KR101301440B1 - method of manufacturing ferritic stainless steel with improved formability and ridging property - Google Patents

method of manufacturing ferritic stainless steel with improved formability and ridging property Download PDF

Info

Publication number
KR101301440B1
KR101301440B1 KR1020090118999A KR20090118999A KR101301440B1 KR 101301440 B1 KR101301440 B1 KR 101301440B1 KR 1020090118999 A KR1020090118999 A KR 1020090118999A KR 20090118999 A KR20090118999 A KR 20090118999A KR 101301440 B1 KR101301440 B1 KR 101301440B1
Authority
KR
South Korea
Prior art keywords
less
stainless steel
ferritic stainless
cold rolling
value
Prior art date
Application number
KR1020090118999A
Other languages
Korean (ko)
Other versions
KR20110062312A (en
Inventor
박수호
김상석
박지언
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020090118999A priority Critical patent/KR101301440B1/en
Publication of KR20110062312A publication Critical patent/KR20110062312A/en
Application granted granted Critical
Publication of KR101301440B1 publication Critical patent/KR101301440B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 중량%로, C : 0초과 0.10% 이하, Si : 0초과 1.0% 이하, Mn : 0초과 1.0% 이하, P : 0초과 0.050% 이하, S : 0초과 0.020% 이하, Ni : 0초과 2.0% 이하, Cr : 8.0 ~ 30%, Cu : 0초과 1.0% 이하, Ti : 0.01~0.50%, Nb : 0.01~0.50%, Al 0초과 0.10% 이하, N : 0초과 0.05% 이하로 구성되고 선택적으로 Mo : 0초과 1.0% 이하, V : 0.01~0.30%, Zr : 0.01~0.30% 및 B : 0.0010~0.0100% 중 1종 또는 2종 이상을 더 함유하고 나머지는 Fe 및 기타 불가피한 불순물로 이루어진 스테인리스강을 통상의 방법으로 열간압연한 열연판을 900~1100℃ 온도로 소둔하거나 열연판 소둔을 생략한 다음, 냉간압연 및 그 후의 소둔을 각각 2회 실시하는데 있어서, 냉연 총압하율 89% 이상 및 최종 냉연압하율 76% 이상으로 냉간압연하여 리징성 및 성형성이 우수한 페라이트계 스테인리스강 및 그 제조방법을 제공한다.The present invention is in weight percent, C: greater than 0, 0.10% or less, Si: greater than 0, 1.0% or less, Mn: greater than 0, 1.0% or less, P: greater than 0, 0.050% or less, S: greater than 0, 0.020%, less than Ni: 0 More than 2.0% or less, Cr: 8.0 to 30%, Cu: greater than 0% or less 1.0%, Ti: 0.01 to 0.50%, Nb: 0.01 to 0.50%, Al greater than 0% 0.10%, N: greater than 0% and 0.05% or less And optionally one or more of Mo: more than 0% and less than 1.0%, V: 0.01% to 0.30%, Zr: 0.01% to 0.30%, and B: 0.0010% to 0.0100%, and the rest are made of Fe and other unavoidable impurities. In the conventional method, the hot rolled hot rolled sheet is annealed at a temperature of 900 to 1100 ° C. or the hot rolled sheet is annealed, and then cold rolling and subsequent annealing are performed twice, respectively. It is cold rolled with the above and final cold rolling reduction ratio of 76% or more to provide a ferritic stainless steel having excellent ridging property and formability, and a manufacturing method thereof.

페라이트, 스테인리스강, 리징, 성형성, EBSD, 결정방위 면적율 Ferrite, Stainless Steel, Leasing, Formability, EBSD, Crystal Orientation Area Ratio

Description

내리징성 및 성형성이 우수한 페라이트계 스테인리스강판 제조방법 {method of manufacturing ferritic stainless steel with improved formability and ridging property}{Method of manufacturing ferritic stainless steel with improved formability and ridging property}

본 발명은 페라이트계 스테인리스강 및 그 제조방법에 관한 것으로, 특히 스테인리스강 냉연 판재를 제조시 압하율을 이용하여 집합조직을 제어하므로서 성형성 및 리징 특성을 개선시키기 위한 페라이트 스테인리스강과 그 제조방법에 관한 것이다.The present invention relates to a ferritic stainless steel and a method of manufacturing the same, and in particular to a ferritic stainless steel and its manufacturing method for improving the formability and leasing properties by controlling the texture by using a reduction ratio in the production of cold-rolled stainless steel sheet will be.

일반적으로 페라이트계 스테인리스강은 자동차 배기계 부품, 건축자재, 주방용기, 가전제품 등에 주로 사용되고 있으며 딥드로잉에 의한 성형을 하여 부품을 제조하므로 성형성이 중요한 품질특성 중의 하나이다. 또한 성형 후에 표면에 형성되는 리징 결함 발생을 저감하는 것이 중요하다.In general, ferritic stainless steel is mainly used in automobile exhaust system parts, building materials, kitchen containers, home appliances, etc., and is manufactured by forming a part by deep drawing, which is one of the important quality characteristics. It is also important to reduce the occurrence of ridging defects formed on the surface after molding.

페라이트계 스테인리스강의 성형성을 나타내는 지표인 r값은 집합조직 형성과 밀접한 상관성이 있으며, {111} 방위가 잘 발달할수록 r값이 커서 성형성이 개선된다. 반면에 {001} 이 형성되어 있으면 r값이 낮아져서 성형성이 나빠지게 된다. The r value, which is an index indicating the formability of the ferritic stainless steel, has a close correlation with the formation of the texture. As the {111} orientation develops well, the r value is large and the formability is improved. On the other hand, when {001} is formed, the r value is lowered, resulting in poor moldability.

한편 페라이트계 스테인리스강은 성형가공시 압연방향에 평행하게 주름형태의 표면결함이 발생되는데 이러한 현상을 리징(ridging)이라 부른다. 리징의 발생원인은 근원적으로 조대한주조조직에기인한다.즉, 주조조직이 압연 또는 소둔공정에서 파괴되지 않고 조대한밴드조직으로잔류하는경우인장가공시주변의재결정조직과상이한폭및두께방향변형거동으로인해리징결함으로표출된다.On the other hand, ferritic stainless steel has wrinkled surface defects parallel to the rolling direction during molding, which is called ridging. The cause of leasing is mainly caused by the coarse casting structure, i.e., when the casting structure remains in the coarse band structure without being destroyed in the rolling or annealing process, the width and thickness direction deformation are different from the recrystallization structure around the tensile process. It is expressed by the dissolution of behavior.

이러한 리징 결함은 제품의 외관을 나쁘게 할 뿐만 아니라 성형시 넥킹을 발생시켜 성형성을 저하시킨다. 또한 리징이 심하게 발생할 경우 성형 후에 추가의 연마공정을 필요로 하므로 최종제품의 제조단가를 상승시키는 원인이 된다.Such ridging defects not only degrade the appearance of the product, but also cause necking during molding, thereby degrading the formability. In addition, if ridging is severe, an additional polishing step is required after molding, which may cause an increase in manufacturing cost of the final product.

그 동안 많은 연구가들에 의해 페라이트계 스테인리스강의 성형성과 리징성을 개선시키는 다양한 제조방법이 제안되어 왔다. Many researchers have proposed various manufacturing methods for improving the formability and ridging properties of ferritic stainless steel.

