JP5196807B2 - Ferritic stainless steel sheet excellent in formability with low roughness of processing surface and method for producing the same - Google Patents

Ferritic stainless steel sheet excellent in formability with low roughness of processing surface and method for producing the same Download PDF

Info

Publication number
JP5196807B2
JP5196807B2 JP2007045448A JP2007045448A JP5196807B2 JP 5196807 B2 JP5196807 B2 JP 5196807B2 JP 2007045448 A JP2007045448 A JP 2007045448A JP 2007045448 A JP2007045448 A JP 2007045448A JP 5196807 B2 JP5196807 B2 JP 5196807B2
Authority
JP
Japan
Prior art keywords
rolling
less
stainless steel
plane
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007045448A
Other languages
Japanese (ja)
Other versions
JP2008208412A (en
Inventor
正治 秦野
明彦 高橋
謙 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2007045448A priority Critical patent/JP5196807B2/en
Priority to KR1020080005428A priority patent/KR100977600B1/en
Priority to CN2008100813270A priority patent/CN101255532B/en
Publication of JP2008208412A publication Critical patent/JP2008208412A/en
Application granted granted Critical
Publication of JP5196807B2 publication Critical patent/JP5196807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Description

本発明は、加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板とその製造方法に関するものである。   The present invention relates to a ferritic stainless steel sheet excellent in formability with small roughness of the processed skin and a method for producing the same.

フェライト系ステンレス鋼板は、厨房機器、家電製品、電子機器など幅広い分野で使用されている。しかしながら、オ−ステナイト系ステンレス鋼板に比べ、成形性に劣るため、用途が限定される場合があった。   Ferritic stainless steel sheets are used in a wide range of fields such as kitchen equipment, home appliances, and electronic equipment. However, since the formability is inferior to that of an austenitic stainless steel sheet, the application may be limited.

近年、精錬技術の向上により極低炭素・窒素化が可能となり、更にTiやNbなどの安定化元素の添加により、成形性と耐食性を高めたフェライト系ステンレス鋼板は広範囲の成形用途へ適用されつつある。これは、フェライト系ステンレス鋼が屋内環境において良好な耐食性を有し、多量のNiを添加するオ−ステナイト系ステンレス鋼よりも経済性に優れるためである。   In recent years, ferritic stainless steel sheets with improved formability and corrosion resistance have been applied to a wide range of forming applications through the addition of stabilizing elements such as Ti and Nb. is there. This is because ferritic stainless steel has good corrosion resistance in an indoor environment and is more economical than austenitic stainless steel to which a large amount of Ni is added.

従来、フェライト系ステンレス鋼板の成形性向上は、深絞り性すなわちr値を向上させるものが主であり、例えば、特許文献1および特許文献2には熱延条件を制御してr値を向上させる製造技術が開示されている。また、フェライト系ステンレス鋼は、オ−ステナイト系ステンレス鋼に比べて伸びが低いため張り出し性に劣る欠点があった。例えば、特許文献3,特許文献4,特許文献5には、伸びの向上によって張り出し性を改善させる成分系が開示されている。近年、特許文献6には、極低炭素・窒素化してTiを添加したフェライト系ステンレス鋼板の面内異方性を低減し,優れた成形性を兼備するための集合組織およびその製造技術が開示されている。しかし、これらのフェライト系ステンレス鋼板は、深絞りや張出し等の成形性に優れるものの、オ−ステナイト系ステンレス鋼板と比較して加工後の表面品質は十分でない。   Conventionally, the improvement of formability of ferritic stainless steel sheet has been mainly to improve deep drawability, that is, the r value. For example, in Patent Document 1 and Patent Document 2, the hot rolling conditions are controlled to improve the r value. Manufacturing techniques are disclosed. Moreover, since ferritic stainless steel has low elongation compared to austenitic stainless steel, it has a drawback of being inferior in overhanging property. For example, Patent Literature 3, Patent Literature 4, and Patent Literature 5 disclose component systems that improve the stretchability by improving elongation. In recent years, Patent Document 6 discloses a texture for reducing the in-plane anisotropy of a ferritic stainless steel sheet to which Ti is added with ultra-low carbon, nitrogen, and a manufacturing technique for the same. Has been. However, although these ferritic stainless steel sheets are excellent in formability such as deep drawing and overhanging, the surface quality after processing is not sufficient as compared with austenitic stainless steel sheets.

これまで、フェライト系ステンレス鋼板の加工後の表面品質は、鋼板をプレス成形したときに圧延方向に沿って生じる微細な凹凸、いわゆるリジングと呼ばれる現象によって著しく劣化すると理解されてきた。そのため、リジングを抑制する方法については、従来から多くの研究開発がなされている。例えば、特許文献7,特許文献8,特許文献9には、リジングを抑制する鋼成分と製造方法について開示されている。   Until now, it has been understood that the surface quality of a ferritic stainless steel sheet after processing is significantly degraded by a phenomenon called so-called ridging, that is, fine irregularities generated along the rolling direction when the steel sheet is press-formed. Therefore, many researches and developments have been made on methods for suppressing ridging. For example, Patent Document 7, Patent Document 8, and Patent Document 9 disclose steel components and manufacturing methods that suppress ridging.

しかしながら、フェライト系ステンレス鋼板の耐リジング性を改善しても、実際の成形用途ではオ−ステナイト系ステンレス鋼板と比べて加工肌荒れを生じやすく、加工後の表面品質を問題視される場合がある。特許文献10,特許文献11には、加工肌荒れ(オレンジピ−ル;粗粒による肌荒れ)を改善する成分系と製造方法あるいは成形方法について開示されている。特許文献10はTiとNbの複合添加により鋼の結晶粒細粒化域を拡大することによって加工肌荒れを軽減するものである。しかし、これらは低Crフェライト系ステンレス鋼板(Cr<16%)に限定されるものであり、厨房機器等に通常使用される中Crフェライト系ステンレス鋼板(Cr≧16%)には適用されない。一方、特許文献11は、特許文献6に類する極低炭素・窒素化したTiを添加したフェライト系ステンレス鋼板を対象として、結晶粒径に応じて成形歪量を規定するものである。そのため、加工肌荒れの制約から優れた成形性を十分に生かすことが困難になる場合もある。   However, even if the ridging resistance of the ferritic stainless steel sheet is improved, roughing of the working surface is more likely to occur in an actual forming application than the austenitic stainless steel sheet, and the surface quality after processing may be regarded as a problem. Patent Literature 10 and Patent Literature 11 disclose a component system and a manufacturing method or a molding method for improving rough processing (orange peel; rough skin due to coarse grains). Patent Document 10 reduces the roughening of the processed skin by expanding the grain refinement region of steel by the combined addition of Ti and Nb. However, these are limited to low Cr ferritic stainless steel plates (Cr <16%), and are not applicable to medium Cr ferritic stainless steel plates (Cr ≧ 16%) that are normally used in kitchen equipment and the like. On the other hand, Patent Document 11 is intended to regulate the amount of forming strain according to the crystal grain size for a ferritic stainless steel sheet to which ultra-low carbon / nitrogenated Ti added similar to Patent Document 6 is added. For this reason, it may be difficult to make full use of excellent formability due to restrictions on rough processing.

上述した通り、厨房機器等に通常使用される中Crフェライト系ステンレス鋼板(Cr≧16%),特に近年、極低炭素・窒素化してTi添加したフェライト系ステンレス鋼板の成形性を十分に生かして加工肌荒れの低減を図ったものはない。すなわち、フェライト系ステンレス鋼板において成形歪量を厳格に規定する必要のない、加工肌荒れの小さいフェライト系ステンレス鋼板は未だ出現していないのが現状である。   As described above, the medium Cr ferritic stainless steel sheet (Cr ≧ 16%) usually used for kitchen appliances, etc., especially in recent years, making use of the formability of ultra-low carbon, ferritic stainless steel sheet containing Ti and added with Ti There is no one that reduces the roughening of the processed skin. That is, the present situation is that a ferritic stainless steel sheet that does not require strict regulation of the amount of forming strain in a ferritic stainless steel sheet and that has a small rough surface has not yet appeared.

特開昭62−77423号公報JP 62-77423 A 特開平7−268485号公報JP-A-7-268485 特開昭58−61258公報JP 58-61258 A 特開平01−75652公報JP-A-01-77562 特開平11−350090公報JP-A-11-350090 特開2005−163139公報JP 2005-163139 A 特開平6−81036公報JP-A-6-81036 特開平8−333639公報JP-A-8-333639 特開平10−280046公報JP-A-10-280046 特開平7−292417公報JP-A-7-292417 特開2005−139533公報JP 2005-139533 A

本発明は、鋼の成分と集合組織、より好ましくは結晶粒径を適正範囲に制御することにより、上述した課題を解決し、加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板とその製造方法を提供することを目的とする。   The present invention solves the above-mentioned problems by controlling the steel components and texture, more preferably the crystal grain size, within an appropriate range, and a ferritic stainless steel sheet having excellent formability with less rough processing and a method for producing the same. The purpose is to provide.

