JP3709709B2 - Ferritic stainless steel with excellent formability and manufacturing method thereof - Google Patents

Ferritic stainless steel with excellent formability and manufacturing method thereof Download PDF

Info

Publication number
JP3709709B2
JP3709709B2 JP12146898A JP12146898A JP3709709B2 JP 3709709 B2 JP3709709 B2 JP 3709709B2 JP 12146898 A JP12146898 A JP 12146898A JP 12146898 A JP12146898 A JP 12146898A JP 3709709 B2 JP3709709 B2 JP 3709709B2
Authority
JP
Japan
Prior art keywords
less
cold
rolled
annealing
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12146898A
Other languages
Japanese (ja)
Other versions
JPH11315353A (en
Inventor
正之 笠井
康 加藤
工 宇城
進 佐藤
英哉 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP12146898A priority Critical patent/JP3709709B2/en
Publication of JPH11315353A publication Critical patent/JPH11315353A/en
Application granted granted Critical
Publication of JP3709709B2 publication Critical patent/JP3709709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フェライト系ステンレス鋼板に係り、とくにフェライト系ステンレス冷延鋼板の成形性の改善に関する。
【0002】
【従来の技術】
SUS 430 に代表されるフェライト系ステンレス鋼板は、加工性および耐食性に優れ長時間美しい表面光沢を保持し続けることができ、さらにオーステナイト系ステンレス鋼板に比べ耐応力腐食割れ性に優れており、しかも高価なNiを多量に含まない安価な鋼材であることから、家電機器、厨房機器や建築内装品などに広汎に使用されている。
【0003】
しかしながら、最近では、材料に対し厳しい加工が行われる傾向にあり、フェライト系ステンレス鋼板にも優れた加工性を有することが要求されている。
フェライト系ステンレス鋼板には、プレス加工時にストレッチャーストレインと呼ばれる局所的なしわが発生しやすいという問題があった。ストレッチャーストレインは、引張試験の際にリューダース帯として試験片に観察されるものである。
【0004】
このリューダース帯の発生を抑制するには、降伏点伸びの低減を図ることが重要となる。このような観点からフェライト系ステンレス鋼板の加工性を改善する検討がいくつかなされている。
例えば、特開昭51-59716号公報には、焼鈍後のフェライト系ステンレス鋼板にロールによる曲げ塑性歪を加えて鋼板の表面層に微小変形核をつくり降伏点および降伏点伸びを低下させた後にスキンパス圧延を行う加工性の良いフェライト系ステンレス鋼板の製造方法が開示されている。しかしながら、この方法では、鋼板の表面層に歪を導入するためベンディングロール等の装置を必要とし、設備費の増加を伴い経済的に不利となる。
【0005】
また、特開昭59−80753 号公報には、C:0.08%以下、Si:0.70%以下、Mn:1.00%以下、Cr:15〜20%、N:0.04〜0.12%を含有し、残部Feおよび不可避的不純物とし、鋼中N含有量を高めストレッチャーストレインの発生を防止したフェライト系ステンレス鋼板が開示されている。しかし、鋼中N含有量を高めるのは、鋼板を硬質化し、焼鈍時の耐鋭敏化性を低下させる危険がある。
【0006】
また、特開昭61-84329号公報には、熱延鋼板を焼鈍酸洗工程、中間圧延工程および中間焼鈍、酸洗工程を経て最終圧延工程の仕上げパスにおいて粗面ロールを用いて圧延し帯板表面の平均粗度Ra を2μm 以上としたのちに、最終焼鈍、酸洗するにあたり、中間焼鈍、酸洗工程の焼鈍温度をAc1点以上(Ac1+150 ℃)以下として、ストレチャーストレインあるいは腰折れを防止する塗装用フェライト系ステンレス鋼帯板の製造方法が開示されている。しかしながら、この方法は、中間焼鈍時にAc1点以上の焼鈍を加えるとマルテンサイト相の硬化・脆化により最終圧延工程での破断トラブル等が発生する危険がある。さらにこの方法は、塗装用鋼板に適用して好適であり、プレス成形等の美麗かつ平坦な表面が要求される用途には成形時の肌荒れ、型かじり等の点で不適である。
【0007】
【発明が解決しようとする課題】
本発明は、上記した従来技術の問題点を有利に解決し、ストレチャーストレインの発生を防止した、成形性に優れたフェライト系ステンレス冷延鋼板およびその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、フェライト系ステンレス冷延鋼板の成形性を改善するために鋭意検討した結果、冷延板焼鈍時に低温変態生成相を適正に分散させることにより、成形性が格段に改善されることを知見した。
まず、本発明の基礎となった実験結果を説明する。
【0009】
C:0.06質量%、Cr:16.4質量%としてAl:0.0005〜0.05質量%、Nb:0.0005〜0.2 質量%、N:0.001 〜0.03質量%とAl、Nb、Nを変化させた鋼を真空溶解炉で溶製し、50kg小型鋼塊とした。これら小型鋼塊から120mm 厚の試験片を切出し、1200℃に加熱後、熱間圧延して3.5mm 厚の熱延板とした。さらに、これら熱延板に860 ℃×8hrの焼鈍後徐冷する処理を行ったのち、冷間圧延を施し0.5mm 厚の冷延板とした。ついで、これら冷延板に、仕上げ焼鈍を施し冷延焼鈍板とした。仕上げ焼鈍条件として、830 ℃×20s の焼鈍後、3〜100 ℃/sの範囲の冷却速度で冷却した。
【0010】
これら冷延焼鈍板からJIS 13B 号試験片を採取して、引張試験を実施し、降伏点伸びを測定した。仕上げ焼鈍後の冷却速度と降伏点伸びの関係を図1に示す。図1から、降伏点伸びは、焼鈍後の冷却速度を20℃/s以上とすることにより著しく低下することがわかる。
また、これら冷延焼鈍板について組織観察を行った。
【0011】
これら冷延焼鈍板の組織は、フェライトと低温変態生成相との2相混合組織であり、低温変態生成相は、冷却速度の変化にしたがい分散度合いが変化していた。低温変態生成相のうち1μm 以上の大きさ(同一体積の球体に換算した場合の直径)を有する相の密度D(個/mm3 )を測定した。低温変態生成相の密度Dと降伏点伸びとの関係を図2に示す。
