C] B ) to the internal average C concentration ([C] B ) excluding the portion up to the depth of 0.1 mm from the center to the thickness center direction is 0.6 or more and 0 The tensile strength is 750 MPa or more, wherein the area ratio of ferrite in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the center of the plate thickness is 80% or more. High tensile hot dip galvanized steel sheet.

(2) 前記鋼組成が、Feの一部に代えて、質量%で、V:0.5%以下およびW:0.5%以下の群から選ばれる1種または2種をさらに含有することを特徴とする(1) に記載の高張力溶融亜鉛めっき鋼板。   (2) The steel composition further contains one or two kinds selected from the group of V: 0.5% or less and W: 0.5% or less in mass% instead of part of Fe. (1) The high-tensile hot-dip galvanized steel sheet according to (1).

(3) 前記鋼組成が、Feの一部に代えて、質量%で、Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下およびB:0.01%以下の群から選ばれる1種または2種以上をさらに含有することを特徴とする(1) または(2) に記載の高張力溶融亜鉛めっき鋼板。   (3) The steel composition is mass% instead of part of Fe, Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Ni: 1.0% The high-tensile hot-dip galvanized steel sheet according to (1) or (2), further comprising at least one selected from the group consisting of:

(4) 前記鋼組成が、Feの一部に代えて、質量%で、REM:0.1%以下、Mg:0.01%以下およびCa:0.01%以下の群から選ばれる1種または2種以上をさらに含有することを特徴とする(1) 〜(3) のいずれかに記載の高張力溶融亜鉛めっき鋼板。   (4) The steel composition is one type selected from the group consisting of REM: 0.1% or less, Mg: 0.01% or less, and Ca: 0.01% or less in mass% instead of part of Fe. Alternatively, the high-tensile hot-dip galvanized steel sheet according to any one of (1) to (3), further comprising two or more kinds.

(5) 下記(1−1)〜(1−4)の工程を備えることを特徴とする高張力溶融亜鉛めっき鋼板の製造方法:
(1−1)(1) 〜(4) のいずれかに記載の鋼組成を備える溶鋼を、鋳型内に投入する連続鋳造用パウダー中に含まれるC濃度を1質量%未満として、連続鋳造により鋳片とする連続鋳造工程;
(1−2)前記鋳片を1100℃〜1350℃とした後に熱間圧延を施し、仕上げ温度:Ar点以上、巻取り温度:700℃以下として熱延鋼板とする熱間圧延工程;
(1−3)前記熱延鋼板に酸洗処理を施して鋼板表面のスケールを除去して酸洗鋼板とする酸洗工程;および
(1−4)前記酸洗鋼板をAc〜1000℃の温度範囲に5秒以上保持した後、平均冷却速度1〜40(℃/s)で600℃まで冷却し、さらに平均冷却速度1〜70(℃/s)で冷却して440〜520℃の溶融亜鉛メッキ浴に浸漬して溶融亜鉛めっきを施す連続溶融亜鉛めっき工程。
(5) A method for producing a high-tensile hot-dip galvanized steel sheet comprising the following steps (1-1) to (1-4):
(1-1) By continuous casting, the molten steel having the steel composition according to any one of (1) to (4) is set to a C concentration contained in the powder for continuous casting charged into the mold and less than 1% by mass. Continuous casting process to slab;
(1-2) A hot rolling step in which the cast slab is hot rolled after the temperature is set to 1100 ° C. to 1350 ° C. to obtain a hot rolled steel sheet with a finishing temperature: Ar 3 points or higher and a winding temperature: 700 ° C. or lower;
(1-3) A pickling process in which the hot-rolled steel sheet is pickled to remove the scale on the surface of the steel sheet to obtain a pickled steel sheet; and (1-4) the pickled steel sheet is Ac 3 to 1000 ° C. After maintaining in the temperature range for 5 seconds or more, it is cooled to 600 ° C. at an average cooling rate of 1 to 40 (° C./s), and further cooled at an average cooling rate of 1 to 70 (° C./s) to melt at 440 to 520 ° C. A continuous hot dip galvanizing process in which hot dip galvanizing is performed by dipping in a galvanizing bath.

(6) 下記(2−1)〜(2−5)の工程を備えることを特徴とする高張力溶融亜鉛めっき鋼板の製造方法:
(2−1)(1) 〜(4) のいずれかに記載の鋼組成を備える溶鋼を、鋳型内に投入する連続鋳造用パウダー中に含まれるC濃度を1質量%未満として、連続鋳造により鋳片とする連続鋳造工程;
(2−2)前記鋳片を1100℃〜1350℃とした後に熱間圧延を施し、仕上げ温度:Ar点以上、巻取り温度:700℃以下として熱延鋼板とする熱間圧延工程;
(2−3)前記熱延鋼板に酸洗処理を施して鋼板表面のスケールを除去して酸洗鋼板とする酸洗工程;
(2−4)前記酸洗鋼板に冷間圧延を施して冷延鋼板とする冷間圧延工程;および
(2−5)前記冷延鋼板をAc〜1000℃の温度域に5秒以上保持した後、平均冷却速度1〜40(℃/s)で600℃まで冷却し、さらに平均冷却速度1〜70(℃/s)で冷却して440〜520℃の溶融亜鉛メッキ浴に浸漬して溶融亜鉛めっきを施す連続溶融亜鉛めっき工程。
(6) A method for producing a high-tensile hot-dip galvanized steel sheet comprising the following steps (2-1) to (2-5):
(2-1) By continuous casting, the molten steel having the steel composition according to any one of (1) to (4) is set to a C concentration contained in the powder for continuous casting charged into the mold and less than 1% by mass. Continuous casting process to slab;
(2-2) A hot rolling step in which the cast slab is hot rolled after the temperature is set to 1100 ° C. to 1350 ° C. to obtain a hot rolled steel sheet with a finishing temperature: Ar 3 points or higher and a winding temperature: 700 ° C. or lower;
(2-3) A pickling process in which the hot-rolled steel sheet is subjected to a pickling treatment to remove scale on the surface of the steel sheet to obtain a pickled steel sheet;
(2-4) A cold rolling step in which the pickled steel sheet is cold-rolled to form a cold-rolled steel sheet; and (2-5) the cold-rolled steel sheet is held in a temperature range of Ac 3 to 1000 ° C for 5 seconds or more. Then, it is cooled to 600 ° C. at an average cooling rate of 1 to 40 (° C./s), further cooled at an average cooling rate of 1 to 70 (° C./s), and immersed in a hot-dip galvanizing bath at 440 to 520 ° C. Continuous hot dip galvanizing process for hot dip galvanizing.

(7) 前記連続溶融亜鉛めっき工程において、溶融亜鉛めっきを施した鋼板に合金化処理を施すことを特徴とする(5) または(6) に記載の高張力溶融亜鉛めっき鋼板の製造方法。
ここで、「溶融亜鉛めっき鋼板」には、溶融亜鉛めっきを施した後に合金化処理を施すことにより得られる合金化溶融亜鉛めっき鋼板も含まれる。また、「溶融亜鉛めっき層」には、溶融亜鉛めっきを施した後に合金化処理を施すことにより得られる合金化溶融亜鉛めっき層も含まれる。
(7) The method for producing a high-tensile hot-dip galvanized steel sheet according to (5) or (6), wherein in the continuous hot-dip galvanizing process, the hot-dip galvanized steel sheet is subjected to alloying treatment.
Here, the “hot dip galvanized steel sheet” includes an alloyed hot dip galvanized steel sheet obtained by applying an alloying treatment after hot dip galvanizing. Further, the “hot dip galvanized layer” also includes an galvannealed layer obtained by performing an alloying treatment after hot galvanizing.

C濃度の測定範囲の基準となる「鋼板表面」とは、JIS H0401に付着量試験方法として規定された塩化アンチモン法により溶融亜鉛めっき鋼板のめっき層を除去することによって得られる鋼板表面である。   The “steel plate surface” serving as a reference for the measurement range of the C concentration is a steel plate surface obtained by removing a plated layer of a hot dip galvanized steel plate by an antimony chloride method defined as an adhesion amount test method in JIS H0401.

