JP2020143309A - Ferritic stainless steel sheet - Google Patents

Ferritic stainless steel sheet Download PDF

Info

Publication number
JP2020143309A
JP2020143309A JP2019038462A JP2019038462A JP2020143309A JP 2020143309 A JP2020143309 A JP 2020143309A JP 2019038462 A JP2019038462 A JP 2019038462A JP 2019038462 A JP2019038462 A JP 2019038462A JP 2020143309 A JP2020143309 A JP 2020143309A
Authority
JP
Japan
Prior art keywords
less
stainless steel
precipitate
steel sheet
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019038462A
Other languages
Japanese (ja)
Other versions
JP7304715B2 (en
Inventor
篤史 田口
Atsushi Taguchi
篤史 田口
石丸 詠一朗
Eiichiro Ishimaru
詠一朗 石丸
唯志 小森
Tadashi Komori
唯志 小森
木村 謙
Ken Kimura
謙 木村
眞市 田村
Shinichi Tamura
眞市 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2019038462A priority Critical patent/JP7304715B2/en
Publication of JP2020143309A publication Critical patent/JP2020143309A/en
Application granted granted Critical
Publication of JP7304715B2 publication Critical patent/JP7304715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide a ferritic stainless steel sheet having excellent moldability and rough skin resistance after the molding process.SOLUTION: An adopted ferritic stainless steel sheet contains Cr:11.0% or larger and 30.0% or smaller, C:0.001% or larger and 0.030% or smaller, Si:0.01% or larger and 2.00% or smaller, Mn:0.01% or larger and 2.00% or smaller, P:0.005% or larger and 0.100% or smaller, S:0.0100% or smaller, N:0.030% or smaller, further, contains at least one or two kinds of Ti:0.50% or smaller and Nb:1.0% or smaller, the balance made of Fe and impurities, has crystal grain size number measured by JIS G 0551 of 9.0 or larger, an average r value measured by JIS Z2254 of 1.20 or larger, and has the density of precipitate having grain size in the range of 0.05 to 0.30 μm of 100,000 pieces/mm2 or larger.SELECTED DRAWING: None

Description

本発明は、フェライト系ステンレス鋼板に関し、特に、成形加工する際の成形性並びに耐加工肌荒れ性に優れるフェライト系ステンレス鋼板に関する。 The present invention relates to a ferritic stainless steel sheet, and more particularly to a ferritic stainless steel sheet having excellent moldability and rough skin resistance during molding.

オーステナイト系ステンレス鋼の代表鋼種であるSUS304(18Cr−8Ni)は、耐食性、加工性、美麗性等に優れることから家電、厨房品、建材等広く用いられている。但し、SUS304は高価かつ価格変動の激しいNiを多量に添加しているため鋼板の価格が高いとされている。一方、フェライト系ステンレス鋼はNiを含有しない、もしくは含有量が極めて少ないため、コストパフォーマンスに優れる材料として需要が増加している。しかし、フェライト系ステンレス鋼を成形用途として使用する場合、問題となるのが成形限界と成形後に表面凹凸が形成されることによる耐加工肌荒れ性の劣化である。 SUS304 (18Cr-8Ni), which is a representative steel grade of austenitic stainless steel, is widely used in home appliances, kitchen products, building materials, etc. because of its excellent corrosion resistance, workability, and beauty. However, it is said that the price of the steel sheet of SUS304 is high because a large amount of Ni, which is expensive and the price fluctuates sharply, is added. On the other hand, ferritic stainless steel does not contain Ni or has an extremely low content, so that demand is increasing as a material having excellent cost performance. However, when ferrite-based stainless steel is used for molding, the problems are the molding limit and deterioration of the rough skin resistance due to the formation of surface irregularities after molding.

まず成形限界について比較すると、オーステナイト系ステンレス鋼の場合は張り出し性に優れるが、フェライト系ステンレス鋼の張り出し性は低く、形状を大きく変化させることが出来ない。しかし結晶方位(集合組織)を調整して深絞り性を制御することが出来るため、フェライト系ステンレス鋼を成形用途として用いる場合では、深絞りを主体とした成形手法を用いる場合が多い。 First, comparing the molding limits, the austenitic stainless steel has excellent overhangability, but the ferrite stainless steel has low overhangability, and the shape cannot be changed significantly. However, since the crystal orientation (organization) can be adjusted to control the deep drawing property, when ferritic stainless steel is used for molding purposes, a molding method mainly for deep drawing is often used.

次に、成形加工後の表面特性、特に加工肌荒れ(成形後の表面凹凸)について述べる。ここで「表面凹凸」とは、加工や成形を行った後に鋼板表面に生じる微細な凹凸(肌荒れ)を指し、この微細な凹凸は結晶粒に対応していることから、結晶粒径が大きいほど表面凹凸も顕著になる。 Next, the surface characteristics after molding, particularly rough skin (surface unevenness after molding) will be described. Here, "surface unevenness" refers to fine irregularities (rough skin) that occur on the surface of the steel sheet after processing or molding, and since these fine irregularities correspond to crystal grains, the larger the crystal grain size, the larger the crystal grain size. Surface irregularities also become noticeable.

オーステナイト系ステンレス鋼の場合、加工硬化特性に優れており細粒組織が比較的作りやすいため結晶粒度番号が約10の鋼板が製造されている。このため成形加工後の表面凹凸(肌荒れ)は小さく、ほとんど問題とならない。一方、フェライト系ステンレス鋼の結晶粒度はSUS430で9程度、SUS430LXで7程度とオーステナイト系ステンレス鋼に比べて小さい。ここで粒度番号が小さいことは結晶粒径が大きいことを示している。 In the case of austenitic stainless steel, a steel sheet having a crystal grain size number of about 10 is manufactured because it has excellent work hardening characteristics and a fine grain structure is relatively easy to form. Therefore, the surface unevenness (rough skin) after the molding process is small, and there is almost no problem. On the other hand, the crystal grain size of ferritic stainless steel is about 9 for SUS430 and about 7 for SUS430LX, which are smaller than those of austenitic stainless steel. Here, a small particle size number indicates a large crystal particle size.

フェライト系ステンレス鋼が粗粒になりやすい要因としては、フェライト系ステンレス鋼では再結晶粒径が大きくなりやすいことに加え、SUS430LXのような、C、Nを低減させて加工性、成形性の向上を図った高純フェライト系ステンレス鋼では粒成長しやすいためである。またフェライト系ステンレス鋼において、冷延回数を増やして結晶粒径が細かい製品板を製造しても肌荒れが生成する場合があり、その原因は必ずしも明確ではない。 The reason why ferritic stainless steel tends to have coarse grains is that ferritic stainless steel tends to have a large recrystallized particle size, and C and N are reduced to improve workability and formability, such as SUS430LX. This is because grain growth is likely to occur in high-pure ferritic stainless steel. Further, in ferrite stainless steel, even if a product plate having a fine crystal grain size is manufactured by increasing the number of cold rollings, rough skin may occur, and the cause is not always clear.

家電製品の筺体あるいは器物のように比較的厳しい成形性が要求される場合、フェライト系ステンレス鋼ではSUS430LXのような高純フェライト系ステンレス鋼が用いられることが多い。また、成形後の強度を担保するために、用いられるステンレス鋼板の板厚は大半の場合は0.6mm以上であるが、前述のようにフェライト系ステンレス鋼は結晶粒径が大きいために成形後の肌荒れが大きく、研磨による表面凹凸の除去が通常行われている。 When relatively strict formability is required for housings or fixtures of home appliances, high-pure ferritic stainless steel such as SUS430LX is often used as the ferrite stainless steel. Further, in order to ensure the strength after molding, the thickness of the stainless steel sheet used is 0.6 mm or more in most cases, but as described above, the ferritic stainless steel has a large crystal grain size, so after molding. The rough skin is large, and surface irregularities are usually removed by polishing.

上述した背景から、高純度フェライト系ステンレス鋼の肌荒れを軽減する手法が開示されている。
特許文献1には、高純度のフェライト系ステンレス鋼を用いて析出粒子のサイズ及び結晶粒径を制御して加工肌荒れの少ない成形性に優れたフェライト系ステンレス鋼及びその製造方法が開示されている。しかし特許文献1では、結晶粒径が小さい鋼板が得られているものの成形した際の深絞り性は十分ではなく、また結晶粒径が小さいにもかかわらず成形後の肌荒れが発生しやすい問題があった。
From the above background, a method for reducing rough skin of high-purity ferritic stainless steel has been disclosed.
Patent Document 1 discloses a ferritic stainless steel having excellent formability with less rough surface by controlling the size and crystal grain size of precipitated particles using high-purity ferritic stainless steel and a method for producing the same. .. However, in Patent Document 1, although a steel sheet having a small crystal grain size is obtained, the deep drawing property at the time of molding is not sufficient, and even though the crystal grain size is small, there is a problem that rough skin is likely to occur after molding. there were.

特許文献2には、TiとNbを含有したフェライト系ステンレス鋼において低温で熱間圧延を実施し、かつ高い冷間圧延率を取ることで細粒とし、成形時の耐肌荒れ性に優れたステンレス鋼を製造する技術を開示している。このような技術によって特許文献2のステンレス鋼は、結晶粒度番号は9.5と細粒組織が得られているもののカップ絞り成形をした後の肌荒れ性は必ずしも十分ではない。 Patent Document 2 describes a stainless steel containing Ti and Nb, which is hot-rolled at a low temperature and has a high cold-rolling ratio to make fine particles, and has excellent rough skin resistance during molding. It discloses the technology for manufacturing steel. Although the stainless steel of Patent Document 2 has a crystal grain size number of 9.5 and a fine grain structure obtained by such a technique, the rough skin after cup drawing molding is not always sufficient.

特許文献3には、Nb及び/またはTiを含有する成分を有する鋼の最終冷延前の結晶粒径を制御することで深絞り性、リジング性および耐肌荒れ性に優れたフェライト系ステンレス鋼が開示されている。しかし、特許文献3では最終製品の結晶粒径は15μm(結晶粒度番号で9.1)であり、肌荒れ性が不十分である。 Patent Document 3 describes a ferritic stainless steel having excellent deep drawing property, rigging property and rough skin resistance by controlling the crystal grain size of a steel having a component containing Nb and / or Ti before final cold rolling. It is disclosed. However, in Patent Document 3, the crystal particle size of the final product is 15 μm (crystal particle size number is 9.1), and the rough skin property is insufficient.

特許第4749888号公報Japanese Patent No. 4479888 特開平7−292417号公報Japanese Unexamined Patent Publication No. 7-292417 特許第3788311号公報Japanese Patent No. 3788311

以上のようにフェライト系ステンレス鋼の成形加工を考えた場合、所定の形状に成形が出来、かつ成形後の表面特性を満足させることは非常に困難であるのが現状である。このためフェライト系ステンレス鋼を成形用途として使用する場合は、成形後に生じた表面凹凸を除去するために研磨工程を行う必要がある。しかしこの研磨工程において研磨時間がかかり製造コストがかさむ上、研磨にて生じた粉じんが多く発生するなどの問題がある。 Considering the molding process of ferritic stainless steel as described above, it is currently very difficult to form a predetermined shape and satisfy the surface characteristics after molding. Therefore, when ferritic stainless steel is used for molding, it is necessary to perform a polishing step in order to remove surface irregularities generated after molding. However, in this polishing process, there are problems that polishing time is long, manufacturing cost is high, and a large amount of dust generated by polishing is generated.