【0012】
図2から、1μm 以上の大きさの低温変態生成相の密度Dが1.0 ×103 個/mm3 以上で降伏点伸びが低下することがわかる。
さらに、これら冷延焼鈍板から採取した試験片について、塩水噴霧試験(SST試験)を実施した。
塩水噴霧試験は、試験片に30℃の5%NaCl水溶液を4hr間噴霧し、試験片に発生した発錆点の数を測定し、耐食性を評価した。評価はA〜Eの5段階とし、発錆点が、Aは100 個/m2 以下、Bは100 超え150 個/m2 以下、Cは150 超え250 個/m2 以下、Dは250 超え300 個/m2 以下、Eは、300 個/m2 超とした。
【0013】
1μm 以上の大きさの低温変態生成相の密度Dと耐食性の関係を図3に示す。
図3から、耐食性は、低温変態生成相の密度Dが1.0 ×106 個/mm3 以上と多くなると著しく低下することがわかる。
本発明は上記した知見に基づいて構成されたものである
【0014】
すなわち、本発明は、量%で、C:0.03 0.08%、Si:1.0 %以下、Mn:1.0 %以下、Cr:10〜20%、N:0.005 〜0.03%、Al:0.01%以下、P: 0.1 %以下、S: 0.05 %以下を含み、さらに、Nb:0.02〜0.1 %、Ti:0.02〜 0.1%、V:0.02〜 0.1%、Zr:0.01〜 0.1%のうちから選ばれた1種または2種以上を合計で0.2 %以下含有し残部Feおよび不可避的不純物からなる組成を有し、かつ球体近似したときの直径が1μm 以の低温変態生成相を1.0 ×103 〜1.0 ×106 個/mm3 分散させてなる組織を有することを特徴とする成形性に優れたフェライト系ステンレス冷延鋼板であり、また、本発明では、前記組成に加えて、さらに量%で、Ni:1.0 %以下を含有してもよい。
【0015】
また、本発明は、量%で、C: 0.03 0.08 %、 Si 1.0 %以下、 Mn 1.0 %以下、Cr:10〜20%、N:0.005 〜0.03%、Al:0.01%以下、P: 0.1 %以下、S: 0.05 %以下を含み、さらに、Nb:0.02〜0.1 %、Ti:0.02〜 0.1%、V:0.02〜 0.1%、Zr:0.01〜 0.1%のうちから選ばれた1種または2種以上を合計で0.2 %以下含有し、あるいはさらに Ni 1.0 %以下を含有し、残部 Fe および不可避的不純物からなる組成を有する鋼素材に、熱間圧延、熱延板焼鈍、および累積圧下率 50 %以上の冷間圧延を順次施し冷延板としたのち、焼鈍温度:750 〜1000℃で焼鈍を行い、該焼鈍温度から20℃/s以上の冷却速度で冷却することを特徴とする成形性に優れたフェライト系ステンレス冷延鋼板の製造方法である。
【0017】
【発明の実施の形態】
まず、鋼組成の限定理由について説明する。
Cr:10〜20%
Crは、ステンレス鋼として耐食性を確保するために不可欠な元素であり、Cr含有量が10%未満では、耐食性が不足する。一方、Cr含有量が20%を超えると、冷間加工性の低下を招く。このため、Crは10〜20%の範囲に限定した。なお、好ましくは、11〜19%である。
【0018】
N:0.005 〜0.03%
Nは、r値および伸び特性を低下させる元素であり、0.03%を超えるとその影響が顕著となる。また、N含有量が0.005 %未満となると結晶粒の粗大化を招き、肌荒れを起こしやすい。このため、Nは0.005 〜0.03%の限定した。なお、好ましくは、0.008 〜0.025 %である。
【0019】
Al:0.01%以下
Alは、脱酸剤として有効な元素であるが、添加量が0.01%を超えると、アルミナ系介在物が増加し耐錆性が劣化するとともに、面疵発生率が増加し、外観美麗性が低下する。このため、Alは意図的な添加を避け、不可避的な混入も0.01%以下に限定する。
【0020】
Nb:0.02〜0.1 %、Ti:0.02〜 0.1%、V:0.02〜 0.1%、Zr:0.01〜 0.1%のうちから選ばれた1種または2種以上を合計で0.2 %以下
Nb、Ti、V、Zrは、いずれもプレス成形性に有害なC、Nを固定し炭化物、あるいは窒化物として析出し、鋼板の軟質化、加工性向上に有効な元素である。しかし、これらの効果を得るためには、それぞれNb:0.02%以上、Ti:0.02%以上、V:0.02%以上、Zr:0.01%以上の添加を必要とする。一方、Nb、Ti、V、Zrいずれもそれぞれが0.1 %を超えると、あるいは合計で0.2 %を超えると、製造性が低下し、コストの増加を招く。このため、それぞれ、Nb:0.02〜0.1 %、Ti:0.02〜 0.1%、V:0.02〜 0.1%、Zr:0.01〜 0.1%の範囲か、合計で0.2 %以下に限定した。なお、好ましくは、Nb、Ti、V、Zrいずれもそれぞれが0.08%以下、あるいは合計で0.2 %以下である。
【0021】
C:0.03 0.08
Cは、フェライト系ステンレス鋼の耐食性、伸び特性、r値に大きく影響する元素であり、その含有量が0.08%を超えると耐食性、伸び特性、r値が顕著に劣化するとともに材料が硬質化する。このため、Cは0.08%以下 0.03 %以上に限定した
【0022】
Si:1.0 %以下
Siは、脱酸剤として作用するとともに、鋼を硬質化し伸び特性を劣化させる元素である。Si含有量が1.0 %を超えると、伸び特性の劣化が著しく、加工性が劣化する。このため、Siは1.0 %以下とした
Mn:1.0 %以下
Mnは、脱酸剤として作用するとともに、鋼を硬質化し伸び特性を劣化させる。さらにSと結合し、MnS を形成するため、耐食性を劣化させる。Mn含有量が1.0 %を超えると、加工性および耐食性の劣化が著しくなる。このため、Mnは1.0 %以下とした
【0023】
Ni:1.0 %以下
Niは、本発明のフェライト系ステンレス鋼板においては耐食性を向上させるために添加してもよい。しかし、1.0 %を超えると伸び特性が劣化するため、添加する場合には1.0 %を上限とした。
その他、残部はFeおよび不可避的不純物である。
【0024】
なお、P、Sは、加工性および耐食性を劣化させるため、できるだけ低減するのが望ましいが、Pは、0.1 %、Sは0.05%まで許容できる。
ついで、フェライト系ステンレス冷延鋼板の組織について説明する。
本発明のフェライト系ステンレス冷延鋼板の組織は、フェライト+低温変態生成相の2相混合組織とする。低温変態生成相としては、マルテンサイト相、高転位密度のフェライトであるマッシブフェライト相あるいはC、Nを過飽和に固溶したフェライト等が好適である。
【0025】
本発明のフェライト系ステンレス冷延鋼板の組織は、球体近似したときの直径が1μm 以上の大きさの上記した低温変態生成相を1.0 ×103 〜1.0 ×106 個/mm3 分散させた組織とする。本発明においては低温変態生成相の大きさは、低温変態生成相の体積と同一の体積を有する球体に近似し、その直径で表すものとする。
【0026】
球体近似したときの直径が1μm 以上の大きさの低温変態生成相の個数が、1.0 ×103 個/mm3 以上で降伏点伸びが著しく低減する。また、上記した低温変態生成相の個数が、1.0 ×106 個/mm3 を超えると耐食性が劣化する。このため、球体近似したときの直径が1μm 以上の大きさの低温変態生成相の個数を1.0 ×103 〜1.0 ×106 個/mm3 の範囲に限定した。