本発明の鋼板は、高強度で加工性を確保しつつ、曲げ加工性、めっき密着性、耐食性に優れている。そのため、自動車や各種の産業機械に用いられる構造部材の素材、特に自動車のバンパーや足廻り部品に代表される構造部材の素材として最適である。   The steel sheet of the present invention is excellent in bending workability, plating adhesion, and corrosion resistance while ensuring high strength and workability. Therefore, it is optimal as a material for structural members used in automobiles and various industrial machines, particularly as a material for structural members typified by automobile bumpers and suspension parts.

また、安価に安定して大量に製造できるので、産業上格段の効果をあげることができる。   In addition, since it can be manufactured stably and in large quantities at a low cost, it is possible to achieve a remarkable industrial effect.

まず鋼板の鋼組成の限定理由について説明する。以下、鋼組成を示す%は質量%である。
C:0.05%〜0.20%
Cは鋼の強度を確保するのに必要な元素であり、750MPa以上の強度を確保するため含有量の下限を0.05%とする。
First, the reasons for limiting the steel composition of the steel sheet will be described. Hereinafter,% indicating the steel composition is mass%.
C: 0.05% to 0.20%
C is an element necessary for ensuring the strength of the steel, and the lower limit of the content is set to 0.05% in order to ensure the strength of 750 MPa or more.

ところで、鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部における平均C濃度([C])は、熱間圧延、冷間圧延、酸洗処理、そして焼鈍処理という溶融亜鉛めっきに先立つ各処理工程を経ることによって減少し、さらに溶融めっき処理を行うことで、その表面部、特に鋼板表面から深さ1〜10μm の表面近傍での平均C濃度は中心部に対して90%程度となる。しかし85%以下の鋼板を特別なプロセスを経ずに安定して達成することは困難であった。連続鋳造段階での炭素濃度の上昇、つまり鋳片段階における浸炭を防止できれば、表面近傍の平均C濃度を安定して低減できる。 By the way, the average C concentration ([C] S ) in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the thickness center direction is called hot rolling, cold rolling, pickling treatment, and annealing treatment. By passing through each treatment step prior to hot dip galvanization, and further performing hot dip plating treatment, the average C concentration in the vicinity of the surface portion, particularly the surface 1 to 10 μm deep from the steel sheet surface, is smaller than the central portion. About 90%. However, it has been difficult to stably achieve a steel plate of 85% or less without going through a special process. If the increase of the carbon concentration in the continuous casting stage, that is, carburization in the slab stage can be prevented, the average C concentration in the vicinity of the surface can be stably reduced.

ここに、本発明にあっては、鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部における平均C濃度([C])と前記鋼板の表面から板厚中心方向に向かって深さ0.1mmまでの部分を除いた内部のC濃度([C])との比([C]/[C])は、C含有量とともに増加し、C含有量が0.20%超では、上記[C]/[C]が0.85超となるため、含有量の上限を0.20%とする。好ましくは、0.05〜0.18%である。 Here, in the present invention, the average C concentration ([C] S ) in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel sheet toward the thickness center direction and the thickness direction from the surface of the steel sheet. The ratio ([C] S / [C] B ) with the internal C concentration ([C] B ) excluding the portion up to a depth of 0.1 mm toward the surface increases with the C content, and the C content Is more than 0.20%, the above [C] s / [C] B is more than 0.85, so the upper limit of the content is made 0.20%. Preferably, it is 0.05 to 0.18%.

Si:0.5%以下
Siは固溶強化元素であり、鋼板の強化に有効であるが、めっきの濡れ性、密着性を劣化させる。そのため0.5%を含有量の上限とした。更に安定的に良好なめっきの密着性を得るには、含有量を0.3%以下とするのが望ましい。
Si: 0.5% or less Si is a solid solution strengthening element and is effective for strengthening steel sheets, but deteriorates the wettability and adhesion of plating. Therefore, 0.5% was made the upper limit of the content. Furthermore, in order to obtain stable and good adhesion of plating, the content is desirably set to 0.3% or less.

Mn:1.0〜3.0%
Mnは変態強化による鋼の高強度化に有効な元素である。また、鋼のAc点を下げ、好適な焼鈍温度範囲を広げる効果も有する。そのため、1.0%以上含有させる必要がある。好ましい下限は1.5%である。一方、過度の添加は強度・延性バランスを劣化させるので、含有量の上限を3.0%とした。好ましい上限は2.5%である。
Mn: 1.0-3.0%
Mn is an element effective in increasing the strength of steel by transformation strengthening. It also has the effect of lowering the Ac 3 point of steel and expanding the preferred annealing temperature range. Therefore, it is necessary to contain 1.0% or more. A preferred lower limit is 1.5%. On the other hand, excessive addition degrades the strength / ductility balance, so the upper limit of the content was made 3.0%. A preferred upper limit is 2.5%.

P:0.05%以下
Pは固溶強化元素であり、鋼板の引張り強度向上に有効であるが、過度の添加はめっきの密着性及び溶接性を劣化させる。そのため、含有量の上限を0.05%とした。
P: 0.05% or less P is a solid solution strengthening element and is effective in improving the tensile strength of the steel sheet, but excessive addition deteriorates the adhesion and weldability of the plating. Therefore, the upper limit of the content is set to 0.05%.

S:0.05%以下
Sは鋼に不可避的に含有される不純物であり、加工性、溶接性の観点からは低いほど望ましい。そのため、含有量の上限を0.05%とした。
S: 0.05% or less S is an impurity inevitably contained in the steel, and is preferably as low as possible from the viewpoint of workability and weldability. Therefore, the upper limit of the content is set to 0.05%.

Sol.Al:0.1%以下
Alは脱酸元素として添加するが、0.1%を超えて含有すると介在物が増加して鋼の清浄性が損なわれるため、0.1%以下とした。
Sol.Al: 0.1% or less
Al is added as a deoxidizing element, but if it exceeds 0.1%, inclusions increase and the cleanliness of the steel is impaired, so the content was made 0.1% or less.

N:0.01%以下
Nは鋼に不可避的に含有される不純物であり、加工性、溶接性の観点からは低いほど望ましい。そのため、含有量の上限を0.01%とした。
N: 0.01% or less N is an impurity inevitably contained in the steel, and is preferably as low as possible from the viewpoint of workability and weldability. Therefore, the upper limit of the content is set to 0.01%.

Ti+Nb≧0.05%、Ti≦0.5%、Nb≦0.5%
Ti、Nbは炭化物、窒化物、炭窒化物を形成させ、鋼板の高強度化に有効な元素である。また、焼鈍中のフェライトの再結晶を抑制する効果を有し、かつオーステナイトへの変態を促進し、焼鈍後の冷却時のフェライト変態を著しく促進させる効果を有する。また、結晶粒径を極度に微細化し、表面に生じるスジ模様を減少する効果を有する。上記効果を発現させるためには、合計で0.05%以上の含有が必要である。また、過度に添加しても、効果が飽和するため、それぞれの含有量の上限を0.5%とした。
Ti + Nb ≧ 0.05%, Ti ≦ 0.5%, Nb ≦ 0.5%
Ti and Nb are elements that form carbides, nitrides, and carbonitrides and are effective in increasing the strength of the steel sheet. Further, it has an effect of suppressing recrystallization of ferrite during annealing, promotes transformation to austenite, and significantly promotes ferrite transformation during cooling after annealing. In addition, the crystal grain size is extremely refined, and the stripe pattern generated on the surface is reduced. In order to express the above effects, the total content is 0.05% or more. Moreover, even if it adds excessively, since an effect is saturated, the upper limit of each content was made into 0.5%.

本発明の別の態様によれば、さらにFeの一部に代えて、析出硬化による強度上昇を目的として、V:0.5%以下およびW:0.5%以下からなる群から選ばれる1種または2種を含有するものであってもよい。   According to another aspect of the present invention, 1 is selected from the group consisting of V: 0.5% or less and W: 0.5% or less for the purpose of increasing strength by precipitation hardening instead of part of Fe. It may contain seeds or two kinds.