本発明は、上記問題に鑑みなされたものであり、成形加工性及び成形加工後の耐加工肌荒れ性に優れたフェライト系ステンレス鋼板を提供するものである。 The present invention has been made in view of the above problems, and provides a ferritic stainless steel sheet having excellent moldability and rough skin resistance after molding.

本発明の要旨は、以下のとおりである。
[1] 質量%にて、
Cr:11.0%以上30.0%以下、
C:0.001%以上0.030%以下、
Si:0.01%以上2.00%以下、
Mn:0.01%以上2.00%以下、
P:0.005%以上0.100%以下、
S:0.0100%以下、
N:0.030%以下を含み、
さらに、Ti:0.50%以下、Nb:1.0%以下の1種または2種を含み、
残部がFe及び不純物からなり、
JIS G 0551にて測定される結晶粒度番号が9.0以上であり、
JIS Z 2254にて測定される平均r値が1.20以上であり、
粒径が0.05〜0.30μmの範囲の析出物の密度が100,000個/mm以上であることを特徴とするフェライト系ステンレス鋼板。
[2] 質量%にて、更に、
B:0.0001%以上0.0025%以下、
Sn:0.005%以上0.50%以下、
Ni:1.00%以下、
Cu:1.00%以下、
Mo:2.00%以下、
W:1.00%以下、
Al:1.00%以下、
Co:0.50%以下、
V:0.50%以下、
Zr:0.50%以下、
Ca:0.0050%以下、
Mg:0.0050%以下、
Y:0.10%以下、
Hf:0.20%以下、
REM:0.10%以下、
Sb:0.50%以下の1種または2種以上を含有していることを特徴とする[1]に記載のフェライト系ステンレス鋼板。
[3] 前記析出物は、Nbを含まず、かつ、P、Tiが平均原子比でTi/P:0.5〜2.0の範囲となる成分を有する析出物であることを特徴とする[1]または[2]に記載のフェライト系ステンレス鋼板。
[4] 前記析出物は、Tiを含まず、かつ、P、Nbが平均原子比でNb/P:0.5〜2.0の範囲となる成分を有する析出物であることを特徴とする[1]または[2]に記載のフェライト系ステンレス鋼板。
[5] 前記析出物は、平均原子比でTi/P:0.5〜2.0かつNb/P:0.5〜2.0の範囲となる成分を有する析出物であることを特徴とする[1]または[2]に記載のフェライト系ステンレス鋼板。
The gist of the present invention is as follows.
[1] By mass%
Cr: 11.0% or more and 30.0% or less,
C: 0.001% or more and 0.030% or less,
Si: 0.01% or more and 2.00% or less,
Mn: 0.01% or more and 2.00% or less,
P: 0.005% or more and 0.100% or less,
S: 0.0100% or less,
N: Including 0.030% or less
Further, it contains one or two types of Ti: 0.50% or less and Nb: 1.0% or less.
The rest consists of Fe and impurities
The crystal grain size number measured by JIS G 0551 is 9.0 or more.
The average r-value measured by JIS Z 2254 is 1.20 or more.
A ferritic stainless steel sheet having a density of deposits in the range of 0.05 to 0.30 μm and a density of 100,000 pieces / mm 2 or more.
[2] By mass%, further
B: 0.0001% or more and 0.0025% or less,
Sn: 0.005% or more and 0.50% or less,
Ni: 1.00% or less,
Cu: 1.00% or less,
Mo: 2.00% or less,
W: 1.00% or less,
Al: 1.00% or less,
Co: 0.50% or less,
V: 0.50% or less,
Zr: 0.50% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
Y: 0.10% or less,
Hf: 0.20% or less,
REM: 0.10% or less,
Sb: The ferrite-based stainless steel sheet according to [1], which contains 1 type or 2 or more types of 0.50% or less.
[3] The precipitate is characterized in that it does not contain Nb and has components in which P and Ti have an average atomic ratio of Ti / P: 0.5 to 2.0. The ferritic stainless steel sheet according to [1] or [2].
[4] The precipitate is characterized in that it does not contain Ti and has components in which P and Nb have an average atomic ratio of Nb / P: 0.5 to 2.0. The ferritic stainless steel sheet according to [1] or [2].
[5] The precipitate is characterized by having a component having an average atomic ratio in the range of Ti / P: 0.5 to 2.0 and Nb / P: 0.5 to 2.0. The ferritic stainless steel sheet according to [1] or [2].

本発明によれば、成形加工性及び成形加工後の耐加工肌荒れ性に優れたフェライト系ステンレス鋼板を提供できる。 According to the present invention, it is possible to provide a ferritic stainless steel sheet having excellent moldability and rough skin resistance after molding.

フェライト系ステンレス鋼の加工肌荒れに影響を及ぼす因子として、結晶粒度が知られている。しかし、上述したように、冷延条件等の制御を行っても粒成長しやすいため、細粒化の効果が小さく加工肌荒れが発生する場合があり、近年、加工肌荒れの発生をより安定して抑制できる鋼が望まれていた。 Crystal grain size is known as a factor that affects the rough skin of ferrite-based stainless steel. However, as described above, since grain growth is likely to occur even if the cold rolling conditions are controlled, the effect of granulation may be small and roughened processed skin may occur. In recent years, the occurrence of roughened processed skin has become more stable. Steel that can be suppressed has been desired.

そこで本発明者らは、フェライト系ステンレス鋼における加工肌荒れと金属組織の関係を調査した。その結果、鋼中に析出物を多量に析出させてから冷間圧延を施すことによって析出物の周囲に局所的に歪みを生じさせ、その後、焼鈍を行うことによって再結晶核生成頻度を増加し、非常に細粒化された金属組織が得られ、加工肌荒れが改善することを初めて知見した。また、析出した析出物の組成によって細粒化効果が異なることを知見した。焼鈍温度等の製造条件を調整することで析出物の組成を制御でき、これにより、結晶粒度番号10以上の細粒組織を得ることも可能になった。更に、このように細粒化された金属組織は、平均r値が高くなり、成形性が向上することも見出した。 Therefore, the present inventors investigated the relationship between rough processed skin and metallographic structure in ferritic stainless steel. As a result, a large amount of precipitates are deposited in the steel and then cold rolling is performed to locally cause strain around the precipitates, and then annealing is performed to increase the frequency of recrystallization nucleation. For the first time, it was found that a very fine-grained metal structure was obtained and the rough skin was improved. It was also found that the granulation effect differs depending on the composition of the precipitated precipitate. The composition of the precipitate can be controlled by adjusting the production conditions such as the annealing temperature, which makes it possible to obtain a fine-grained structure having a crystal grain size of 10 or more. Furthermore, it has also been found that the metal structure finely divided in this way has a high average r value and improved moldability.

以下、本実施形態のフェライト系ステンレス鋼板について説明する。
本実施形態のフェライト系ステンレス鋼板は、質量%にて、Cr:11.0%以上30.0%以下、C:0.001%以上0.030%以下、Si:0.01%以上2.00%以下、Mn:0.01%以上2.00%以下、P:0.005%以上0.100%以下、S:0.0100%以下、N:0.030%以下を含み、さらに、Ti:0.50%以下、Nb:1.0%以下の1種または2種を含み、残部がFe及び不純物からなり、JIS G 0551にて測定される結晶粒度番号が9.0以上であり、JIS Z 2254にて測定される平均r値が1.20以上であり、粒径が0.05〜0.30μmの範囲の析出物の密度が100,000個/mm以上であるフェライト系ステンレス鋼板である。
フェライト系ステンレス鋼板に含まれる析出物は、P及びFeを含有する析出物であってもよい。
Hereinafter, the ferritic stainless steel sheet of the present embodiment will be described.
The ferrite-based stainless steel plate of the present embodiment has Cr: 11.0% or more and 30.0% or less, C: 0.001% or more and 0.030% or less, Si: 0.01% or more and 2. Includes 00% or less, Mn: 0.01% or more and 2.00% or less, P: 0.005% or more and 0.100% or less, S: 0.0100% or less, N: 0.030% or less, and further It contains one or two types of Ti: 0.50% or less and Nb: 1.0% or less, the balance consists of Fe and impurities, and the crystal grain size number measured by JIS G 0551 is 9.0 or more. , The average r value measured by JIS Z 2254 is 1.20 or more, and the density of precipitates in the range of 0.05 to 0.30 μm is 100,000 pieces / mm 2 or more. It is a stainless steel plate.
The precipitate contained in the ferritic stainless steel sheet may be a precipitate containing P and Fe.

本実施形態のフェライト系ステンレス鋼板は、質量%にて、更に、B:0.0001%以上0.0025%以下、Sn:0.005%以上0.50%以下、Ni:1.00%以下、Cu:1.00%以下、Mo:2.00%以下、W:1.00%以下、Al:1.00%以下、Co:0.50%以下、V:0.50%以下、Zr:0.50%以下、Ca:0.0050%以下、Mg:0.0050%以下、Y:0.10%以下、Hf:0.20%以下、REM:0.10%以下、Sb:0.50%以下の1種または2種以上を含有してもよい。 In the ferrite-based stainless steel plate of the present embodiment, in terms of mass%, B: 0.0001% or more and 0.0025% or less, Sn: 0.005% or more and 0.50% or less, Ni: 1.00% or less. , Cu: 1.00% or less, Mo: 2.00% or less, W: 1.00% or less, Al: 1.00% or less, Co: 0.50% or less, V: 0.50% or less, Zr : 0.50% or less, Ca: 0.0050% or less, Mg: 0.0050% or less, Y: 0.10% or less, Hf: 0.20% or less, REM: 0.10% or less, Sb: 0 .50% or less of one or more may be contained.

本実施形態のフェライト系ステンレス鋼板は、析出物が、下記(1)〜(3)のいずれかの析出物であることが好ましい。
(1)Nbを含まず、かつ、P、Tiが平均原子比でTi/P:0.5〜2.0の範囲となる成分を有する析出物。
(2)Tiを含まず、かつ、P、Nbが平均原子比でNb/P:0.5〜2.0の範囲となる成分を有する析出物。
(3)P、Ti、Nbが平均原子比でTi/P:0.5〜2.0かつNb/P:0.5〜2.0の範囲となる成分を有する析出物。
In the ferrite-based stainless steel sheet of the present embodiment, the precipitate is preferably any of the following (1) to (3).
(1) A precipitate containing no Nb and having components in which P and Ti have an average atomic ratio of Ti / P: 0.5 to 2.0.
(2) A precipitate containing no Ti and having components in which P and Nb have an average atomic ratio of Nb / P: 0.5 to 2.0.
(3) A precipitate having components in which P, Ti, and Nb have an average atomic ratio of Ti / P: 0.5 to 2.0 and Nb / P: 0.5 to 2.0.