【0027】
低温変態生成相の大きさが、球体近似したときの直径で1μm 未満では、結晶全体の転位密度が低くなるため降伏点伸びの低下に寄与しない。このようなことから、低温変態生成相の大きさが、球体近似したときの直径で1μm 以上に限定した。
つぎに、本発明鋼板の製造方法について説明する。
【0028】
上記した組成の鋼を、転炉、電気炉等公知の溶製炉で溶製し、造塊法あるいは連続鋳造法で凝固させ、鋼素材とする。鋼素材は、加熱され熱間圧延により所定の厚さの熱延板とされる。なお、本発明では、熱間圧延条件については、とくに限定されない。
熱延板は、ついで熱延板焼鈍を施され、好ましくは酸洗される。
【0029】
熱延板焼鈍は、750 〜900 ℃に加熱後、10℃/h程度の冷却速度で徐冷するか、あるいは900 〜1000℃の温度で連続焼鈍してもよい。
熱延板焼鈍を施された熱延板は、ついで冷間圧延を施され冷延板とされ、ついで仕上げ焼鈍を施され、冷延焼鈍板とされる。
冷間圧延は、累積圧下率50%以上の圧延とする。累積圧下率が50%未満では、焼鈍後の組織が加工性に優れた組織とならない。
【0030】
仕上げ焼鈍は、750 〜1000℃の温度範囲で行うのものする。
仕上げ焼鈍温度が750 ℃未満では、低温変態生成相の形成が少なく、加工性の改善が望めない。一方、1000℃を超えると、組織が粗大化し靱性の劣化や、肌荒れの発生および粒界腐食等が懸念される。このため、仕上げ焼鈍温度は、750 〜1000℃の温度範囲に限定した。
【0031】
仕上げ焼鈍後、冷延焼鈍板は、20℃/s以上の冷却速度で、好ましくは200 ℃以下まで冷却される。
冷却速度が20℃/s未満では、降伏点伸びを低減できないため、20℃/sを下限とした。なお、冷却速度の上限は、冷却設備の冷却能力に依存して決定される。なお、好ましい冷却速度の範囲は25〜150 ℃/sである。また、200 ℃より高い温度で冷却を打ち切ると、低温変態生成相の個数が少なく降伏点伸びの低減度合いが少ない。
【0032】
【実施例】
表1に示す組成の鋼を転炉で溶製し、連続鋳造法で200mm 厚のスラブとした。これらスラブを1170℃に加熱し熱間圧延により3.6mm 厚の熱延板とした。この熱延板に860 ℃×8hrの焼鈍を施しその後10℃/hの冷却速度で徐冷し熱延焼鈍板とした。この熱延焼鈍板に酸洗を施したのち、冷間圧延を行い0.5mm 厚の冷延板とした。ついで、これら冷延板に、表2に示す条件の仕上げ焼鈍を施し冷延焼鈍板とした。
【0033】
【表1】

Figure 0003709709
【0034】
これら冷延焼鈍板からJIS 13B 号試験片を採取し引張試験を実施し、降伏点伸びを測定した。その結果を表2に示す。
また、これら冷延焼鈍板について、50mmφの円筒型ポンチを用いて3段階の多段絞りを実施し、ストレッチャーストレインの発生状況を調査した。ストレッチャーストレインの発生なしを○、発生ありを×とした。その結果を表2に示す。
【0035】
また、これら冷延焼鈍板の組織を走査型電子顕微鏡を用いて観察し、低温変態生成相の大きさと個数を測定した。測定は、5000倍で各200 視野行い、低温変態生成相の大きさと個数の平均値を求めた。それらの結果を表2に併記する。
さらに、これら冷延焼鈍板から採取した試験片について、塩水噴霧試験(SST試験)を実施した。その結果を表2に併記する。
【0036】
塩水噴霧試験は、試験片に30℃の5%NaCl水溶液を4hr間噴霧し、発錆点の数を測定し、耐食性を評価した。評価はA〜Eの5段階とし、発錆点が、Aは100 個/m2 以下、Bは100 超え150 個/m2 以下、Cは150 超え250 個/m2 以下、Dは250 超え300 個/m2 以下、Eは、300 個/m2 超とした。
【0037】
【表2】
Figure 0003709709
【0038】
【表3】
Figure 0003709709
【0039】
本発明例では、降伏点伸びが少なく、絞り加工でのストレッチャーストレインの発生もない。しかも塩水噴霧試験による発錆点も少なく耐食性も良好である。これに対し、低温変態生成相の密度が本発明の範囲を低く外れる比較例(鋼板No.1-5、No.2-4、No.2-5〜No.3-4、No.3-5、No.4-5、No.5-4〜No.6-5)では、降伏点伸びが多く、ストレッチャーストレインが発生する。一方、低温変態生成相の密度が本発明の範囲を高く外れる比較例(鋼板No.1-4、No.2-3、No.4-4)では、耐食性が劣化している。
【0040】
【発明の効果】
本発明によれば、フェライト系ステンレス冷延鋼板の成形性が改善され、厳しい加工が施される使途にも利用できるなど、フェライト系ステンレス冷延鋼板の用途が拡大し、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】降伏点伸びにおよぼす仕上げ焼鈍後の冷却速度の影響を示すグラフである。
【図2】降伏点伸びにおよぼす直径1μm 以上の大きさの低温変態生成相密度の影響を示すグラフである。
【図3】耐食性におよぼす直径1μm 以上の大きさの低温変態生成相密度の影響を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferritic stainless steel sheet, and more particularly to improvement of formability of a ferritic stainless steel cold rolled steel sheet.
[0002]
[Prior art]
Ferritic stainless steel sheets represented by SUS 430 are excellent in workability and corrosion resistance and can maintain a beautiful surface gloss for a long time. Because it is an inexpensive steel material that does not contain a large amount of Ni, it is widely used in home appliances, kitchen equipment and architectural interiors.
[0003]
However, recently, there is a tendency that severe processing is performed on the material, and the ferritic stainless steel sheet is required to have excellent workability.
Ferritic stainless steel sheets have a problem that local wrinkles called stretcher strains are likely to occur during press working. Stretcher strain is observed on a test piece as a Luders band during a tensile test.