V:0.5%以下、W:0.5%以下
V、WはNb、Tiと同様に析出強化によって強度を高める元素である。この効果を確実なものとするため、それぞれ0.01%以上の含有量とすることが好ましい。但し、0.5%を超えて含有しても強化能は飽和するため、原料コストの上昇が大きくなる。したがって含有量の上限はそれぞれ0.5%とする。
V: 0.5% or less, W: 0.5% or less V and W are elements that increase the strength by precipitation strengthening in the same manner as Nb and Ti. In order to ensure this effect, each content is preferably 0.01% or more. However, even if the content exceeds 0.5%, the strengthening ability is saturated, so that the cost of raw materials increases. Therefore, the upper limit of the content is 0.5%.

さらに本発明の別の態様にあっては、Feの一部に代えて、固溶強化による強度上昇を目的として、Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下およびB:0.01%以下からなる群から選ばれる1種または2種以上を含有するものであってもよい。   Furthermore, in another aspect of the present invention, instead of a part of Fe, Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1. It may contain one or more selected from the group consisting of 0% or less, Ni: 1.0% or less, and B: 0.01% or less.

Cr、Mo、Cu、Ni:1.0%以下、B:0.01%以下
上記のCrからBまでのいずれの元素も固溶強化によって強度を一層高める作用を有するので、それぞれを単独で含有させてもよいし、2種以上を複合して含有させてもよい。
Cr, Mo, Cu, Ni: 1.0% or less, B: 0.01% or less Each of the above elements from Cr to B has the effect of further enhancing the strength by solid solution strengthening, so each is contained alone You may make it contain, and may contain 2 or more types in combination.

固溶強化の効果を確実に得るには、Cr、Mo、Cu、Niはそれぞれ0.05%以上の含有量とすることが好ましい。Bについては、0.0003%以上含有させることが好ましい。   In order to reliably obtain the effect of solid solution strengthening, it is preferable that Cr, Mo, Cu, and Ni each have a content of 0.05% or more. About B, it is preferable to make it contain 0.0003% or more.

しかしCr、Mo、Cu、Niは1.0%を超えて含有しても強化能は飽和してしまい、原料コストの上昇が大きくなるので、それぞれの含有量の上限を1.0%とする。また、Bについては、0.01%を超えて含有すると延性の低下をきたし、さらに歩留まりの低下から原料コストの上昇も著しい。したがって、含有量の上限を0.01%とする。   However, even if Cr, Mo, Cu, and Ni are contained in excess of 1.0%, the strengthening ability is saturated and the cost of raw materials increases, so the upper limit of each content is set to 1.0%. . Further, when B is contained in an amount exceeding 0.01%, the ductility is lowered, and further, the cost of raw materials is significantly increased due to the reduction in yield. Therefore, the upper limit of the content is 0.01%.

本発明のさらに別の態様にあっては、上述のFeの一部に代えて、酸化物、硫化物などの形態制御による曲げ加工性向上を目的として、REM:0.1%以下、Mg:0.01%以下およびCa:0.01%以下からなる群から選ばれる1種または2種以上を含有するものであってもよい。   In still another aspect of the present invention, REM: 0.1% or less, Mg: for the purpose of improving bending workability by controlling the form of oxides, sulfides, etc., instead of a part of the above-mentioned Fe It may contain one or more selected from the group consisting of 0.01% or less and Ca: 0.01% or less.

REM:0.1%以下、Mg:0.01%以下、Ca:0.01%以下
上記REM(希土類元素)、Mg、Caいずれの元素も酸化物や硫化物を微細に球状化し、曲げ加工性を向上させる効果をもつ。それぞれを単独で含有させてもよいし、2種以上を複合して含有させてもよい。
REM: 0.1% or less, Mg: 0.01% or less, Ca: 0.01% or less The above-mentioned REM (rare earth element), Mg, and Ca are formed into fine spheroids of oxides and sulfides and bent. Has the effect of improving the performance. Each of them may be contained alone or in combination of two or more.

ここで、REMはSc、Y、およびランタノイドの合計17元素を指し、ランタノイドの場合、工業的にはミッシュメタルの形で添加される。なお、本発明で言うREMの含有量が上記元素の合計含有量を指す。酸化物や硫化物の微細球状化の効果を確実に得るには、REM、Mg、Caはそれぞれ0.0005%以上の含有量とすることが好ましい。しかしREMについては、0.1%超、Mg、Caについては0.01%を超えると鋼中に酸化物や硫化物が過剰に存在してしまうため、曲げ加工性は劣化する。そのため、REM:0.1%以下、Mg:0.01%以下、Ca:0.01%以下とする。   Here, REM refers to a total of 17 elements of Sc, Y, and lanthanoid. In the case of lanthanoid, it is added industrially in the form of misch metal. In addition, content of REM said by this invention points out the total content of the said element. In order to reliably obtain the effect of spheroidizing oxides and sulfides, it is preferable that REM, Mg, and Ca each have a content of 0.0005% or more. However, when REM exceeds 0.1% and Mg and Ca exceed 0.01%, oxides and sulfides are excessively present in the steel, so that bending workability deteriorates. Therefore, REM: 0.1% or less, Mg: 0.01% or less, Ca: 0.01% or less.

本発明にかかる高張力溶融亜鉛めっき鋼板のめっき基材である鋼板の鋼組成は、上記の各元素と残部がFeおよび不純物からなるものである。
<鋼板の表面近傍部と内部のC濃度の比および表面近傍部のフェライトの面積率>
引張り強度750MPa以上で優れた曲げ加工特性と、めっき密着性と表面性状が極めて良好である鋼板を得るには、鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部における平均C濃度([C])と前記鋼板の表面から板厚中心方向に向かって深さ0.1mmまでの部分を除いた内部の平均C濃度([C])との比([C]/[C])が0.85以下であり、かつ鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部におけるフェライトの面積率が80%以上とすることが必要である。
The steel composition of the steel sheet, which is the plating base of the high-tensile hot-dip galvanized steel sheet according to the present invention, is composed of the above elements and the balance consisting of Fe and impurities.
<Ratio of the C vicinity of the surface near the surface of the steel sheet and the area ratio of ferrite near the surface>
In order to obtain a steel sheet with excellent bending properties, plating adhesion and surface properties with a tensile strength of 750 MPa or more, in the vicinity of the surface at a depth of 1 to 10 μm from the surface of the steel sheet toward the center of the plate thickness. Ratio ([C] of average C concentration ([C] s ) and internal average C concentration ([C] B ) excluding a portion from the surface of the steel plate to a depth of 0.1 mm toward the center of the plate thickness. S / [C] B ) is 0.85 or less, and the area ratio of ferrite in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the center of the plate thickness is 80% or more. is necessary.

前記比([C]/[C])が0.85超または前記フェライトの面積率が80%未満であると、曲げ加工特性、および曲げ加工時の表面性状が著しく悪化する。
なお、前記比([C]/[C])の下限は特に限定する必要はないが、実操業容易な範囲において安定したC濃度分布を実現するという観点から、下限を0.6とすることが好ましい。
When the ratio ([C] s / [C] B ) exceeds 0.85 or the area ratio of the ferrite is less than 80%, the bending characteristics and the surface properties during bending are remarkably deteriorated.
The lower limit of the ratio ([C] s / [C] B ) is not particularly limited. However, the lower limit is set to 0.6 from the viewpoint of realizing a stable C concentration distribution within a range where actual operation is easy. It is preferable to do.

ここに、本発明において上記フェライト面積率は、めっき前焼鈍における均熱からの冷却速度により調整することができ、例えば、それを80%以上とするには、後述するように、600℃までの平均冷却速度を40℃/s以下とし、600℃からめっき浴浸漬までの平均冷却速度を70℃/s以下とすればよい。   Here, in the present invention, the ferrite area ratio can be adjusted by a cooling rate from soaking in the pre-plating annealing. For example, to make it 80% or more, as described later, up to 600 ° C. The average cooling rate may be 40 ° C./s or less, and the average cooling rate from 600 ° C. to immersion in the plating bath may be 70 ° C./s or less.