上記(1)の析出物は、鋼成分としてTiを含み、Nbを含まない場合の析出物であり、上記(2)の析出物は、鋼成分としてNbを含み、Tiを含まない場合の析出物であり、上記(3)の析出物は、鋼成分としてTi及びNbを含む場合の析出物である。 The precipitate of (1) above is a precipitate when Ti is contained as a steel component and does not contain Nb, and the precipitate of (2) above is a precipitate when Nb is contained as a steel component and Ti is not contained. The precipitate described in (3) above is a precipitate containing Ti and Nb as steel components.

フェライトステンレス鋼板の鋼成分の限定理由を以下に説明する。各元素の含有量の「%」表示は「質量%」を意味する。 The reasons for limiting the steel composition of the ferritic stainless steel sheet will be described below. The "%" indication of the content of each element means "mass%".

Crは、ステンレス鋼の基本特性である耐食性を向上する元素である。11.0%未満では十分な耐食性が得られないため下限は11.0%以上とする。一方、過度量のCrを含有させるとσ相(Fe−Crの金属間化合物)相当の金属間化合物の生成を促進して製造時の割れを助長するため上限は30.0%以下とする。安定製造性(歩留まり、圧延疵等)点から14.0%以上、25.0%以下が望ましい。更に望ましくは16.0%以上、20.0%以下がよい。 Cr is an element that improves corrosion resistance, which is a basic property of stainless steel. If it is less than 11.0%, sufficient corrosion resistance cannot be obtained, so the lower limit is set to 11.0% or more. On the other hand, if an excessive amount of Cr is contained, the formation of an intermetallic compound equivalent to the σ phase (an intermetallic compound of Fe-Cr) is promoted and cracking during production is promoted, so the upper limit is set to 30.0% or less. From the viewpoint of stable manufacturability (yield, rolling defects, etc.), 14.0% or more and 25.0% or less are desirable. More preferably, it is 16.0% or more and 20.0% or less.

Cは、本実施形態において重要な成形性を低下させる元素であるため少ない方が好ましい。また、Cは、TiまたはNbと結合してTiCまたはNbCを形成することでCが固定化されるが、C量が過剰になると、Pと化合するTiまたはNbが不足してしまい、細粒化に必要な析出物を十分に形成させることができなくなる。従ってC量の上限を0.030%以下とする。但し、過度な低減は精錬コストの上昇を招くため下限は0.001%以上とする。精錬コスト及び成形性の両者を考慮した場合0.002%以上、0.020%以下が好ましい。 Since C is an element that reduces moldability, which is important in the present embodiment, it is preferable that the amount is small. Further, C is fixed by combining with Ti or Nb to form TiC or NbC, but when the amount of C becomes excessive, Ti or Nb combined with P becomes insufficient, and fine particles are formed. It becomes impossible to sufficiently form the precipitates necessary for the conversion. Therefore, the upper limit of the amount of C is set to 0.030% or less. However, since excessive reduction causes an increase in refining cost, the lower limit is set to 0.001% or more. Considering both refining cost and moldability, 0.002% or more and 0.020% or less are preferable.

Siは、耐酸化性向上元素であるが過剰量のSiを含有させると成形性の低下を招くため上限を2.00%以下とする。成形性の点からSi量は低い方が好ましいが、過度の低下は原料コストの増加を招くため下限を0.01%以上とする。製造性の観点から望ましい範囲は0.05%以上、1.00%以下であり、さらに望ましくは0.05%以上、0.30%以下である。 Si is an element for improving oxidation resistance, but if an excessive amount of Si is contained, the moldability is deteriorated, so the upper limit is set to 2.00% or less. From the viewpoint of moldability, it is preferable that the amount of Si is low, but an excessive decrease causes an increase in raw material cost, so the lower limit is set to 0.01% or more. From the viewpoint of manufacturability, the desirable ranges are 0.05% or more and 1.00% or less, and more preferably 0.05% or more and 0.30% or less.

Mnは、Si同様に、多量のMnを含有させると成形性の低下を招くため上限を2.00%以下とする。成形性の点からMn量は低い方が好ましいが、過度の低下は原料コストの増加を招くため下限を0.01%以上とする。製造性の観点から望ましい範囲は0.05%以上、1.00%以下であり、さらに望ましくは0.05%以上、0.30%以下である。 As with Si, the upper limit of Mn is set to 2.00% or less because if a large amount of Mn is contained, the moldability is deteriorated. From the viewpoint of moldability, it is preferable that the amount of Mn is low, but an excessive decrease causes an increase in raw material cost, so the lower limit is set to 0.01% or more. From the viewpoint of manufacturability, the desirable ranges are 0.05% or more and 1.00% or less, and more preferably 0.05% or more and 0.30% or less.

Pは、本実施形態の鋼板中においてリン化物からなる析出物として析出させることで耐加工肌荒れ性の向上に寄与する重要な元素である。リン化物の析出量を確保し、耐加工肌荒れ性を向上させるためにP量は0.005%以上とする。しかし、Pは成形性を低下させる元素であるため、上限を0.100%以下とする。なお、P量の過度な低減は原料コストの上昇をもたらすことに加え、成形性と耐加工肌荒れ性の両者を考慮した場合、好ましい範囲は0.010%以上、0.050%以下、更に望ましくは0.020%以上、0.040%以下である。 P is an important element that contributes to the improvement of rough skin resistance by precipitating as a precipitate composed of a phosphide in the steel sheet of the present embodiment. The amount of P is set to 0.005% or more in order to secure the amount of phosphide precipitated and improve the resistance to rough skin. However, since P is an element that lowers moldability, the upper limit is set to 0.100% or less. It should be noted that an excessive reduction in the amount of P brings about an increase in raw material cost, and when both moldability and rough skin resistance are taken into consideration, the preferable ranges are 0.010% or more, 0.050% or less, more preferably. Is 0.020% or more and 0.040% or less.

Sは、不純物元素であり、製造時の割れを助長するため低い方が好ましく、上限を0.0100%以下とする。S量は低いほど好ましく0.0030%以下が望ましい。一方、過度の低下は精錬コストの上昇を招くため下限は0.0003%以上とすることが望ましい。製造性とコストの点から、好ましい範囲は0.0004%以上、0.0020%以下である。 S is an impurity element, and is preferably as low as possible because it promotes cracking during production, and the upper limit is 0.0100% or less. The lower the amount of S, the more preferably 0.0030% or less. On the other hand, it is desirable that the lower limit is 0.0003% or more because an excessive decrease causes an increase in refining cost. From the viewpoint of manufacturability and cost, the preferable ranges are 0.0004% or more and 0.0020% or less.

Nは、Cと同様に成形性を低下させる元素であり、上限を0.030%以下とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.002%以上とすることが好ましい。成形性と製造性の点から好ましい範囲は0.005%以上、0.015%以下である。 Like C, N is an element that lowers moldability, and the upper limit is 0.030% or less. However, since excessive reduction leads to an increase in refining cost, the lower limit is preferably 0.002% or more. From the viewpoint of moldability and manufacturability, the preferable ranges are 0.005% or more and 0.015% or less.

TiおよびNbの1種または2種を下記のように含有する。
Tiは、C,Nと結合し、TiC、TiN等の析出物としてC,Nを固定する高純度化を通じて平均r値の向上をもたらす。また、Tiはリン(P)とともに析出物を形成する。Tiを含む析出物により、析出物の周囲に局部的に歪みを導入させやすくなり、再結晶核が多数形成されて再結晶組織が細粒化させる。これらの効果を得るため、Tiを含有させる場合は下限を0.02%以上とすることが好ましい。一方、Tiを過度に含有させると合金コストの上昇や再結晶温度上昇に伴う製造性の低下を招くため、上限は0.50%以下とする。成形性及び製造性の点から、好ましい範囲は0.05%以上、0.30%以下である。更に、Tiの上記効果を積極的に活用する好適な範囲は0.10%以上、0.20%以下である。
It contains one or two of Ti and Nb as follows.
Ti binds to C and N and fixes C and N as precipitates of TiC, TiN and the like, resulting in an improvement in average r-value through high purity. In addition, Ti forms a precipitate together with phosphorus (P). The Ti-containing precipitate facilitates the introduction of strain locally around the precipitate, and a large number of recrystallized nuclei are formed to make the recrystallized structure finer. In order to obtain these effects, when Ti is contained, the lower limit is preferably 0.02% or more. On the other hand, if Ti is excessively contained, the alloy cost will increase and the recrystallization temperature will increase, resulting in a decrease in manufacturability. Therefore, the upper limit is set to 0.50% or less. From the viewpoint of moldability and manufacturability, the preferable range is 0.05% or more and 0.30% or less. Further, the preferable range for positively utilizing the above-mentioned effect of Ti is 0.10% or more and 0.20% or less.

Nbも、Ti同様にC,Nを固定する安定化元素であって、この作用による鋼の高純度化を通じて平均r値の向上をもたらす。また、NbはTiと同様に、リン(P)とともに析出物を形成し、析出物の周囲の金属組織に歪みを導入させやすくし、再結晶組織を細粒化させる。これら効果を得るため、Nbを含有させる場合は下限を0.02%以上とすることが好ましい。一方、Nbを過度に含有させると合金コストの上昇や再結晶温度上昇に伴う製造性の低下に繋がるため、上限は1.0%以下とする。合金コストや製造性の点から、好ましい範囲は0.03%以上、0.30%以下である。更に、Nbの上記効果を積極的に活用する好適な範囲は0.04%以上、0.15%以下である。更に望ましくは0.06〜0.10%である。 Like Ti, Nb is also a stabilizing element that fixes C and N, and this action brings about an improvement in the average r-value through the purification of steel. Further, like Ti, Nb forms a precipitate together with phosphorus (P), facilitates the introduction of strain into the metal structure surrounding the precipitate, and makes the recrystallized structure finer. In order to obtain these effects, when Nb is contained, the lower limit is preferably 0.02% or more. On the other hand, if Nb is excessively contained, it leads to an increase in alloy cost and a decrease in manufacturability due to an increase in recrystallization temperature, so the upper limit is set to 1.0% or less. From the viewpoint of alloy cost and manufacturability, the preferable ranges are 0.03% or more and 0.30% or less. Further, the preferable range for positively utilizing the above-mentioned effect of Nb is 0.04% or more and 0.15% or less. More preferably, it is 0.06 to 0.10%.

また、TiとNbの両方を含有させることで、析出物中にPとともにTiとNbとが含有されるようになり、析出物の周囲の金属組織に歪みがより一層導入されやすくなり、再結晶組織をより一層細粒化させることが可能になる。 Further, by containing both Ti and Nb, Ti and Nb are contained in the precipitate together with P, and strain is more easily introduced into the metal structure around the precipitate, and recrystallization occurs. It becomes possible to further refine the tissue.

本実施形態のフェライト系ステンレス鋼板は、上述してきた元素以外(残部)は、Fe及び不純物からなるが、本実施形態では、更に上記の基本組成に加えて下記の元素群のうち1種または2種以上を選択的に含有させてもよい。すなわち、B、Sn、Ni、Cu、Mo、W、Al、Co、V、Zr、Ca、Mg、Y、Hf、REM、Sbの含有量の下限は0%以上である。
なお、本実施形態における「不純物」とは、鋼を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であり、不可避的に混入する成分も含む。
The ferrite-based stainless steel sheet of the present embodiment is composed of Fe and impurities other than the elements described above (the balance), but in the present embodiment, in addition to the above basic composition, one or 2 of the following element groups Species or more may be selectively contained. That is, the lower limit of the content of B, Sn, Ni, Cu, Mo, W, Al, Co, V, Zr, Ca, Mg, Y, Hf, REM, and Sb is 0% or more.
The "impurities" in the present embodiment are components that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when steel is industrially manufactured, and are inevitably mixed. Also includes ingredients.

Bは、二次加工性を向上させる元素である。その効果を発揮するには0.0001%以上が必要であるためこれを下限とする。一方、過度に含有させると製造性、特に鋳造性の劣化を招くため0.0025%以下を上限とする。好ましい範囲は0.0003%以上、0.0012%以下である。 B is an element that improves the secondary processability. Since 0.0001% or more is required to exert the effect, this is set as the lower limit. On the other hand, if it is contained excessively, the manufacturability, particularly the castability, is deteriorated, so the upper limit is 0.0025% or less. The preferred range is 0.0003% or more and 0.0012% or less.

Snは、耐食性を向上させる効果を有する元素であるため室温での腐食環境に応じて含有させてもよい。その効果は0.005%以上で発揮されるためこれを下限とする。一方、多量に含有させると製造性の劣化を招くため、0.50%以下を上限とする。製造性を考慮して好ましい範囲は0.02%以上、0.10%以下である。 Since Sn is an element having an effect of improving corrosion resistance, it may be contained depending on the corrosive environment at room temperature. Since the effect is exhibited at 0.005% or more, this is set as the lower limit. On the other hand, if it is contained in a large amount, the manufacturability is deteriorated, so the upper limit is 0.50% or less. In consideration of manufacturability, the preferable ranges are 0.02% or more and 0.10% or less.

Ni、Cu、Mo、Al、W、Co、V、Zrは、耐食性あるいは耐酸化性を高めるのに有効な元素であり、必要に応じて含有してよい。但し、過度に含有させると成形性の低下を招くばかりでなく合金コストの上昇や製造性を阻害することに繋がる。そのため、Ni、Cu、Al、Wの上限は1.00%以下とする。Moは製造性の低下をもたらすため上限は2.00%以下とする。Co、V、Zrの上限は0.50%以下とする。いずれの元素もより好ましい含有量の下限は0.004%以上とする。 Ni, Cu, Mo, Al, W, Co, V, and Zr are elements effective for enhancing corrosion resistance or oxidation resistance, and may be contained as necessary. However, if it is contained in an excessive amount, not only the moldability is lowered, but also the alloy cost is increased and the manufacturability is hindered. Therefore, the upper limit of Ni, Cu, Al, and W is set to 1.00% or less. Since Mo causes a decrease in manufacturability, the upper limit is set to 2.00% or less. The upper limit of Co, V, and Zr is 0.50% or less. The lower limit of the more preferable content of each element is 0.004% or more.

Ca、Mgは、熱間加工性や2次加工性を向上させる元素であり、必要に応じて含有させてもよい。但し、過度に含有させると製造性を阻害することに繋がるため、Ca、Mgの上限は0.0050%以下とする。好ましい下限はともに0.0001%以上とする。
製造性と熱間加工性を考慮した場合、好ましい範囲はCa、Mgともに0.0002%以上、0.0010%以下である。
Ca and Mg are elements that improve hot workability and secondary workability, and may be contained as necessary. However, the upper limit of Ca and Mg is set to 0.0050% or less because excessive content leads to inhibition of manufacturability. The preferred lower limit is 0.0001% or more.
Considering the manufacturability and hot workability, the preferable ranges are 0.0002% or more and 0.0010% or less for both Ca and Mg.

Y、Hf、REMは、熱間加工性や鋼の清浄度の向上、ならびに耐酸化性改善に対して有効な元素であり、必要に応じて含有してもよい。含有させる場合、Hfの上限は0.20%以下とし、Y、REMの上限はそれぞれ0.10%以下とする。好ましい下限はY、Hf、REMともに0.001%以上とする。ここで、本実施形態における「REM」とは、原子番号57〜71に帰属する元素群(ランタノイド)から選択される1種以上で構成されるものあり、例えば、La、Ce、Pr、Nd等である。また、本実施形態でいう「REM」の含有量とはランタノイドの合計量である。 Y, Hf, and REM are elements effective for improving hot workability, steel cleanliness, and oxidation resistance, and may be contained as necessary. When it is contained, the upper limit of Hf is 0.20% or less, and the upper limits of Y and REM are 0.10% or less, respectively. The preferable lower limit is 0.001% or more for all of Y, Hf, and REM. Here, the "REM" in the present embodiment is composed of one or more selected from the element group (lanthanoid) belonging to atomic numbers 57 to 71, and is, for example, La, Ce, Pr, Nd, etc. Is. Further, the content of "REM" in the present embodiment is the total amount of lanthanoids.

Sbは、Snと同様に耐食性向上効果を持つ元素であり、必要に応じて含有させてもよい。ただし多量に含有させると製造性の劣化を招くため、0.50%以下を上限とする。一方、耐食性向上の効果は0.005%以上で発揮されるためこれを下限とする。 Sb is an element having an effect of improving corrosion resistance like Sn, and may be contained as needed. However, if it is contained in a large amount, the manufacturability is deteriorated, so the upper limit is 0.50% or less. On the other hand, since the effect of improving corrosion resistance is exhibited at 0.005% or more, this is set as the lower limit.

本実施形態のフェライト系ステンレス鋼鈑は、上述してきた元素以外は、Fe及び不純物(不可避的不純物を含む)からなるが、以上説明した各元素の他にも、本発明の効果を損なわない範囲で含有させることが出来る。本実施形態では、例えばBi、Pb、Se、H、Ta等が含有されていてもよいが、その場合は可能な限り低減することが好ましい。
一方、これらの元素は、本発明の課題を解決する限度において、その含有割合が制御され、必要に応じて、Bi≦100ppm、Pb≦100ppm、Se≦100ppm、H≦100ppm、Ta≦500ppmの1種以上を含有してもよい。
The ferrite-based stainless steel plate of the present embodiment is composed of Fe and impurities (including unavoidable impurities) other than the elements described above, but in addition to the above-mentioned elements, the effect of the present invention is not impaired. Can be contained in. In the present embodiment, for example, Bi, Pb, Se, H, Ta and the like may be contained, but in that case, it is preferable to reduce as much as possible.
On the other hand, the content ratio of these elements is controlled to the extent that the problem of the present invention is solved, and if necessary, Bi ≦ 100 ppm, Pb ≦ 100 ppm, Se ≦ 100 ppm, H ≦ 100 ppm, Ta ≦ 500 ppm. It may contain more than a seed.

次に、本実施形態のフェライト系ステンレス鋼板の金属組織について説明する。
本実施形態のフェライト系ステンレス鋼鈑は、結晶粒度番号が9.0以上のフェライト単相組織からなる。結晶粒度番号は9.0以上とする。成形後の加工肌荒れは結晶粒度番号が大きいほど、すなわちフェライト結晶粒の粒径が小さいほど生じにくいためこれを下限とする。肌荒れをさらに抑制するためには9.5以上が好ましく、更に望ましくは10.0以上である。
Next, the metal structure of the ferritic stainless steel sheet of the present embodiment will be described.
The ferritic stainless steel plate of the present embodiment has a ferrite single-phase structure having a crystal grain size number of 9.0 or more. The crystal grain size number shall be 9.0 or more. Rough processing after molding is less likely to occur as the crystal grain size number is larger, that is, as the grain size of ferrite crystal grains is smaller, and this is set as the lower limit. In order to further suppress rough skin, it is preferably 9.5 or more, and more preferably 10.0 or more.

結晶粒度番号の測定方法は、JIS G 0551(2013年)の線分法で求めることができる。なお、「粒度番号:9」は結晶粒内を横切る1結晶粒あたりの平均線分長14.1μmに相当し、「粒度番号:10」は結晶粒内を横切る1結晶粒あたりの平均線分長10.0μmに相当する。結晶粒度測定は試験片断面の光学顕微鏡組織写真より、1試料につき横切る結晶粒数を500以上とする。エッチング液は王水または逆王水がよいが、結晶粒界が判断できるのであれば他の溶液でも構わない。また隣接する結晶粒の方位関係によっては粒界が鮮明に見えない場合があるため、濃くエッチングするのが好ましい。また結晶粒界測定に当たって双晶粒界は測定しないこととする。 The method for measuring the crystal grain size number can be obtained by the line segment method of JIS G 0551 (2013). Note that "particle size number: 9" corresponds to an average line segment length of 14.1 μm per crystal grain that crosses the inside of the crystal grain, and "particle size number: 10" corresponds to the average line segment per crystal grain that crosses the inside of the crystal grain. It corresponds to a length of 10.0 μm. In the crystal grain size measurement, the number of crystal grains crossed per sample is 500 or more based on the optical microstructure photograph of the cross section of the test piece. The etching solution is preferably aqua regia or reverse aqua regia, but other solutions may be used as long as the grain boundaries can be determined. Further, depending on the orientation relationship of adjacent crystal grains, the grain boundaries may not be clearly visible, so it is preferable to perform deep etching. In addition, the twin grain boundaries are not measured when measuring the grain boundaries.

また、本実施形態のフェライト系ステンレス鋼鈑は、平均r値(ランクフォード値)が1.20以上であることが好ましい。平均r値を1.20以上とすることで、フェライト系ステンレス鋼板の成形性を向上させ、より厳しい加工を行うことができると同時に、成型時の荷重を低下させ、金型の消耗を抑えることができる。平均r値はより好ましくは1.3以上であり、更に好ましくは1.4以上である。 Further, the ferrite stainless steel plate of the present embodiment preferably has an average r value (Rankford value) of 1.20 or more. By setting the average r-value to 1.20 or more, the formability of the ferritic stainless steel sheet can be improved and stricter processing can be performed, and at the same time, the load during molding can be reduced and the consumption of the mold can be suppressed. Can be done. The average r-value is more preferably 1.3 or more, and even more preferably 1.4 or more.

平均r値の測定方法は、JIS Z 2254(2008年)の塑性ひずみ比試験方法により測定することができる。平均r値は、JIS Z 2254(2008年)に従い、下記式(A)によって求めることができる。 The average r value can be measured by the plastic strain ratio test method of JIS Z 2254 (2008). The average r-value can be calculated by the following formula (A) according to JIS Z 2254 (2008).

平均r値=(r+2r45+r90)/4 ・・・(A)
但し、(A)式中のrは圧延方向のr値、r90は圧延直角方向のr値、r45は圧延45度方向のr値を示す。
Average r value = (r 0 + 2r 45 + r 90 ) / 4 ... (A)
However, in the formula (A), r 0 indicates the r value in the rolling direction, r 90 indicates the r value in the rolling perpendicular direction, and r 45 indicates the r value in the rolling 45 degree direction.

次に、本実施形態のフェライト系ステンレス鋼板に含まれる析出物について説明する。本実施形態のフェライト系ステンレス鋼板には、粒径が0.05〜0.30μmの範囲の析出物が含まれている。この粒径範囲に含まれる析出物の個数密度は100,000個/mm以上である。この析出物はPを含むリン化合物であり、P及びFeを含有する。更に、析出物には、TiまたはNbの一方または両方が含まれる。このような析出物が100,000個/mm以上の高い個数密度で含まれることにより、冷間圧延によって析出物の周囲の金属組織に歪みが導入されやすくなり、再結晶核が多数生成し、細粒組織が得られやすくなる。析出物の個数密度が100,000個/mm未満では、歪みの導入により形成される再結晶核が少なくなり、十分な細粒化が図れなくなる。
また、個数密度の限定対象となる析出物の粒径を0.05〜0.30μmの範囲に限定した理由は、0.05μm未満の析出物または0.30μmを超える析出物は再結晶核の形成に寄与しないためである。
Next, the precipitate contained in the ferritic stainless steel sheet of the present embodiment will be described. The ferrite-based stainless steel sheet of the present embodiment contains precipitates having a particle size in the range of 0.05 to 0.30 μm. The number density of precipitates contained in this particle size range is 100,000 pieces / mm 2 or more. This precipitate is a phosphorus compound containing P and contains P and Fe. Further, the precipitate contains one or both of Ti and Nb. When such a precipitate is contained at a high number density of 100,000 pieces / mm 2 or more, strain is easily introduced into the metal structure around the precipitate by cold rolling, and a large number of recrystallized nuclei are generated. , It becomes easy to obtain a fine grain structure. If the number density of the precipitates is less than 100,000 / mm 2 , the number of recrystallized nuclei formed by the introduction of strain is reduced, and sufficient granulation cannot be achieved.
The reason why the particle size of the precipitates to be limited in number density is limited to the range of 0.05 to 0.30 μm is that the precipitates of less than 0.05 μm or the precipitates of more than 0.30 μm are recrystallized nuclei. This is because it does not contribute to the formation.

本実施形態に係るフェライト系ステンレス鋼板における析出物は、下記(1)〜(3)のいずれかの組成を有する析出物であることが好ましい。これらの析出物は、いずれもP及びFeを含有し、更に、TiまたはNbの一方または両方を含有する。本実施形態では、少なくともPを含有し、かつ、下記の成分を有する析出物を鋼中に析出させた上で、鋼板を冷間圧延することで、析出物の周囲に局所的な歪みを生じさせる。析出物は、後に説明する第2焼鈍を行うことにより、下記の成分範囲となるように析出する。下記(1)の析出物は、鋼成分としてTiを含み、Nbを含まない場合の析出物であり、下記(2)の析出物は、鋼成分としてNbを含み、Tiを含まない場合の析出物であり、下記(3)の析出物は、鋼成分としてTi及びNbを含む場合の析出物である。なお、平均原子比は、5個以上の析出物の原子比の平均値である。 The precipitate in the ferritic stainless steel sheet according to the present embodiment is preferably a precipitate having any of the following compositions (1) to (3). All of these precipitates contain P and Fe, and further contain one or both of Ti and Nb. In the present embodiment, a precipitate containing at least P and having the following components is precipitated in steel, and then the steel sheet is cold-rolled to cause local strain around the precipitate. Let me. The precipitate is precipitated so as to have the following component range by performing the second annealing described later. The precipitate of (1) below is a precipitate when Ti is contained as a steel component and does not contain Nb, and the precipitate of (2) below is a precipitate when Nb is contained as a steel component and Ti is not contained. The precipitate described in (3) below is a precipitate containing Ti and Nb as steel components. The average atomic ratio is an average value of the atomic ratios of 5 or more precipitates.

(1)Nbを含まず、かつ、P、Tiが平均原子比でTi/P:0.5〜2.0の範囲となる析出物。
(2)Tiを含まず、かつ、P、Nbが平均原子比でNb/P:0.5〜2.0の範囲となる析出物。
(3)P、Ti、Nbが平均原子比でTi/P:0.5〜2.0かつNb/P:0.5〜2.0の範囲となる析出物。
(1) A precipitate that does not contain Nb and has P and Ti in the range of Ti / P: 0.5 to 2.0 in terms of average atomic ratio.
(2) A precipitate containing no Ti and having P and Nb in the range of Nb / P: 0.5 to 2.0 in terms of average atomic ratio.
(3) A precipitate in which P, Ti, and Nb have an average atomic ratio in the range of Ti / P: 0.5 to 2.0 and Nb / P: 0.5 to 2.0.

析出物の密度の測定方法について説明する。個数密度の測定は、透過型電子顕微鏡(TEM)を用いる。まず、鋼板表面から深さ20μmまでの領域の断面薄膜試料を作製する。得られた断面薄膜試料についてTEMにより3万倍の倍率にて画像を撮影する。撮影数は10視野以上とする。各視野における析出物の個数をカウントする。個数の計測対象は、粒径が0.05〜0.30μmの範囲の析出物とする。そして、カウントした析出物の総数を、撮影された視野の面積で除する。析出物の粒径は、析出物の最大長さを粒径とする。 A method for measuring the density of precipitates will be described. A transmission electron microscope (TEM) is used to measure the number density. First, a cross-sectional thin film sample in a region from the surface of the steel sheet to a depth of 20 μm is prepared. An image of the obtained cross-sectional thin film sample is taken by TEM at a magnification of 30,000 times. The number of shots is 10 or more. Count the number of precipitates in each field of view. The number of precipitates whose particle size is in the range of 0.05 to 0.30 μm is to be measured. Then, the total number of the counted precipitates is divided by the area of the photographed field of view. The particle size of the precipitate is the maximum length of the precipitate.

また、析出物の原子比は次のようにして測定する。原子比の測定は、エネルギー分散型X線元素分析装置(EDS)が装備されたTEMを用いる。まず、密度の測定方法の場合と同様にして、鋼板表面から深さ20μmまでの領域の断面薄膜試料を作製するが、密度の測定に用いた断面薄膜試料をそのまま用いてもよい。断面薄膜試料をTEMで観察し、粒径0.05〜0.3μmの析出物を確認し、EDSにより析出物から検出された全元素を100原子%としたときの、Ti、Nb及びPの組成比を測定する。そして、測定されたTi、Nb、Pの原子%の比を取ってNb/P及びTi/Pを求める。平均原子比は、5個以上の析出物についてそれぞれの原子比の測定値の平均値とする。 The atomic ratio of the precipitate is measured as follows. The atomic ratio is measured using a TEM equipped with an energy dispersive X-ray elemental analyzer (EDS). First, a cross-sectional thin film sample in a region from the surface of the steel sheet to a depth of 20 μm is prepared in the same manner as in the case of the density measurement method, but the cross-sectional thin film sample used for the density measurement may be used as it is. When the cross-sectional thin film sample was observed by TEM, a precipitate having a particle size of 0.05 to 0.3 μm was confirmed, and the total elements detected from the precipitate by EDS were 100 atomic%, Ti, Nb and P Measure the composition ratio. Then, Nb / P and Ti / P are obtained by taking the ratio of the measured atomic% of Ti, Nb, and P. The average atomic ratio is the average value of the measured values of each atomic ratio for 5 or more precipitates.

次に、本実施形態のフェライト系ステンレス鋼板の製造方法を説明する。本実施形態のフェライト系ステンレス鋼板の製造工程は、熱間圧延、冷間圧延及び焼鈍を組み合わせることとし、必要に応じて、適宜、酸洗を行うこととする。すなわち、製造方法の一例として、例えば、製鋼−熱間圧延−熱延板焼鈍―冷間圧延−中間焼鈍−冷間圧延−最終焼鈍の各工程からなる製法を採用できる。
本実施形態において制御すべき条件は、熱延焼鈍後の冷間圧延条件、冷間圧延後の中間焼鈍条件、そして、更に冷間圧延を施した後の最終焼鈍条件であり、それ以外の工程、条件については特に制限はない。
Next, a method for manufacturing the ferritic stainless steel sheet of the present embodiment will be described. The manufacturing process of the ferritic stainless steel sheet of the present embodiment is a combination of hot rolling, cold rolling and annealing, and pickling is appropriately performed as necessary. That is, as an example of the manufacturing method, for example, a manufacturing method including each step of steelmaking-hot rolling-hot rolled sheet annealing-cold rolling-intermediate annealing-cold rolling-final annealing can be adopted.
The conditions to be controlled in the present embodiment are the cold rolling condition after hot rolling annealing, the intermediate annealing condition after cold rolling, and the final annealing condition after further cold rolling, and other steps. , There are no particular restrictions on the conditions.

本実施形態のフェライト系ステンレス鋼板は、上記の化学成分を有する熱間圧延鋼板の再結晶を目的とした熱延板焼鈍(以下、第1焼鈍という)の後、10〜50%の圧下率で冷間圧延(以下、第1冷間圧延という)し、次いで、均熱温度680〜800℃、均熱時間30秒以上の条件で中間焼鈍(以下、第2焼鈍という)し、次いで、冷間圧延(以下、第2冷間圧延という)し、次いで、再結晶温度T1℃〜(T1+20)℃の範囲で最終焼鈍(以下、第3焼鈍という)することにより製造する。 The ferrite-based stainless steel plate of the present embodiment has a reduction rate of 10 to 50% after hot-rolled sheet annealing (hereinafter referred to as first annealing) for the purpose of recrystallizing a hot-rolled steel sheet having the above chemical components. Cold rolling (hereinafter referred to as first cold rolling), then intermediate annealing (hereinafter referred to as second annealing) under the conditions of a soaking temperature of 680 to 800 ° C. and a soaking time of 30 seconds or more, and then cold rolling. It is produced by rolling (hereinafter referred to as second cold rolling) and then final annealing (hereinafter referred to as third annealing) in a recrystallization temperature range of T1 ° C. to (T1 + 20) ° C.

鋼板を10〜50%の圧延率で第1冷間圧延した後に、均熱温度680〜800℃で第2焼鈍することで、析出物を多量に析出させ、更に第2冷間圧延することによって析出物の周囲の金属組織に局部的に歪みを導入して再結晶の核を形成させ、更に第3焼鈍することで再結晶化を促し、微細な再結晶粒を析出させる。 After the steel sheet is first cold-rolled at a rolling rate of 10 to 50%, it is second-annealed at a soaking temperature of 680 to 800 ° C. to precipitate a large amount of precipitates, and further cold-rolled second. Strain is locally introduced into the metallographic structure around the precipitate to form recrystallized nuclei, and further annealing is performed in the third annealing to promote recrystallization and precipitate fine recrystallized grains.

鋳造、熱間圧延、冷却及び巻取りの条件は特に制限はなく、一般的なフェライト系ステンレス鋼板の製造条件で熱間圧延鋼板を製造すればよい。 The conditions for casting, hot rolling, cooling, and winding are not particularly limited, and the hot rolled steel sheet may be manufactured under the general manufacturing conditions for ferritic stainless steel sheets.

(第1焼鈍)
第1焼鈍は、熱間圧延によって得られた熱間圧延板を一旦再結晶化させるために行う。第1焼鈍によって熱間圧延板を再結晶化させることで、r値を高くすることができる。第1焼鈍は、再結晶温度T1(℃)以上、T1+50(℃)以下の均熱温度で行うことが好ましい。また、第1焼鈍の均熱時間は、例えば、10秒〜60秒がよい。
(1st annealing)
The first annealing is performed to temporarily recrystallize the hot-rolled plate obtained by hot-rolling. The r-value can be increased by recrystallizing the hot-rolled plate by the first annealing. The first annealing is preferably performed at a soaking temperature of recrystallization temperature T1 (° C.) or higher and T1 + 50 (° C.) or lower. The soaking time of the first annealing is, for example, preferably 10 seconds to 60 seconds.

(第1冷間圧延)
第1焼鈍後の熱間圧延焼鈍鋼板に対し、10〜50%の圧下率で第1冷間圧延を行う。第1冷間圧延によって鋼中に歪みを導入し、その後の第2焼鈍において析出物を析出させ易くする。圧下率が10%未満では第2焼鈍におけるNb、Tiの拡散が遅くなり析出物の析出量が不足するので好ましくない。また、圧下率が50%を超えると析出物の析出量は十分になるが、板厚が薄くなり第2冷間圧延の圧下率を十分に確保できなくなり、第3焼鈍時の再結晶の駆動力になる歪み量が減少してしまい、結晶粒度番号9.0以上を達成できなくなる。
(1st cold rolling)
Hot-rolled after the first annealing The annealed steel sheet is first cold-rolled at a rolling reduction of 10 to 50%. Strain is introduced into the steel by the first cold rolling, and the precipitates are easily precipitated in the subsequent second annealing. If the reduction rate is less than 10%, the diffusion of Nb and Ti in the second annealing becomes slow and the amount of precipitates deposited is insufficient, which is not preferable. Further, when the reduction rate exceeds 50%, the amount of precipitates deposited becomes sufficient, but the plate thickness becomes thin and the reduction rate of the second cold rolling cannot be sufficiently secured, and the recrystallization during the third annealing is driven. The amount of strain that becomes a force is reduced, and the crystal grain size number of 9.0 or higher cannot be achieved.

(第2焼鈍)
第1冷間圧延後、均熱温度680〜800℃、均熱時間30秒以上の条件で第2焼鈍を行う。第2焼鈍によって、本実施形態に係る析出物を多量に析出させる。均熱温度が680℃未満ではTi、Nb等の拡散速度が遅くなり析出物の析出量が不足して析出物の密度が低下する。また、均熱温度が800℃を超えると析出物が固溶しやすくなり析出物の密度が低下する。また、NbおよびTiを複合添加した場合、均熱温度が680℃未満ではNbの母材への固溶度がTiと比べて低いため析出物中のNb量が多くなり、適切な原子比を確保できなくなる。また、均熱温度が800℃以上の場合はNbの母材への固溶度Tiと比べて高いため析出物中のNb量が少なくなり、この場合も適切な原子比を確保できなくなる。
(2nd annealing)
After the first cold rolling, the second annealing is performed under the conditions of a soaking temperature of 680 to 800 ° C. and a soaking time of 30 seconds or more. A large amount of the precipitate according to the present embodiment is precipitated by the second annealing. If the soaking temperature is less than 680 ° C., the diffusion rate of Ti, Nb, etc. becomes slow, the amount of precipitates deposited is insufficient, and the density of the precipitates decreases. Further, when the soaking temperature exceeds 800 ° C., the precipitates tend to dissolve easily and the density of the precipitates decreases. Further, when Nb and Ti are added in combination, if the soaking temperature is less than 680 ° C., the solid solubility of Nb in the base metal is lower than that of Ti, so that the amount of Nb in the precipitate increases, and an appropriate atomic ratio can be obtained. It will not be possible to secure it. Further, when the soaking temperature is 800 ° C. or higher, the solid solubility Ti of Nb in the base material is higher than that of Ti, so that the amount of Nb in the precipitate is small, and even in this case, an appropriate atomic ratio cannot be secured.

均熱時間は30秒以上、3分(180秒)以下が好ましい。均熱時間が短すぎると析出物の析出量が不足して析出物の密度が低下し、長すぎると析出物が粗大化し密度が小さくなる。 The soaking time is preferably 30 seconds or more and 3 minutes (180 seconds) or less. If the soaking time is too short, the amount of precipitates deposited is insufficient and the density of the precipitates decreases, and if it is too long, the precipitates become coarse and the density decreases.

(第2冷間圧延)
析出物を析出させた鋼板に対して第2冷間圧延を行う。第2冷間圧延によって、析出物の周囲の金属組織に歪みを導入して再結晶核を形成させる。第2冷間圧延の圧下率は50%以上がよい。圧下率が50%未満では第3焼鈍時の再結晶の駆動力になる歪み量が減少してしまい、結晶粒度番号9.0以上を達成できなくなる。また、第2冷間圧延の圧下率の上限は特に限定する必要はないが、例えば85%以下にすればよい。
(Second cold rolling)
The second cold rolling is performed on the steel sheet on which the precipitate is deposited. By the second cold rolling, strain is introduced into the metal structure around the precipitate to form recrystallized nuclei. The rolling reduction of the second cold rolling is preferably 50% or more. If the reduction rate is less than 50%, the amount of strain that becomes the driving force for recrystallization during the third annealing is reduced, and the grain size number of 9.0 or more cannot be achieved. Further, the upper limit of the rolling reduction of the second cold rolling is not particularly limited, but may be, for example, 85% or less.

(第3焼鈍)
第2冷間圧延後の鋼板に対して第3焼鈍を行う。第3焼鈍を行うことにより、第2冷間圧延によって形成された再結晶核を起点にして再結晶化が進行し、微細な再結晶組織が得られる。第3焼鈍における均熱温度は、再結晶温度T1℃〜(T1+20)℃の範囲とする。均熱温度が再結晶温度T1℃未満では、十分に再結晶が進まず、細粒組織を得ることができない。また、均熱温度が(T1+20)℃を超えると、再結晶粒が粗大化してしまう。
(3rd annealing)
The steel sheet after the second cold rolling is subjected to the third annealing. By performing the third annealing, recrystallization proceeds starting from the recrystallized nuclei formed by the second cold rolling, and a fine recrystallized structure is obtained. The soaking temperature in the third annealing is in the range of the recrystallization temperature T1 ° C. to (T1 + 20) ° C. If the soaking temperature is less than the recrystallization temperature T1 ° C., recrystallization does not proceed sufficiently and a fine-grained structure cannot be obtained. Further, when the soaking temperature exceeds (T1 + 20) ° C., the recrystallized grains become coarse.

第3焼鈍の均熱時間は、10秒〜60秒とすることが好ましい。均熱時間が短いと再結晶化が十分に進まず、均熱時間が長すぎると再結晶粒が粗大化してしまう。 The soaking time of the third annealing is preferably 10 seconds to 60 seconds. If the heat equalization time is short, recrystallization does not proceed sufficiently, and if the heat equalization time is too long, the recrystallized grains become coarse.

再結晶温度T1は次のようにして決定する。第2冷間圧延後の鋼板から複数のサンプルを採取し、各サンプルについて10℃刻みで熱処理を行う。そして、各サンプルのL断面の光学顕微鏡による組織観察から未再結晶粒の有無を判断し、未再結晶粒が観察されない最も低い温度をT1とする。 The recrystallization temperature T1 is determined as follows. A plurality of samples are taken from the steel sheet after the second cold rolling, and each sample is heat-treated in increments of 10 ° C. Then, the presence or absence of unrecrystallized grains is determined from the microstructure observation of the L cross section of each sample with an optical microscope, and the lowest temperature at which no unrecrystallized grains are observed is defined as T1.

第1焼鈍、第2焼鈍及び第3焼鈍の終了後それぞれ、必要に応じて、酸洗等の脱スケール処理を行ってもよい。 After the completion of the first annealing, the second annealing, and the third annealing, descaling treatment such as pickling may be performed, if necessary.

以上説明した製造方法によって、本実施形態に係るフェライト系ステンレス鋼板を製造することができる。 The ferrite-based stainless steel sheet according to the present embodiment can be manufactured by the manufacturing method described above.

なお、本実施形態においては、第1焼鈍、第2焼鈍及び第3焼鈍は、バッチ式焼鈍でも連続式焼鈍でも構わない。また、各焼鈍は、必要であれば水素ガスあるいは窒素ガスなどの無酸化雰囲気で焼鈍する光輝焼鈍でもよいし、大気中で焼鈍しても構わない。 In the present embodiment, the first annealing, the second annealing and the third annealing may be batch annealing or continuous annealing. Further, each annealing may be bright annealing, which is annealed in a non-oxidizing atmosphere such as hydrogen gas or nitrogen gas, if necessary, or may be annealed in the atmosphere.

また、本実施形態のフェライト系ステンレス鋼板に適用される板厚は特に限定しないが、強度確保の観点から0.5mm以上、好ましくは0.6mm以上であることが望ましい。板厚が薄い場合は成形後の部品において強度が不十分となる場合があるためである。製造対象となる部品のサイズや形状、耐荷重等を考慮して板厚を決定すればよい。 The thickness applied to the ferritic stainless steel sheet of the present embodiment is not particularly limited, but is preferably 0.5 mm or more, preferably 0.6 mm or more from the viewpoint of ensuring strength. This is because if the plate thickness is thin, the strength of the molded part may be insufficient. The plate thickness may be determined in consideration of the size and shape of the parts to be manufactured, the load capacity, and the like.

以上、本実施形態によれば、成形加工性及び成形後の耐加工肌荒れ性に優れたフェライト系ステンレス鋼板を提供することができる。また、本実施形態のフェライト系ステンレス鋼板は耐加工肌荒れ性に優れるため、特に、成形加工後に表面凹凸(肌荒れ)を除去するための研磨を要する用途に好適である。 As described above, according to the present embodiment, it is possible to provide a ferritic stainless steel sheet having excellent moldability and rough skin resistance after molding. Further, since the ferrite-based stainless steel sheet of the present embodiment is excellent in processing rough skin resistance, it is particularly suitable for applications requiring polishing to remove surface irregularities (rough skin) after molding processing.

次に本発明の実施例を示す。本実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、以下の実施例で用いた条件に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be shown. The conditions in this example are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is not limited to the conditions used in the following examples. In the present invention, various conditions can be adopted as long as the gist of the present invention is not deviated and the object of the present invention is achieved.

表1に示すA〜Nの成分組成を有するステンレス鋼を溶製してスラブに鋳造し、スラブを熱間圧延にて所定の板厚まで圧延した。その後、再結晶を目的とした焼鈍(第1焼鈍)、中間冷間圧延(第1冷間圧延)、中間焼鈍(第2焼鈍)、仕上げ冷間圧延(第2冷間圧延)及び仕上げ焼鈍(第3焼鈍)を施して0.6mm厚のステンレス鋼板(製品板)No.1〜28を製造した。第1焼鈍は、均熱温度を再結晶温度T1(℃)以上、T1+50(℃)以下の範囲とし、均熱時間は10秒〜60秒の範囲とした。中間冷間圧延(第1冷間圧延)の圧下率、中間焼鈍(第2焼鈍)の均熱温度と均熱時間、最終冷間圧延(第2冷間圧延)の圧下率、仕上げ焼鈍(第3焼鈍)の均熱温度及び均熱時間は表2のように変化させた。 Stainless steels having the component compositions A to N shown in Table 1 were melted and cast into slabs, and the slabs were hot-rolled to a predetermined plate thickness. After that, annealing for the purpose of recrystallization (first annealing), intermediate cold rolling (first cold rolling), intermediate annealing (second annealing), finish cold rolling (second cold rolling) and finish annealing () No. 3 stainless steel plate (product plate) with a thickness of 0.6 mm after being annealed. 1-28 were manufactured. In the first annealing, the soaking temperature was in the range of recrystallization temperature T1 (° C.) or higher and T1 + 50 (° C.) or lower, and the soaking time was in the range of 10 seconds to 60 seconds. Lowering rate of intermediate cold rolling (first cold rolling), soaking temperature and soaking time of intermediate annealing (second annealing), rolling reduction of final cold rolling (second cold rolling), finish annealing (first) The soaking temperature and soaking time of 3) were changed as shown in Table 2.

次に、得られたステンレス鋼板No.1〜No.28の幅中央付近から試験片を切り出し、JIS G 0551(2013年)に準拠して線分法によって結晶粒度番号(GSN)を測定した。なお、結晶粒度を測定する際は、試験片断面の光学顕微鏡組織写真より、1試料につき横切る結晶粒数を500以上とした。 Next, the obtained stainless steel plate No. 1-No. A test piece was cut out from the vicinity of the center of the width of 28, and the crystal grain size number (GSN) was measured by the line segment method according to JIS G 0551 (2013). When measuring the crystal grain size, the number of crystal grains crossed per sample was set to 500 or more from the optical microscope microstructure photograph of the cross section of the test piece.

平均r値の測定方法は、JIS Z 2254の塑性ひずみ比試験方法により測定した。試験片は、ステンレス鋼板No.1〜No.28の幅中央付近から切り出した。平均r値は、JIS Z 2254(2008年)に従い、下記式(B)によって求めた。 The average r-value was measured by the plastic strain ratio test method of JIS Z 2254. The test piece is a stainless steel plate No. 1-No. It was cut out from the vicinity of the center of the width of 28. The average r-value was calculated by the following formula (B) according to JIS Z 2254 (2008).

平均r値=(r+2r45+r90)/4 ・・・(B)
但し、(B)式中のrは圧延方向のr値、r90は圧延直角方向のr値、r45は圧延45度方向のr値を示す。
Average r value = (r 0 + 2r 45 + r 90 ) / 4 ... (B)
However, in equation (B), r 0 indicates the r value in the rolling direction, r 90 indicates the r value in the rolling perpendicular direction, and r 45 indicates the r value in the rolling 45 degree direction.

析出物の密度の測定は、透過型電子顕微鏡(TEM)を用いた。まず、鋼板表面から深さ20μmまでの領域の断面薄膜試料を作製した。得られた断面薄膜試料についてTEMにより3万倍の倍率にて画像を撮影した。撮影数は10視野以上とした。各視野における析出物の個数をカウントした。個数の計測対象は、粒径が0.05〜0.30μmの範囲の析出物とした。そして、カウントした析出物の総数を、撮影された視野の面積で除することで、析出物の密度を求めた。なお、析出物の粒径は、析出物の最大長さを粒径とした。 A transmission electron microscope (TEM) was used to measure the density of the precipitate. First, a cross-sectional thin film sample in a region from the surface of the steel sheet to a depth of 20 μm was prepared. Images of the obtained cross-sectional thin film sample were taken by TEM at a magnification of 30,000 times. The number of shots was 10 or more. The number of precipitates in each field of view was counted. The number of precipitates whose particle size was in the range of 0.05 to 0.30 μm was measured. Then, the density of the precipitates was obtained by dividing the total number of the counted precipitates by the area of the photographed field of view. The particle size of the precipitate was defined as the maximum length of the precipitate.

析出物の原子比の測定は、エネルギー分散型X線元素分析装置(EDS)が装備されたTEMを用いた。まず、密度の測定方法の場合と同様にして、鋼板表面から深さ20μmまでの領域の断面薄膜試料を作製した。断面薄膜試料をTEMで観察し、粒径0.05〜0.3μmの析出物を確認し、EDSにより析出物から検出された全元素を100原子%としたときの、Ti、Nb及びPの組成比を測定した。そして、測定されたTi、Nb、Pの原子%の比を取ってNb/P及びTi/Pを求めた。本実施例では、5個の析出物についてそれぞれの原子比を求め、これらの平均値を平均原子比とした。 The atomic ratio of the precipitate was measured using a TEM equipped with an energy dispersive X-ray elemental analyzer (EDS). First, a cross-sectional thin film sample in a region from the surface of the steel sheet to a depth of 20 μm was prepared in the same manner as in the case of the density measurement method. When the cross-sectional thin film sample was observed by TEM, a precipitate having a particle size of 0.05 to 0.3 μm was confirmed, and the total elements detected from the precipitate by EDS were 100 atomic%, Ti, Nb and P The composition ratio was measured. Then, Nb / P and Ti / P were determined by taking the ratio of the measured atomic% of Ti, Nb, and P. In this example, the atomic ratios of each of the five precipitates were determined, and the average value of these was taken as the average atomic ratio.

さらに、ステンレス鋼板No.1〜No.28よりφ110mmの試料を切り出し、油圧成形試験機により絞り比2.2のカップ成形試験を行った。カップ成形後の肌荒れには絞り比が大きく影響するが、その他の成形条件は影響を及ぼさないことが分かっている。
なお今回実施したカップ成形試験条件は、ポンチ径が50mm、ポンチ肩Rが5mm、ダイス径が52mm、ダイス肩Rが5mm、しわ押さえ圧が1トン、クリアランスが片側0.4t(tは板厚)とした。さらに、試料とポンチ間の潤滑剤として、出光興産株式会社製の防錆油「ダフニーオイルコートZ3(登録商標)」を塗布し、その後に成形後の鋼板表面を保護するために潤滑シート「ニチアス株式会社製ナフロンテープTOMBO9001」を貼り付けた。
Furthermore, the stainless steel plate No. 1-No. A sample having a diameter of 110 mm was cut out from 28, and a cup forming test with a drawing ratio of 2.2 was carried out by a hydraulic forming tester. It is known that the drawing ratio has a great influence on the rough skin after cup molding, but other molding conditions have no influence.
The cup forming test conditions carried out this time are: punch diameter 50 mm, punch shoulder R 5 mm, die diameter 52 mm, die shoulder R 5 mm, wrinkle pressing pressure 1 ton, clearance 0.4 t on one side (t is plate thickness). ). Furthermore, as a lubricant between the sample and the punch, rust preventive oil "Daphny Oil Coat Z3 (registered trademark)" manufactured by Idemitsu Kosan Co., Ltd. is applied, and then the lubricating sheet "Nichias" is applied to protect the surface of the steel sheet after molding. "NAFLON tape TOMBO9001 made by Co., Ltd." was pasted.

絞り比2.2で成形が出来た試料についてはカップ成形後の表面粗さを測定し加工肌荒れを評価した。 For the sample formed with a drawing ratio of 2.2, the surface roughness after cup forming was measured to evaluate the processed skin roughness.

カップ成形後の試料の圧延方向の縦壁部内側の高さ中央部において高さ方向に平行に5mm長さについて二次元接触式の表面粗さ測定機を用いてJIS B 0601に記載の表面粗さ測定を行い、算術平均粗さRaを算出した。算術平均粗さRa1.00μmを基準とし、Raが1.00μm未満の場合を加工肌荒れ評価が良好と判断し、Raが1.00μm以上の場合を加工肌荒れ評価を不良と判断した。 The surface roughness described in JIS B 0601 using a two-dimensional contact type surface roughness measuring machine for a length of 5 mm parallel to the height direction at the center of the height inside the vertical wall portion in the rolling direction of the sample after cup forming. The measurement was performed and the arithmetic average roughness Ra was calculated. Based on the arithmetic mean roughness Ra 1.00 μm, when Ra was less than 1.00 μm, the processed skin roughness evaluation was judged to be good, and when Ra was 1.00 μm or more, the processed skin rough evaluation was judged to be poor.

以上の測定結果及び評価結果を表2に示す。 Table 2 shows the above measurement results and evaluation results.

表2に示すように、試験例1、3、6〜9、11、13〜15、17、19、20、25〜28は、鋼成分が本発明範囲を満たし、また製造条件が好ましい範囲を満たした。このため、析出物が多量に析出して微細な再結晶組織が得られた。これらの試験例は、平均r値が1.20以上と高く成形性に優れ、また、加工後の肌荒れ性に優れていた。 As shown in Table 2, in Test Examples 1, 3, 6 to 9, 11, 13 to 15, 17, 19, 20, and 25 to 28, the steel components satisfy the range of the present invention, and the production conditions are preferable. I met. Therefore, a large amount of precipitates were precipitated to obtain a fine recrystallized structure. In these test examples, the average r value was 1.20 or more, which was excellent in moldability, and also excellent in rough skin after processing.

一方、表2のNo.2は、中間冷間圧延の圧下率が5%と低かったため、析出物が十分に析出せずに密度が低くなり、結晶粒度番号が9.0未満になり、加工後肌荒れ性が劣化した。 On the other hand, No. in Table 2. In No. 2, since the rolling reduction ratio of the intermediate cold rolling was as low as 5%, the precipitates did not sufficiently precipitate and the density became low, the crystal grain size number became less than 9.0, and the rough skin after processing deteriorated.

No.4は、中間焼鈍温度が660℃と低かったため、析出物が十分に析出せずに密度が低くなり、結晶粒度番号が9.0未満になり、加工後肌荒れ性が劣化した。 No. In No. 4, since the intermediate annealing temperature was as low as 660 ° C., the precipitates did not sufficiently precipitate and the density became low, the crystal grain size number became less than 9.0, and the rough skin after processing deteriorated.

No.5及びNo.16は、仕上げ焼鈍温度が(T1+20)℃を超えたため、仕上げ焼鈍時に再結晶粒の粗大化が起こり、結晶粒度番号が9.0未満になり、加工後肌荒れ性が劣化した。 No. 5 and No. In No. 16, since the finish annealing temperature exceeded (T1 + 20) ° C., the recrystallized grains were coarsened during the finish annealing, the grain size number became less than 9.0, and the rough skin after processing deteriorated.

No.10及びNo,18は、中間焼鈍温度がそれぞれ840℃、820℃と高いため、析出物が一部固溶して密度が低くなり、結晶粒度番号が9.0未満になり、加工後肌荒れ性が劣化した。 No. In Nos. 10 and No. 18, since the intermediate annealing temperatures are as high as 840 ° C. and 820 ° C., the precipitates are partially dissolved and the density becomes low, the crystal grain size number becomes less than 9.0, and the skin roughness after processing becomes rough. Has deteriorated.

No.12は、中間冷間圧延の圧下率が60%と高く、このため最終冷間圧延の圧下率を低くせざるを得なかった。これにより、最終冷間圧延による歪みの付与が十分になされず、再結晶核が十分に形成されず、結晶粒度番号が9.0未満になり、加工後肌荒れ性が劣化した。 No. In No. 12, the reduction rate of the intermediate cold rolling was as high as 60%, and therefore, the reduction rate of the final cold rolling had to be lowered. As a result, strain was not sufficiently imparted by the final cold rolling, recrystallized nuclei were not sufficiently formed, the particle size number became less than 9.0, and the rough skin after processing deteriorated.

No.21及びNo.22は、C量が過剰であったため、Ti及びNbがそれぞれ炭化物の生成に使われ、Ti及びNbを含む析出物が形成されなかった。また、C量が過剰であったため、平均r値が1.20未満となり、成形性が低下した。 No. 21 and No. In No. 22, since the amount of C was excessive, Ti and Nb were used for the formation of carbides, respectively, and a precipitate containing Ti and Nb was not formed. Further, since the amount of C was excessive, the average r value was less than 1.20, and the moldability was lowered.

No.23及びNo.24は、Ti及びNbの両方が含まれなかったため、Ti及びNbを含む析出物が形成されなかった。また、Ti及びNbの炭化物が形成されなかったため、平均r値が1.20未満となり、成形性が低下した。 No. 23 and No. In No. 24, since both Ti and Nb were not contained, a precipitate containing Ti and Nb was not formed. Further, since carbides of Ti and Nb were not formed, the average r value was less than 1.20, and the moldability was lowered.

Figure 2020143309
Figure 2020143309

Figure 2020143309
Figure 2020143309

Claims (5)

質量%にて、
Cr:11.0%以上30.0%以下、
C:0.001%以上0.030%以下、
Si:0.01%以上2.00%以下、
Mn:0.01%以上2.00%以下、
P:0.005%以上0.100%以下、
S:0.0100%以下、
N:0.030%以下を含み、
さらに、Ti:0.50%以下、Nb:1.0%以下の1種または2種を含み、
残部がFe及び不純物からなり、
JIS G 0551にて測定される結晶粒度番号が9.0以上であり、
JIS Z 2254にて測定される平均r値が1.20以上であり、
粒径が0.05〜0.30μmの範囲の析出物の密度が100,000個/mm以上であることを特徴とするフェライト系ステンレス鋼板。
By mass%
Cr: 11.0% or more and 30.0% or less,
C: 0.001% or more and 0.030% or less,
Si: 0.01% or more and 2.00% or less,
Mn: 0.01% or more and 2.00% or less,
P: 0.005% or more and 0.100% or less,
S: 0.0100% or less,
N: Including 0.030% or less
Further, it contains one or two types of Ti: 0.50% or less and Nb: 1.0% or less.
The rest consists of Fe and impurities
The crystal grain size number measured by JIS G 0551 is 9.0 or more.
The average r-value measured by JIS Z 2254 is 1.20 or more.
A ferritic stainless steel sheet having a density of deposits in the range of 0.05 to 0.30 μm and a density of 100,000 pieces / mm 2 or more.
質量%にて、更に、
B:0.0001%以上0.0025%以下、
Sn:0.005%以上0.50%以下、
Ni:1.00%以下、
Cu:1.00%以下、
Mo:2.00%以下、
W:1.00%以下、
Al:1.00%以下、
Co:0.50%以下、
V:0.50%以下、
Zr:0.50%以下、
Ca:0.0050%以下、
Mg:0.0050%以下、
Y:0.10%以下、
Hf:0.20%以下、
REM:0.10%以下、
Sb:0.50%以下の1種または2種以上を含有していることを特徴とする請求項1に記載のフェライト系ステンレス鋼板。
In% by mass,
B: 0.0001% or more and 0.0025% or less,
Sn: 0.005% or more and 0.50% or less,
Ni: 1.00% or less,
Cu: 1.00% or less,
Mo: 2.00% or less,
W: 1.00% or less,
Al: 1.00% or less,
Co: 0.50% or less,
V: 0.50% or less,
Zr: 0.50% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less,
Y: 0.10% or less,
Hf: 0.20% or less,
REM: 0.10% or less,
The ferrite-based stainless steel sheet according to claim 1, wherein Sb: contains 1 type or 2 or more types of 0.50% or less.
前記析出物は、Nbを含まず、かつ、P、Tiが平均原子比でTi/P:0.5〜2.0の範囲となる成分を有する析出物であることを特徴とする請求項1または請求項2に記載のフェライト系ステンレス鋼板。 Claim 1 is characterized in that the precipitate does not contain Nb and has components in which P and Ti have an average atomic ratio of Ti / P: 0.5 to 2.0. Alternatively, the ferritic stainless steel sheet according to claim 2. 前記析出物は、Tiを含まず、かつ、P、Nbが平均原子比でNb/P:0.5〜2.0の範囲となる成分を有する析出物であることを特徴とする請求項1または請求項2に記載のフェライト系ステンレス鋼板。 Claim 1 is characterized in that the precipitate does not contain Ti and has components in which P and Nb have an average atomic ratio of Nb / P: 0.5 to 2.0. Alternatively, the ferritic stainless steel sheet according to claim 2. 前記析出物は、平均原子比でTi/P:0.5〜2.0かつNb/P:0.5〜2.0の範囲となる成分を有する析出物であることを特徴とする請求項1または請求項2に記載のフェライト系ステンレス鋼板。 The claim is characterized in that the precipitate is a precipitate having a component having an average atomic ratio of Ti / P: 0.5 to 2.0 and Nb / P: 0.5 to 2.0. 1 or the ferritic stainless steel sheet according to claim 2.
JP2019038462A 2019-03-04 2019-03-04 Ferritic stainless steel plate Active JP7304715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019038462A JP7304715B2 (en) 2019-03-04 2019-03-04 Ferritic stainless steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019038462A JP7304715B2 (en) 2019-03-04 2019-03-04 Ferritic stainless steel plate

Publications (2)

Publication Number Publication Date
JP2020143309A true JP2020143309A (en) 2020-09-10
JP7304715B2 JP7304715B2 (en) 2023-07-07

Family

ID=72353313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019038462A Active JP7304715B2 (en) 2019-03-04 2019-03-04 Ferritic stainless steel plate

Country Status (1)

Country Link
JP (1) JP7304715B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875324A (en) * 2022-05-19 2022-08-09 山西太钢不锈钢股份有限公司 Steel for pre-hardened corrosion-resistant template and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348018A (en) * 1976-10-15 1978-05-01 Nippon Steel Corp Production of highly workable ferritic stainless steel sheet causinglittle ridging
JP2002363712A (en) * 2000-12-22 2002-12-18 Kawasaki Steel Corp Ferritic stainless steel sheet for fuel tank and fuel pipe, and production method therefor
JP2004060009A (en) * 2002-07-30 2004-02-26 Nippon Steel Corp Ferritic stainless steel sheet having excellent press formability and method for producing the same
JP2004083972A (en) * 2002-08-26 2004-03-18 Nisshin Steel Co Ltd Ferritic stainless steel cold rolled, annealed material having excellent secondary workability, and production method therefor
JP2004307901A (en) * 2003-04-03 2004-11-04 Nippon Steel Corp HIGHLY WORKABLE Mo-CONTAINING FERRITIC STAINLESS STEEL SHEET HAVING EXCELLENT PRODUCIBILITY AND ITS PRODUCTION METHOD
JP2004360003A (en) * 2003-06-04 2004-12-24 Nisshin Steel Co Ltd Ferritic stainless steel sheet superior in press formability and fabrication quality, and manufacturing method therefor
JP2005139533A (en) * 2003-11-10 2005-06-02 Nippon Steel & Sumikin Stainless Steel Corp Method for forming ferritic stainless steel sheet having little surface roughness
JP2017201049A (en) * 2016-05-06 2017-11-09 新日鐵住金ステンレス株式会社 High-strength stainless steel sheet excellent in workability and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348018A (en) * 1976-10-15 1978-05-01 Nippon Steel Corp Production of highly workable ferritic stainless steel sheet causinglittle ridging
JP2002363712A (en) * 2000-12-22 2002-12-18 Kawasaki Steel Corp Ferritic stainless steel sheet for fuel tank and fuel pipe, and production method therefor
JP2004060009A (en) * 2002-07-30 2004-02-26 Nippon Steel Corp Ferritic stainless steel sheet having excellent press formability and method for producing the same
JP2004083972A (en) * 2002-08-26 2004-03-18 Nisshin Steel Co Ltd Ferritic stainless steel cold rolled, annealed material having excellent secondary workability, and production method therefor
JP2004307901A (en) * 2003-04-03 2004-11-04 Nippon Steel Corp HIGHLY WORKABLE Mo-CONTAINING FERRITIC STAINLESS STEEL SHEET HAVING EXCELLENT PRODUCIBILITY AND ITS PRODUCTION METHOD
JP2004360003A (en) * 2003-06-04 2004-12-24 Nisshin Steel Co Ltd Ferritic stainless steel sheet superior in press formability and fabrication quality, and manufacturing method therefor
JP2005139533A (en) * 2003-11-10 2005-06-02 Nippon Steel & Sumikin Stainless Steel Corp Method for forming ferritic stainless steel sheet having little surface roughness
JP2017201049A (en) * 2016-05-06 2017-11-09 新日鐵住金ステンレス株式会社 High-strength stainless steel sheet excellent in workability and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
礼軒富美夫、住友秀彦: "高純度フェライト系ステンレス冷延鋼板の耐二次加工脆性に及ぼす結晶粒径およびボロンの影響", 鉄と鋼, vol. 84, no. 11, JPN6023001031, 1998, ISSN: 0004964708 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875324A (en) * 2022-05-19 2022-08-09 山西太钢不锈钢股份有限公司 Steel for pre-hardened corrosion-resistant template and manufacturing method thereof

Also Published As

Publication number Publication date
JP7304715B2 (en) 2023-07-07

Similar Documents

Publication Publication Date Title
JP5315811B2 (en) Ferritic stainless steel plate with excellent resistance to sulfuric acid corrosion
JP6906688B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP2008208412A (en) Ferritic stainless steel sheet having reduced surface roughness after working and excellent formability, and its manufacturing method
JP5924459B1 (en) Stainless steel for cold rolled steel
JP2013133497A (en) High-strength hot-rolled steel sheet excellent in stretch flange formability, and manufacturing method therefor
JP5904310B1 (en) Ferritic stainless steel and manufacturing method thereof
JP6738928B1 (en) Ferritic stainless steel sheet and method of manufacturing the same
JP3932020B2 (en) Ferritic stainless steel with excellent deep drawability and small in-plane anisotropy and method for producing the same
JP6617182B1 (en) Ferritic stainless steel sheet
JP7304715B2 (en) Ferritic stainless steel plate
JP6836969B2 (en) Ferritic stainless steel sheet
JP2001192735A (en) FERRITIC Cr-CONTAINING COLD ROLLED STEEL SHEET EXCELLENT IN DUCTILITY, WORKABILITY AND RIDGING RESISTANCE AND PRODUCING METHOD THEREFOR
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP2022079072A (en) Ferritic stainless steel sheet and method for manufacturing the same
CN111868283B (en) Steel plate
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method
JP3709709B2 (en) Ferritic stainless steel with excellent formability and manufacturing method thereof
CN112513303B (en) Ferritic stainless steel sheet
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same
JP2004217996A (en) Ferritic stainless steel sheet superior in formability, and manufacturing method therefor
CN111868286B (en) Steel plate
JPH0633197A (en) Fe-cr alloy excellent in workability
JP3923485B2 (en) Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability
JP2023147504A (en) Ferritic stainless steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230627

R150 Certificate of patent or registration of utility model

Ref document number: 7304715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150