[0004]
In order to suppress the generation of the Luders band, it is important to reduce the yield point elongation. From such a viewpoint, some studies have been made to improve the workability of ferritic stainless steel sheets.
For example, in Japanese Patent Laid-Open No. 51-59716, after annealing, ferritic stainless steel sheet is subjected to bending plastic strain due to rolls to create micro-deformed nuclei in the surface layer of the steel sheet and to reduce the yield point and yield point elongation. A method for producing a ferritic stainless steel sheet having good workability for performing skin pass rolling is disclosed. However, this method requires an apparatus such as a bending roll in order to introduce strain into the surface layer of the steel sheet, which is economically disadvantageous with an increase in equipment costs.
[0005]
JP-A-59-80753 contains C: 0.08% or less, Si: 0.70% or less, Mn: 1.00% or less, Cr: 15-20%, N: 0.04-0.12%, and the balance Fe. In addition, a ferritic stainless steel sheet, which is an unavoidable impurity and has an increased N content in steel to prevent the occurrence of stretcher strain, is disclosed. However, increasing the N content in steel tends to harden the steel sheet and reduce the sensitization resistance during annealing.
[0006]
In JP-A-61-84329, a hot-rolled steel sheet is subjected to an annealing pickling process, an intermediate rolling process, an intermediate annealing process, an acid annealing process, and rolled using a rough surface roll in a finishing pass of the final rolling process. After the average roughness Ra of the plate surface is set to 2 μm or more, in the final annealing and pickling, the annealing temperature in the intermediate annealing and pickling processes is set to Ac 1 point or more (Ac 1 + 150 ° C.) or less and the strainer strain or A method for producing a ferritic stainless steel strip for coating that prevents hip breakage is disclosed. However, in this method, if annealing at an Ac point of 1 point or more is applied during the intermediate annealing, there is a risk that breakage troubles and the like occur in the final rolling process due to hardening and embrittlement of the martensite phase. Furthermore, this method is suitable for application to a steel sheet for coating, and is unsuitable for applications that require a beautiful and flat surface, such as press molding, in terms of rough skin during molding, mold galling, and the like.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a ferritic stainless cold-rolled steel sheet excellent in formability and a method for producing the same, which advantageously solves the above-described problems of the prior art and prevents the generation of strain strain.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to improve the formability of the ferritic stainless steel cold-rolled steel sheet, the present inventors have dramatically improved the formability by appropriately dispersing the low-temperature transformation generation phase during cold-rolled sheet annealing. I found out.