<めっき>
本発明は、溶融亜鉛めっき鋼板およびその製造方法であるが、めっき方法およびその付着量などは特に制限されない。一般には、めっき付着量としては片面あたり3〜800g/mが鋼板表面に施される。めっき付着量が3g/m未満では、めっきによる防食作用が十分発揮されず、亜鉛めっきの目的を果たすことができない。また付着量が800g/m超では、溶接時にブローホールなどの欠陥が著しく発生しやすくなる。めっき付着量のコストの観点からは、10〜200g/mが更に好ましい範囲である。また上記のめっきを施した後、合金化処理をすることでめっきの密着性を向上させることができる。めっき被膜の合金化度はFe含有率で3%〜20%が望ましい範囲である。3%未満では合金化度が低く、合金化処理の効果が無い。一方、合金化度が20%超になると、パウダリングが著しく劣化する。合金化処理による、めっき密着性の確保ならびにパウダリング性の観点から、更に好ましい合金化度の範囲は7〜15%となる。
<Plating>
The present invention is a hot-dip galvanized steel sheet and a method for producing the same, but the plating method and the amount of adhesion thereof are not particularly limited. Generally, 3 to 800 g / m 2 per side is applied to the steel sheet surface as a plating adhesion amount. When the plating adhesion amount is less than 3 g / m 2 , the anticorrosion action by plating is not sufficiently exhibited, and the purpose of galvanization cannot be achieved. On the other hand, if the adhesion amount exceeds 800 g / m 2 , defects such as blow holes tend to occur remarkably during welding. From the viewpoint of the cost of plating adhesion, 10 to 200 g / m 2 is a more preferable range. Moreover, after performing said plating, the adhesiveness of plating can be improved by performing an alloying process. The alloying degree of the plating film is preferably in a range of 3% to 20% in terms of Fe content. If it is less than 3%, the degree of alloying is low, and there is no effect of the alloying treatment. On the other hand, when the degree of alloying exceeds 20%, powdering deteriorates remarkably. From the viewpoint of securing plating adhesion and powdering properties by alloying treatment, a more preferable range of the degree of alloying is 7 to 15%.

<製造条件>
(製鋼)
精錬段階では、特に特別な方法で成分調整を実施する必要はなく、常法により本発明において規定する鋼組成に調整すればよい。
<Production conditions>
(Steel making)
In the refining stage, it is not necessary to adjust the components by a special method, and the steel composition specified in the present invention may be adjusted by a conventional method.

連続鋳造段階では、連続鋳造時に鋳型内に投入する連続鋳造用パウダーの成分について限定を行う。連続鋳造用パウダーは、溶鋼表面で溶融スラグ化し、鋳型内溶鋼表面の酸化防止、鋳型と鋳片の間の潤滑、メニスカスに浮上してきた介在物の補足、鋳型内溶鋼表面の保温等の役割を果たす、連続鋳造の操業には必要不可欠なものである。   In the continuous casting stage, the components of the powder for continuous casting put into the mold at the time of continuous casting are limited. The powder for continuous casting is melted slag on the surface of molten steel to prevent oxidation of the molten steel surface in the mold, lubrication between the mold and slab, supplementation of inclusions floating on the meniscus, heat insulation of the molten steel surface in the mold, etc. It is essential for continuous casting operations.

連続鋳造用パウダーの溶融温度と粘度は、主成分のSiO、CaO、ならびにその他の酸化物の混合比率によって調整されている。また溶融速度の調整と保温性確保のため、骨材として通常4質量%程度のCを含む。 The melting temperature and viscosity of the powder for continuous casting are adjusted by the mixing ratio of SiO 2 , CaO, and other oxides as main components. Further, in order to adjust the melting rate and ensure heat retention, the aggregate usually contains about 4% by mass of C.

そのため通常の連続鋳造用パウダーは、鋳型内で溶鋼と接触することにより、鋳片表面にCの濃化層を生成する。このC濃化層は熱延、冷間圧延を通して残留することにより、薄板製品の表面から10μmまでの炭素濃度を上昇させる。   Therefore, a normal continuous casting powder generates a concentrated layer of C on the surface of a slab by contacting with molten steel in a mold. This C-enriched layer remains through hot rolling and cold rolling, thereby increasing the carbon concentration from the surface of the sheet product to 10 μm.

鋳片表面に発生するC濃化の影響を防止する方法として、鋳片段階での表面溶削(スカーフィング)がある。しかしながら、表面溶削は鋳片の歩留まり低下と作業能率の低下が発生する。また鋳片の成分によっては、溶削時の急激な加熱によって鋳片表面にワレ欠陥を生じる場合がある。したがって表面の溶削を省略しつつ、鋳片表面のC濃化を防止し、薄板製品段階において鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部における平均C濃度([C])と前記鋼板の表面から板厚中心方向に向かって深さ0.1mmまでの部分を除いた内部の平均C濃度([C])との比([C]/[C])を0.85以下とするためには、連続鋳造用パウダー中に含まれるC濃度を1質量%未満にする必要がある。 As a method for preventing the influence of C enrichment generated on the surface of the slab, there is surface cutting (scarfing) at the slab stage. However, surface cutting causes a reduction in slab yield and a reduction in work efficiency. Depending on the components of the slab, cracking defects may occur on the surface of the slab due to abrupt heating during cutting. Therefore, while omitting surface cutting, C concentration on the surface of the slab is prevented, and the average C concentration in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the center of the plate thickness in the thin plate product stage ( [C] s ) and the ratio ([C] s / [) of the internal average C concentration ([C] B ) excluding the portion from the surface of the steel plate to the depth of 0.1 mm toward the center of the plate thickness. In order to make C] B ) 0.85 or less, the C concentration contained in the powder for continuous casting needs to be less than 1% by mass.

(熱間圧延)
熱間圧延前に上記の方法で鋳造した鋳片を温度1100℃以上とする。熱間圧延前の鋳片の温度が1100℃未満の場合は、鋳造凝固時に析出したTiおよびNb系の炭化物、窒化物、炭窒化物が再固溶しないため、Ti、Nbの析出強化が不十分となる。また鋳片の温度が1350℃超となると、鋳片の自重で変形してしまい、加熱処理が困難となる。
(Hot rolling)
The slab cast by the above method before hot rolling is set to a temperature of 1100 ° C. or higher. When the temperature of the slab before hot rolling is less than 1100 ° C, Ti and Nb carbides, nitrides, and carbonitrides precipitated during casting solidification do not re-dissolve, so precipitation strengthening of Ti and Nb is not possible. It will be enough. Moreover, when the temperature of a slab exceeds 1350 degreeC, it will deform | transform with the dead weight of a slab, and heat processing will become difficult.

その後、常法に従って熱間圧延を行う。このとき、粗圧延後、仕上圧延前の粗バーに対して、誘導加熱等により全長の温度均一化を図ると、温度変動による特性変動を抑制することができる。   Thereafter, hot rolling is performed according to a conventional method. At this time, if the temperature of the entire length of the rough bar before rough rolling after rough rolling is equalized by induction heating or the like, characteristic fluctuation due to temperature fluctuation can be suppressed.

仕上圧延はAr点以上で行う。Ar点未満であると仕上げ圧延時にフェライト変態に起因する体積膨張があるため板厚精度の悪化、操業トラブルの原因となる。
巻取り温度については、700℃を超えるとコイル表面のスケール疵発生が著しく、品質の悪化、歩留まり低下をもたらすので上限を700℃とする。合金元素添加量を抑制したい場合には、巻取り温度を550℃以下とすることにより効果的に高強度化を達成できるので好ましい。下限については特に限定しないが、その後の工程において冷間圧延を施す場合には、巻取り温度を400℃未満にすると著しく硬化して冷間圧延が困難になるので、下限を400℃とすることが好ましい。また、合金元素添加量の制限を加える必要が無い場合には、圧延性の観点から巻取り温度を550℃以上とすることが好ましい。
Finish rolling is performed at 3 or more points of Ar. If the Ar is less than 3 points, volumetric expansion caused by ferrite transformation occurs during finish rolling, resulting in deterioration of sheet thickness accuracy and operation trouble.
As for the coiling temperature, when the temperature exceeds 700 ° C., the generation of scale flaws on the coil surface is remarkable, leading to deterioration in quality and a decrease in yield, so the upper limit is set to 700 ° C. When it is desired to suppress the amount of alloying element added, it is preferable to increase the winding temperature to 550 ° C. or lower, since it is possible to effectively increase the strength. The lower limit is not particularly limited, but when cold rolling is performed in the subsequent steps, if the coiling temperature is less than 400 ° C., it is hardened and cold rolling becomes difficult, so the lower limit should be 400 ° C. Is preferred. When there is no need to limit the amount of alloying element added, the winding temperature is preferably set to 550 ° C. or higher from the viewpoint of rollability.