(1)質量%にて、C:0.001〜0.015%、Si:0.01〜0.60%、Mn:0.01〜0.30%、P:0.005〜0.035%、S:0.0001〜0.0100%、Cr:15〜22%、N:0.001〜0.020%、Ti:0.05〜0.35%、Al:0.005〜0.1%、残部がFeおよび不可避的不純物からなり、板面に垂直方向の{222}面,{112}面,{002}面のX線積分強度比をそれぞれIa,Ib,Icとし、圧延方向を0°として0°,45°,90°の3方向において伸び歪20%を付与した後の、板面に垂直方向の{222}面,{112}面,{002}面のX線積分強度比をそれぞれIa’,Ib’,Ic’とした場合に、下記の関係を全て満たすことを特徴とする加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板。
<素材> Ia/(Ib+Ic)>10,Ia>20
<伸び歪20%付与後>
0°方向 Ia’/(Ib’+Ic’)>3,Ia’>10
45°方向 Ia’/(Ib’+Ic’)>5,Ia’>10
90°方向 Ia’/(Ib’+Ic’)>5,Ia’>10
(2)前記鋼が、さらに質量%にて、Mg:0.0050%以下、Nb:0.6%以下、Mo:2.0%以下、Ni:2.0%以下、Cu:2.0%以下、B:0.005以下の1種または2種以上含有していることを特徴とする(1)に記載の加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板。
(3)前記鋼の結晶粒径が20μm以下であり,圧延方向を0°として0°,45°,90°の3方向においてそれぞれ伸び歪20%を付与した後の表面粗さ(Rzで表記される十点平均粗さ)が3μm未満であることを特徴とする(1)および(2)に記載の加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板。
(4)(1)または(2)に記載の鋼成分を有するフェライト系ステンレス鋼スラブを1050〜1250℃の範囲に加熱し,総圧下率80%以上の粗熱延を行い、次いで実施する仕上げ熱延において下記の条件を全て満足して700℃未満の温度で巻き取って熱延板とし、焼鈍することなく酸洗して圧延率40%以上の1次冷延を施して冷延板とし、870〜1000℃で中間焼鈍を実施し、さらに圧延率65%以上の最終冷延を行って最終冷延板とし、750〜1000℃で最終焼鈍することを特徴とする(1)から(3)に記載の加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板の製造方法
i)1050℃以下で総圧下率80〜95%とする。
(ii)最終3パスの総圧下率を40〜60%で各パス間時間を1秒以内とする。
(iii)仕上げ熱延の開始温度を980〜1030℃として、仕上げ圧延後2秒以内に水冷を開始する。
(1) In mass%, C: 0.001 to 0.015%, Si: 0.01 to 0.60%, Mn: 0.01 to 0.30%, P: 0.005 to 0.035 %, S: 0.0001-0.0100%, Cr: 15-22%, N: 0.001-0.020%, Ti: 0.05-0.35%, Al: 0.005-0. 1%, the balance being Fe and inevitable impurities, the X-ray integrated intensity ratios of the {222} plane, {112} plane, and {002} plane perpendicular to the plate plane are Ia, Ib, and Ic, respectively, in the rolling direction X-ray integration of {222} plane, {112} plane, {002} plane perpendicular to the plate surface after applying 20% elongation strain in three directions of 0 °, 45 °, and 90 ° with 0 ° When the intensity ratios are Ia ′, Ib ′, and Ic ′, the following rough relations are satisfied: Excellent ferritic stainless steel sheet formability are.
<Material> Ia / (Ib + Ic)> 10, Ia> 20
<After giving 20% elongation strain>
0 ° direction Ia ′ / (Ib ′ + Ic ′)> 3, Ia ′> 10
45 ° direction Ia ′ / (Ib ′ + Ic ′)> 5, Ia ′> 10
90 ° direction Ia ′ / (Ib ′ + Ic ′)> 5, Ia ′> 10
(2) The steel is further in mass%, Mg: 0.0050% or less, Nb: 0.6% or less, Mo: 2.0% or less, Ni: 2.0% or less, Cu: 2.0 % Or less, B: 0.005 or less, or a combination of two or more, ferritic stainless steel sheet having excellent formability with less roughened working surface as described in (1).
(3) The crystal grain size of the steel is 20 μm or less, and the surface roughness (expressed in Rz) after giving 20% elongation strain in each of the three directions of 0 °, 45 °, and 90 ° with the rolling direction as 0 °. The ferritic stainless steel sheet having excellent formability with small roughness of the processed surface according to (1) and (2), wherein the ten-point average roughness) is less than 3 μm.
(4) A ferritic stainless steel slab having the steel component described in (1) or (2) is heated to a range of 1050 to 1250 ° C., subjected to rough hot rolling with a total rolling reduction of 80% or more, and then a finish to be performed. In hot rolling, all of the following conditions are satisfied, the steel sheet is wound at a temperature of less than 700 ° C. to obtain a hot rolled sheet, pickled without annealing, and subjected to primary cold rolling with a rolling rate of 40% or more to obtain a cold rolled sheet. The intermediate annealing is performed at 870 to 1000 ° C., the final cold rolling at a rolling rate of 65% or more is performed to obtain the final cold rolled sheet, and the final annealing is performed at 750 to 1000 ° C. (3) to (3 The manufacturing method of the ferritic stainless steel plate excellent in the moldability with the small rough processing surface described in the above .
( I) The total rolling reduction is set to 80 to 95% at 1050 ° C. or lower.
(Ii) The total rolling reduction rate of the final three passes is 40 to 60%, and the time between passes is within 1 second.
(Iii) The start temperature of finish hot rolling is set to 980 to 1030 ° C. , and water cooling is started within 2 seconds after finish rolling.

以下、上記(1)〜(3)の鋼板に係わる発明及び(4)、(5)の製造方法に係わる発明をそれぞれ本発明という。また、(1)〜(5)の発明を合わせて、本発明ということがある。   Hereinafter, the invention relating to the steel sheets of (1) to (3) and the invention relating to the manufacturing methods of (4) and (5) are referred to as the present invention. The inventions (1) to (5) may be collectively referred to as the present invention.

以上に説明したように、(1)〜(3)の本発明のフェライト系ステンレス鋼板は、成分および集合組織,より好ましくは結晶粒径を適正範囲に制御することにより、成形歪量を厳格に規定することなく加工肌荒れを低減することが出来る。このフェライト系ステンレス鋼板は、(4)や(5)の本発明の方法によって、工業的に安定して製造することができる。   As explained above, the ferritic stainless steel sheet of the present invention of (1) to (3) has a strict amount of molding strain by controlling the components and texture, more preferably the crystal grain size, within an appropriate range. The roughness of the processed skin can be reduced without prescribing. This ferritic stainless steel sheet can be produced industrially and stably by the method of the present invention of (4) or (5).

本発明者らは、前記した課題を解決するために、Tiを添加した高純度フェライト系ステンレス鋼板に発生する加工肌荒れに及ぼす集合組織ならびに結晶粒径の影響について種々検討を行い、下記の新しい知見を得た。   In order to solve the above-mentioned problems, the present inventors have conducted various studies on the influence of texture and grain size on the roughened working surface generated in a high purity ferritic stainless steel sheet to which Ti has been added. Got.

加工肌荒れは、圧延方向を0°として0°,45°,90°の3方向においてそれぞれ伸び歪20%の加工により発生する表面凹凸を、JISB0601に規定する十点平均粗さRzで評価した場合を例に説明する。   Roughness of the processed surface is a case where surface irregularities generated by processing with an elongation strain of 20% in each of three directions of 0 °, 45 °, and 90 ° with a rolling direction of 0 ° are evaluated by a ten-point average roughness Rz defined in JISB0601. Will be described as an example.

(a)加工肌荒れは、素材として{111}<112>から{111}<110>にかけてのγ−fiberと称する集合組織を鮮鋭化させて、3方向いずれの加工後においても{111}<110>への集積を高めることにより低減することを見出した。 (A) Roughness of the processed surface is obtained by sharpening a texture called γ-fiber from {111} <112> to {111} <110> as a material, and {111} <110 after processing in any of the three directions. It has been found that it is reduced by increasing the accumulation in>.