기본적으로는 사와타니(Sawatani)의 연구보고서(Nippon Steel Tech. Rep. 21(1983), p.275)에 개시된 바와 같이 등축정율을 향상시켜 주상정의 분율을 줄임으로서 리징성을 개선하는 방법이 있다. 이러한 등축정율 제어는 리징을 유발하는 근원적 원인을 해결하는 방법이며, 통상의 압연에 의하여 리징저항성이 우수한 강판을 얻기 위해서는 등축정율의 하한이 60% 수준이 되어야 한다.Basically, as disclosed in Sawatani's research report (Nippon Steel Tech. Rep. 21 (1983), p.275), there is a method to improve the ridging property by reducing the fraction of columnar tablets by improving the equiaxed crystal ratio. . This isotropic rate control is a method of solving the root cause causing the leasing, the lower limit of the equiaxed rate should be 60% level in order to obtain a steel sheet excellent in ridging resistance by ordinary rolling.

또한 제조공정 중에서 공정변수 조절을 통한 성형성 개선 및 리징 억제의 대표적 사례로서, 재결정을 촉진시키기 위하여 열간압연온도를 제어하거나(일본 공개특허 2000-256748), 열연 조압연 압하율을 제어하거나(일본 공개특허 JP2000-256749) 또는 열연 사상압연 압하율을 제어(일본 공개특허 1994-271944)등이 알려져 있다. 또한 소둔온도 등의 적정화를 도모하거나(일본 공개특허 1983-199822), 냉연 재결정 회수 증가를 위한 냉연시 중간소둔 공정의 추가(일본 공개특허 1989-118341)와 같은 다양한 방법이 공지되어 왔다.In addition, as a representative example of improving moldability and suppressing leasing by controlling process variables in the manufacturing process, hot rolling temperature is controlled to promote recrystallization (Japanese Patent Laid-Open Publication No. 2000-256748), or hot rolling rough rolling rate is controlled (Japan JP2000-256749) or controlling the hot rolling reduction rate (Japanese Laid-Open Patent No. 1994-271944) and the like are known. In addition, various methods have been known, such as the optimization of annealing temperature or the like (Japanese Patent Laid-Open No. 1983-199822) or the addition of an intermediate annealing process during cold rolling to increase the number of re-crystallization recrystallization (Japanese Patent Laid-Open No. 1989-118341).

최근에는 집합조직 제어와 관련하여 결정방위 성분의 강도와 제조공정인자와의 상관성에 대한 파라미터 특허로서 일본 공개특허 2005-256124등이 알려져 있다. Recently, Japanese Patent Application Laid-Open No. 2005-256124 and the like have been known as a parameter patent on the correlation between the strength of crystal orientation components and manufacturing process factors in relation to control of texture.

전술한 바와 같이 성형성 및 리징성 개선을 위해서 슬라브 등축정율과 같은 주조조직의 개선뿐만 아니라, 제조공정 변수들의 조절에 의한 집합조직 제어 또한 중요하다. 특히, 딥드로잉 성형후 발생하는 리징을 제거하기 위해 연마를 실시하는데 방향별로 리징 높이가 다를 경우 리징이 심하게 발생한 부분을 제거하기 위해서 연마시간이 길어지는 문제가 생기게 된다. 따라서 성형품의 연마시간을 줄이기 위해 방향별 리징 높이를 균일하게 저감시킬 필요가 있다. As described above, in order to improve the formability and the ridging property, it is important not only to improve the casting structure such as slab equiaxed rate but also to control the texture by controlling the manufacturing process variables. In particular, the polishing is performed to remove the ridging generated after the deep drawing molding, but when the ridging height is different for each direction, a problem arises in that the polishing time is lengthened to remove the severely generated ridging. Therefore, it is necessary to uniformly reduce the ridging height of each direction in order to reduce the polishing time of the molded article.

따라서, 본 발명은 상기의 요망에 의하여 안출된 것으로, 최종 냉연소재의 성형성 개선 및 방향별 리징 높이를 낮추기 위해서, 냉연 및 소둔을 2회 실시하는데 있어서 냉연 총압하율과 최종 냉연 압하율을 조절하여 집합조직을 개선시키므로서 성형성 및 리징 특성을 향상시키는 페라이트계 스테인레스강의 제조방법을 제공하는데 그 목적이 있다.Accordingly, the present invention has been made in accordance with the above requirements, in order to improve the formability of the final cold-rolled material and to lower the ridging height for each direction, the cold rolling total rolling rate and the final cold rolling rate are adjusted in two cold rolling and annealing. The purpose of the present invention is to provide a method for producing ferritic stainless steel which improves moldability and leasing properties while improving the texture.

상기 목적을 달성하기 위한 본 발명의 일측면은 페라이트계 스테인리스강을 열간압연한 열연판을 900~1100℃ 온도로 소둔하거나 열연판 소둔을 생략한 다음, 냉간압연 및 그 후의 소둔을 각각 2회 실시하는 페라이트계 스테인리스강의 제조방법에 있어서, 상기 냉간압연공정에서 냉연 총압하율 89% 이상 및 최종 냉연압하율 76% 이상으로 냉간압연하는 리징성 및 성형성이 우수한 페라이트계 스테인리스강의 제조방법을 제공한다.One aspect of the present invention for achieving the above object is performed by annealing the hot-rolled steel sheet hot-rolled ferritic stainless steel at a temperature of 900 ~ 1100 ℃ or omitting the hot-rolled sheet annealing, followed by cold rolling and subsequent annealing twice In the method of manufacturing a ferritic stainless steel, the present invention provides a method for producing ferritic stainless steel having excellent ridging property and formability which is cold rolled at a cold rolling total reduction rate of 89% or more and a final cold rolling reduction rate of 76% or more. .

또한, 본 발명에서 상기 페라이트계 스테인리스강은 조직방향별 r값이 1.7이상 3.0미만이고, 조직방향별 r-bar값이 1.9이상 3.0미만이다. Further, in the present invention, the ferritic stainless steel has an r value of 1.7 or more and less than 3.0 for each tissue direction, and a r-bar value of 1.9 or more and less than 3.0 for each tissue direction.

또한,본 발명에서 상기 페라이트계 스테인리스강의 리징높이는 10㎛ 이하이다. In addition, the leaching height of the ferritic stainless steel in the present invention is 10㎛ or less.

또한, 본 발명에서 상기 리징높이는 압연방향에 대해 0도와 45도 방향으로 인장시험하여 측정된 리징높이이다.In the present invention, the ridging height is a ridging height measured by a tensile test in a direction of 0 degrees and 45 degrees with respect to the rolling direction.

또한, 본 발명에서 상기 페라이트계 스테인리스강은 주사전자현미경에 부착된 EBSD로 측정한 {111}<uvw>/{001}<110> 와 {111}<uvw>/{001}<100> 면적율비가 30 이상인 리징성 및 성형성이 우수한 페라이트계 스테인리스강의 제조방법을 제공한다.Further, in the present invention, the ferritic stainless steel has an area ratio of {111} <uvw> / {001} <110> and {111} <uvw> / {001} <100> measured by EBSD attached to a scanning electron microscope. Provided is a method for producing ferritic stainless steel having excellent ridging property and formability of 30 or more.