(酸洗)
熱間圧延後の、酸洗、冷間圧延についても常法でかまわない。酸洗の前もしくは後に、0〜5%程度の軽度の圧延を行い、形状を修正すると平坦確保の点で有利となる。また、この軽度の圧延により、酸洗性が向上し、表面濃化元素の除去が促進され、溶融めっきの密着性の観点から制限されているSi、Pの好適範囲を広げる効果がある。
(Pickling)
The pickling and cold rolling after hot rolling may be performed in a conventional manner. Before or after pickling, it is advantageous in terms of ensuring flatness if mild rolling of about 0 to 5% is performed and the shape is corrected. In addition, the mild rolling improves pickling properties, promotes removal of surface-enriched elements, and has the effect of expanding the preferred range of Si and P that are restricted from the viewpoint of hot-plated adhesion.

(冷間圧延)
冷間圧延は、板厚や表面粗度の調整等の必要に応じて常法により施してもかまわない。圧下率は35〜80%の範囲で特に問題は無い。圧下率を高くすると、焼鈍時のオーステナイトへの変態を促進するので、焼鈍条件の好適範囲を広げる効果を有するので好ましい。
(Cold rolling)
Cold rolling may be performed by a conventional method as necessary for adjusting the plate thickness and surface roughness. There is no particular problem with the rolling reduction in the range of 35 to 80%. A higher rolling reduction is preferable because it promotes transformation to austenite during annealing, and thus has the effect of expanding the preferred range of annealing conditions.

(めっき前焼鈍と溶融亜鉛めっき)
連続溶融亜鉛めっきラインにおける製造条件については、めっき基材が熱延鋼板である場合と冷延鋼板である場合とで共通であり、以下の条件とする。
(Annealing before plating and hot dip galvanizing)
About the manufacturing conditions in a continuous hot dip galvanizing line, it is common in the case where a plating base material is a hot-rolled steel plate, and the case where it is a cold-rolled steel plate, and it is set as the following conditions.

まず、鋼板をAc〜1000℃の温度域に5秒以上保持して均熱する。均熱温度がAc点未満あるいは均熱時間が5秒未満では、オーステナイトへの相変態が十分に進行しないため、熱間圧延工程で形成されたフェライト以外の相が薄板製品段階において多く残留してしまう結果、薄板製品段階において鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部におけるフェライトの面積率を80%以上とすることが困難となる。また1000℃超の場合は、結晶粒が過剰に成長し、強度が不足する。 First, the steel sheet is held in the temperature range of Ac 3 to 1000 ° C. for 5 seconds or more and soaked. If the soaking temperature is less than Ac 3 points or the soaking time is less than 5 seconds, the phase transformation to austenite does not proceed sufficiently, so that many phases other than ferrite formed in the hot rolling process remain in the sheet product stage. As a result, it becomes difficult to make the ferrite area ratio 80% or more in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the center of the plate thickness in the thin plate product stage. On the other hand, when the temperature exceeds 1000 ° C., crystal grains grow excessively and the strength is insufficient.

均熱後の冷却については、600℃までは平均冷却速度で40℃/s以下とする。冷却速度の下限は操業効率の観点から1℃/sとする。本発明の場合、TiおよびNbを大量に添加しているため、冷却速度を1〜40℃/sとすることにより、目的とする曲げ加工性を確保するのに必要な量のフェライト、すなわち薄板製品段階において鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部におけるフェライトの面積率を80%以上とすることができる。   About cooling after soaking, the average cooling rate is set to 40 ° C./s or less up to 600 ° C. The lower limit of the cooling rate is 1 ° C./s from the viewpoint of operation efficiency. In the case of the present invention, a large amount of Ti and Nb is added. Therefore, by setting the cooling rate to 1 to 40 ° C./s, the amount of ferrite necessary to ensure the desired bending workability, that is, a thin plate In the product stage, the area ratio of ferrite in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the center of the plate thickness can be 80% or more.

なお、この点に関して、先述の特許文献1、2にあってはその表面部近傍の組織は、焼き戻しマルテンサイトを中心とした第二相の比率が20%以上であり、フェライト面積率は80%以下であった。   In this regard, in the above-mentioned Patent Documents 1 and 2, the structure in the vicinity of the surface portion has a ratio of the second phase centered on tempered martensite of 20% or more, and the ferrite area ratio is 80%. % Or less.

溶融亜鉛めっきに関しては、常法に従い、440〜520℃の溶融亜鉛めっき浴中に浸漬する。前述の600℃から、この440〜520℃の温度範囲までの冷却については、平均冷却速度で70℃/s以下であれば問題ない。冷却速度が70℃/s超であると、マルテンサイト面積率が多くなり、薄板製品段階において鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部におけるフェライトの面積率が80%未満となって曲げ加工性が劣化するためである。ここでも、冷却速度の下限は操業効率の観点から1℃/sとする。また、めっき浸漬前に400〜600℃の温度範囲における滞在時間を5〜100s保持することにより、フェライトの面積率をさらに高めることが可能となり曲げ加工性を更に向上させることができる。   Regarding hot dip galvanization, it is immersed in a hot dip galvanizing bath at 440 to 520 ° C. according to a conventional method. About cooling from the above-mentioned 600 degreeC to this temperature range of 440-520 degreeC, if an average cooling rate is 70 degrees C / s or less, there is no problem. When the cooling rate is higher than 70 ° C./s, the martensite area ratio increases, and the ferrite area ratio in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel sheet toward the center of the plate thickness in the thin plate product stage. It is because it becomes less than 80% and bending workability deteriorates. Also here, the lower limit of the cooling rate is 1 ° C./s from the viewpoint of operation efficiency. Further, by maintaining the stay time in the temperature range of 400 to 600 ° C. for 5 to 100 s before plating immersion, it is possible to further increase the area ratio of the ferrite and further improve the bending workability.

(合金化処理)
めっき浴浸漬後については、めっき基材が熱延鋼板である場合と冷延鋼板である場合ともに合金化処理を施しても良い。本発明の場合、Ti+Nbの大量添加により、合金化処理性は非常に高くなっている。さらに、酸洗前もしくは酸洗後の軽圧下、あるいは、Cu、Niの添加により、合金化処理が促進され、Si、Pの好適範囲を広げることができる。
(Alloying treatment)
After immersion in the plating bath, an alloying treatment may be performed both when the plating substrate is a hot-rolled steel plate and when it is a cold-rolled steel plate. In the case of the present invention, the alloying processability is very high due to the large addition of Ti + Nb. Furthermore, the alloying treatment is promoted under light pressure before or after pickling, or by addition of Cu and Ni, and the preferred range of Si and P can be expanded.

本発明の具体的な実施例を以下に説明する。
表1に示すA〜Lの化学成分を有する鋼を転炉にて溶製し、試験連続鋳造機にて連続鋳造し、幅1000mm、250mm厚のスラブとした。その際に、表2に示すC濃度の異なる連続鋳造用パウダーを使用した。
Specific examples of the present invention will be described below.
Steels having chemical components A to L shown in Table 1 were melted in a converter and continuously cast by a test continuous casting machine to obtain a slab having a width of 1000 mm and a thickness of 250 mm. At that time, continuous casting powders having different C concentrations shown in Table 2 were used.

試験圧延機を用いて、得られたスラブを表3〜4に示す条件にて加熱を行った後、熱間圧延を実施し、次いで、酸洗も実施した。その後、一部の鋼板を40〜60%の冷圧率で冷間圧延を行った。   Using the test rolling mill, the obtained slab was heated under the conditions shown in Tables 3 to 4, followed by hot rolling, and then pickling. Thereafter, some of the steel sheets were cold-rolled at a cold pressure rate of 40 to 60%.