(b)体心立方金属多結晶であるフェライト系ステンレス鋼は、{111}<110>が加工後の安定方位となり得る。しかし、加工肌荒れが大きくなる場合は、加工後に{111}<110>に加え,{112}<110>や{001}<110>のα−fiberと称する方位の存在量も大きくなる特徴を有した。 (B) In the ferritic stainless steel which is a body-centered cubic metal polycrystal, {111} <110> can be a stable orientation after processing. However, when the roughened surface becomes large, in addition to {111} <110> after processing, there is a feature that the abundance of orientations called α-fibers of {112} <110> and {001} <110> also increases. did.

(c)加工後にα−fiberの存在量が大きくなる素材の集合組織は、下記の(i)あるいは(ii)、または(i)と(ii)が複合した場合である。
(i){111}<112>や{554}<225>へ強く集積している。
(ii){112}<110>や{001}<110>の存在量が大きい。
(C) The texture of the material in which the abundance of α-fiber increases after processing is the following (i) or (ii), or a combination of (i) and (ii).
(I) Strongly accumulated in {111} <112> and {554} <225>.
(Ii) The abundance of {112} <110> and {001} <110> is large.

(d)(c)に記載の集合組織を形成する場合、加工肌荒れは、結晶粒径を小さくしても十分に低減しない。 (D) When the texture described in (c) is formed, the roughened processed skin is not sufficiently reduced even if the crystal grain size is reduced.

(e)(a)から(d)より、加工肌荒れへの影響因子として、結晶粒径の他に集合組織の関与が大きいと判断する結果が得られた。すなわち、加工肌荒れの低減には、加工により出現するα−fiberを抑制し,{111}面内の結晶回転を円滑にすることが効果的であると考えられる。 (E) From (a) to (d), the result of judging that the involvement of the texture in addition to the crystal grain size was large as an influencing factor on the roughened processing skin was obtained. That is, it is considered effective to reduce the roughness of the processed skin by suppressing α-fiber appearing by processing and smoothing the crystal rotation in the {111} plane.

(f)(e)に記載の集合組織による加工肌荒れの低減効果は、結晶粒径が20μm以下の場合に顕著に発現する。 (F) The effect of reducing the roughness of the processed skin due to the texture described in (e) is remarkably exhibited when the crystal grain size is 20 μm or less.

(g)(a)に記載の集合組織を有して結晶粒径が20μm以下の場合、3方向いずれの加工後の表面粗さRzも3μm未満となる。これは、加工肌荒れが実用上問題視されないレベルにあるオ−ステナイト系ステンレス鋼、例えばSUS304の場合に匹敵する。 (G) When the texture described in (a) is provided and the crystal grain size is 20 μm or less, the surface roughness Rz after processing in any of the three directions is less than 3 μm. This is comparable to the case of austenitic stainless steel, such as SUS304, at which the roughened working surface is at a level where practical problems are not regarded as a problem.

(h)(c)の(i)に記述する集合組織を形成せず,(a)に記載するようにγ−fiberを鮮鋭化させるには、熱延板焼鈍を省略した2回の冷間圧延工程とすることが好ましい。 (H) In order to sharpen the γ-fiber as described in (a) without forming the texture described in (i) of (c), two cold operations omitting hot-rolled sheet annealing It is preferable to use a rolling process.

(i)(h)に加えて結晶粒径を20μm以下とする場合は、最終冷間圧延率を高くして,最終焼鈍温度を低くすることが好ましい。 (I) When the crystal grain size is 20 μm or less in addition to (h), it is preferable to increase the final cold rolling rate and lower the final annealing temperature.

(j)(c)の(ii)に記述する方位の存在量を低減するには、熱延板段階でγ−fiberを発達させることが有効である。そのためには、前記(h)に加えて,下記の(iii)と(iv)を指向する製造条件がより好ましい。
(iii)粗熱延の圧下率を高くして、粗熱延後の再結晶を促進する。
(iv)仕上げ熱延の圧下率を高くするとともに、仕上げ熱延および巻取り温度を低くして、再結晶を抑制しつつ歪を蓄積した加工組織とする。
(J) In order to reduce the abundance of the orientation described in (ii) of (c), it is effective to develop γ-fiber in the hot rolling stage. For this purpose, in addition to the above (h), manufacturing conditions directed to the following (iii) and (iv) are more preferable.
(Iii) Increase the rolling ratio of rough hot rolling to promote recrystallization after rough hot rolling.
(Iv) While increasing the rolling reduction of the finish hot rolling, the finish hot rolling and the coiling temperature are lowered to obtain a processed structure in which strain is accumulated while suppressing recrystallization.

上述した集合組織は、X線回折法やEBSP(Electron Back-Scatter Diffraction Pattern)を用いて、結晶粒方位分布関数(Crystallite Orientation Distribution Function、ODFと呼称される)を求めることにより解析することができる。{222}面,{112}面,{002}面の存在量は、X線積分強度比により定量できる。   The texture described above can be analyzed by obtaining a crystallite orientation distribution function (referred to as ODF) using X-ray diffraction or EBSP (Electron Back-Scatter Diffraction Pattern). . The abundance of the {222} plane, {112} plane, and {002} plane can be quantified by the X-ray integral intensity ratio.

前記(1)〜(5)の本発明は、上記(a)〜(i)の知見に基づいて完成されたものである。   The present inventions (1) to (5) have been completed based on the findings (a) to (i).

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".

(A)成分の限定理由を以下に説明する。   (A) The reason for limitation of a component is demonstrated below.

Cは、成形性と耐食性を劣化させるため、その含有量は少ないほど良いため、上限を0.015%とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.001%とする。好ましくは、耐食性や製造コストを考慮して0.002〜0.005%とする。   Since C deteriorates moldability and corrosion resistance, the lower the content, the better. Therefore, the upper limit is made 0.015%. However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.001%. Preferably, it is 0.002 to 0.005% in consideration of corrosion resistance and manufacturing cost.

Siは、脱酸元素として添加される場合がある。しかし、固溶強化元素であり、伸びの低下抑制からその含有量は少ないほど良いため、上限を0.60%とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.01%とする。好ましくは、加工性や製造コストを考慮して0.03〜0.30%とする。   Si may be added as a deoxidizing element. However, since it is a solid solution strengthening element and its content is preferably as small as possible from the suppression of elongation reduction, the upper limit is made 0.60%. However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.01%. Preferably, considering the workability and manufacturing cost, 0.03 to 0.30%.

Mnは、Siと同様、固溶強化元素であるため、その含有量は少ないほど良い。伸びの低下抑制から上限を0.30%とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.01%とした。好ましくは、加工性と製造コストを考慮して0.03〜0.15%とする。   Since Mn is a solid solution strengthening element like Si, the smaller the content, the better. The upper limit is made 0.30% in order to suppress the decrease in elongation. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.01%. Preferably, considering the workability and the manufacturing cost, 0.03 to 0.15%.

Pは、SiやMnと同様、固溶強化元素であるため、その含有量は少ないほど良い。伸びの低下抑制から上限を0.035%とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.005%とする。好ましくは、製造コストと加工性を考慮して0.010〜0.020%とする。   Since P is a solid solution strengthening element like Si and Mn, the smaller the content, the better. The upper limit is made 0.035% in order to suppress the decrease in elongation. However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.005%. Preferably, considering the manufacturing cost and workability, the content is made 0.010 to 0.020%.

Sは、不純物元素であり、熱間加工性や耐食性を阻害するため、その含有量は少ないほど良い。そのため、上限は0.010%とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.0001とする。好ましくは、耐食性や製造コストを考慮して0.0010〜0.0050%とする。   S is an impurity element and inhibits hot workability and corrosion resistance, so the smaller the content, the better. Therefore, the upper limit is made 0.010%. However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.0001. Preferably, considering the corrosion resistance and the manufacturing cost, the content is made 0.0010 to 0.0050%.

Crは、耐食性を確保するための必須元素であり、下限を15%とする。但し、22%超の添加は靱性低下により製造性が阻害され、伸びも劣化する。よって、Crの上限は22%とする。好ましくは、耐食性および製造性と加工性を考慮して16〜19%とする。   Cr is an essential element for ensuring corrosion resistance, and its lower limit is 15%. However, addition over 22% impairs manufacturability due to a decrease in toughness and degrades elongation. Therefore, the upper limit of Cr is 22%. Preferably, considering the corrosion resistance and manufacturability and workability, the content is made 16 to 19%.

Nは、Cと同様に成形性と耐食性を劣化させるため、その含有量は少ないほど良いため、上限を0.020%とする。但し、過度の低下は凝固時にフェライト粒生成の核となるTiNが析出せず、凝固組織が柱状晶化し、製品板成形時の耐リジング性が劣化する懸念がある。また、Nが過剰に添加された場合、固溶Nにより伸びの低下をもたらすことから、下限を0.001%とする。好ましくは、製造コストと耐食性を考慮して0.005〜0.012%とする。   N, like C, deteriorates moldability and corrosion resistance, so the lower the content, the better. Therefore, the upper limit is made 0.020%. However, excessive reduction may cause TiN which becomes the nucleus of ferrite grain formation at the time of solidification, the solidified structure becomes columnar crystals, and the ridging resistance at the time of product plate forming may be deteriorated. Moreover, when N is added excessively, since the reduction | decrease of elongation is brought about by solid solution N, a minimum is made into 0.001%. Preferably, considering the manufacturing cost and the corrosion resistance, the content is made 0.005 to 0.012%.