First, the experimental results on which the present invention is based will be described.
[0009]
C: 0.06 wt%, Cr: Al as 16.4 wt%: 0.0005 to 0.05 mass%, Nb: 0.0005 to 0.2 wt%, N: 0.001 to 0.03 wt% and Al, Nb, vacuum melting furnace steel with varying N To make a 50kg small steel ingot. A test piece of 120 mm thickness was cut from these small steel ingots, heated to 1200 ° C., and hot-rolled to obtain a 3.5 mm thick hot-rolled sheet. Further, after performing the processing that cool slowly after annealing of 860 ° C. × -8 hr to these hot-rolled sheet was cold-rolled sheet of 0.5mm thickness subjected to cold rolling. Then, these cold-rolled plates were subjected to finish annealing to obtain cold-rolled annealed plates. As final annealing conditions, after annealing at 830 ° C. × 20 s, cooling was performed at a cooling rate in the range of 3 to 100 ° C./s.
[0010]
JIS 13B specimens were collected from these cold-rolled annealed plates, subjected to a tensile test, and the yield point elongation was measured. The relationship between the cooling rate after finish annealing and the yield point elongation is shown in FIG. From FIG. 1, it can be seen that the yield point elongation decreases significantly when the cooling rate after annealing is 20 ° C./s or more.
Further, the structure of these cold-rolled annealed plates was observed.
[0011]
The structure of these cold-rolled annealed plates is a two-phase mixed structure of ferrite and a low-temperature transformation generation phase, and the dispersion degree of the low-temperature transformation generation phase changes as the cooling rate changes. The density D (number / mm 3 ) of a phase having a size of 1 μm or more (diameter when converted to a sphere of the same volume) among the low-temperature transformation generation phases was measured. FIG. 2 shows the relationship between the density D of the low-temperature transformation generation phase and the yield point elongation.
[0012]
FIG. 2 shows that the yield point elongation decreases when the density D of the low-temperature transformation phase having a size of 1 μm or more is 1.0 × 10 3 pieces / mm 3 or more.
Furthermore, the salt spray test (SST test) was implemented about the test piece extract | collected from these cold-rolled annealing plates.
In the salt spray test, a test piece was sprayed with a 5% NaCl aqueous solution at 30 ° C. for 4 hours, the number of rusting points generated on the test piece was measured, and the corrosion resistance was evaluated. Evaluation is made in 5 stages from A to E, and the rusting point is 100 / m 2 or less for A, B exceeds 100/150 / m 2 , C exceeds 150/250 / m 2 , and D exceeds 250 300 pieces / m 2 or less, and E was over 300 pieces / m 2 .
[0013]
FIG. 3 shows the relationship between the density D of the low-temperature transformation product phase having a size of 1 μm or more and the corrosion resistance.
From FIG. 3, it can be seen that the corrosion resistance decreases significantly when the density D of the low-temperature transformation product phase increases to 1.0 × 10 6 pieces / mm 3 or more.
The present invention is configured based on the above-described findings .
[0014]
That is, the present invention is a mass%, C: 0.03 ~ 0.08% , Si: 1.0% or less, Mn: 1.0% or less, Cr: 10~20%, N: 0.005 ~0.03%, Al: 0.01% or less, 1 including P: 0.1 % or less, S: 0.05 % or less , and Nb: 0.02-0.1%, Ti: 0.02-0.1%, V: 0.02-0.1%, Zr: 0.01-0.1% species or two or more kinds having a composition consisting of containing more than 0.2% in total balance of Fe and unavoidable impurities, and 1.0 × 10 3 ~1.0 × a low-temperature transformation product phase having a diameter on 1μm or more when the spherical approximation 10 6 / mm 3 are excellent ferritic stainless cold-rolled steel sheet in formability, characterized by having dispersed was formed by tissue, also in the present invention, in addition to the composition, further mass%, Ni: 1.0% or less may be contained.
[0015]
Further, the present invention is a mass%, C: 0.03 ~ 0.08% , Si: 1.0% or less, Mn: 1.0% or less, Cr: 10~20%, N: 0.005 ~0.03%, Al: 0.01% or less, 1 including P: 0.1 % or less, S: 0.05 % or less , and Nb: 0.02-0.1%, Ti: 0.02-0.1%, V: 0.02-0.1%, Zr: 0.01-0.1% contains 0.2% or less or more species or two or in total, or more Ni: contained 1.0%, the steel material having a composition the balance being Fe and unavoidable impurities ing, hot rolling, hot-rolled sheet annealing, And after cold rolling with a cumulative reduction ratio of 50 % or more to make a cold-rolled sheet, annealing is performed at an annealing temperature of 750 to 1000 ° C, and cooling is performed at a cooling rate of 20 ° C / s or more from the annealing temperature. It is the manufacturing method of the ferritic stainless steel cold-rolled steel plate excellent in the formability characterized.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
First, the reason for limiting the steel composition will be described.
Cr: 10-20%
Cr is an indispensable element for securing corrosion resistance as stainless steel. When the Cr content is less than 10%, the corrosion resistance is insufficient. On the other hand, when the Cr content exceeds 20%, the cold workability is lowered. For this reason, Cr was limited to the range of 10 to 20%. In addition, Preferably, it is 11 to 19%.