본 발명의 또 다른 측면은 상기의 방법중의 어느 하나에 의해 제조된 페라이트계 스테인리스강을 제공하는 것이다. 본 발명은 중량%로, C : 0초과 0.10% 이하, Si : 0초과 1.0% 이하, Mn : 0초과 1.0% 이하, P : 0초과 0.050% 이하, S : 0초과 0.020% 이하, Ni : 0초과 2.0% 이하, Cr : 8.0 ~ 30%, Cu : 0초과 1.0% 이하, Ti : 0.01~0.50%, Nb : 0.01~0.50%, Al 0초과 0.10% 이하, N : 0초과 0.05% 이하로 구성되고 선택적으로 Mo : 0초과 1.0% 이하, V : 0.01~0.30%, Zr : 0.01~0.30% 및 B : 0.0010~0.0100% 중 1종 또는 2종 이상을 더 함유하고 나머지는 Fe 및 기타 불가피한 불순물로 이루어진 리징성 및 성형성이 우수한 페라이트계 스테인리스강을 얻을 수 있다. Another aspect of the invention is to provide a ferritic stainless steel produced by any one of the above methods. The present invention is in weight percent, C: greater than 0, 0.10% or less, Si: greater than 0, 1.0% or less, Mn: greater than 0, 1.0% or less, P: greater than 0, 0.050% or less, S: greater than 0, 0.020%, less than Ni: 0 More than 2.0% or less, Cr: 8.0 to 30%, Cu: greater than 0% or less 1.0%, Ti: 0.01 to 0.50%, Nb: 0.01 to 0.50%, Al greater than 0% 0.10%, N: greater than 0% and 0.05% or less And optionally one or more of Mo: more than 0% and less than 1.0%, V: 0.01% to 0.30%, Zr: 0.01% to 0.30%, and B: 0.0010% to 0.0100%, and the rest are made of Fe and other unavoidable impurities. A ferritic stainless steel having excellent ridging property and moldability can be obtained.

또한, 본 발명에서 상기 페라이트계 스테인리스강은 조직방향별 r값이 1.7이상 3.0미만이고, 조직방향별 r-bar값이 1.9이상 3.0미만이다.Further, in the present invention, the ferritic stainless steel has an r value of 1.7 or more and less than 3.0 for each tissue direction, and a r-bar value of 1.9 or more and less than 3.0 for each tissue direction.

또한, 본 발명에서 상기 페라이트계 스테인리스강의 리징높이는 10㎛ 이하이고, 이는 압연방향에 대해 0도와 45도 방향으로 인장시험하여 측정된 리징높이이다. In addition, the leaching height of the ferritic stainless steel in the present invention is 10㎛ or less, which is the ridging height measured by the tensile test in the direction of 0 degrees and 45 degrees with respect to the rolling direction.

또한, 본 발명의 페라이트계 스테인리스강은 주사전자현미경에 부착된 EBSD로 측정한 {111}<uvw>/{001}<110> 와 {111}<uvw>/{001}<100> 면적율비가 30 이상이 다.In addition, the ferritic stainless steel of the present invention has an area ratio of {111} <uvw> / {001} <110> and {111} <uvw> / {001} <100> measured by EBSD attached to a scanning electron microscope. That's all.

상술한 바와 같이, 본 발명에 의하여 제공된 페라이트계 스테인리스강 제조법은 냉간압연 및 그 후의 소둔을 각각 2회 실시하는데 있어서, 냉연 총압하율을 최적으로 제어하여, 즉 냉연 총압하율을 89% 이상으로 하되, 최종 냉연압하율은 76% 이상으로 실시하여 집합조직 제어를 하게 되면 하여 방향별 r값 개선과 동시에 제품의 성형 시 발생하는 표면 줄무늬 형태의 리징 높이를 현저히 저하시키는 효과를 기대할 수 있다. 이와 같은 리징개선에 의하여 최종제품의 연마공정 시간 감소로 제조원가 절감효과를 얻을 수 있다. As described above, the ferritic stainless steel production method provided by the present invention optimally controls the cold rolling total pressure reduction rate, that is, performing cold rolling and subsequent annealing twice, that is, the cold rolling total pressure reduction rate is 89% or more. However, if the final cold rolling reduction rate is carried out at 76% or more to control the texture of the structure, the r value of each direction can be improved and at the same time, the effect of significantly lowering the ridging height of the surface stripe shape generated during the molding of the product can be expected. This leasing improvement can reduce the manufacturing cost by reducing the polishing process time of the final product.

이하 본 발명을 도면을 참조하여 더욱 상세히 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to the drawings.

본 발명은 중량%로 C : 0초과 0.10% 이하, Si : 0초과 1.0% 이하, Mn : 0초과 1.0% 이하, P : 0초과 0.050% 이하, S : 0초과 0.020% 이하, Ni : 0초과 2.0% 이하, Cr : 8.0 ~ 30%, Cu : 0초과 1.0% 이하, Ti : 0.01~0.50%, Nb : 0.01~0.50%, Al 0초과 0.10% 이하, N : 0초과 0.05% 이하로 구성되고 선택적으로 Mo : 0초과 1.0% 이하, V : 0.01~0.30%, Zr : 0.01~0.30% 및 B : 0.0010~0.0100% 중 1종 또는 2종 이상을 더 함유한 페라이트계 스테인리스강을 얻을 수 있다. 본 발명강의 페라이트계 스테인리스강에 대한 조성범위 한정이유는 다음과 같다.In the present invention, by weight% C: greater than 0, 0.10% or less, Si: greater than 0, 1.0% or less, Mn: greater than 0, 1.0% or less, P: greater than 0, 0.050% or less, S: greater than 0, 0.020%, less than Ni: greater than 0 2.0% or less, Cr: 8.0 to 30%, Cu: greater than 0% or less, Ti: 0.01 to 0.50%, Nb: 0.01 to 0.50%, Al greater than 0.10%, N: greater than 0% and 0.05% or less Optionally, a ferritic stainless steel further containing one or two or more of Mo: more than 1.0%, V: 0.01 to 0.30%, Zr: 0.01 to 0.30%, and B: 0.0010 to 0.0100% can be obtained. The reason for the limited composition range for the ferritic stainless steel of the present invention is as follows.

C 는 탄화물을 형성시키는 원소로서 침입형으로 존재하게 되므로 과도하게 함유되면 강도는 상승되지만 충격인성, 내식성 및 성형성의 저하를 초래한다. 따라서 그 함량은 0.1 중량%이하로 하는 것이 바람직하다.Since C is an element that forms carbide and is present in an invasive form, excessively high content causes an increase in strength but deterioration of impact toughness, corrosion resistance and formability. Therefore, the content is preferably 0.1% by weight or less.

Si은 내산화성 및 내식성 향상에 유효한 원소로서 함랑이 증가하게 되면 내산화성은 향상되지만 연신율을 저하시켜 성형성의 저하를 초래한다. 따라서 그 함량은 1.0 중량%이하로 하는 것이 바람직하다.Si is an effective element for improving the oxidation resistance and corrosion resistance, and when the dilution increases, the oxidation resistance is improved, but the elongation is lowered, resulting in the deterioration of moldability. Therefore, the content is preferably 1.0% by weight or less.

Mn은 함량이 높아지면 MnS를 용출하며 내식성을 저하시키므로 1.0중량%이하 로 하는 것이 바람직하다.If the content of Mn is high, MnS elutes and lowers the corrosion resistance.

P 및 S는 그 함량이 증가하면 내공식성 및 열간가공성을 저하시키므로 P는 0.050중량%이하, S는 0.020중량%이하로 하는 것이 바람직하다.P and S decrease the pitting resistance and hot workability as their content increases, so P is preferably 0.050% by weight or less and S is 0.020% by weight or less.

Ni은 내식성을 향상시키는 원소이며 다량 첨가하게 되면 경질화된 뿐만 아니라 응력부식균열이 발생될 우려가 있으므로 2.0중량%이하로 하는 것이 바람직하다.Ni is an element that improves the corrosion resistance, and if it is added in a large amount, it is preferable not only to harden but also to cause stress corrosion cracking.

Cr은 그 함유량이 적으면 내식성이 저하되고, 그 함유량이 많으면 내식성은 향상되나 연신율이 저하되어 성형성이 나빠지므로 그 함유량은 8.0중량% 내지 30.0중량%가 바람직하다.If the content of Cr is small, the corrosion resistance is lowered. If the content is large, the corrosion resistance is improved, but the elongation is lowered and the moldability is worsened. Therefore, the content is preferably 8.0% by weight to 30.0% by weight.