このようにして得られた熱延鋼板、ならびに冷延鋼板に対して、表3で示した条件で、実験室にて焼鈍を行い、その後連続溶融亜鉛めっき試験ラインにて溶融亜鉛めっきを施した。めっき付着量は20〜150(g/m)の範囲で実施した。一部の鋼板については、めっき後、炉温800〜1300℃程度で合金化処理も行った。 The hot-rolled steel sheet and the cold-rolled steel sheet thus obtained were annealed in the laboratory under the conditions shown in Table 3, and then hot-dip galvanized on the continuous hot-dip galvanizing test line. . The amount of plating was 20 to 150 (g / m 2 ). Some steel plates were also alloyed at a furnace temperature of about 800-1300 ° C. after plating.

1)熱延鋼板、冷延鋼板のC濃度の評価
板幅の1/4部分からサンプルを切り出し、JIS H0401に付着量試験方法として規定された塩化アンチモン法により溶融亜鉛めっき鋼板のめっき層を除去した後、グロー放電分光法(GDS)にて深さ方向のC濃度を1μmピッチで測定しその平均値を表面C濃度([C])とした。
1) Evaluation of C concentration of hot-rolled steel sheet and cold-rolled steel sheet A sample was cut out from a quarter part of the sheet width, and the plating layer of the hot-dip galvanized steel sheet was removed by the antimony chloride method specified as an adhesion amount test method in JIS H0401. After that, the C concentration in the depth direction was measured with a 1 μm pitch by glow discharge spectroscopy (GDS), and the average value was defined as the surface C concentration ([C] S ).

すなわち深さiμmでのC濃度を[C]とすると That is, if the C concentration at the depth of i μm is [C] i

Figure 0004360319
である。
また、同様にめっき層を除去した後にサンプルの表裏面をそれぞれ0.1mmづつ研削し、燃焼法にて分析し、バルクC濃度([C])とした。
Figure 0004360319
It is.
Similarly, after removing the plating layer, the front and back surfaces of the sample were each ground by 0.1 mm and analyzed by a combustion method to obtain a bulk C concentration ([C] B ).

2)特性評価
得られた鋼板に対して、引張り試験、限界曲げ試験、めっき付着量測定、めっき密着性試験、ならびに表面性状の評価を実施した。結果を表5〜6に示す。
2) Characteristic evaluation The obtained steel sheet was subjected to a tensile test, a limit bending test, a plating adhesion measurement, a plating adhesion test, and a surface property evaluation. The results are shown in Tables 5-6.

2−1)引張試験
各鋼板の圧延直角方向からJIS5号試験片を採取した。試験方法はJIS Z2241に準じた。降伏点YP、引張強さTS、伸びElを測定した。
2-1) Tensile test A JIS No. 5 test piece was taken from the direction perpendicular to the rolling direction of each steel plate. The test method conformed to JIS Z2241. Yield point YP, tensile strength TS, and elongation El were measured.

2−2)限界曲げ試験
各鋼板の圧延直角方向から幅40mm、長さ200mmの試験片を採取した。試験形状ならびに試験方法はJIS Z2248に準じた。曲げ半径は、密着から板厚の1倍,2倍,3倍,4倍にて実施し、曲げ稜線部分に目視にてワレが発生しない曲げ半径を、限界曲げ半径とした。
2-2) Limit bending test A test piece having a width of 40 mm and a length of 200 mm was taken from the direction perpendicular to the rolling direction of each steel plate. The test shape and test method conformed to JIS Z2248. The bending radius was 1 to 2, 3 times, and 4 times the plate thickness from the close contact, and the bending radius at which no crack occurred visually at the bending ridge was defined as the limit bending radius.

2−3)めっき付着量
各鋼板から57.2mm角の試験片を3枚採取し、付着量を測定した。付着量の測定方法はJIS H0401に準じた。
2-3) Amount of plating adhesion Three test pieces of 57.2 mm square were collected from each steel plate, and the amount of adhesion was measured. The method for measuring the amount of adhesion was in accordance with JIS H0401.

2−4)めっき密着性
各鋼板から試験片を3枚採取し、絞り比1.8にて円筒成形をした後、粘着テープによるめっき剥離試験にて、剥離の有無をめっき密着性の評価とした。
2-4) Plating adhesion After collecting three test pieces from each steel plate and cylindrically forming them at a drawing ratio of 1.8, the presence or absence of peeling was evaluated with respect to plating adhesion in a plating peeling test using an adhesive tape. did.

2−5)表面性状
限界曲げ試験と同じサンプルを曲げ半径2.0tまで曲げ、表面に凹凸を伴うスジの発生がないか目視にて観察、判定した。その際に曲げ稜線方向に試験片を横断するスジが5本以上現れたものを表面性状不良とした。
2-5) Surface properties The same sample as that in the limit bending test was bent to a bending radius of 2.0 t, and the surface was observed and judged for occurrence of streaks with irregularities on the surface. At that time, a surface property defect was defined as 5 or more streaks crossing the specimen in the bending ridge line direction.

<本発明>
本発明である供試材No.1〜21は、限界曲げ半径が密着〜1.5tであり、めっき密着性にも優れていた。また表面性状は全て良好であった。
<Invention>
Specimen No. which is the present invention. In Nos. 1 to 21, the critical bending radius was close to 1.5 t, and the plating adhesion was also excellent. The surface properties were all good.

<比較例>
供試材No.22〜27は連続鋳造時のパウダーに含有されるC濃度が本発明外であった。鋳片表面の溶削1.0mm実施の有無に関わらず、鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部における平均C濃度([C])と前記鋼板の表面から板厚中心方向に向かって深さ0.1mmまでの部分を除いた内部のC濃度([C])との比([C]/[C])が0.85超となり、限界曲げ半径≧2.0tとなり、曲げ加工性が劣化した。また表面にもスジ模様が発生した。
<Comparative example>
Specimen No. In Nos. 22 to 27, the C concentration contained in the powder during continuous casting was outside the scope of the present invention. Regardless of whether or not the surface of the slab is cut by 1.0 mm, the average C concentration ([C] s ) in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the center of the plate thickness is measured. The ratio ([C] s / [C] B ) with the internal C concentration ([C] B ) excluding the portion from the surface toward the center of the plate thickness up to a depth of 0.1 mm exceeds 0.85. Bending radius ≥ 2.0t, bending workability deteriorated. A streak pattern was also generated on the surface.

供試材No.28は熱間圧延前の加熱温度が1080℃と本発明外となった。そのため鋳片加熱時において、Ti,Nb系の炭化物、窒化物が十分に析出せず、最終強度が750MPa未満となった。また炭化物を起点としたフェライトの生成が少なく、表面におけるフェライト面積率が低下したため、曲げ加工性が悪化した。   Specimen No. No. 28 was outside the scope of the present invention, with the heating temperature before hot rolling being 1080 ° C. Therefore, Ti and Nb-based carbides and nitrides were not sufficiently precipitated during slab heating, and the final strength was less than 750 MPa. Further, since the generation of ferrite starting from carbide was small and the ferrite area ratio on the surface was lowered, bending workability was deteriorated.

供試材No.29は熱間圧延時の仕上げ温度が720℃であり材質DのAr点以下となったため、本発明外となった。そのため圧延時、フェライト生成による体積変動が発生し、圧延トラブルが発生したため、鋼板が採取できなかった。 Specimen No. No. 29 was outside the scope of the present invention because the finishing temperature during hot rolling was 720 ° C. and became Ar 3 or less of the material D. Therefore, during rolling, volume fluctuation due to ferrite generation occurred and rolling trouble occurred, so that the steel sheet could not be collected.

供試材No.30は熱間圧延時の仕上げ温度が720℃と本発明外であった。そのため、コイル巻取り後も表面にスケール生成が起こり、酸洗後もスケール疵が多発したため、めっきが出来なくなり、鋼板の評価ができなかった。   Specimen No. No. 30 was outside the present invention, with the finishing temperature during hot rolling being 720 ° C. Therefore, scale generation occurred on the surface even after coil winding, and scale wrinkles occurred even after pickling, so that plating could not be performed and the steel sheet could not be evaluated.

供試材No.31〜32はめっき前の均熱温度が低く、本発明外であった。加熱温度が各材質のAc点以下であったため、オーステナイト単相とならず、鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部におけるフェライトの面積率が80%未満となり、曲げ加工性が悪化した。 Specimen No. Nos. 31 to 32 had low soaking temperatures before plating and were outside the scope of the present invention. Since the heating temperature was 3 points or less for each material, the austenite single phase was not achieved, and the area ratio of ferrite in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the thickness center was less than 80%. As a result, bending workability deteriorated.

供試材No.33〜34はめっき前の均熱温度が高く本発明外であった。そのため粒の過剰な成長により強度が750MPa未満となった。また、粗大な粒成長によって、十分な表面近傍のフェライト面積率が得られず、曲げ加工性が悪化した。   Specimen No. Nos. 33 to 34 had high soaking temperatures before plating and were outside the scope of the present invention. Therefore, the strength was less than 750 MPa due to excessive grain growth. Also, due to coarse grain growth, a sufficient ferrite area ratio in the vicinity of the surface could not be obtained, and bending workability deteriorated.

供試材No.35はめっき前の均熱時間が4秒と本発明外であった。そのため、均熱時におけるオーステナイト生成が不十分となったため、鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部におけるフェライトの面積率が80%未満となり、曲げ性加工性が悪化した。   Specimen No. 35 was outside the present invention, soaking time before plating was 4 seconds. Therefore, since austenite generation during soaking is insufficient, the area ratio of ferrite in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the center of the plate thickness is less than 80%, and the bendability workability Worsened.

供試材No.36は均熱後から600℃までの冷却速度が42(℃/s)と本発明外であった。そのためフェライトの生成が不十分となり、鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部におけるフェライトの面積率が80%未満となり、曲げ性加工性が悪化した。   Specimen No. 36 was outside the scope of the present invention, with a cooling rate from soaking to 600 ° C. of 42 (° C./s). Therefore, the generation of ferrite was insufficient, and the area ratio of ferrite in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the center of the plate thickness was less than 80%, and the bendability was deteriorated.

供試材No.37は、めっき浴中に浸漬するまでの冷却速度が72(℃/s)と本発明外であった。そのため硬質相であるマルテンサイトが過剰に生成し、鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部におけるフェライトの面積率が80%未満となり、曲げ性加工性が悪化した。   Specimen No. No. 37 was outside the present invention, with a cooling rate of 72 (° C./s) until dipping in the plating bath. Therefore, the martensite which is a hard phase is excessively generated, and the area ratio of ferrite in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the center of the plate thickness becomes less than 80%, and the bendability is deteriorated. did.

供試材No.38は、母材のC濃度が本発明外であった。そのため、本発明の製造方法に従って製造したが、([C]/[C])が0.85超となり、限界曲げ半径≧2.0tとなり、曲げ加工性が劣化した。また表面にもスジ模様が発生した。 Specimen No. No. 38, the C concentration of the base material was outside the present invention. Therefore, although manufactured according to the manufacturing method of the present invention, ([C] s / [C] B ) exceeded 0.85, the limit bending radius ≧ 2.0 t, and bending workability deteriorated. A streak pattern was also generated on the surface.

供試材No.39は、母材のSi濃度が本発明外であった。そのため、本発明の製造方法に従って製造したが、表面性状は不良であり、めっきの付着状況も不良となった。   Specimen No. In No. 39, the Si concentration of the base material was outside the scope of the present invention. Therefore, although manufactured according to the manufacturing method of the present invention, the surface properties were poor, and the plating adhesion was also poor.

Figure 0004360319
Figure 0004360319

Figure 0004360319
Figure 0004360319

Figure 0004360319
Figure 0004360319

Figure 0004360319
Figure 0004360319

Figure 0004360319
Figure 0004360319

Figure 0004360319
Figure 0004360319

Claims (7)