[0018]
N: 0.005 to 0.03%
N is an element that lowers the r value and elongation characteristics, and the effect becomes significant when it exceeds 0.03%. On the other hand, when the N content is less than 0.005%, the crystal grains are coarsened, and rough skin is likely to occur. For this reason, N was limited to 0.005 to 0.03%. In addition, Preferably, it is 0.008 to 0.025%.
[0019]
Al: 0.01% or less
Al is an element that is effective as a deoxidizer. However, if the addition amount exceeds 0.01%, alumina inclusions increase and the rust resistance deteriorates, the incidence of comedones increases, and the appearance is beautiful. descend. Therefore, intentional addition of Al is avoided, and inevitable contamination is limited to 0.01% or less.
[0020]
One or more selected from Nb: 0.02 to 0.1%, Ti: 0.02 to 0.1%, V: 0.02 to 0.1%, Zr: 0.01 to 0.1% in total 0.2% or less
Nb, Ti, V, and Zr are elements that fix C and N, which are harmful to press formability, and precipitate as carbides or nitrides, and are effective elements for softening steel sheets and improving workability. However, to obtain these effects, it is necessary to add Nb: 0.02% or more, Ti: 0.02% or more, V: 0.02% or more, and Zr: 0.01% or more. On the other hand, if each of Nb, Ti, V, and Zr exceeds 0.1%, or exceeds 0.2% in total, the manufacturability decreases and the cost increases. Therefore, Nb: 0.02 to 0.1%, Ti: 0.02 to 0.1%, V: 0.02 to 0.1%, Zr: 0.01 to 0.1%, or a total of 0.2% or less. Preferably, Nb, Ti, V, and Zr are each 0.08% or less, or a total of 0.2% or less.
[0021]
C: 0.03 ~ 0.08%
C is an element that greatly affects the corrosion resistance, elongation characteristics, and r-value of ferritic stainless steel. If its content exceeds 0.08%, the corrosion resistance, elongation characteristics, and r-value are significantly deteriorated and the material becomes hard. . For this reason, C was limited to 0.08% or less and 0.03 % or more .
[0022]
Si: 1.0% or less
Si is an element that acts as a deoxidizer and hardens the steel to deteriorate its elongation characteristics. When the Si content exceeds 1.0%, the elongation characteristics are remarkably deteriorated and the workability is deteriorated. Therefore, Si is set to 1.0% or less.
Mn: 1.0% or less
Mn acts as a deoxidizer and hardens the steel to deteriorate its elongation characteristics. Furthermore, it combines with S to form MnS, thereby deteriorating the corrosion resistance. When the Mn content exceeds 1.0%, workability and corrosion resistance are significantly deteriorated. Therefore, Mn is set to 1.0% or less.
[0023]
Ni: 1.0% or less
Ni may be added to improve the corrosion resistance in the ferritic stainless steel sheet of the present invention. However, if it exceeds 1.0%, the elongation characteristics deteriorate. Therefore, when added, the upper limit is 1.0%.
In addition, the balance is Fe and inevitable impurities.
[0024]
P and S are preferably reduced as much as possible in order to deteriorate workability and corrosion resistance. However, P is allowed to be 0.1% and S is allowed to be 0.05%.
Next, the structure of the ferritic stainless steel cold rolled steel sheet will be described.
The structure of the ferritic stainless steel cold-rolled steel sheet of the present invention is a two-phase mixed structure of ferrite + low-temperature transformation generation phase. As the low-temperature transformation generation phase, a martensite phase, a massive ferrite phase which is a ferrite with a high dislocation density, or a ferrite in which C and N are dissolved in supersaturation are suitable.
[0025]
The structure of the ferritic stainless steel cold-rolled steel sheet of the present invention is a structure in which the above-mentioned low-temperature transformation phase having a diameter of 1 μm or more when approximated to a sphere is dispersed 1.0 × 10 3 to 1.0 × 10 6 pieces / mm 3. And In the present invention, the size of the low-temperature transformation generation phase is approximated to a sphere having the same volume as that of the low-temperature transformation generation phase, and is represented by the diameter thereof.
[0026]
Yield point elongation is significantly reduced when the number of low-temperature transformation-generating phases having a diameter of 1 μm or more when approximated to a sphere is 1.0 × 10 3 / mm 3 or more. Further, when the number of the low-temperature transformation generation phases described above exceeds 1.0 × 10 6 / mm 3 , the corrosion resistance deteriorates. For this reason, the number of low-temperature transformation generation phases having a diameter of 1 μm or more when approximated to a sphere was limited to the range of 1.0 × 10 3 to 1.0 × 10 6 / mm 3 .
[0027]
If the size of the low-temperature transformation generation phase is less than 1 μm in diameter when approximated to a sphere, the dislocation density of the entire crystal will be low, so it will not contribute to the decrease in yield point elongation. For this reason, the size of the low temperature transformation generation phase is limited to 1 μm or more in diameter when approximated to a sphere.
Below, the manufacturing method of this invention steel plate is demonstrated.
[0028]
The steel having the above composition is melted in a known melting furnace such as a converter or an electric furnace and solidified by an ingot forming method or a continuous casting method to obtain a steel material. The steel material is heated and hot-rolled into a predetermined thickness by hot rolling. In the present invention, the hot rolling conditions are not particularly limited.
The hot rolled sheet is then subjected to hot rolled sheet annealing and preferably pickled.
[0029]
Hot rolled sheet annealing is 750 after heating the to 900 ° C., or gradually cooled at a cooling rate of about 10 ° C. / h, or may be continuous annealing at a temperature of 900 to 1000 ° C..
The hot-rolled sheet subjected to hot-rolled sheet annealing is then cold-rolled to be a cold-rolled sheet, and then subjected to finish annealing to be a cold-rolled annealed sheet.