Cu는 내식성 개선을 위해 0초과 1.0% 이하를 함유하는 것이 좋다. 그러나 1%를 넘게 되면 가공성이 저하하는 문제점이 있다. Cu may contain more than 0% and less than 1.0% to improve corrosion resistance. However, if it exceeds 1%, there is a problem that workability is lowered.

Ti, Nb는 고용 C, N을 탄질화물로 석출시켜 내식성 개선 및 성형성 향상에 효과가 있는 원소이다. 그러나 다량 첨가하게 되면 개재물에 의한 외관 불량 및 인성이 저하하게 된다. 따라서 0.01~0.50% 첨가하는 것이 바람직하다.Ti and Nb are elements that are effective in improving corrosion resistance and formability by depositing solid solution C and N as carbonitrides. However, when a large amount is added, appearance defects and toughness due to inclusions are reduced. Therefore, it is preferable to add 0.01-0.50%.

Al은 탈산제로 첨가되는 원소로, 다량 첨가할 경우 표면결함을 발생시키므로 0.10중량% 이하로 한정하는 것이 바람직하다.Al is an element added as a deoxidizer, and when it is added in a large amount, it is preferable to limit it to 0.10% by weight or less.

N은 질화물을 형성시키는 원소로서 침입형으로 존재하게 되므로 과도하게 함유되면 강도는 상승되지만 충격인성, 내식성 및 성형성의 저하를 초래한다. 따라서 그 함량은 0.05중량%이하로 하는 것이 바람직하다.Since N is an element that forms nitride and is present in an invasive form, excessively contained N increases strength, but causes impact toughness, corrosion resistance and moldability deterioration. Therefore, the content is preferably 0.05% by weight or less.

Mo는 내식성, 특히 내공식성을 향상시키기 위해 첨가하는 원소이다. 그러나 다량 첨가하게 되면 가공성을 저하시키므로 1.0% 이하 첨가하는 것이 바람직하다. Mo is an element added in order to improve corrosion resistance, especially corrosion resistance. However, when a large amount is added, it is preferable to add 1.0% or less since workability is lowered.

V, Zr은 C, N을 고정시키기 위해 첨가하는 원소이다. 특히 용접부에서의 Cr탄질화물의 석출을 억제시켜 내식성을 향상시키고, 또한 고온강도를 필요로 하는 경우에 첨가하는 원소이다. 고가이므로 0.01~0.30% 첨가하는 것이 바람직하다.V and Zr are elements added to fix C and N. It is an element added especially when the precipitation of Cr carbonitride in a weld part is suppressed and corrosion resistance is improved and high temperature strength is needed. Since it is expensive, it is preferable to add 0.01-0.30%.

B은 입계에 편석하여 입계강도를 강화하여 2차가공취성을 개선하는 효과가 있다. 그러나 다량 첨가하게 되면 열간가공성을 저하시키기 때문에 0.0010~0.0100% 첨가하는 것이 바람직하다.B segregates at the grain boundaries and enhances the grain strength, thereby improving secondary processing brittleness. However, if a large amount is added, the hot workability is lowered, so it is preferable to add 0.0010 to 0.01%.

본 발명은 상기의 조성으로 이루어진 스테인리스강을 통상의 방법으로 열간압연한 열연판을 900~1100℃ 온도로 소둔하거나 열연판 소둔을 생략한 다음, 냉간압연 및 그 후의 소둔을 각각 2회 실시하는데 있어서, 냉연 총압하율 89% 이상 및 최종 냉연압하율 76% 이상으로 냉간압연하여 제조한 페라이트계 스테인리스강에 대해서 방향별 r값이 1.7 이상이며 r-bar 값이 1.9 이상이고 압연방향에 대해 0도와 45도 방향으로 인장시험한 후의 리징 등급이 1등급 이며 주사전자현미경에 부착된 EBSD로 측정한 {111}<uvw>/{001}<110> 와 {111}<uvw>/{001}<100> 면적율비가 30 이 상인 것을 특징으로 하는 페라이트계 스테인리스강의 제조방법이다.In the present invention, after hot-rolled hot rolled stainless steel sheet having the composition described above in a conventional manner at 900 to 1100 ° C. or omitting the hot-rolled sheet annealing, and then performing cold rolling and subsequent annealing twice, respectively. For ferritic stainless steels produced by cold rolling with a total rolling reduction rate of 89% or more and a final cold rolling rate of 76% or more, the r value in each direction is 1.7 or more, the r-bar value is 1.9 or more, and 0 degrees in the rolling direction. Rising grade after tensile test in 45 ° direction is Grade 1 and measured by EBSD attached to scanning electron microscope {111} <uvw> / {001} <110> and {111} <uvw> / {001} <100 It is a manufacturing method of the ferritic stainless steel characterized by the above-mentioned.

도 1은 특정결정방위의 방향별 r값 계산 결과를 도시한 그래프도이다. 1 is a graph showing the result of calculating the r value for each direction of a specific crystal orientation.

보통 리징의 발생기구는 r값이 낮은 {001} 결정방위를 가지는 결정립군 또는 밴드조직과 r값이 높은 {111}<uvw> 결정방위를 가지는 기지와의 소성이방성 차이에 기인하는 것으로 보고되고 있다. 도 1 에서 보는 바와 같이 {001}<110>과 {001}<100> 결정방위의 r값은 방향에 따라서 달라진다. {001}<110> 은 압연방향에 대해 0도 방향의 r값이 가장 낮고 {001}<100> 은 45도 방향의 r값이 가장 낮다. 따라서 {001}<110> 결정방위를 가지는 결정립군 또는 밴드조직이 존재하는 경우 0도 방향으로 변형할 때 {001}<110> 과 {111}<uvw> 과의 r 값 차이가 크게 되므로 리징 높이가 가장 높게 된다. 반면에 {001}<100> 결정방위를 가지는 결정립군 또는 밴드조직이 존재하는 경우 45도 방향으로 변형할 때 {001}<100> 과 {111}<uvw> 과의 r 값 차이가 크게 되므로 리징 높이가 가장 높게 된다. Usually, the mechanism of leasing is reported to be due to the difference in plastic anisotropy between grain group or band structure with low r value {001} crystal orientation and matrix with high r value {111} <uvw> crystal orientation. . As shown in FIG. 1, the r values of the {001} <110> and {001} <100> crystal directions vary depending on the direction. {001} <110> has the lowest r value in the 0 degree direction with respect to the rolling direction, and {001} <100> has the lowest r value in the 45 degree direction. Therefore, when grain group or band structure having {001} <110> crystal orientation exists, the difference in r value between {001} <110> and {111} <uvw> becomes large when it is deformed in the 0 degree direction. Becomes the highest. On the other hand, in the presence of grain groups or band tissues having a {001} <100> crystal orientation, the difference between r values between {001} <100> and {111} <uvw> when deforming in the 45 degree direction is increased. The height is the highest.

한편 냉간압연시 총압하율, 최종 냉연 압하율 및 압연 횟수에 따라서 집합조직이 달라지게 된다. 즉 {001}<110>, {001}<100> 및 {111}<uvw> 결정방위의 분율이 달라지게 된다. {001}<110>과 {001}<100> 결정방위의 분율을 낮추고 {111}<uvw> 결정방위의 분율을 높이면 리징이 개선될 뿐만 아니라 성형성을 향상시킬수 있다. On the other hand, depending on the total rolling rate during cold rolling, the final cold rolling rate, and the number of rolling, the texture is changed. That is, the fractions of {001} <110>, {001} <100>, and {111} <uvw> crystal directions are changed. Lowering the fraction of the {001} <110> and {001} <100> crystal orientations and increasing the fraction of the {111} <uvw> crystal orientations may not only improve the ridging but also improve the formability.

본 발명은 냉간압연시 총압하율, 최종 냉연 압하율 및 압연 회수와 집합조직 형성과의 상관성을 조사한 결과로, 냉간압연 공정 변수를 적절히 조절하여 집합조직을 개선시키므로서 방향별 리징 높이를 균일하게 저감시킬 뿐만 아니라 방향별 r값을 높여서 성형성을 개선시키고자 한다. The present invention is a result of examining the correlation between the total rolling reduction rate, the final cold rolling reduction rate and the number of rolls and the formation of the texture structure during cold rolling, by uniformly adjusting the cold rolling process parameters to improve the texture structure uniformly to the ridging height for each direction In addition to reducing, the r value of each direction is increased to improve moldability.

본 발명에서 {001}<110>, {001}<100> 및 {111}<uvw> 결정방위의 면적율 측정 방법에 대해서 설명한다. 주사전자현미경(SEM)에 부착된 OIM(Orientation Image Microscopy) 장치를 이용하여 측정된 EBSD(Electron Back Scatter Diffraction)에 의한 결정방위 해석 프로그램을 이용하였다. 도 2는 EBSD로 측정한 {001}<110>, {001}<100> 및 {111}<uvw> 결정방위를 가지는 결정립의 면적율을 나타낸 것이다. 여기서 각 결정방위의 면적율은 회색의 결정립의 면적율을 의미한다. 도 2에서 알 수 있는 바와 같이 {001}<110> 결정방위를 가지는 결정립의 면적율은 약 2.9이다. 이는 재압하에서 얻어지는 값이며, {001}<100> 의 경우 단압을 실시할 경우에 3.8로 나타난다. 반면, {111}<uvw> 결정방위를 가지는 결정립의 면적율은 47.9로 나타나는 것을 알 수 있다. 여기서 {001}<110>과 {001}<100> 결정방위의 분율을 낮추고 {111}<uvw> 결정방위의 분율을 높이면 리징이 개선될 뿐만 아니라 성형성을 향상시킬수 있다. In the present invention, a method for measuring the area ratio of {001} <110>, {001} <100>, and {111} <uvw> crystal orientations will be described. The crystal orientation analysis program by EBSD (Electron Back Scatter Diffraction) measured using an Orientation Image Microscopy (OIM) apparatus attached to a scanning electron microscope (SEM) was used. FIG. 2 shows the area ratio of crystal grains having {001} <110>, {001} <100>, and {111} <uvw> crystal orientations measured by EBSD. Here, the area ratio of each crystal orientation means the area ratio of gray grains. As can be seen in FIG. 2, the area ratio of the crystal grains having the {001} <110> crystal orientation is about 2.9. This is the value obtained under repressurization, and in the case of {001} <100>, it is shown as 3.8 when the forging is performed. On the other hand, it can be seen that the area ratio of the crystal grains having the {111} <uvw> crystal orientation is 47.9. In this case, lowering the fraction of {001} <110> and {001} <100> crystal orientations and increasing the fraction of {111} <uvw> crystal orientations may not only improve leasing but also formability.

(실시 예)(Example)

이하 실시 예를 사용하여 본 발명을 설명한다.The present invention will be described using the following examples.

상업적으로 생산된 여러 종류의 페라이트계 스테인리스강을 실험에 사용하였 다. 연속주조된 슬라브로부터 열간압연한 4~5mm 두께의 열연판으로부터 냉간압연 및 냉연판 소둔을 실시하였다. SEM 에 부착된 EBSD 를 이용하여 측정된 미세조직 및 집합조직 분석결과로부터 특정한 결정방위를 가지는 결정립의 면적율을 측정하였다.Several commercially produced ferritic stainless steels were used in the experiment. Cold rolling and annealing were performed from a 4-5 mm thick hot rolled sheet hot rolled from a continuously cast slab. From the results of microstructure and texture analysis using EBSD attached to the SEM, the area ratio of grains having a specific crystal orientation was measured.

소성이방성지수인 r값을 측정하기 위해 압연 방향에 대해 0, 45, 90도 방향으로 시편을 절단하여 인장시편을 가공한 다음 15% 인장 변형한후 인장시험 전후의 폭 변화를 측정하여 아래의 식을 사용하여 계산하였다. To measure the r value, the plastic anisotropy index, cut the specimen in 0, 45, and 90 degrees with respect to the rolling direction, process the tensile specimen, measure 15% of tensile strain, and measure the width change before and after the tensile test. Calculated using.

r = εwt = -ln(Wf/Wo)/(ln((Wf/Wo)+ln(1.15))r = ε w / ε t = -ln (W f / W o ) / (ln ((W f / W o ) + ln (1.15))

w : 폭방향의 변형율, εt : 두께방향의 변형율, Wf:인장시험후 폭 Wo:인장시험전 폭)w : strain in width direction, ε t : strain in thickness direction, W f : width after tensile test W o : width before tensile test)

리징을 평가하기 위해 압연 방향에 대해 0, 45도 방향으로 시편을 절단하여 인장시편을 가공한 다음 15% 인장 변형한후 표면조도기로 조도를 측정하여 리징 높이를 측정하였다. 측정된 리징 높이를 6등급(1등급:10㎛이하, 2등급:10㎛초과 14㎛이하, 3등급:14㎛초과 18㎛이하, 4등급:18㎛초과 22㎛이하, 5등급:22㎛초과 26㎛이하, 6등급:26㎛초과)으로 분류하여 리징 등급으로 표기하였다.In order to evaluate the leasing, the specimens were cut in the directions of 0 and 45 degrees with respect to the rolling direction, the tensile specimens were processed, and 15% tensile deformation was used to measure the ridging height by measuring the roughness with a surface roughness. The measured ridding height is 6 grades (1 grade: 10 μm or less, 2 grades: 10 μm or more and 14 μm or less, 3 grades: 14 μm or more and 18 μm or less, 4 grades: 18 μm or more and 22 μm or less, 5 grade: 22 μm) Greater than 26 μm or less, and grade 6: greater than 26 μm).

표 1에 본 실시 예에 사용된 페라이트계 스테인리스강의 냉연조건 변화에 따른 냉연소둔판의 두께 및 압하율을 나타내었다. Table 1 shows the thickness and rolling rate of the cold rolled annealing plate according to the cold rolling conditions of the ferritic stainless steel used in this example.

구분division 번호number 두께(mm)Thickness (mm) 냉연압하율(%)Cold rolling rate (%) 비고Remarks 열연Hot rolled 1차 냉연Primary cold rolled steel 2차 냉연Secondary cold rolled steel 1차 Primary 2차Secondary gun 열연
소둔
Hot rolled
Annealing
재압Recompression AA 5.0 5.0 2.3 2.3 0.5 0.5 54.0 54.0 78.3 78.3 90.0 90.0 발명예Honor
BB 5.0 5.0 2.3 2.3 0.5 0.5 54.0 54.0 78.3 78.3 90.0 90.0 발명예Honor CC 5.0 5.0 2.3 2.3 0.5 0.5 54.0 54.0 78.3 78.3 90.0 90.0 발명예Honor DD 5.0 5.0 2.3 2.3 0.5 0.5 54.0 54.0 78.3 78.3 90.0 90.0 발명예Honor EE 4.5 4.5 2.0 2.0 0.5 0.5 55.6 55.6 75.0 75.0 88.9 88.9 비교예Comparative Example FF 4.5 4.5 1.9 1.9 0.5 0.5 58.7 58.7 73.1 73.1 88.9 88.9 비교예Comparative Example GG 4.5 4.5 1.5 1.5 0.5 0.5 66.7 66.7 66.7 66.7 88.9 88.9 비교예Comparative Example HH 4.0 4.0 1.5 1.5 0.5 0.5 62.5 62.5 66.7 66.7 87.5 87.5 비교예Comparative Example II 4.0 4.0 1.5 1.5 0.5 0.5 62.5 62.5 66.7 66.7 87.5 87.5 비교예Comparative Example 단압Pressure JJ 5.0 5.0   0.5 0.5     90.0 90.0 비교예Comparative Example KK 4.5 4.5   0.5 0.5     88.9 88.9 비교예Comparative Example LL 4.3 4.3   0.5 0.5     88.4 88.4 비교예Comparative Example 열연
무소둔
Hot rolled
Annealing
재압Recompression MM 5.0 5.0 2.3 2.3 0.5 0.5 54.0 54.0 78.3 78.3 90.0 90.0 발명예Honor
NN 5.0 5.0 2.3 2.3 0.5 0.5 54.0 54.0 78.3 78.3 90.0 90.0 발명예Honor 단압Pressure OO 5.0 5.0   0.5 0.5     90.0 90.0 비교예Comparative Example

상기 표 1에서 발명예와 비교예가 대비되어 있는 바와 같이, 본 발명에서는 열연소둔 또는 열연 무소둔의 어느 쪽도 가능하나, 단 냉연은 각 2회를 실시하는 재압조건인 것이 바람직하다. 열연소둔을 실시한 강종을 재압한 경우에 냉연압하율을 살펴보기로 한다. 상기 발명예 A~D에 나타난 값은 1차에서의 압하율은 54%로서 55%이하이다. 또는 발명예에서 2차, 즉 최종압하율은 78.3%이다. 비교에와 대비하여 볼 때 76%이상으로 하는 것이 바람직하다. 또한 냉연 총압하율은 90%이나, 비교예와 대비하여 볼 때 89%이상으로 하는 것이 바람직하다. 따라서, 본 발명에서 집합조직을 제어하기 위한 바람직한 압하율의 범위는 초압하율을 89%이상으로 하되, 최종 냉연압하율은 76%이상으로 한다. 한편 본 발명에서 열연무소둔강의 경우에도 열연소둔강의 경우와 동일한 값을 얻을 수 있다. (발명예 M, N)종래의 경우 재압시 최종 냉연압하율은 75%이하의 값이 나오는 것을 알 수 있다. As the invention example and the comparative example are contrasted in the above Table 1, in the present invention, either hot-rolled annealing or hot-rolled annealing is possible, but cold rolling is preferably a repressurization condition which is performed twice each. In the case of repressurizing the steel sheet subjected to hot-rolling annealing, the cold rolling reduction rate will be described. As for the value shown to the said invention examples A-D, the rolling reduction in a primary is 54% and 55% or less. Or in the invention example, the secondary, ie final reduction, is 78.3%. In comparison with the comparison, it is preferable to be 76% or more. Moreover, although the cold rolling total pressure reduction rate is 90%, compared with a comparative example, it is preferable to set it as 89% or more. Therefore, the preferred reduction ratio for controlling the texture in the present invention is the initial pressure reduction rate of 89% or more, the final cold rolling rate is 76% or more. Meanwhile, in the present invention, even in the case of hot-annealed annealing steel, the same value as in the case of hot-annealed annealing steel can be obtained. (Invention Examples M, N) In the case of conventional re-pressurization, the final cold rolling rate is less than 75%.

다음은 표 2에 냉연조건 변화에 따른 냉연 소둔판의 방향별 r값과 리징 높이 및 리징 등급을 나타내었다.Next, Table 2 shows the r value, the ridging height, and the ridging grade of the cold rolled annealing plate according to the cold rolling conditions.

번호number r값r value 리징높이(Rt,㎛)Leasing Height (Rt, ㎛) 리징등급 Leasing Class 비고Remarks 00 4545 9090 r-barr-bar drdr 00 4545 00 4545 AA 2.42 2.42 1.70 1.70 2.47 2.47 2.07 2.07 0.75 0.75 7.3 7.3 9.5 9.5 1 One 1 One 발명예Honor BB 2.14 2.14 1.82 1.82 2.55 2.55 2.08 2.08 0.53 0.53 8.9 8.9 9.1 9.1 1 One 1 One 발명예Honor CC 2.21 2.21 2.03 2.03 2.67 2.67 2.23 2.23 0.41 0.41 9.4 9.4 9.7 9.7 1 One 1 One 발명예Honor DD 2.16 2.16 1.87 1.87 2.54 2.54 2.11 2.11 0.48 0.48 7.9 7.9 9.3 9.3 1 One 1 One 발명예Honor EE 2.26 2.26 1.44 1.44 2.36 2.36 1.88 1.88 0.87 0.87 8.4 8.4 10.5 10.5 1 One 2 2 비교예Comparative Example FF 2.26 2.26 1.44 1.44 2.40 2.40 1.89 1.89 0.89 0.89 8.5 8.5 11.3 11.3 1 One 2 2 비교예Comparative Example GG 2.24 2.24 1.29 1.29 2.47 2.47 1.82 1.82 1.06 1.06 8.3 8.3 12.0 12.0 1 One 2 2 비교예Comparative Example HH 1.89 1.89 1.33 1.33 2.43 2.43 1.74 1.74 0.83 0.83 9.7 9.7 12.1 12.1 1 One 2 2 비교예Comparative Example II 2.11 2.11 1.45 1.45 2.54 2.54 1.89 1.89 0.88 0.88 9.6 9.6 11.6 11.6 1 One 2 2 비교예Comparative Example JJ 1.60 1.60 1.93 1.93 1.97 1.97 1.86 1.86 -0.15-0.15 10.1 10.1 8.9 8.9 2 2 1 One 비교예Comparative Example KK 1.60 1.60 1.61 1.61 1.76 1.76 1.64 1.64 0.07 0.07 12.5 12.5 8.7 8.7 2 2 1 One 비교예Comparative Example LL 1.53 1.53 1.70 1.70 1.79 1.79 1.68 1.68 -0.05-0.05 13.9 13.9 10.5 10.5 2 2 2 2 비교예Comparative Example MM 2.06 2.06 1.96 1.96 2.51 2.51 2.12 2.12 0.32 0.32 9.9 9.9 7.1 7.1 1 One 1 One 발명예Honor NN 2.29 2.29 1.83 1.83 2.42 2.42 2.09 2.09 0.53 0.53 7.9 7.9 8.7 8.7 1 One 1 One 발명예Honor OO 1.08 1.08 2.06 2.06 1.66 1.66 1.71 1.71 -0.69-0.69 21.0 21.0 8.8 8.8 4 4 1 One 비교예Comparative Example

상기 표에서 알 수 있는 바와 같이, 본 발명예인 A,B,C,D 그리고 M,N의 경우 방향별 r값의 최소값은 1.7인 것을 알 수 있다. 또한 r-bar값의 경우 최소값은 2.07으로 나온다. 그러나 타 비교예와 대비하여 볼 때 r-bar값은 1.9이상으로 하는 것이 바람직하다는 것을 알 수 있다. 이상으로 나오는 것을 알 수 있다. 또한, 본 발명예에서 리징높이는 1등급으로서 최대 9.9을 얻었다.As can be seen from the table, in the case of A, B, C, D and M, N of the present invention, it can be seen that the minimum value of the r value for each direction is 1.7. In addition, for the r-bar value, the minimum value is 2.07. However, in comparison with other comparative examples, it can be seen that the r-bar value is preferably 1.9 or more. It turns out that it comes out as above. Further, in the present invention, the leasing height was obtained as the first grade, up to 9.9.

다음은 표 3에 특정 방위를 가지는 결정립의 면적율비를 측정한 결과를 나타내었다. Table 3 shows the results of measuring the area ratio of the crystal grains having a specific orientation.

번호number 결정방위 면적율비(%)Crystal orientation area ratio (%) 비고Remarks {111}<uvw>/{001}<100>{111} <uvw> / {001} <100> {111}<uvw>/{001}<110>{111} <uvw> / {001} <110> AA 35.435.4 51.151.1 발명예Honor BB 70.370.3 30.130.1 발명예Honor CC 95.895.8 43.543.5 발명예Honor DD 83.283.2 32.032.0 발명예Honor EE 22.822.8 82.082.0 비교예Comparative Example FF 24.124.1 51.151.1 비교예Comparative Example GG 12.112.1 50.350.3 비교예Comparative Example HH 26.326.3 43.843.8 비교예Comparative Example II 28.828.8 31.031.0 비교예Comparative Example JJ 154.3154.3 27.227.2 비교예Comparative Example KK 79.479.4 22.122.1 비교예Comparative Example LL 137.3137.3 24.224.2 비교예Comparative Example MM 63.063.0 38.838.8 발명예Honor NN 55.955.9 44.744.7 발명예Honor OO 164.5164.5 8.78.7 비교예Comparative Example

상기 표 3의 발명예인 A, B, C, D의 경우 {111}<uvw>/{001}<100>의 면적율비를 살펴보면 최소 35.4에서 최대 154.3으로 나타난다. 또한 발명예 M, N의 경우에 {111}<uvw>/{001}<110>의 면적율비는 최소 30.1에서 최대82.0으로 나와 있다. In the case of A, B, C, and D, which are the invention examples of Table 3, the ratio of the area ratio of {111} <uvw> / {001} <100> appears to be at least 35.4 to at most 154.3. In addition, in the case of the invention examples M and N, the area ratio ratio of {111} <uvw> / {001} <110> is shown as minimum 30.1 to maximum 82.0.

도 3a, b는 본 실시 예에 사용된 페라이트계 스테인리스강의 방향별 r값과 리징 높이를 나타내었다. 도 3에서 보면 방향별 r값과 리징 높이는 역의 상관관계를 보여주고 있다. 즉 0도 방향의 r값이 낮으면 0도 방향의 리징 높이가 높고, 45도 방향의 r값이 낮으면 45도 방향의 리징 높이가 높게 나타났다. 따라서 0도와 45도 방향의 r값의 차이가 적은 1.7 이상이 본 발명의 범위로 한다. 이는 상기 표 2에서 나타난 발명예의 값과 부합된다. 또한, 도 3b는 방향별 리징높이를 도시하고 있는바, 본 발명에서는 0도와 45도 방향의 리징 높이의 차이가 적은 10 이하로 한다. 3a and b show the r value and the ridging height for each direction of the ferritic stainless steel used in this embodiment. 3 shows an inverse correlation between the r value for each direction and the ridging height. In other words, when the r value in the 0 degree direction is low, the ridging height in the 0 degree direction is high, and when the r value in the 45 degree direction is low, the ridging height in the 45 degree direction is high. Therefore, 1.7 or more in which the difference of r value in 0 degree and 45 degree direction is small is a range of this invention. This corresponds to the value of the invention example shown in Table 2 above. 3B shows the ridging height for each direction. In the present invention, the difference between the ridging heights in the 0 and 45 degree directions is set to 10 or less.

한편 도 4의 a, b는 각 결정방위의 면적율비에 따른 방향별 r 값으로서 도 4a는 0도, 4b는 45도일때의 값이며, 도 4c는 0도 일 때 각 결정방위의 면적율비에 따른 리징높이이고, 도 4d는 45시의 각 결정방위의 면적율비에 따른 리징높이를 나타낸 것이다. 본 발명에서 양호한 성형성과 리징 특성을 만족하기 위해서는 1.7 이상의 r 값과 10㎛ 이하의 리징 높이가 요구된다. 상기 조건을 충족시키기 위해서는 {111}<uvw>/{001}<110> 과 {111}<uvw>/{001}<100> 면적율비가 30 이상이 되어야 한다. 그리고 본 발명에서는 0도와 45도 방향 모두 위의 조건을 만족해야 하는데 도 4 에의 본 발명 범위는 양자의 조건을 모두 만족하는 범위를 나타낸다. On the other hand, Figure 4 a, b is the r value for each direction according to the ratio of the area ratio of each crystal orientation, Figure 4a is a value when 0 degrees, 4b is 45 degrees, Figure 4c is a ratio of the area ratio of each crystal orientation at 0 degrees Figure 4d shows the ridging height according to the ratio of the area ratio of each crystal orientation at 45 o'clock. In the present invention, in order to satisfy good moldability and ridging characteristics, an r value of 1.7 or more and a ridging height of 10 µm or less are required. In order to satisfy the above conditions, the area ratio ratio of {111} <uvw> / {001} <110> and {111} <uvw> / {001} <100> should be 30 or more. In the present invention, the above conditions must be satisfied in both the 0 degree and 45 degree directions, but the scope of the present invention in FIG. 4 indicates a range in which both conditions are satisfied.

결국, 본 발명에서는 냉간압연 및 그 후의 소둔을 각각 2회 실시하는데 있어서, 냉연 총압하율 89% 이상 및 최종 냉연압하율 76% 이상이 되도록 냉간압연해야 본 발명이 원하는 효과를 얻을 수 있음을 알 수 있다. As a result, in the present invention, when cold rolling and subsequent annealing are performed twice, it is understood that the present invention can obtain the desired effect only by cold rolling so that the total cold rolling reduction rate is at least 89% and the final cold rolling reduction ratio is at least 76%. Can be.

도 1은 특정 결정방위의 방향별 r값 계산 결과를 나타낸 그래프도.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing a result of calculating r value for each direction of a specific crystal orientation.

도 2는 EBSD로 측정한 {001}<110>, {001}<100> 및 {111}<uvw> 결정방위를 가지는 결정립의 면적율을 나타낸 그래프도.2 is a graph showing the area ratio of crystal grains having {001} <110>, {001} <100>, and {111} <uvw> crystal orientations measured by EBSD.

도 3a는 본 발명에 사용된 페라이트계 스테인리스강의 방향별 r값을 도시한 그래프도.Figure 3a is a graph showing the r value for each direction of the ferritic stainless steel used in the present invention.

도 3b는 본 발명에 사용된 페라이트계 스테인리스강의 리징 높이를 나타낸 그래프도.Figure 3b is a graph showing the ridging height of the ferritic stainless steel used in the present invention.

도 4a~d는 본 실시예에 사용된 페라이트계 스테인리스강의 각 결정방위의 면적율비에 따른 방향별 r 값과 리징 높이를 나타낸 그래프도.4a to d are graphs showing the r value and the ridging height of each direction according to the area ratio ratio of each crystal orientation of the ferritic stainless steel used in the present embodiment.

Claims (8)

페라이트계 스테인리스강을 열간압연한 열연판을 900~1100℃ 온도로 소둔하거나 열연판 소둔을 생략한 다음, 냉간압연 및 그 후의 소둔을 각각 2회 실시하는 페라이트계 스테인리스강의 제조방법으로서, As a method for producing a ferritic stainless steel, annealing the hot-rolled steel sheet hot-rolled ferritic stainless steel to a temperature of 900 ~ 1100 ℃ or omitting the hot-rolled steel sheet, followed by cold rolling and subsequent annealing, respectively, 상기 냉간압연공정에서 냉연 총압하율 90% 이상 및 최종 냉연압하율 76% 이상으로 냉간압연하고, 최종 냉간압연 및 소둔후의 페라이트계 스테인리스강의 리징높이는 10㎛ 이하이며, 조직방향별 r값이 1.7이상이고, r-bar값이 1.9이상이며, 주사전자현미경에 부착된 EBSD로 측정한 {111}<uvw>/{001}<110> 와 {111}<uvw>/{001}<100> 면적율비가 30 이상인 것을 특징으로 하는 리징성 및 성형성이 우수한 페라이트계 스테인리스강의 제조방법.In the cold rolling process, cold rolling is performed at 90% or more of the total cold rolling reduction rate and 76% or more of the final cold rolling reduction ratio, and the leasing height of the ferritic stainless steel after final cold rolling and annealing is 10 μm or less, and the r value of each tissue direction is 1.7 or more. And the r-bar value is 1.9 or more, and the ratio of {111} <uvw> / {001} <110> and {111} <uvw> / {001} <100> measured by EBSD attached to the scanning electron microscope A method for producing ferritic stainless steel having excellent ridging property and formability, characterized in that it is 30 or more. 삭제delete 삭제delete 삭제delete 제1항의 제조방법에 의하여 제조된 페라이트계 스테인리스강은 중량%로, C : 0초과 0.10% 이하, Si : 0초과 1.0% 이하, Mn : 0초과 1.0% 이하, P : 0초과 0.050% 이하, S : 0초과 0.020% 이하, Ni : 0초과 2.0% 이하, Cr : 8.0 ~ 30%, Cu : 0초과 1.0% 이하, Ti : 0.01~0.50%, Nb : 0.01~0.50%, Al 0초과 0.10% 이하, N : 0초과 0.05% 이하로 구성되고 선택적으로 Mo : 0초과 1.0% 이하, V : 0.01~0.30%, Zr : 0.01~0.30% 및 B : 0.0010~0.0100% 중 1종 또는 2종 이상을 더 함유하고 나머지는 Fe 및 기타 불가피한 불순물로 이루어진 리징성 및 성형성이 우수한 페라이트계 스테인리스강.Ferritic stainless steel produced by the manufacturing method of claim 1 in weight%, C: greater than 0 0.10%, Si: greater than 0% 1.0% or less, Mn: greater than 0% 1.0% or less, P: greater than 0% 0.050%, S: greater than 0 and less than 0.020%, Ni: greater than 0 and less than 2.0%, Cr: greater than 8.0 and 30%, Cu: greater than 0 and less than 1.0%, Ti: 0.01 to 0.50%, Nb: 0.01 to 0.50%, Al greater than 0.10% Or less than 0% and 0.05% or less, optionally Mo: more than 0% and 1.0% or less, V: 0.01 to 0.30%, Zr: 0.01 to 0.30%, and B: 0.0010 to 0.0100%. Ferritic stainless steel with more ridging and formability, which contains more and the rest is composed of Fe and other unavoidable impurities. 삭제delete 삭제delete 삭제delete
KR1020090118999A 2009-12-03 2009-12-03 method of manufacturing ferritic stainless steel with improved formability and ridging property KR101301440B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090118999A KR101301440B1 (en) 2009-12-03 2009-12-03 method of manufacturing ferritic stainless steel with improved formability and ridging property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090118999A KR101301440B1 (en) 2009-12-03 2009-12-03 method of manufacturing ferritic stainless steel with improved formability and ridging property

Publications (2)

Publication Number Publication Date
KR20110062312A KR20110062312A (en) 2011-06-10
KR101301440B1 true KR101301440B1 (en) 2013-08-28

Family

ID=44396517

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090118999A KR101301440B1 (en) 2009-12-03 2009-12-03 method of manufacturing ferritic stainless steel with improved formability and ridging property

Country Status (1)

Country Link
KR (1) KR101301440B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356929B1 (en) * 2011-12-28 2014-01-29 주식회사 포스코 Ridging free ferritic staninless steel and the method of manufacturing the same
KR101356920B1 (en) * 2011-12-28 2014-01-28 주식회사 포스코 Ferritic stainless steel with good formability and the method of manufacturing the same
KR101444986B1 (en) * 2011-12-28 2014-09-30 주식회사 포스코 Ferritic stainless steel with good ridging property and the method of manufacturing the same
KR101482354B1 (en) 2012-12-27 2015-01-13 주식회사 포스코 Grain-oriented electrical steel having excellent magnetic properties
KR101445053B1 (en) * 2014-01-22 2014-09-26 주식회사 포스코 Ferritic stainless steel with good ridging property and the method of manufacturing the same
KR20180027689A (en) * 2016-09-06 2018-03-15 주식회사 포스코 Method of manufacturing ferritic stainless steel having excellent formability and ridging properties
KR102020509B1 (en) * 2017-12-04 2019-09-10 주식회사 포스코 Ferritic stainless steel excellent in workability and manufacturing method thereof
JP6983077B2 (en) * 2018-01-12 2021-12-17 日鉄ステンレス株式会社 Ferritic stainless steel sheet and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208412A (en) 2007-02-26 2008-09-11 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having reduced surface roughness after working and excellent formability, and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208412A (en) 2007-02-26 2008-09-11 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having reduced surface roughness after working and excellent formability, and its manufacturing method

Also Published As

Publication number Publication date
KR20110062312A (en) 2011-06-10

Similar Documents

Publication Publication Date Title
KR101301440B1 (en) method of manufacturing ferritic stainless steel with improved formability and ridging property
KR100527996B1 (en) High-strength high-workability cold rolled steel sheet having excellent impact resistance
JP5609945B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5457840B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
EP1741800A1 (en) Steel sheet for can and method for production thereof
KR20060020694A (en) High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
EP3231882B1 (en) Stainless steel and production method therefor
EP0918098B1 (en) Method for producing a bake-hardenable cold-rolled steel sheet having excellent aging resistance
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
KR20100058851A (en) Method for manufacturing ferritic stainless steel with improved formability and ridging property
KR101568519B1 (en) Hot rolled steel sheet having excellent deformation anisotropy in sheared edge and anti fatigue property and method for manufacturing the same
KR101464845B1 (en) Steel plate having excellent moldability and shape retention, and method for producing same
CN107964632B (en) Ferritic stainless steel sheet having excellent formability
KR102120697B1 (en) Manufacturing method of ferritic stainless steel having excellent ridging property and formability
JPH08253818A (en) Production of ferritic stainless steel strip reduced in inplane anisotropy and excellent in balance between strength and elongation
KR101611695B1 (en) High-strength thin steel sheet having excellent drawability and method for manufacturing the same
KR101228753B1 (en) Ultra high strength cold rolled steel sheet having excellent shape property and method for manufacturing the same
JP2008308718A (en) High-strength steel sheet, and method for producing the same
KR20120066476A (en) Ti added ferritic stainless steel with improved ridging property and method of manufacturing the same
KR102020514B1 (en) Ferritic stainless steel with improved expanability and method of manufacturing the same
KR101279051B1 (en) Ferritic stainless steel and method for manufacturing the same
KR100963025B1 (en) Method for manufacturing a ferritic stainless steel
KR101316907B1 (en) Ferritic stainless steel and method for manufacturing the same
KR102020509B1 (en) Ferritic stainless steel excellent in workability and manufacturing method thereof
KR20140080353A (en) Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160802

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170803

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180823

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190823

Year of fee payment: 7