鋼板の表面に溶融亜鉛めっき層を備える溶融亜鉛めっき鋼板であって、前記鋼板は、質量%で、C:0.05〜0.20%、Si:0.5%以下、Mn:1.0〜3.0%、P:0.05%以下、S:0.05%以下、sol.Al:0.1%以下およびN:0.01%以下を含有し、さらにTi:0.5%以下およびNb:0.5%以下の1種または2種を合計で0.05%以上含有し、残部がFeおよび不純物からなる鋼組成を備え、前記鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部における平均C濃度([C])と前記鋼板の表面から板厚中心方向に向かって深さ0.1mmまでの部分を除いた内部の平均C濃度([C])との比([C]/[C])が0.6以上0.85以下であり、かつ前記鋼板の表面から板厚中心方向に向かって深さ1〜10μmの表面近傍部におけるフェライトの面積率が80%以上であることを特徴とする引張強度が750MPa以上の高張力溶融亜鉛めっき鋼板。 A hot-dip galvanized steel sheet provided with a hot-dip galvanized layer on the surface of the steel sheet, the steel sheet being in mass%, C: 0.05 to 0.20%, Si: 0.5% or less, Mn: 1.0 -3.0%, P: 0.05% or less, S: 0.05% or less, sol. Al: 0.1% or less and N: 0.01% or less, and Ti: 0.5% or less and Nb: 0.5% or less, or a total of 0.05% or more And the balance of the steel composition comprising Fe and impurities, the average C concentration ([C] S ) in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel sheet toward the thickness center, and the surface of the steel sheet The ratio ([C] S / [C] B ) to the internal average C concentration ([C] B ) excluding the portion up to the depth of 0.1 mm from the center to the thickness center direction is 0.6 or more and 0 The tensile strength is 750 MPa or more, wherein the area ratio of ferrite in the vicinity of the surface having a depth of 1 to 10 μm from the surface of the steel plate toward the center of the plate thickness is 80% or more. High tensile hot dip galvanized steel sheet. 前記鋼組成が、Feの一部に代えて、質量%で、V:0.5%以下およびW:0.5%以下の群から選ばれる1種または2種をさらに含有することを特徴とする請求項1に記載の高張力溶融亜鉛めっき鋼板。   The steel composition further includes one or two kinds selected from the group of V: 0.5% or less and W: 0.5% or less in mass% instead of a part of Fe. The high-tensile hot-dip galvanized steel sheet according to claim 1. 前記鋼組成が、Feの一部に代えて、質量%で、Cr:1.0%以下、Mo:1.0%以下、Cu:1.0%以下、Ni:1.0%以下およびB:0.01%以下の群から選ばれる1種または2種以上をさらに含有することを特徴とする請求項1または2に記載の高張力溶融亜鉛めっき鋼板。   The steel composition is replaced by a part of Fe in mass%, Cr: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Ni: 1.0% or less, and B The high-tensile hot-dip galvanized steel sheet according to claim 1 or 2, further comprising one or more selected from the group of 0.01% or less. 前記鋼組成が、Feの一部に代えて、質量%で、REM:0.1%以下、Mg:0.01%以下およびCa:0.01%以下の群から選ばれる1種または2種以上をさらに含有することを特徴とする請求項1〜3のいずれかに記載の高張力溶融亜鉛めっき鋼板。   The steel composition is one or two selected from the group consisting of REM: 0.1% or less, Mg: 0.01% or less, and Ca: 0.01% or less in mass% instead of part of Fe. The high-tensile hot-dip galvanized steel sheet according to any one of claims 1 to 3, further comprising the above. 下記(1−1)〜(1−4)の工程を備えることを特徴とする高張力溶融亜鉛めっき鋼板の製造方法:
(1−1)請求項1〜4のいずれかに記載の鋼組成を備える溶鋼を、鋳型内に投入する連続鋳造用パウダー中に含まれるC濃度を1質量%未満として、連続鋳造により鋳片とする連続鋳造工程;
(1−2)前記鋳片を1100℃〜1350℃とした後に熱間圧延を施し、仕上げ温度:Ar点以上、巻取り温度:700℃以下として熱延鋼板とする熱間圧延工程;
(1−3)前記熱延鋼板に酸洗処理を施して鋼板表面のスケールを除去して酸洗鋼板とする酸洗工程;および
(1−4)前記酸洗鋼板をAc〜1000℃の温度範囲に5秒以上保持した後、平均冷却速度1〜40(℃/s)で600℃まで冷却し、さらに平均冷却速度1〜70(℃/s)で冷却して440〜520℃の溶融亜鉛メッキ浴に浸漬して溶融亜鉛めっきを施す連続溶融亜鉛めっき工程。
A method for producing a high-tensile hot-dip galvanized steel sheet comprising the following steps (1-1) to (1-4):
(1-1) A slab formed by continuous casting with a molten steel having the steel composition according to any one of claims 1 to 4 having a C concentration of less than 1% by mass contained in powder for continuous casting charged into a mold. Continuous casting process;
(1-2) A hot rolling step in which the cast slab is hot rolled after being made 1100 ° C. to 1350 ° C., and finished at a finishing temperature: Ar 3 points or more and a winding temperature: 700 ° C. or less;
(1-3) A pickling process in which the hot-rolled steel sheet is pickled to remove the scale on the surface of the steel sheet to obtain a pickled steel sheet; and (1-4) the pickled steel sheet is Ac 3 to 1000 ° C. After maintaining in the temperature range for 5 seconds or more, it is cooled to 600 ° C. at an average cooling rate of 1 to 40 (° C./s), and further cooled at an average cooling rate of 1 to 70 (° C./s) to melt at 440 to 520 ° C. A continuous hot dip galvanizing process in which hot dip galvanizing is performed by dipping in a galvanizing bath.
下記(2−1)〜(2−5)の工程を備えることを特徴とする高張力溶融亜鉛めっき鋼板の製造方法:
(2−1)請求項1〜4のいずれかに記載の鋼組成を備える溶鋼を、鋳型内に投入する連続鋳造用パウダー中に含まれるC濃度を1質量%未満として、連続鋳造により鋳片とする連続鋳造工程;
(2−2)前記鋳片を1100℃〜1350℃とした後に熱間圧延を施し、仕上げ温度:Ar点以上、巻取り温度:700℃以下として熱延鋼板とする熱間圧延工程;
(2−3)前記熱延鋼板に酸洗処理を施して鋼板表面のスケールを除去して酸洗鋼板とする酸洗工程;
(2−4)前記酸洗鋼板に冷間圧延を施して冷延鋼板とする冷間圧延工程;および
(2−5)前記冷延鋼板をAc〜1000℃の温度範囲に5秒以上保持した後、平均冷却速度1〜40(℃/s)で600℃まで冷却し、さらに平均冷却速度1〜70(℃/s)で冷却して440〜520℃の溶融亜鉛メッキ浴に浸漬して溶融亜鉛めっきを施す連続溶融亜鉛めっき工程。
A method for producing a high-tensile hot-dip galvanized steel sheet comprising the following steps (2-1) to (2-5):
(2-1) A slab formed by continuous casting with the molten steel having the steel composition according to any one of claims 1 to 4 contained in a continuous casting powder charged into a mold with a C concentration of less than 1% by mass. Continuous casting process;
(2-2) A hot rolling step in which the cast slab is hot rolled after the temperature is set to 1100 ° C. to 1350 ° C. to obtain a hot rolled steel sheet with a finishing temperature: Ar 3 points or higher and a winding temperature: 700 ° C. or lower;
(2-3) A pickling process in which the hot-rolled steel sheet is subjected to a pickling treatment to remove scale on the surface of the steel sheet to obtain a pickled steel sheet;
(2-4) a cold rolling process in which the pickled steel sheet is cold-rolled to form a cold-rolled steel sheet; and (2-5) the cold-rolled steel sheet is held in a temperature range of Ac 3 to 1000 ° C for 5 seconds or more. Then, it is cooled to 600 ° C. at an average cooling rate of 1 to 40 (° C./s), further cooled at an average cooling rate of 1 to 70 (° C./s), and immersed in a hot-dip galvanizing bath at 440 to 520 ° C. Continuous hot dip galvanizing process for hot dip galvanizing.
前記連続溶融亜鉛めっき工程において、溶融亜鉛めっきを施した鋼板に合金化処理を施すことを特徴とする請求項5または6に記載の高張力溶融亜鉛めっき鋼板の製造方法。   The method for producing a high-tensile hot-dip galvanized steel sheet according to claim 5 or 6, wherein, in the continuous hot-dip galvanizing step, an alloying treatment is performed on the hot-dip galvanized steel sheet.
JP2004349887A 2004-12-02 2004-12-02 High tensile hot dip galvanized steel sheet and its manufacturing method Active JP4360319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004349887A JP4360319B2 (en) 2004-12-02 2004-12-02 High tensile hot dip galvanized steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349887A JP4360319B2 (en) 2004-12-02 2004-12-02 High tensile hot dip galvanized steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2006161064A JP2006161064A (en) 2006-06-22
JP4360319B2 true JP4360319B2 (en) 2009-11-11

Family

ID=36663418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349887A Active JP4360319B2 (en) 2004-12-02 2004-12-02 High tensile hot dip galvanized steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4360319B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5206244B2 (en) * 2008-09-02 2013-06-12 新日鐵住金株式会社 Cold rolled steel sheet
JP5354178B2 (en) * 2009-03-25 2013-11-27 Jfeスチール株式会社 Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP5644059B2 (en) * 2009-03-25 2014-12-24 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
KR101185933B1 (en) 2010-03-31 2012-09-25 현대제철 주식회사 Hot coil for galva annealed steel sheet and method for producing galva annealed steel sheet by using hot coil
JP5434960B2 (en) 2010-05-31 2014-03-05 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in bendability and weldability and method for producing the same
JP2012082499A (en) * 2010-10-14 2012-04-26 Sumitomo Metal Ind Ltd Hot-dipped steel sheet and method for producing the same
KR101461740B1 (en) * 2012-12-21 2014-11-14 주식회사 포스코 Hot rolled steel sheet having low deviation of mechanical property and thickness and excellent coating detachment resistance and method for manufacturing the same
KR101461857B1 (en) 2014-08-26 2014-11-14 주식회사 포스코 Manufacturing method for hot press formed products and hot press formed products using the same
CN106435390A (en) * 2016-08-31 2017-02-22 芜湖市和蓄机械股份有限公司 High-strength connecting base casting raw material formula and preparing technology thereof
JPWO2023026468A1 (en) * 2021-08-27 2023-03-02
WO2023190867A1 (en) * 2022-03-30 2023-10-05 日本製鉄株式会社 Steel member and steel sheet

Also Published As

Publication number Publication date
JP2006161064A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP6409917B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
JP4959161B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility
JP5403185B2 (en) High-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in plating adhesion, formability and hole expansibility having a tensile strength of 980 MPa or more, and a method for producing the same
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP5732907B2 (en) Hot three-dimensional bending steel, hot three-dimensional bending steel and manufacturing method thereof
WO2015041159A1 (en) Hot stamp molded body and method for producing same
JP5510057B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5699764B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
JP2007016319A (en) High tensile hot-dip galvanized steel sheet, and method for producing the same
JP5825185B2 (en) Cold rolled steel sheet and method for producing the same
TW201319267A (en) Alloyed hot-dip galvanized steel sheet
JP4751152B2 (en) Hot-dip galvanized high-strength steel sheet excellent in corrosion resistance and hole expansibility, alloyed hot-dip galvanized high-strength steel sheet, and methods for producing them
JP4966485B2 (en) High tensile hot dip galvanized steel sheet and its manufacturing method
JP5953693B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method
JPWO2017033901A1 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
JP6409916B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
JP6168144B2 (en) Galvanized steel sheet and manufacturing method thereof
JP4360319B2 (en) High tensile hot dip galvanized steel sheet and its manufacturing method
JP5167867B2 (en) Alloyed hot-dip galvanized steel sheet with excellent surface properties and method for producing the same
JP5332547B2 (en) Cold rolled steel sheet
JP6958459B2 (en) Fused Zn-Al-Mg alloy plated steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Ref document number: 4360319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350