Cold rolling shall be the cumulative rolling reduction of 50% or more rolling. When the cumulative rolling reduction is less than 50%, the structure after annealing does not become a structure excellent in workability.
[0030]
The final annealing is performed in a temperature range of 750 to 1000 ° C.
When the final annealing temperature is less than 750 ° C., there is little formation of a low-temperature transformation generation phase, and improvement in workability cannot be expected. On the other hand, when the temperature exceeds 1000 ° C., the structure becomes coarse and there is a concern about toughness deterioration, the occurrence of rough skin, and intergranular corrosion. For this reason, the finish annealing temperature was limited to a temperature range of 750 to 1000 ° C.
[0031]
After finish annealing, the cold-rolled annealed plate is cooled to a temperature of 20 ° C./s or higher, preferably 200 ° C. or lower.
If the cooling rate is less than 20 ° C / s, the yield point elongation cannot be reduced, so 20 ° C / s was set as the lower limit. The upper limit of the cooling rate is determined depending on the cooling capacity of the cooling facility. A preferable cooling rate range is 25 to 150 ° C./s. In addition, when the cooling is terminated at a temperature higher than 200 ° C., the number of low-temperature transformation generation phases is small, and the reduction in yield point elongation is small.
[0032]
【Example】
Steels having the composition shown in Table 1 were melted in a converter and made into 200 mm thick slabs by continuous casting. These slabs were heated to 1170 ° C and hot rolled into 3.6 mm thick hot rolled sheets. This hot-rolled sheet was annealed at 860 ° C. × 8 hours and then gradually cooled at a cooling rate of 10 ° C./h to obtain a hot-rolled annealed sheet. The hot-rolled annealed sheet was pickled and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.5 mm. Then, these cold-rolled plates were subjected to finish annealing under the conditions shown in Table 2 to obtain cold-rolled annealed plates.
[0033]
[Table 1]
Figure 0003709709
[0034]
JIS 13B specimens were collected from these cold-rolled annealed plates and subjected to a tensile test to measure the yield point elongation. The results are shown in Table 2.
For these cold-rolled annealed plates, three-stage multi-stage drawing was performed using a 50 mmφ cylindrical punch, and the occurrence of stretcher strain was investigated. No occurrence of stretcher strain was indicated by ○, and occurrence of stretch by ×. The results are shown in Table 2.
[0035]
Moreover, the structure of these cold-rolled annealed plates was observed using a scanning electron microscope, and the size and number of low-temperature transformation generation phases were measured. The measurement was performed at a magnification of 5000 and 200 fields of view, and the average value of the size and number of low-temperature transformation generation phases was determined. The results are also shown in Table 2.
Furthermore, the salt spray test (SST test) was implemented about the test piece extract | collected from these cold-rolled annealing plates. The results are also shown in Table 2.
[0036]
In the salt spray test, 5% NaCl aqueous solution at 30 ° C. was sprayed on the test piece for 4 hours, the number of rusting points was measured, and the corrosion resistance was evaluated. Evaluation is made in 5 stages from A to E, and the rusting point is 100 / m 2 or less for A, B exceeds 100/150 / m 2 , C exceeds 150/250 / m 2 , and D exceeds 250 300 pieces / m 2 or less, and E was over 300 pieces / m 2 .
[0037]
[Table 2]
Figure 0003709709
[0038]
[Table 3]
Figure 0003709709
[0039]
In the example of the present invention, the yield point elongation is small, and no stretcher strain is generated in the drawing process. Moreover, there are few rusting points by the salt spray test and the corrosion resistance is also good. On the other hand, comparative examples in which the density of the low-temperature transformation product phase falls outside the scope of the present invention (steel plates No. 1-5, No. 2-4, No. 2-5 to No. 3-4, No. 3- 5, No.4-5, No.5-4 to No.6-5), the yield point elongation is large and stretcher strain occurs. On the other hand, in the comparative examples (steel plates No. 1-4, No. 2-3, No. 4-4) in which the density of the low-temperature transformation product phase is out of the range of the present invention, the corrosion resistance is deteriorated.
[0040]
【The invention's effect】
According to the present invention, the ferritic stainless steel cold-rolled steel sheet has improved formability and can be used for applications where severe processing is applied. Play.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of cooling rate after finish annealing on yield point elongation.
FIG. 2 is a graph showing the influence of the density of a low-temperature transformation phase having a diameter of 1 μm or more on yield point elongation.
FIG. 3 is a graph showing the effect of low-temperature transformation-generated phase density having a diameter of 1 μm or more on corrosion resistance.

Claims (3)

量%で、
C:0.03 0.08%、 Si:1.0 %以下、
Mn:1.0 %以下、 Cr:10〜20%、
N:0.005 〜0.03%、 Al:0.01%以下、
P: 0.1 %以下、 S: 0.05 %以下
を含み、さらに、
Nb:0.02〜0.1 %、Ti:0.02〜 0.1%、V:0.02〜 0.1%、Zr:0.01〜 0.1%のうちから選ばれた1種または2種以上を合計で0.2 %以下含有し、残部 Fe および不可避的不純物からなる組成を有し、かつ球体近似したときの直径が1μm 以の低温変態生成相を1.0 ×103 〜1.0 ×106 個/mm3 分散させてなる組織を有することを特徴とする成形性に優れたフェライト系ステンレス冷延鋼板。
In mass%,
C: 0.03 ~ 0.08%, Si : 1.0% or less under
Mn: 1.0% or less, Cr: 10-20 %,
N: 0.005 ~0.03%, Al: 0.01% or less under,
P: 0.1 % or less, S: 0.05 % or less , and
Nb: 0.02~0.1%, Ti: 0.02~ 0.1%, V: 0.02~ 0.1%, Zr: containing more than 0.2% in total of one or two or more selected from among 0.01 to 0.1 percent, the balance Fe and having a composition consisting of unavoidable impurities, and that it has a diameter formed by low-temperature transformation phase on 1μm than the 1.0 × 10 3 ~1.0 × 10 6 cells / mm 3 dispersed was formed by tissue when spherical approximation A ferritic stainless steel cold-rolled steel sheet with excellent formability.