Tiは、C,N,S,Pと結合して耐食性、耐粒界腐食性および成形性を向上させるとともに、凝固組織の微細化に寄与するため、下限を0.05%とする。但し、Tiも固溶強化元素であり、過度の添加は伸びの低下に繋がるため、上限を0.35%とする。好ましくは、溶接部の粒界腐食性や成形性を考慮して0.10〜0.20%とする。   Ti combines with C, N, S, and P to improve corrosion resistance, intergranular corrosion resistance and formability, and contributes to refinement of the solidified structure, so the lower limit is made 0.05%. However, Ti is also a solid solution strengthening element, and excessive addition leads to a decrease in elongation, so the upper limit is made 0.35%. Preferably, considering the intergranular corrosion property and formability of the welded portion, it is made 0.10 to 0.20%.

Alは、脱酸元素として有効な元素であるため、下限を0.005%とする。しかし、過度の添加は成形性、溶接性および表面品質の劣化をもたらすため、上限を0.1%とする。好ましくは、精錬コストを考慮して0.01〜0.05%とする。   Since Al is an effective element as a deoxidizing element, the lower limit is made 0.005%. However, excessive addition causes deterioration of formability, weldability and surface quality, so the upper limit is made 0.1%. Preferably, considering the refining cost, 0.01 to 0.05%.

Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する他、TiNの晶出核として作用する。TiNは凝固過程においてフェライト相の凝固核となり、TiNの晶出を促進させることで、凝固時にフェライト相を微細生成させることができる。凝固組織を微細化させることにより、製品のリジングや本発明の加工肌荒れなどの粗大凝固組織に由来する方位粒を低減できる他、成形性の向上をもたらす。そのため、添加する場合は0.005%以下とする。0.0050%を超えると溶接性が劣化する。TiNの晶出核となるMg酸化物の溶鋼中での積極的な形成は、0.0001%から安定して発現する。より好ましくは、精錬コストを考慮して0.0002〜0.0020%とする。   Mg forms Mg oxide with Al in molten steel and acts as a deoxidizer, and also acts as a crystallization nucleus of TiN. TiN becomes a solidification nucleus of the ferrite phase in the solidification process, and by facilitating crystallization of TiN, the ferrite phase can be finely formed during solidification. By refining the solidified structure, orientation grains derived from coarse solidified structures such as product ridging and roughened processed skin of the present invention can be reduced, and the moldability is improved. Therefore, when adding, it is 0.005% or less. If it exceeds 0.0050%, the weldability deteriorates. Aggressive formation in the molten steel of Mg oxide, which becomes a crystallization nucleus of TiN, appears stably from 0.0001%. More preferably, considering the refining cost, the content is made 0.0002 to 0.0020%.

Nbは、成形性と耐食性を向上させる元素であり、添加する場合は0.6%以下とする。0.6%を超えると材料強度を上昇させて延性の低下をもたらす。その効果は、0.01%から安定して発現する。より好ましくは、製造性や成形性と耐食性を考慮して0.05〜0.3%とする。   Nb is an element that improves moldability and corrosion resistance. When Nb is added, the Nb content is 0.6% or less. If it exceeds 0.6%, the material strength is increased and ductility is reduced. The effect appears stably from 0.01%. More preferably, it is 0.05 to 0.3% in consideration of manufacturability, moldability and corrosion resistance.

Mo、Ni、Cuは耐食性を向上させる元素であり、添加する場合は2.0%以下とする。2.0%を超えると成形性、特に延性の低下をもたらす。その効果は、0.1%から安定して発現する。より好ましくは、製造性や延性を考慮して0.3〜1.5%とする。   Mo, Ni, and Cu are elements that improve the corrosion resistance, and when added, the content is made 2.0% or less. If it exceeds 2.0%, the moldability, particularly the ductility, is lowered. The effect appears stably from 0.1%. More preferably, it is 0.3 to 1.5% in consideration of manufacturability and ductility.

Bは、2次加工性を向上させる元素であり、Ti添加鋼への添加は有効である。添加する場合は0.005%以下とする。0.005%を超えると延性の低下をもたらす。その効果は、0.0001%から安定して発現する。より好ましくは、精錬コストや延性を考慮して0.0003〜0.0030%とする。   B is an element that improves secondary workability, and addition to Ti-added steel is effective. When added, the content is 0.005% or less. If it exceeds 0.005%, the ductility is lowered. The effect appears stably from 0.0001%. More preferably, considering the refining cost and ductility, the content is made 0.0003 to 0.0030%.

(B)集合組織に関する限定理由を以下に説明する。   (B) The reason for limitation regarding the texture will be described below.

本発明のフェライト系ステンレス鋼板は、(A)項で述べた成分を有し、加工肌荒れを低減するために、集合組織と好ましくは結晶粒径を規定したものである。   The ferritic stainless steel sheet of the present invention has the components described in the item (A), and defines the texture and preferably the crystal grain size in order to reduce the roughened working surface.

集合組織は、前記したように、X線回折法やEBSP(Electron Back-Scatter Diffraction Pattern)を用いて、結晶粒方位分布関数(Crystallite Orientation Distribution Function、ODFと呼称される)を求めることにより解析することができる。この関数は、例えば、軽金属;井上博史,Vol.42,No.6,358〜367に記載されているように、材料座標系に対して結晶粒の方位を一義的に指定する三つの変数(ψ1,φ,ψ2)である。この関数を求めれば、オイラ−角(ψ1,φ,ψ2)の方位を持つ結晶粒の存在量を知ることができる。   As described above, the texture is analyzed by obtaining a crystallite orientation distribution function (referred to as ODF) using an X-ray diffraction method or EBSP (Electron Back-Scatter Diffraction Pattern). be able to. This function is described in, for example, light metals; Hiroshi Inoue, Vol. 42, no. 6, 358 to 367, there are three variables (ψ1, φ, ψ2) that uniquely specify the crystal grain orientation with respect to the material coordinate system. By obtaining this function, it is possible to know the abundance of crystal grains having Euler angles (ψ1, φ, ψ2).

具体的には、図1に示すようなψ2=45°断面上において(ψ1,φ)が、{111}<112>は(30°,54.7°)および(90°,54.7°),{111}<110>は(0°,54.7°)および(60°,54.7°),{112}<110>は(0°,34.7°),{001}<110>は(0°,0°)および(90°,0°)の強度によりその存在量を知ることができる。   Specifically, (ψ1, φ) on the ψ2 = 45 ° cross section as shown in FIG. 1 is {111} <112> is (30 °, 54.7 °) and (90 °, 54.7 °). ), {111} <110> are (0 °, 54.7 °) and (60 °, 54.7 °), {112} <110> is (0 °, 34.7 °), {001} < 110> can know its abundance by the intensity of (0 °, 0 °) and (90 °, 0 °).

さらに、{111}面,{112}面,{001}面の存在量は、X線積分強度により容易に定量できる。例えば、X線源としてMo管球を用いた場合、MoKα線の2θ測定位置は、{222}面が50.8°,{112}面が35.3°,{002}面が28.7°である。{111}面および{001}面の強度は、{222}面および{002}面の強度へ反映される。そのため、{222}面,{112}面,{002}面の積分強度測定により、{111}面,{112}面,{001}面の存在量を定量することができる。各測定面のX線積分強度比は、積分強度測定値をα−Feのランダム試料の積分強度測定値で規格化した値を用いる。   Further, the abundance of the {111} plane, {112} plane, and {001} plane can be easily quantified by the X-ray integral intensity. For example, when a Mo tube is used as the X-ray source, the 2θ measurement position of the MoKα ray is 50.8 ° for the {222} plane, 35.3 ° for the {112} plane, and 28.7 for the {002} plane. °. The strength of {111} plane and {001} plane is reflected in the strength of {222} plane and {002} plane. Therefore, the abundance of the {111} plane, {112} plane, and {001} plane can be quantified by measuring the integrated intensity of the {222} plane, {112} plane, and {002} plane. As the X-ray integral intensity ratio of each measurement surface, a value obtained by normalizing the integral intensity measurement value with the integral intensity measurement value of the random sample of α-Fe is used.

前記したODFや積分強度測定に供する試料は、素材および加工後の板厚中心部の板面に平行な面(ND面)とする。   The sample used for the ODF or integral intensity measurement described above is a surface (ND surface) parallel to the material and the plate surface at the center of the plate thickness after processing.

素材の集合組織は、加工肌荒れを低減するために{111}<211>から{111}<110>にかけてのγ−fiberを鮮鋭化する。そのため、板面に垂直方向の{222}面,{112}面,{002}面のX線積分強度比をそれぞれIa,Ib,Icとした場合、Ia/(Ib+Ic)>10,Ia>20とする。Ia/(Ib+Ic)<10,Ia<20の場合、加工後、{111}<110>への集積が弱くなるとともにα−fiberに由来する方位の出現により加工肌荒れが大きくなる。好ましくは、加工後、{111}<110>への集積を維持して加工肌荒れを低減するために、Ia/(Ib+Ic)>15,Ia>40,更に、Ib<2,Ic<2とする。   The texture of the material sharpens the γ-fiber from {111} <211> to {111} <110> in order to reduce roughness of the processed skin. Therefore, when the X-ray integrated intensity ratios of the {222} plane, {112} plane, and {002} plane perpendicular to the plate plane are Ia, Ib, and Ic, respectively, Ia / (Ib + Ic)> 10, Ia> 20 And In the case of Ia / (Ib + Ic) <10, Ia <20, after processing, the accumulation in {111} <110> is weakened, and the roughening of the processed skin is increased due to the appearance of an orientation derived from α-fiber. Preferably, Ia / (Ib + Ic)> 15, Ia> 40, and further, Ib <2, Ic <2 in order to maintain the accumulation in {111} <110> and reduce the roughness of the processed skin after processing. .

しかし、素材において前記したγ−fiberに属する{111}<211>あるいは{554}<225>への集積が大きい場合、加工後にα−fiberに由来する方位の出現が大きくなり、加工肌荒れが大きくなる。そのため、加工後の集合組織についても以下の条件を全て満たすものとする。
0°方向 Ia’/(Ib’+Ic’)>3,Ia’>10
45°方向 Ia’/(Ib’+Ic’)>5,Ia’>10
90°方向 Ia’/(Ib’+Ic’)>5,Ia’>10
ここで、Ia’,Ib’,Ic’は圧延方向を0°として0°,45°,90°の3方向において伸び歪20%を付与した後のX線積分強度比であり、Ia’,Ib’,Ic’はそれぞれ板面に垂直方向の{222}面,{112}面,{002}面を意味している。好ましくは、α−fiberの出現を低減して加工肌荒れを小さくするために、Ia’/(Ib’+Ic’)が0°方向で4以上,45°方向で6以上,90°方向で7以上とし,更に、Ib’<3,Ic’<2とする。
However, if the material has a large accumulation in {111} <211> or {554} <225> belonging to the above-described γ-fiber, the appearance of the orientation derived from α-fiber after processing increases, and the processing surface becomes rough. Become. Therefore, all the following conditions shall be satisfied also about the texture after processing.
0 ° direction Ia ′ / (Ib ′ + Ic ′)> 3, Ia ′> 10
45 ° direction Ia ′ / (Ib ′ + Ic ′)> 5, Ia ′> 10
90 ° direction Ia ′ / (Ib ′ + Ic ′)> 5, Ia ′> 10
Here, Ia ′, Ib ′, and Ic ′ are X-ray integrated intensity ratios after applying 20% elongation strain in three directions of 0 °, 45 °, and 90 ° with the rolling direction as 0 °, and Ia ′, Ib ′ and Ic ′ mean {222} plane, {112} plane, and {002} plane perpendicular to the plate surface, respectively. Preferably, Ia ′ / (Ib ′ + Ic ′) is 4 or more in the 0 ° direction, 6 or more in the 45 ° direction, and 7 or more in the 90 ° direction in order to reduce the appearance of α-fiber and reduce the roughness of the processed skin. And Ib ′ <3, Ic ′ <2.

上記の伸び歪20%は、フェライト系ステンレス鋼の一様伸びの範囲にほぼ相当する。そのため、これ以上の伸び歪を付与すると局部伸び、すなわちくびれを生じる場合もあり、加工肌荒れを正しく評価出来なくなる。従って、加工肌荒れは伸び歪20%を上限として評価する。   The above elongation strain of 20% substantially corresponds to the uniform elongation range of ferritic stainless steel. For this reason, if an elongation strain greater than this is applied, local elongation, that is, necking may occur, and roughening of the processed skin cannot be evaluated correctly. Accordingly, rough processing is evaluated with an elongation strain of 20% as the upper limit.

結晶粒径は20μm以下とすることが好ましい。より好ましくは5〜15μmとする。結晶粒径を5μm未満とすることは、(A)項で述べた成分を有する鋼の場合、実用上困難である。   The crystal grain size is preferably 20 μm or less. More preferably, it is 5 to 15 μm. Setting the crystal grain size to less than 5 μm is practically difficult in the case of steel having the components described in the item (A).

本発明で規定する表面粗さRz(十点平均粗さ)は、伸び歪20%付与後の加工肌荒れの程度を表す。圧延方向を0°として0°,45°,90°の3方向においてRzを3μm未満とすれば、視覚的あるいは触感的にも実用上加工肌荒れを問題視されないレベルにあるオーステナイト系ステンレス鋼、例えばSUS304と違和感なく加工肌荒れは低減されている。より好ましくはRzを2.5μm未満とする。   The surface roughness Rz (ten-point average roughness) defined in the present invention represents the degree of roughness of the processed skin after the application of 20% elongation strain. If the rolling direction is 0 ° and Rz is less than 3 μm in three directions of 0 °, 45 °, and 90 °, an austenitic stainless steel that is practically visually or tactilely not subject to rough processing, such as, for example, The roughness of the processed skin is reduced without any discomfort from SUS304. More preferably, Rz is less than 2.5 μm.

(C)製造方法
前記(A)項に記載の成分を有するフェライト系ステンレス鋼において、素材および加工後に前記(B)項に記載の集合組織ならびに結晶粒径とするためには、以下の製造条件が好ましい。
(C) Manufacturing method In the ferritic stainless steel having the component described in the item (A), in order to obtain the texture and the crystal grain size described in the item (B) after the material and processing, the following manufacturing conditions are used. Is preferred.

本発明の集合組織を形成するには、熱延板焼鈍を省略した2回の冷間圧延工程とすることが好ましい。1次冷延と最終冷延の間には、中間焼鈍を行う。   In order to form the texture of the present invention, it is preferable to perform two cold rolling steps in which hot-rolled sheet annealing is omitted. Intermediate annealing is performed between the primary cold rolling and the final cold rolling.

1次冷延の圧延率は、続く中間焼鈍で再結晶促進するために40%以上とする。好ましくは45%以上とする。1次冷延の圧延率を高くすると、熱延板の板厚や最終冷延率に制約が生じるため60%以下が好ましい。中間焼鈍は、再結晶を促進するために850℃以上とする。結晶粒径の粗大化を防止するために、焼鈍温度の上限は1000℃とする。   The rolling ratio of primary cold rolling is set to 40% or more in order to promote recrystallization in the subsequent intermediate annealing. Preferably it is 45% or more. When the rolling ratio of the primary cold rolling is increased, the thickness of the hot rolled sheet and the final cold rolling ratio are restricted, so 60% or less is preferable. Intermediate annealing is performed at 850 ° C. or higher in order to promote recrystallization. In order to prevent coarsening of the crystal grain size, the upper limit of the annealing temperature is set to 1000 ° C.

最終冷延の圧延率は、本発明の集合組織を発達させるために65%以上とする。好ましくは70%以上とする。より好ましくは75%以上である。最終焼鈍は、再結晶下限温度の750℃以上とし、粗粒化を防止するために1000℃以下とする。本発明の集合組織を発達させて結晶粒径20μm以下とするために、最終焼鈍温度は800〜850℃とすることが好ましい。   The rolling ratio of the final cold rolling is set to 65% or more in order to develop the texture of the present invention. Preferably it is 70% or more. More preferably, it is 75% or more. The final annealing is performed at a recrystallization lower limit temperature of 750 ° C. or higher and 1000 ° C. or lower in order to prevent coarsening. In order to develop the texture of the present invention so that the crystal grain size is 20 μm or less, the final annealing temperature is preferably 800 to 850 ° C.

冷間圧延は、可逆式の20段ゼンジミア圧延機や6段あるいは12段圧延機でも、複数パスを連続的に圧延するタンデム圧延機で実施しても良い。本発明の集合組織を形成するには、ワークロール径は大きい方が好ましい。そのため、ワークロール径は200mm以上とすることが好ましい。このような大径ロール圧延は、1次冷延時に実施することが好ましい。   Cold rolling may be performed by a reversible 20-stage Sendzimir mill, 6-stage or 12-stage mill, or a tandem mill that continuously rolls a plurality of passes. In order to form the texture of the present invention, the work roll diameter is preferably large. Therefore, the work roll diameter is preferably 200 mm or more. Such large diameter roll rolling is preferably performed at the time of primary cold rolling.

最終冷延後の製品板厚は、特に規定するものでない。但し、本発明鋼の成形用途への適用を意図すると、製品板厚は0.5mm以上であることが好ましい。   The product sheet thickness after the final cold rolling is not particularly specified. However, when it is intended to be used for forming the steel of the present invention, the product plate thickness is preferably 0.5 mm or more.

加工により出現するα−fiberを抑制して加工肌荒れを低減するには、粗熱延および仕上げ熱延の圧下率を高くするとともに、仕上げ熱延および巻取り温度を低くすることが好ましい。   In order to suppress the α-fiber appearing by processing and reduce the roughness of the processed skin, it is preferable to increase the rolling ratio of the rough hot rolling and the finishing hot rolling and lower the finishing hot rolling and the winding temperature.

熱間圧延の加熱温度は1050℃以上、1250℃以下とすることが好ましい。1050℃未満の場合、熱間変形抵抗が高くなり熱延負荷が大きくなるとともに、焼き付き疵を発生する場合がある。1250℃を超える場合、結晶粒径が粗粒化する。粗熱延後の再結晶を促進するために、より好ましくは1100〜1200℃とする。粗熱延は、凝固組織に由来する{001}方位粒を粉砕・細分化して粗熱延後の再結晶を促進するために、総圧下率を80%以上とすることが好ましい。   The heating temperature for hot rolling is preferably 1050 ° C. or more and 1250 ° C. or less. When the temperature is lower than 1050 ° C., the hot deformation resistance increases, the hot rolling load increases, and seizure flaws may occur. When it exceeds 1250 ° C., the crystal grain size becomes coarse. In order to promote recrystallization after rough hot rolling, the temperature is more preferably 1100 to 1200 ° C. In the rough hot rolling, the total rolling reduction is preferably 80% or more in order to pulverize and subdivide {001} oriented grains derived from the solidified structure to promote recrystallization after the rough hot rolling.

仕上げ熱延は、熱延板段階でγ−fiberを発達させた集合組織を形成するために、再結晶を抑制して歪を十分に蓄積した加工組織とすることが好ましい。そのために、下記の(i)〜(iii)の条件を全て満足して700℃未満で巻き取ることが好ましい。
(i)1050℃以下で総圧下率80〜95%とする。
(ii)最終3パスの総圧下率を40〜60%で各パス間時間を1秒以内とする。
(iii)γ−fiber発達のため、圧延中の再結晶を抑制する目的で、仕上げ温度を800℃以上950℃以下とし、仕上げ圧延後2秒以内に水冷を開始する。
In order to form a texture in which γ-fiber is developed at the hot-rolled sheet stage, the finish hot rolling is preferably a processed structure in which strain is sufficiently accumulated by suppressing recrystallization. Therefore, it is preferable that the following conditions (i) to (iii) are all satisfied and the winding is performed at less than 700 ° C.
(I) The total rolling reduction is set to 80 to 95% at 1050 ° C. or lower.
(Ii) The total rolling reduction rate of the final three passes is 40 to 60%, and the time between passes is within 1 second.
(Iii) Due to the development of γ-fiber, the finishing temperature is set to 800 ° C. or more and 950 ° C. or less for the purpose of suppressing recrystallization during rolling, and water cooling is started within 2 seconds after finishing rolling.

本発明の製造方法を実施して、本発明の集合組織ならびに結晶粒径としたフェライト系ステンレス鋼板の実施例を以下に述べる。   Examples of ferritic stainless steel sheets having the texture and crystal grain size of the present invention by carrying out the production method of the present invention will be described below.

表1の成分を有するフェライト系ステンレス鋼鋳片250mm厚を溶製し、熱間圧延を行い板厚3〜6mmの熱延鋼板とした。なお、実施例は全て、仕上げ圧延最終パス間時間0.3〜0.6秒の範囲内、最終パス後水冷開始時間0.8〜1.6秒の範囲内であった。熱延鋼板は、酸洗後、1次冷延,中間焼鈍,最終冷延,最終焼鈍を施して板厚0.6〜0.9mmの製品とした。製品の表面仕様は2Bあるいは2Dである。熱間圧延および熱延鋼板から製品の製造は、本発明で規定する範囲とそれ以外の条件でも実施した。   A ferritic stainless steel slab having a thickness of 250 mm having the components shown in Table 1 was melted and hot-rolled to obtain a hot-rolled steel plate having a thickness of 3 to 6 mm. In all the examples, the time between final rolling final passes was in the range of 0.3 to 0.6 seconds, and the water cooling start time after the final pass was in the range of 0.8 to 1.6 seconds. The hot-rolled steel sheet was subjected to primary cold rolling, intermediate annealing, final cold rolling, and final annealing after pickling to obtain a product having a thickness of 0.6 to 0.9 mm. The surface specification of the product is 2B or 2D. Manufacture of products from hot-rolled and hot-rolled steel sheets was carried out in the range specified in the present invention and other conditions.

Figure 0005196807
Figure 0005196807

製造途中の板厚および製造条件を表2に示す。製造No.4,5は、熱延板焼鈍を実施していることを示している。製造No.5は1回の冷延工程で製造していることを表す。これら製造No.4,5は、熱延板焼鈍を実施する常用の製造方法であり、加工肌荒れの比較に用いた。   Table 2 shows the thickness and manufacturing conditions during the manufacturing. Production No. 4 and 5 have shown performing hot-rolled sheet annealing. Production No. 5 represents manufacturing in one cold rolling process. These production Nos. Nos. 4 and 5 are regular manufacturing methods for carrying out hot-rolled sheet annealing, and were used for comparison of rough processing.

Figure 0005196807
Figure 0005196807

得られた鋼板の結晶粒径は、JISG0552に規定するフェライト粒径測定法により求めた。板厚中心部の集合組織をX線積分強度測定により定量した。X線源はMoKα線とし、{222}面,{112}面,{002}面の積分強度を測定し,α−Feのランダム試料の積分強度測定値で規格化して、それぞれIa,Ib,Icの値を求めた。   The crystal grain size of the obtained steel sheet was determined by the ferrite grain size measuring method specified in JISG0552. The texture at the center of the plate thickness was quantified by X-ray integral intensity measurement. The X-ray source is MoKα ray, the integrated intensity of {222} plane, {112} plane, {002} plane is measured, normalized with the integrated intensity measurement value of a random sample of α-Fe, and Ia, Ib, The value of Ic was determined.

加工肌荒れは、圧延方向を0°として0°,45°,90°の3方向からJIS5号引張試験片を採取し,伸び歪20%付与した後、JISB0601に規定する十点平均表面粗さRz(以下、Rz)を測定して評価した。また、板厚0.8mmのSUS304鋼板/2B仕様を加工肌荒れの比較例として使用した。   Roughness of the processed surface is 10-point average surface roughness Rz specified in JISB0601, after taking JIS No. 5 tensile test pieces from 3 directions of 0 °, 45 ° and 90 ° with the rolling direction as 0 ° and applying 20% elongation strain. (Hereinafter, Rz) was measured and evaluated. Further, a SUS304 steel plate / 2B specification having a plate thickness of 0.8 mm was used as a comparative example of rough processing.

加工後の集合組織は、JIS5号引張平行部から試料を採取し,板厚中心部のX線積分強度を測定した。測定面は{222}面,{112}面,{002}面とし,ランダム試料で規格した値をIa’,Ib’,Ic’とした。   For the texture after processing, a sample was taken from a JIS No. 5 tensile parallel portion, and the X-ray integrated intensity at the central portion of the plate thickness was measured. The measurement plane was {222} plane, {112} plane, and {002} plane, and the values standardized with random samples were Ia ′, Ib ′, and Ic ′.

結果を表3に示す。   The results are shown in Table 3.

Figure 0005196807
Figure 0005196807

製造No.4〜7,10〜12は、本発明の成分を有するものの,本発明で規定する集合組織を満たさないものである。製造No.4,5は、結晶粒径が20μm以下と小さいにも関らず、本発明で規定する集合組織を満たさないため、加工肌荒れは低減されない。以下、上記のものを比較例と称する。   Production No. Although 4-7 and 10-12 have the component of this invention, they do not satisfy | fill the texture prescribed | regulated by this invention. Production No. Nos. 4 and 5 do not satisfy the texture defined in the present invention even though the crystal grain size is as small as 20 μm or less, so that the roughness of the processed skin is not reduced. Hereinafter, the above is referred to as a comparative example.

製造No.1〜3,8,9は、本発明で規定する成分と集合組織を有するものであり、比較例よりRzが小さく,加工肌荒れは低減されている。結晶粒径が20μmを超える製造No.3,8,9は、結晶粒径が20μm以下と小さい常用の製造No.4,5と比較して加工肌荒れが小さい。さらに、結晶粒径が20μm以下である製造No.1,2は、SUS304に匹敵する程度まで加工肌荒れが低減していることも分かる。   Production No. 1-3, 8, and 9 have the components and texture defined in the present invention, Rz is smaller than that of the comparative example, and the roughness of the processed skin is reduced. Production No. with a crystal grain size exceeding 20 μm. Nos. 3, 8, and 9 are conventional production Nos. Having a crystal grain size of 20 μm or less. Compared with 4,5, the processed skin is less rough. Further, in the case of production no. It can also be seen that the surface roughness 1 and 2 is reduced to a level comparable to SUS304.

表面粗さRzと結晶粒径の関係を調査した結果を図2に示す。Rzを低減するには、本発明の集合組織を有して結晶粒径を小さくすればよい。Rz<3μmを得るには、結晶粒径は20μm以下とすればよいことが確認できる。   The result of investigating the relationship between the surface roughness Rz and the crystal grain size is shown in FIG. In order to reduce Rz, the crystal grain size may be reduced by having the texture of the present invention. In order to obtain Rz <3 μm, it can be confirmed that the crystal grain size should be 20 μm or less.

素材と加工後の集合組織の関係を調査した結果を図3に示す。A’値を大きくして加工後にも{111}面への集積を維持するには、素材のA値を大きくすればよい。ここで、A値=Ia/(Ib+Ic),A’値=Ia’/(Ib’+Ic’)とする。   The result of investigating the relationship between the material and the texture after processing is shown in FIG. In order to maintain the accumulation on the {111} plane even after processing by increasing the A ′ value, the A value of the material may be increased. Here, it is assumed that A value = Ia / (Ib + Ic) and A ′ value = Ia ′ / (Ib ′ + Ic ′).

加工後の集合組織と表面粗さRzの関係を調査した結果を図4に示す。本発明で規定する集合組織を有する場合、Rz<3μmを得るには、0°方向でA’値>3,45°と90°方向でA’値>5とすればよいことが確認できる。なお、Rzが3μmを超えている本発明のプロットは、結晶粒径が35μmと大きい場合である。   The result of investigating the relationship between the texture after processing and the surface roughness Rz is shown in FIG. In the case of having a texture defined by the present invention, it can be confirmed that in order to obtain Rz <3 μm, A ′ value> 3,445 ° in the 0 ° direction and A ′ value> 5 in the 90 ° direction. The plot of the present invention in which Rz exceeds 3 μm is when the crystal grain size is as large as 35 μm.

本発明によれば、フェライト系ステンレス鋼板の優れた成形性を生かしつつ、実用上満足のゆく加工肌荒れの低減が可能となり、オ−ステナイト系ステンレス鋼板と比較して経済性に優れたフェライト系ステンレス鋼板の加工用途への適応を図ることが出来る。   According to the present invention, while making use of the excellent formability of a ferritic stainless steel sheet, it is possible to reduce the rough working surface that is practically satisfactory, and the ferritic stainless steel is more economical than an austenitic stainless steel sheet. It can be applied to steel plate processing applications.

ψ2=45°断面における結晶方位の存在位置ψ2 = existence position of crystal orientation in 45 ° cross section 表面粗さRzと結晶粒径の関係Relationship between surface roughness Rz and crystal grain size 素材と加工後の集合組織の関係Relationship between material and texture after processing 加工後の集合組織と表面粗さRzの関係Relationship between texture after processing and surface roughness Rz

Claims (4)

質量%にて、C:0.001〜0.015%、Si:0.01〜0.60%、Mn:0.01〜0.30%、P:0.005〜0.035%、S:0.0001〜0.0100%、Cr:15〜22%、N:0.001〜0.020%、Ti:0.05〜0.35%、Al:0.005〜0.1%、残部がFeおよび不可避的不純物からなり、板面に垂直方向の{222}面,{112}面,{002}面のX線積分強度比をそれぞれIa,Ib,Icとし、圧延方向を0°として0°,45°,90°の3方向において伸び歪20%を付与した後の、板面に垂直方向の{222}面,{112}面,{002}面のX線積分強度比をそれぞれIa’,Ib’,Ic’とした場合に、下記の関係を全て満たすことを特徴とする加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板。
<素材> Ia/(Ib+Ic)>10,Ia>20
<伸び歪20%付与後>
0°方向 Ia’/(Ib’+Ic’)>3,Ia’>10
45°方向 Ia’/(Ib’+Ic’)>5,Ia’>10
90°方向 Ia’/(Ib’+Ic’)>5,Ia’>10
In mass%, C: 0.001 to 0.015%, Si: 0.01 to 0.60%, Mn: 0.01 to 0.30%, P: 0.005 to 0.035%, S : 0.0001 to 0.0100%, Cr: 15 to 22%, N: 0.001 to 0.020%, Ti: 0.05 to 0.35%, Al: 0.005 to 0.1%, The balance consists of Fe and inevitable impurities, and the X-ray integrated intensity ratios of the {222} plane, {112} plane, and {002} plane perpendicular to the plate plane are Ia, Ib, and Ic, respectively, and the rolling direction is 0 ° X-ray integrated intensity ratio of {222} plane, {112} plane, {002} plane perpendicular to the plate surface after applying 20% elongation strain in three directions of 0 °, 45 °, and 90 ° as In the case of Ia ′, Ib ′, and Ic ′, respectively, it is possible to reduce the roughness of the processed skin characterized by satisfying all of the following relationships. Excellent ferritic stainless steel sheet to sex.
<Material> Ia / (Ib + Ic)> 10, Ia> 20
<After giving 20% elongation strain>
0 ° direction Ia ′ / (Ib ′ + Ic ′)> 3, Ia ′> 10
45 ° direction Ia ′ / (Ib ′ + Ic ′)> 5, Ia ′> 10
90 ° direction Ia ′ / (Ib ′ + Ic ′)> 5, Ia ′> 10
前記鋼が、さらに質量%にて、Mg:0.0050%以下、Nb:0.6%以下、Mo:2%以下、Ni:2%以下、Cu:2%以下、B:0.005%以下の1種または2種以上含有していることを特徴とする請求項1に記載の加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板。   The steel is further in mass%, Mg: 0.0050% or less, Nb: 0.6% or less, Mo: 2% or less, Ni: 2% or less, Cu: 2% or less, B: 0.005% The ferritic stainless steel sheet excellent in formability with small roughness of the processed skin according to claim 1, comprising one or more of the following. 前記鋼の結晶粒径が20μm以下であり,圧延方向を0°として0°,45°,90°の3方向においてそれぞれ伸び歪20%を付与した後の表面粗さ(Rzで表記される十点平均粗さ)が3μm未満であることを特徴とする請求項1または2に記載の加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板。   The crystal grain size of the steel is 20 μm or less, and the surface roughness after adding 20% elongation strain in three directions of 0 °, 45 °, and 90 ° with the rolling direction as 0 ° (represented by Rz). 3. The ferritic stainless steel sheet excellent in formability with a small roughened working surface according to claim 1, wherein the point average roughness is less than 3 μm. 請求項1または2に記載の鋼成分を有するフェライト系ステンレス鋼スラブを1050〜1250℃の範囲に加熱し,総圧下率80%以上の粗熱延を行い、次いで実施する仕上げ熱延において下記の条件を全て満足して700℃未満の温度で巻き取って熱延板とし、焼鈍することなく酸洗して圧延率40%以上の1次冷延を施して冷延板とし、870〜1000℃で中間焼鈍を実施し、さらに圧延率65%以上の最終冷延を行って最終冷延板とし、750〜1000℃で最終焼鈍することを特徴とする請求項1から3のいずれかに記載の加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板の製造方法。
(i)1050℃以下で総圧下率80〜95%とする。
(ii)最終3パスの総圧下率を40〜60%で各パス間時間を1秒以内とする。
(iii)仕上げ熱延の開始温度を980〜1030℃として、仕上げ圧延後2秒以内に水冷を開始する。
The ferritic stainless steel slab having the steel component according to claim 1 or 2 is heated to a range of 1050 to 1250 ° C., subjected to rough hot rolling with a total rolling reduction of 80% or more, and then in the finishing hot rolling to be performed, the following All the conditions are satisfied, and it is wound at a temperature of less than 700 ° C. to obtain a hot rolled sheet, pickled without annealing, and subjected to primary cold rolling with a rolling rate of 40% or more to obtain a cold rolled sheet, 870 to 1000 ° C. The intermediate annealing is carried out, and the final cold rolling with a rolling rate of 65% or more is performed to obtain a final cold rolled sheet, and the final annealing is performed at 750 to 1000 ° C. A method for producing a ferritic stainless steel sheet having excellent formability with less rough processing.
(I) The total rolling reduction is set to 80 to 95% at 1050 ° C. or lower.
(Ii) The total rolling reduction rate of the final three passes is 40 to 60%, and the time between passes is within 1 second.
(Iii) The start temperature of finish hot rolling is set to 980 to 1030 ° C. , and water cooling is started within 2 seconds after finish rolling.
JP2007045448A 2007-02-26 2007-02-26 Ferritic stainless steel sheet excellent in formability with low roughness of processing surface and method for producing the same Active JP5196807B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007045448A JP5196807B2 (en) 2007-02-26 2007-02-26 Ferritic stainless steel sheet excellent in formability with low roughness of processing surface and method for producing the same
KR1020080005428A KR100977600B1 (en) 2007-02-26 2008-01-17 The ferritic stainless steel plate having low orange peel and exhibiting excellent formability, and method for producing the same
CN2008100813270A CN101255532B (en) 2007-02-26 2008-02-25 Ferrite series stainless steel plate having excellent formability with small roughness of machining surface and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045448A JP5196807B2 (en) 2007-02-26 2007-02-26 Ferritic stainless steel sheet excellent in formability with low roughness of processing surface and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008208412A JP2008208412A (en) 2008-09-11
JP5196807B2 true JP5196807B2 (en) 2013-05-15

Family

ID=39784970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045448A Active JP5196807B2 (en) 2007-02-26 2007-02-26 Ferritic stainless steel sheet excellent in formability with low roughness of processing surface and method for producing the same

Country Status (3)

Country Link
JP (1) JP5196807B2 (en)
KR (1) KR100977600B1 (en)
CN (1) CN101255532B (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2776892C (en) 2006-05-09 2014-12-09 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel excellent in resistance to crevice corrosion and formability
EP2163659B1 (en) * 2008-09-11 2016-06-08 Outokumpu Nirosta GmbH Stainless steel, cold strip made of same and method for producing cold strip from same
JP5544106B2 (en) * 2009-03-24 2014-07-09 新日鐵住金ステンレス株式会社 Al-containing heat-resistant ferritic stainless steel for fuel cells and method for producing the same
CN102041455B (en) * 2009-10-23 2013-03-27 宝山钢铁股份有限公司 Stainless steel for heat exchanger welded pipe and manufacturing method thereof
KR101301440B1 (en) 2009-12-03 2013-08-28 주식회사 포스코 method of manufacturing ferritic stainless steel with improved formability and ridging property
CN102191366A (en) * 2010-03-18 2011-09-21 宝山钢铁股份有限公司 Manufacture method capable of improving patterns of common-type ferrite stainless steel plate
CN102989771B (en) * 2011-09-19 2015-07-29 宝山钢铁股份有限公司 Low chrome ferritic stainless steel cold continuous rolling manufacture method
KR101485639B1 (en) * 2012-12-20 2015-01-22 주식회사 포스코 Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof
WO2015099459A1 (en) * 2013-12-24 2015-07-02 (주)포스코 Ferritic stainless steel with improved formability and ridging resistance, and manufacturing method therefor
CN104087838B (en) * 2014-07-03 2016-01-20 北京科技大学 A kind of super-purity ferrite anti-bacteria stainless steel and manufacture method
KR101614606B1 (en) * 2014-08-08 2016-04-22 주식회사 포스코 Ferritic stainless steel with excellent formability and manufacturing method thereof
CN106795608B (en) * 2014-10-31 2018-06-19 新日铁住金不锈钢株式会社 Ferrite-group stainless steel steel plate, steel pipe and its manufacturing method
CN107835865B (en) * 2015-07-17 2020-05-05 杰富意钢铁株式会社 Hot-rolled ferritic stainless steel sheet, hot-rolled annealed sheet, and methods for producing same
CN105087887B (en) * 2015-08-14 2017-04-05 山西太钢不锈钢股份有限公司 Manufacture method of the carbon ferritic stainless steel without shading cold drawing in chromium in 430 types
EP3434800A4 (en) * 2016-03-24 2019-11-13 Nippon Steel Stainless Steel Corporation Ti-containing ferritic stainless steel sheet having good toughness, and flange
JP6022097B1 (en) * 2016-03-30 2016-11-09 日新製鋼株式会社 Ti-containing ferritic stainless steel sheet and manufacturing method
CN106636944A (en) * 2016-12-27 2017-05-10 柳州市金岭汽车配件厂 Vehicle door sill pedal and preparation method thereof
WO2018139207A1 (en) * 2017-01-26 2018-08-02 Jfeスチール株式会社 Ferrite stainless hot-rolled steel sheet and production method therefor
ES2879999T3 (en) * 2017-02-28 2021-11-23 Nippon Steel Corp Ferritic stainless steel sheet, hot coil and flange element for motor vehicle exhaust system
JP6836969B2 (en) * 2017-08-02 2021-03-03 日鉄ステンレス株式会社 Ferritic stainless steel sheet
CN107807141A (en) * 2017-10-17 2018-03-16 武汉钢铁有限公司 Automobile Plate rolls in face the measuring method of { 111 } crystal face
KR20190077723A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Ferritic stainless steel with improved orange peel resistance and formability
JP7013301B2 (en) * 2018-03-27 2022-01-31 日鉄ステンレス株式会社 Al-containing ferritic stainless steel with excellent secondary workability and high-temperature oxidation resistance
KR20210064281A (en) * 2018-10-25 2021-06-02 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel hot-rolled annealing steel sheet and manufacturing method thereof
WO2020130060A1 (en) * 2018-12-21 2020-06-25 日鉄ステンレス株式会社 Cr-based stainless steel having excellent hydrogen embrittlement resistance

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4065579B2 (en) 1995-09-26 2008-03-26 Jfeスチール株式会社 Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP3746045B2 (en) * 2002-03-27 2006-02-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel slabs and steel plates and methods for producing them
JP2005139533A (en) 2003-11-10 2005-06-02 Nippon Steel & Sumikin Stainless Steel Corp Method for forming ferritic stainless steel sheet having little surface roughness
JP4083669B2 (en) * 2003-12-04 2008-04-30 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in deep drawability and method for producing the same
JP2005307234A (en) 2004-04-19 2005-11-04 Nisshin Steel Co Ltd Ferritic stainless steel sheet having excellent ridging resistance and surface characteristic and method for manufacturing the same
JP4589737B2 (en) * 2005-01-20 2010-12-01 新日本製鐵株式会社 Semi-process electrical steel sheet with excellent magnetic properties after grain growth and method for producing the same

Also Published As

Publication number Publication date
KR20080079178A (en) 2008-08-29
KR100977600B1 (en) 2010-08-24
JP2008208412A (en) 2008-09-11
CN101255532A (en) 2008-09-03
CN101255532B (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP5196807B2 (en) Ferritic stainless steel sheet excellent in formability with low roughness of processing surface and method for producing the same
JP5838796B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
TWI504757B (en) High strength molten galvanized steel sheet and its manufacturing method
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
JP5219689B2 (en) Ferritic stainless steel sheet with low surface roughness and manufacturing method thereof
JP5582274B2 (en) Cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP4749888B2 (en) Ferritic stainless steel sheet excellent in formability with less rough processing and manufacturing method thereof
JP5924459B1 (en) Stainless steel for cold rolled steel
TWI507541B (en) Cold-rolled steel sheet, galvanized cold-rolled steel sheet and the like
US20090223609A1 (en) High-strength hot rolled steel plate and manufacturing method thereof
WO2016035236A1 (en) Cold-rolled ferritic stainless steel sheet
JP4682806B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof
JP2007291514A (en) Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor
TW202016327A (en) Hot rolled steel plate and manufacturing method thereof
JP2007119847A (en) Cold-rolled ferritic stainless steel sheet having excellent press formability and its production method
JP5978838B2 (en) Cold-rolled steel sheet excellent in deep drawability, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
TWI427162B (en) Cold rolled steel sheet having excellent formability and shape fixability and method for manufacturing the same
KR101813914B1 (en) High-strength steel sheet having small planar anisotropy of elongation and method for producing the same
JP2011149101A (en) Method for producing ferritic stainless steel sheet having excellent moldability and having reduced working surface roughening
KR20110018457A (en) Cold-rolled steel sheet, process for production of same, and backlight chassis
JP5098403B2 (en) Ferritic stainless steel sheet that hardly causes rough surface during bending, and method for producing the same
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
JP2009242857A (en) Method for producing steel sheet for can-making
JP2020143309A (en) Ferritic stainless steel sheet
JP3923485B2 (en) Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250