前記組成に加えて、さらに量%で、Ni:1.0 %以下を含有することを特徴とする請求項1に記載のフェライト系ステンレス冷延鋼板。In addition to the composition, further mass%, Ni: ferritic stainless cold-rolled steel sheet according to claim 1, characterized in that it contains 1.0% or less. 量%で、
C: 0.03 0.08 %、 Si 1.0 %以下、
Mn 1.0 %以下、 Cr:10〜20%、
N:0.005 〜0.03%、 Al:0.01%以下
P: 0.1 %以下、 S: 0.05 %以下
を含み、さらに、
Nb:0.02〜0.1 %、Ti:0.02〜 0.1%、V:0.02〜 0.1%、Zr:0.01〜 0.1%のうちから選ばれた1種または2種以上を合計で0.2 %以下含有し、あるいはさらに Ni 1.0 %以下を含有し、残部 Fe および不可避的不純物からなる組成を有する鋼素材に、熱間圧延、熱延板焼鈍、および累積圧下率 50 %以上の冷間圧延を順次施し冷延板としたのち、焼鈍温度:750 〜1000℃で焼鈍を行い、該焼鈍温度から20℃/s以上の冷却速度で冷却することを特徴とする成形性に優れたフェライト系ステンレス冷延鋼板の製造方法。
In mass%,
C: 0.03 ~ 0.08%, Si : 1.0% or less,
Mn : 1.0 % or less, Cr: 10-20%,
N: 0.005 to 0.03%, Al: 0.01% or less ,
P: 0.1 % or less, S: 0.05 % or less , and
One or more selected from Nb: 0.02 to 0.1%, Ti: 0.02 to 0.1%, V: 0.02 to 0.1%, Zr: 0.01 to 0.1% , or 0.2% or less in total , or further Ni: contained 1.0%, the steel material having a composition the balance being Fe and unavoidable impurities ing, hot rolling, hot-rolled sheet annealing, and successively subjected cold rolled to cold rolling a cumulative reduction of 50% or more After forming into a plate, annealing temperature: annealing at 750-1000 ° C, cooling from the annealing temperature at a cooling rate of 20 ° C / s or more, producing ferritic stainless cold-rolled steel sheets with excellent formability Method.
JP12146898A 1998-04-30 1998-04-30 Ferritic stainless steel with excellent formability and manufacturing method thereof Expired - Fee Related JP3709709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12146898A JP3709709B2 (en) 1998-04-30 1998-04-30 Ferritic stainless steel with excellent formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12146898A JP3709709B2 (en) 1998-04-30 1998-04-30 Ferritic stainless steel with excellent formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11315353A JPH11315353A (en) 1999-11-16
JP3709709B2 true JP3709709B2 (en) 2005-10-26

Family

ID=14811904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12146898A Expired - Fee Related JP3709709B2 (en) 1998-04-30 1998-04-30 Ferritic stainless steel with excellent formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3709709B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435457B1 (en) * 1999-12-09 2004-06-10 주식회사 포스코 A method for manufacturing ferritic stainless steel having improvable formability and ridging resistance
JP4949124B2 (en) * 2007-05-22 2012-06-06 新日鐵住金ステンレス株式会社 High strength duplex stainless steel sheet with excellent shape freezing property and method for producing the same
KR102123665B1 (en) * 2018-10-23 2020-06-18 주식회사 포스코 High-strength ferritic stainless steel for clamp and method for manufacturing the same
WO2021205876A1 (en) * 2020-04-10 2021-10-14 日鉄ステンレス株式会社 Ferritic stainless steel, and method for manufacturing ferritic stainless steel

Also Published As

Publication number Publication date
JPH11315353A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
JP5549307B2 (en) Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same
JPH07138704A (en) High strength and high ductility dual-phase stainless steel and its production
US6500280B2 (en) Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
WO2015105046A1 (en) Ferritic stainless steel and method for producing same
EP3231882B1 (en) Stainless steel and production method therefor
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
JPH08199235A (en) Production of niobium-containing ferritic steel sheet
JP4239257B2 (en) Method for producing Ti-containing ferritic stainless steel sheet having excellent ridging resistance
JP6811112B2 (en) Ferrite Duplex Stainless Steel Sheet and Its Manufacturing Method
JP3484805B2 (en) Method for producing ferritic stainless steel strip with low in-plane anisotropy and excellent strength-elongation balance
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
JP3939534B2 (en) Duplex stainless steel sheet and manufacturing method thereof
JP3709709B2 (en) Ferritic stainless steel with excellent formability and manufacturing method thereof
JP2001089815A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP2001098328A (en) Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP7304715B2 (en) Ferritic stainless steel plate
JP3503424B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in formability and method for producing the same
JP5534112B2 (en) Hot-rolled steel sheet for cold rolling material and manufacturing method thereof
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JPH07126758A (en) Manufacture of ferritic stainless steel sheet excellent in bendability
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP2001098327A (en) Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance
JP4239247B2 (en) Method for producing Ti-containing ferritic stainless steel sheet with excellent workability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees