WO2015105046A1 - Ferritic stainless steel and method for producing same - Google Patents

Ferritic stainless steel and method for producing same Download PDF

Info

Publication number
WO2015105046A1
WO2015105046A1 PCT/JP2015/000033 JP2015000033W WO2015105046A1 WO 2015105046 A1 WO2015105046 A1 WO 2015105046A1 JP 2015000033 W JP2015000033 W JP 2015000033W WO 2015105046 A1 WO2015105046 A1 WO 2015105046A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolled sheet
cold
hot
annealing
ferritic stainless
Prior art date
Application number
PCT/JP2015/000033
Other languages
French (fr)
Japanese (ja)
Inventor
正崇 吉野
太田 裕樹
彩子 田
松原 行宏
映斗 水谷
光幸 藤澤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53523876&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015105046(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201580003658.0A priority Critical patent/CN105874092A/en
Priority to JP2015547587A priority patent/JP5987996B2/en
Priority to KR1020167021191A priority patent/KR20160105869A/en
Priority to KR1020187029065A priority patent/KR20180114240A/en
Publication of WO2015105046A1 publication Critical patent/WO2015105046A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Definitions

  • the present invention relates to a ferritic stainless steel excellent in formability and a method for producing the same.
  • SUS430 (16-18mass% Cr) specified in Japanese Industrial Standard JIS G4305 is inexpensive and has excellent corrosion resistance, so building materials, transportation equipment, home appliances, kitchen appliances, automobile parts, etc.
  • the application range has been further expanded.
  • not only corrosion resistance but also sufficient formability that can be processed into a predetermined shape large elongation (hereinafter, high elongation may be referred to as ductility), average rankford
  • the value (hereinafter sometimes referred to as the average r value) is large, and the absolute value of the in-plane anisotropy of the r value (hereinafter sometimes referred to as
  • ) is determined.
  • Patent Document 1 in mass%, C: 0.02 to 0.06%, Si: 1.0% or less, Mn: 1.0% or less, P: 0.05% or less, S: 0.01% or less, Al: 0.005% or less , Ti: 0.005% or less, Cr: 11-30%, Ni: 0.7% or less, and 0.06 ⁇ (C + N) ⁇ 0.12, 1 ⁇ N / C and 1.5 ⁇ 10 ⁇ 3 ⁇ (V ⁇ N) ⁇ 1.5
  • Patent Document 1 does not mention any anisotropy.
  • box annealing for example, annealing at 860 ° C. for 8 hours
  • box annealing takes about one week when heating and cooling processes are included, and productivity is low.
  • Patent Document 2 C: 0.01 to 0.10%, Si: 0.05 to 0.50%, Mn: 0.05 to 1.00%, Ni: 0.01 to 0.50%, Cr: 10 to 20%, Mo: 0.005 to 0.50%, Cu: 0.01 to 0.50%, V: 0.001 to 0.50%, Ti: 0.001 to 0.50%, Al: 0.01 to 0.20%, Nb: 0.001 to 0.50%, N: 0.005 to 0.050%, and B: 0.00010 to 0.00500 % Hot-rolled steel, hot-rolled sheet annealing in the ferrite single-phase temperature range using a box furnace or AP line (annealing and pickling line) continuous furnace, followed by cold rolling and finish annealing A ferritic stainless steel excellent in workability and surface properties characterized by being performed is disclosed.
  • AP line annealing and pickling line
  • Patent Document 1 when a box furnace is used, there is a problem that productivity is low as in Patent Document 1 described above. Also, although there is no mention of elongation, when hot-rolled sheet annealing is performed in a continuous annealing furnace in the ferrite single-phase temperature range, recrystallization becomes insufficient due to the low annealing temperature, and in the ferrite single-phase temperature range. Elongation is lower than when box annealing is performed. In general, ferritic stainless steel as in Patent Document 2 has a problem that a crystal grain group (colony) having a similar crystal orientation is formed during casting or hot rolling, and
  • Japanese Patent No. 3588281 (Republication WO00 / 60134)
  • Japanese Patent No. 3582001 Japanese Patent Laid-Open No. 2001-3134
  • An object of the present invention is to solve this problem and to provide a ferritic stainless steel having sufficient corrosion resistance and excellent formability and a method for producing the same.
  • sufficient corrosion resistance refers to a salt spray cycle test ((Salt spray (35 ° C, 5 ° C (Mass% NaCl, spray 2h) ⁇ Drying (60 ° C, relative humidity 40%, 4h) ⁇ Wet (50 ° C, relative humidity ⁇ 95%, 2h))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  • the rusting area ratio on the surface is 25% or less.
  • Excellent formability means that the elongation at break (El) in a tensile test according to JIS Z2241 is 25% or more, and the following formula (1) when a strain of 15% is applied in a tensile test according to JIS Z2241
  • the average rankford value calculated (hereinafter referred to as the average r value) is 0.70 or more, and the absolute value (
  • r L is an r value when a tensile test is performed in a direction parallel to the rolling direction
  • r D is an r value when a tensile test is performed in a direction of 45 ° with respect to the rolling direction
  • r C is a direction perpendicular to the rolling direction. The r value when a tensile test is performed.
  • the composition further includes one or more selected from Cu: 0.1 to 1.0%, Ni: 0.1 to 1.0%, Mo: 0.1 to 0.5%, Co: 0.01 to 0.5%
  • a method for producing a ferritic stainless steel in which a hot-rolled annealed sheet is formed, followed by cold rolling, followed by cold-rolled sheet annealing in a temperature range of 800 to 950 ° C. for 5 seconds to 5 minutes.
  • all% which shows the component of steel is the mass%.
  • a ferritic stainless steel having sufficient corrosion resistance and excellent formability can be obtained.
  • the ferritic stainless steel of the present invention is intended to be used in various applications such as building material parts, home appliance parts, kitchen appliances, and automobile parts by press working. In order to be applied to these uses, sufficient formability (elongation and average r value are large and
  • the elongation characteristics are insufficient, it cannot be molded due to necking or breakage in the direction of the worst elongation during molding.
  • the appearance of the product may be deteriorated due to the fact that the thickness of the overhang portion after forming varies greatly depending on the direction of the steel plate before forming.
  • large pans manufactured by drawing or the like are necked or broken when the average r value is low, and cannot be formed into a predetermined product shape.
  • the plate thickness of the body of the pan varies greatly depending on the location, which may cause problems in heat transfer characteristics.
  • SUS430 (16 mass%), which is most produced among ferritic stainless steels, is less expensive than SUS430LX and SUS436L because it does not contain a large amount of Ti and Nb, but its formability is lower than that of SUS430LX and SUS436L. Inferior. Therefore, SUS430 having improved formability has been demanded.
  • the inventors have obtained a method of obtaining ferritic stainless steel satisfying El ⁇ 25%, average r value ⁇ 0.70, and
  • box annealing batch annealing
  • continuous annealing as methods for annealing (hereinafter referred to as hot rolled sheet annealing) before cold rolling the ferritic stainless steel sheet after hot rolling.
  • box annealing batch annealing
  • continuous annealing as methods for annealing (hereinafter referred to as hot rolled sheet annealing) before cold rolling the ferritic stainless steel sheet after hot rolling.
  • box annealing instead of box annealing with low productivity, it was studied to obtain a predetermined formability by continuous annealing with high productivity.
  • the problem with the prior art using a continuous annealing furnace is that the hot-rolled sheet annealing is performed in the ferrite single-phase temperature range, so that sufficient recrystallization does not occur, sufficient elongation cannot be obtained, and the colony is cold-rolled.
  • was large. Therefore, after performing the hot-rolled sheet annealing in the two-phase region of the ferrite phase and the austenite phase, the inventors shall perform cold rolling and cold-rolled sheet annealing by a conventional method, and finally make a ferrite single-phase structure again. Devised.
  • a ⁇ -fiber texture that improves the r value develops in the metal structure of the cold-rolled annealed sheet after cold rolling and cold-rolled sheet annealing. Moreover, the colony is divided, the anisotropy of the metal structure is relaxed, and an excellent characteristic that
  • the martensite phase is harder than the ferrite phase, so the ferrite phase near the martensite phase is preferentially deformed and the rolling strain is concentrated. And the recrystallization site at the time of cold-rolled sheet annealing further increases. Thereby, recrystallization at the time of cold-rolled sheet annealing is further promoted, and the anisotropy of the metal structure after the cold-rolled sheet annealing is further relaxed.
  • C 0.005-0.05%
  • C promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range where the ferrite phase and the austenite phase appear during hot-rolled sheet annealing. In order to acquire this effect, 0.005% or more needs to be contained. However, if the C content exceeds 0.05%, the steel sheet becomes hard and the ductility decreases. Therefore, the C content is in the range of 0.005 to 0.05%.
  • the lower limit is preferably 0.01%, more preferably 0.015%.
  • the upper limit is preferably 0.035%, more preferably 0.03%, and even more preferably 0.025%.
  • Si 0.02-0.50% Si is an element that acts as a deoxidizer during steel melting. In order to obtain this effect, a content of 0.02% or more is necessary. However, if the Si content exceeds 0.50%, the steel sheet becomes hard and the rolling load during hot rolling increases. Moreover, the ductility after cold-rolled sheet annealing decreases. Therefore, the Si content is in the range of 0.02 to 0.50%. Preferably it is 0.10 to 0.50% of range. More preferably, it is in the range of 0.25 to 0.35%.
  • Mn 0.05-1.0% Mn, like C, promotes the formation of an austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing. In order to acquire this effect, 0.05% or more needs to be contained. However, if the amount of Mn exceeds 1.0%, the amount of MnS produced increases and the corrosion resistance decreases. Therefore, the Mn content is in the range of 0.05 to 1.0%.
  • the lower limit is preferably 0.1%, more preferably 0.2%.
  • the upper limit is preferably 0.8%, more preferably 0.35%, and still more preferably 0.3%.
  • P 0.04% or less
  • P is an element that promotes grain boundary fracture due to grain boundary segregation, so a lower value is desirable, and the upper limit is made 0.04%.
  • S 0.01% or less
  • S is an element that exists as sulfide inclusions such as MnS and reduces ductility, corrosion resistance, and the like.
  • the S amount it is desirable that the S amount be as low as possible.
  • the upper limit of the S amount is 0.01%. Preferably it is 0.007% or less. More preferably, it is 0.005% or less.
  • Cr 15.5-18.0% Cr is an element having an effect of improving the corrosion resistance by forming a passive film on the steel sheet surface. In order to obtain this effect, the Cr content needs to be 15.5% or more. However, if the Cr content exceeds 18.0%, the austenite phase is not sufficiently generated during hot-rolled sheet annealing, and predetermined material characteristics cannot be obtained. Therefore, the Cr content is in the range of 15.5 to 18.0%. Preferably it is 16.0 to 18.0% of range. More preferably, it is in the range of 16.0 to 17.25%.
  • Al 0.001 to 0.10%
  • Al is an element that acts as a deoxidizer. In order to acquire this effect, 0.001% or more needs to be contained. However, when the Al content exceeds 0.10%, Al-based inclusions such as Al 2 O 3 increase, and the surface properties tend to deteriorate. Therefore, the Al content is set in the range of 0.001 to 0.10%. Preferably it is 0.001 to 0.05% of range. More preferably, it is in the range of 0.001 to 0.03%.
  • N 0.01-0.06% N, like C and Mn, promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing.
  • the N content needs to be 0.01% or more.
  • the N content is in the range of 0.01 to 0.06%.
  • it is 0.01 to 0.05% of range. More preferably, it is in the range of 0.02 to 0.04%.
  • the balance is Fe and inevitable impurities.
  • Cu and Ni are elements that improve corrosion resistance. In particular, it is effective to contain it when high corrosion resistance is required. Further, Cu and Ni have an effect of promoting the formation of the austenite phase and expanding the two-phase temperature range in which the ferrite phase and the austenite phase appear during hot-rolled sheet annealing. These effects become significant when the content is 0.1% or more. However, if the Cu content exceeds 1.0%, the hot workability may decrease, which is not preferable. Therefore, when Cu is contained, the content is set to 0.1 to 1.0%. Preferably it is 0.2 to 0.8% of range.
  • the content is made 0.1 to 1.0%.
  • it is 0.1 to 0.6% of range. More preferably, it is in the range of 0.1 to 0.3%.
  • Mo is an element that improves corrosion resistance, and it is effective to contain it particularly when high corrosion resistance is required. This effect becomes significant when the content is 0.1% or more. However, if the Mo content exceeds 0.5%, the austenite phase is not sufficiently generated during hot-rolled sheet annealing, and predetermined material characteristics cannot be obtained. Therefore, if it contains Mo, the content is made 0.1 to 0.5%. Preferably it is 0.1 to 0.3% of range.
  • Co is an element that improves toughness. This effect is obtained when the content is 0.01% or more. On the other hand, if the content exceeds 0.5%, the productivity is lowered. Therefore, if Co is contained, the content is made 0.01 to 0.5%.
  • V 0.01-0.25%
  • Ti 0.001-0.10%
  • Nb 0.001-0.10%
  • Mg 0.0002-0.0050%
  • B 0.0002-0.0050%
  • REM 0.01-0.10%
  • Ca 0.0002-0.0020%
  • V 0.01-0.25%
  • V combines with C and N in the steel to reduce solute C and N. This improves the average r value.
  • the surface property is improved by controlling the carbonitride precipitation behavior on the hot-rolled sheet to suppress the occurrence of linear flaws caused by hot-rolling and annealing.
  • the V content needs to be 0.01% or more.
  • V amount exceeds 0.25%, the workability is lowered and the manufacturing cost is increased. Therefore, when V is contained, the content is made 0.01 to 0.25%. Preferably it is 0.03 to 0.20% of range. More preferably, it is 0.05 to 0.15% of range.
  • Ti and Nb are elements with a high affinity with C and N, and precipitate as carbides or nitrides during hot rolling, reducing the solid solution C and N in the matrix, and cold-rolled sheet annealing There is an effect of improving the later workability.
  • it is necessary to contain 0.001% or more of Ti and 0.001% or more of Nb.
  • the Ti content is 0.10% or the Nb content exceeds 0.10%, good surface properties cannot be obtained due to the precipitation of excess TiN and NbC.
  • the range when Ti is contained, the range is 0.001 to 0.10%, and when Nb is contained, the range is 0.001 to 0.10%.
  • the amount of Ti is preferably in the range of 0.001 to 0.015%. More preferably, it is in the range of 0.003 to 0.010%.
  • the amount of Nb is preferably in the range of 0.001 to 0.025%. More preferably, it is in the range of 0.005 to 0.020%.
  • Mg 0.0002-0.0050%
  • Mg is an element that has the effect of improving hot workability. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the Mg content exceeds 0.0050%, the surface quality decreases. Therefore, when Mg is contained, the content is made 0.0002 to 0.0050%. Preferably it is 0.0005 to 0.0035% of range. More preferably, it is in the range of 0.0005 to 0.0020%.
  • B 0.0002-0.0050%
  • B is an effective element for preventing low temperature secondary work embrittlement. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the amount of B exceeds 0.0050%, the hot workability decreases. Therefore, when B is contained, the content is made 0.0002 to 0.0050%. Preferably it is 0.0005 to 0.0035% of range. More preferably, it is in the range of 0.0005 to 0.0020%.
  • REM 0.01-0.10% REM is an element that improves the oxidation resistance, and in particular has the effect of suppressing the formation of an oxide film at the weld and improving the corrosion resistance of the weld. In order to obtain this effect, a content of 0.01% or more is necessary. However, if the content exceeds 0.10%, productivity such as pickling at the time of cold-rolled sheet annealing is lowered. Moreover, since REM is an expensive element, excessive inclusion causes an increase in manufacturing cost, which is not preferable. Therefore, when REM is contained, the content is made 0.01 to 0.10%.
  • Ca 0.0002-0.0020%
  • Ca is an effective component for preventing nozzle clogging due to crystallization of Ti-based inclusions that are likely to occur during continuous casting. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the Ca content exceeds 0.0020%, CaS is generated and the corrosion resistance is lowered. Therefore, when Ca is contained, the content is made 0.0002 to 0.0020%. Preferably it is 0.0005 to 0.0015% of range. More preferably, it is 0.0005 to 0.0010% of range.
  • the ferritic stainless steel of the present invention is hot-rolled annealed by subjecting a steel slab having the above composition to hot rolling, followed by hot-rolled sheet annealing in a temperature range of 900 to 1000 ° C. for 5 seconds to 15 minutes. It is obtained by subjecting it to a sheet, followed by cold rolling, followed by cold-rolled sheet annealing in a temperature range of 800 to 950 ° C. for 5 seconds to 5 minutes.
  • the molten steel having the above component composition is melted by a known method such as a converter, electric furnace, vacuum melting furnace or the like, and is made into a steel material (slab) by a continuous casting method or an ingot-bundling method.
  • This slab is heated at 1100 to 1250 ° C. for 1 to 24 hours, or directly hot-rolled as cast without heating to form a hot-rolled sheet.
  • the winding temperature is preferably 500 ° C. or higher and 850 ° C. or lower. If it is less than 500 ° C., recrystallization after winding is insufficient, and ductility after cold-rolled sheet annealing may be lowered, which is not preferable. When it winds up above 850 degreeC, a particle size will become large and rough skin may generate
  • hot-rolled sheet annealing is performed for 5 seconds to 15 minutes at a temperature of 900 to 1000 ° C., which is a two-phase temperature range of a ferrite phase and an austenite phase.
  • pickling is performed as necessary, and cold rolling and cold rolled sheet annealing are performed. Furthermore, pickling is performed as necessary to obtain a product.
  • Cold rolling is preferably performed at a rolling reduction of 50% or more from the viewpoints of extensibility, bendability, press formability, and shape correction.
  • cold rolling and annealing may be repeated twice or more.
  • the cold rolled sheet is annealed at a temperature of 800 to 950 ° C for 5 seconds to 5 minutes in order to obtain good formability. Further, BA annealing (bright annealing) may be performed to obtain more gloss.
  • grinding or polishing may be performed.
  • Hot-rolled sheet annealing which is held at a temperature of 900 to 1000 ° C. for 5 seconds to 15 minutes, is an extremely important process for the present invention to obtain excellent formability.
  • the hot-rolled sheet annealing temperature is less than 900 ° C., sufficient recrystallization does not occur and the ferrite single-phase region is formed, so that the effect of the present invention expressed by the two-phase region annealing cannot be obtained.
  • the hot-rolled sheet annealing temperature exceeds 1000 ° C., the amount of austenite phase produced decreases.
  • the amount of martensite phase generated after hot-rolled sheet annealing is reduced, and cold rolling of the metal structure containing the ferrite phase and martensite phase results in concentration of rolling strain on the ferrite phase near the martensite phase.
  • the anisotropic relaxation effect of the metal structure cannot be sufficiently obtained, and the predetermined
  • the annealing time is less than 5 seconds, even if annealing is performed at a predetermined temperature, generation of austenite phase and recrystallization of the ferrite phase do not occur sufficiently, so that desired formability cannot be obtained.
  • the microstructure after cold-rolled sheet annealing was a ferrite phase during hot-rolled sheet annealing, so there were few carbides in the grains and on the grain boundaries, and the austenite phase during hot-rolled sheet annealing, so that the grains and grains It becomes a mixed grain structure of ferrite grains with excessive carbide on the boundary.
  • hot-rolled sheet annealing is held at a temperature of 900 to 1000 ° C. for 5 seconds to 15 minutes.
  • the holding is performed at a temperature of 910 to 960 ° C. for 15 seconds to 3 minutes.
  • Cold-rolled sheet annealing which is held at a temperature of 800-950 ° C for 5 seconds to 5 minutes. It is a difficult process. If the cold-rolled sheet annealing temperature is less than 800 ° C., sufficient recrystallization does not occur and the predetermined ductility and average r value cannot be obtained. On the other hand, when the cold-rolled sheet annealing temperature exceeds 950 ° C, the steel component becomes hard because the martensite phase is formed after the cold-rolled sheet annealing in the steel component in which the temperature is a two-phase temperature range of the ferrite phase and the austenite phase. The predetermined ductility cannot be obtained.
  • the glossiness of the steel sheet is lowered due to marked coarsening of crystal grains, which is not preferable from the viewpoint of surface quality.
  • the annealing time is less than 5 seconds, even if annealing is performed at a predetermined temperature, the ferrite phase is not sufficiently recrystallized, so that the predetermined ductility and average r value cannot be obtained. If the annealing time exceeds 5 minutes, the crystal grains become extremely coarse and the glossiness of the steel sheet is lowered, which is not preferable from the viewpoint of surface quality. Therefore, cold-rolled sheet annealing is held at 800 to 950 ° C for 5 seconds to 5 minutes. The holding is preferably performed at 850 ° C. to 900 ° C. for 15 seconds to 3 minutes.
  • Stainless steel having the chemical composition shown in Table 1 was melted in a 50 kg small vacuum melting furnace. These steel ingots were heated at 1150 ° C. for 1 h and then hot rolled to form 3.5 mm thick hot rolled sheets. Subsequently, these hot-rolled sheets were subjected to hot-rolled sheet annealing under the conditions shown in Table 2, and then the surfaces were descaled by shot blasting and pickling. Furthermore, after cold-rolling to a sheet thickness of 0.7 mm, after performing cold-rolled sheet annealing under the conditions shown in Table 2, descaling treatment by pickling was performed to obtain a cold-rolled pickled and annealed sheet.
  • the cold roll pickling annealed plate thus obtained was evaluated as follows.
  • r L , r D , and r C are r values in the L direction, the D direction, and the C direction, respectively.
  • 0.70 or more was regarded as acceptable ( ⁇ ), and less than 0.70 was regarded as unacceptable (x).
  • 0.20 or less was accepted ( ⁇ ), and more than 0.20 was rejected (x).
  • the salt spray cycle test consists of 1 cycle of salt spray (5 mass% NaCl, 35 ° C, spray 2h) ⁇ dry (60 ° C, 4h, relative humidity 40%) ⁇ wet (50 ° C, 2h, relative humidity ⁇ 95%) As a result, 8 cycles were performed.
  • No.4 corresponding to steel D and AC containing 0.4% Ni, steel F0.3 containing 0.3% Cu, steel AR containing 0.4% Cu, steel G containing 0.3% Mo and steel AI.
  • the rust area ratio after the salt spray cycle test was 10% or less, and the corrosion resistance was further improved.
  • the hot-rolled sheet annealing temperature becomes the ferrite single-phase temperature and becomes the austenite phase. It was not formed, and the effect of anisotropic relaxation of a predetermined metal structure obtained by cold rolling a steel sheet containing martensite was not obtained, and a predetermined
  • the ferritic stainless steel obtained in the present invention is particularly suitable for press-formed products mainly composed of a drawing and applications requiring high corrosion resistance, such as building materials, transportation equipment, and automobile parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided are: a ferritic stainless steel which has sufficient corrosion resistance and excellent formability; and a method for producing this ferritic stainless steel. A ferritic stainless steel according to the present invention contains, in mass%, 0.005-0.05% of C, 0.02-0.50% of Si, 0.05-1.0% of Mn, 0.04% or less of P, 0.01% or less of S, 15.5-18.0% of Cr, 0.001-0.10% of Al and 0.01-0.06% of N, with the balance made up of Fe and unavoidable impurities. This ferritic stainless steel is configured to satisfy El ≥ 25%, (average r value) ≥ 0.70 and |∆r| ≤ 0.20.

Description

フェライト系ステンレス鋼およびその製造方法Ferritic stainless steel and manufacturing method thereof
 本発明は、成形性に優れたフェライト系ステンレス鋼およびその製造方法に関するものである。 The present invention relates to a ferritic stainless steel excellent in formability and a method for producing the same.
 フェライト系ステンレス鋼の中でも、日本工業規格JIS G 4305に規定されたSUS430 (16~18mass%Cr)は、安価で耐食性に優れているため、建材、輸送機器、家電製品、厨房器具、自動車部品などのさまざまな用途に使用されており、その適用範囲は近年さらに拡大しつつある。これらの用途に適用するためには、耐食性だけでなく、所定の形状に加工できる十分な成形性(伸びが大きく(以下、伸びが大きいことを延性があると称することがある)、平均ランクフォード値(以下、平均r値と称することがある)が大きく、r値の面内異方性の絶対値(以下、|Δr|と称することがある)が小さい)が求められる。 Among ferritic stainless steels, SUS430 (16-18mass% Cr) specified in Japanese Industrial Standard JIS G4305 is inexpensive and has excellent corrosion resistance, so building materials, transportation equipment, home appliances, kitchen appliances, automobile parts, etc. In recent years, the application range has been further expanded. In order to be applied to these applications, not only corrosion resistance but also sufficient formability that can be processed into a predetermined shape (large elongation (hereinafter, high elongation may be referred to as ductility), average rankford The value (hereinafter sometimes referred to as the average r value) is large, and the absolute value of the in-plane anisotropy of the r value (hereinafter sometimes referred to as | Δr |) is determined.
 上記に対して、特許文献1では、質量%で、C: 0.02~0.06%、Si:1.0%以下、Mn:1.0%以下、P: 0.05%以下、S: 0.01%以下、Al: 0.005%以下、Ti: 0.005%以下、Cr: 11~30%、Ni: 0.7%以下を含み、かつ0.06≦(C+N)≦0.12、1≦N/Cおよび1.5×10-3≦(V×N)≦1.5×10-2(C、N、Vはそれぞれ各元素の質量%を表す)を満たすことを特徴とする成形性および耐リジング特性に優れるフェライト系ステンレス鋼が開示されている。しかし、特許文献1では異方性については一切言及されていない。また、熱間圧延後にいわゆる箱焼鈍(例えば、860℃で8時間の焼鈍)を行う必要がある。このような箱焼鈍は加熱や冷却の過程を含めると一週間程度掛かり、生産性が低い。 On the other hand, in Patent Document 1, in mass%, C: 0.02 to 0.06%, Si: 1.0% or less, Mn: 1.0% or less, P: 0.05% or less, S: 0.01% or less, Al: 0.005% or less , Ti: 0.005% or less, Cr: 11-30%, Ni: 0.7% or less, and 0.06 ≦ (C + N) ≦ 0.12, 1 ≦ N / C and 1.5 × 10 −3 ≦ (V × N) ≦ 1.5 A ferritic stainless steel excellent in formability and ridging resistance, characterized by satisfying × 10 −2 (C, N, and V each represents mass% of each element) is disclosed. However, Patent Document 1 does not mention any anisotropy. Further, it is necessary to perform so-called box annealing (for example, annealing at 860 ° C. for 8 hours) after hot rolling. Such box annealing takes about one week when heating and cooling processes are included, and productivity is low.
 一方、特許文献2では、質量%で、C: 0.01~0.10%、Si: 0.05~0.50%、Mn: 0.05~1.00%、Ni: 0.01~0.50%、Cr: 10~20%、Mo: 0.005~0.50%、Cu: 0.01~0.50%、V: 0.001~0.50%、Ti: 0.001~0.50%、Al: 0.01~0.20%、Nb: 0.001~0.50%、N: 0.005~0.050%およびB: 0.00010~0.00500%を含有した鋼を熱間圧延後、箱型炉あるいはAPライン(annealing and pickling line)の連続炉を用いてフェライト単相温度域で熱延板焼鈍を行い、さらに冷間圧延および仕上げ焼鈍を行うことを特徴とした加工性と表面性状に優れたフェライト系ステンレス鋼が開示されている。しかし、箱型炉を用いた場合には上記の特許文献1と同様に生産性が低いという問題がある。また、伸びに関しては一切言及されていないが、熱延板焼鈍を連続焼鈍炉でフェライト単相温度域で行った場合、焼鈍温度が低いために再結晶が不十分となり、フェライト単相温度域で箱焼鈍を行った場合に比べて伸びが低下する。また、一般に特許文献2のようなフェライト系ステンレス鋼は、鋳造あるいは熱延時に類似した結晶方位を有する結晶粒群(コロニー)が生成し、|Δr|が大きくなる問題がある。 On the other hand, in Patent Document 2, C: 0.01 to 0.10%, Si: 0.05 to 0.50%, Mn: 0.05 to 1.00%, Ni: 0.01 to 0.50%, Cr: 10 to 20%, Mo: 0.005 to 0.50%, Cu: 0.01 to 0.50%, V: 0.001 to 0.50%, Ti: 0.001 to 0.50%, Al: 0.01 to 0.20%, Nb: 0.001 to 0.50%, N: 0.005 to 0.050%, and B: 0.00010 to 0.00500 % Hot-rolled steel, hot-rolled sheet annealing in the ferrite single-phase temperature range using a box furnace or AP line (annealing and pickling line) continuous furnace, followed by cold rolling and finish annealing A ferritic stainless steel excellent in workability and surface properties characterized by being performed is disclosed. However, when a box furnace is used, there is a problem that productivity is low as in Patent Document 1 described above. Also, although there is no mention of elongation, when hot-rolled sheet annealing is performed in a continuous annealing furnace in the ferrite single-phase temperature range, recrystallization becomes insufficient due to the low annealing temperature, and in the ferrite single-phase temperature range. Elongation is lower than when box annealing is performed. In general, ferritic stainless steel as in Patent Document 2 has a problem that a crystal grain group (colony) having a similar crystal orientation is formed during casting or hot rolling, and | Δr | becomes large.
特許第3584881号公報(再公表WO00/60134号)Japanese Patent No. 3588281 (Republication WO00 / 60134) 特許第3581801号公報(特開2001-3134号)Japanese Patent No. 3582001 (Japanese Patent Laid-Open No. 2001-3134)
 本発明は、かかる課題を解決し、十分な耐食性および優れた成形性を有するフェライト系ステンレス鋼およびその製造方法を提供することを目的とする。 An object of the present invention is to solve this problem and to provide a ferritic stainless steel having sufficient corrosion resistance and excellent formability and a method for producing the same.
 なお、本発明において、十分な耐食性とは、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした鋼板にJIS H 8502に規定された塩水噴霧サイクル試験((塩水噴霧(35℃、5質量%NaCl、噴霧2h)→乾燥(60℃、相対湿度40%、4h)→湿潤(50℃、相対湿度≧95%、2h))を1サイクルとする試験)を8サイクル行った場合の鋼板表面における発錆面積率(=発錆面積/鋼板全面積×100 [%])が25%以下であることを意味する。 In the present invention, sufficient corrosion resistance refers to a salt spray cycle test ((Salt spray (35 ° C, 5 ° C (Mass% NaCl, spray 2h) → Drying (60 ° C, relative humidity 40%, 4h) → Wet (50 ° C, relative humidity ≥ 95%, 2h))))) It means that the rusting area ratio on the surface (= rusting area / total area of steel plate × 100% [%]) is 25% or less.
 また、優れた成形性とは、JIS Z2241に準拠した引張試験における破断伸び(El)が25%以上、JIS Z2241に準拠した引張試験において15%のひずみを付与した際の下記(1)式により算出される平均ランクフォード値(以下、平均r値と称す)が0.70以上、下記(2)式により算出されるr値の面内異方性(以下、Δrと称す)の絶対値(|Δr|)が0.20以下であることを意味する。
平均r値=(rL+2×rD+rC)/4   (1)
Δr=(rL-2×rD+rC)/2   (2)
ここで、rLは圧延方向に平行な方向に引張試験した際のr値、rDは圧延方向に対して45°の方向に引張試験した際のr値、rCは圧延方向と直角方向に引張試験した際のr値である。
Excellent formability means that the elongation at break (El) in a tensile test according to JIS Z2241 is 25% or more, and the following formula (1) when a strain of 15% is applied in a tensile test according to JIS Z2241 The average rankford value calculated (hereinafter referred to as the average r value) is 0.70 or more, and the absolute value (| Δr) of the in-plane anisotropy (hereinafter referred to as Δr) of the r value calculated by the following equation (2) |) Means 0.20 or less.
Average r value = (r L + 2 × r D + r C ) / 4 (1)
Δr = (r L −2 × r D + r C ) / 2 (2)
Here, r L is an r value when a tensile test is performed in a direction parallel to the rolling direction, r D is an r value when a tensile test is performed in a direction of 45 ° with respect to the rolling direction, and r C is a direction perpendicular to the rolling direction. The r value when a tensile test is performed.
 課題を解決するために検討した結果、適切な成分のフェライト系ステンレス鋼に対して熱間圧延後の鋼板を冷間圧延する前に、フェライト相とオーステナイト相の二相となる温度域で焼鈍を行うことにより、十分な耐食性を有し、成形性に優れたフェライト系ステンレス鋼が得られることを見出した。 As a result of studying to solve the problem, before cold-rolling the steel sheet after hot rolling on ferritic stainless steel with an appropriate component, annealing was performed in a temperature range in which the ferrite phase and the austenite phase become two phases. It has been found that a ferritic stainless steel having sufficient corrosion resistance and excellent formability can be obtained.
 本発明は以上の知見に基づいてなされたものであり、以下を要旨とするものである。
[1]質量%で、C: 0.005~0.05%、Si: 0.02~0.50%、Mn: 0.05~1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 15.5~18.0%、Al: 0.001~0.10%、N: 0.01~0.06%を含有し、残部がFeおよび不可避的不純物からなり、El≧25%、平均r値≧0.70かつ|Δr|≦0.20であるフェライト系ステンレス鋼。
[2]質量%で、C: 0.01~0.05%、Si: 0.02~0.50%、Mn: 0.2~1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 16.0~18.0%、Al: 0.001~0.10%、N: 0.01~0.06%を含有し、残部がFeおよび不可避的不純物からなり、El≧25%、平均r値≧0.70かつ|Δr|≦0.20であるフェライト系ステンレス鋼。
[3]質量%で、さらに、Cu:0.1~1.0%、Ni: 0.1~1.0%、Mo: 0.1~0.5%、Co: 0.01~0.5%のうちから選ばれる1種または2種以上を含む前記[1]または[2]に記載のフェライト系ステンレス鋼。
[4]質量%で、さらに、V: 0.01~0.25%、Ti: 0.001~0.10%、Nb: 0.001~0.10%、Mg: 0.0002~0.0050%、B: 0.0002~0.0050%、REM: 0.01~0.10%のうちから選ばれる1種または2種以上を含む前記[1]~[3]のいずれかにに記載のフェライト系ステンレス鋼。
[5]前記[1]~[4]のいずれかに記載の組成を有する鋼スラブに対して、熱間圧延を施し、次いで900~1000℃の温度範囲で5秒~15分間保持する焼鈍を行い熱延焼鈍板とし、次いで冷間圧延を施した後、800~950℃の温度範囲で5秒~5分間保持する冷延板焼鈍を行うフェライト系ステンレス鋼の製造方法。
なお、本明細書において、鋼の成分を示す%はすべて質量%である。
This invention is made | formed based on the above knowledge, and makes the following a summary.
[1] By mass%, C: 0.005 to 0.05%, Si: 0.02 to 0.50%, Mn: 0.05 to 1.0%, P: 0.04% or less, S: 0.01% or less, Cr: 15.5 to 18.0%, Al: 0.001 Ferritic stainless steel containing ˜0.10%, N: 0.01 to 0.06%, the balance being Fe and inevitable impurities, El ≧ 25%, average r value ≧ 0.70 and | Δr | ≦ 0.20.
[2] By mass%, C: 0.01 to 0.05%, Si: 0.02 to 0.50%, Mn: 0.2 to 1.0%, P: 0.04% or less, S: 0.01% or less, Cr: 16.0 to 18.0%, Al: 0.001 Ferritic stainless steel containing ˜0.10%, N: 0.01 to 0.06%, the balance being Fe and inevitable impurities, El ≧ 25%, average r value ≧ 0.70 and | Δr | ≦ 0.20.
[3] In the mass%, the composition further includes one or more selected from Cu: 0.1 to 1.0%, Ni: 0.1 to 1.0%, Mo: 0.1 to 0.5%, Co: 0.01 to 0.5% The ferritic stainless steel according to [1] or [2].
[4] In mass%, V: 0.01 to 0.25%, Ti: 0.001 to 0.10%, Nb: 0.001 to 0.10%, Mg: 0.0002 to 0.0050%, B: 0.0002 to 0.0050%, REM: 0.01 to 0.10% The ferritic stainless steel according to any one of [1] to [3], including one or more selected from among the above.
[5] The steel slab having the composition according to any one of [1] to [4] is subjected to hot rolling, and then annealed at a temperature range of 900 to 1000 ° C. for 5 seconds to 15 minutes. A method for producing a ferritic stainless steel, in which a hot-rolled annealed sheet is formed, followed by cold rolling, followed by cold-rolled sheet annealing in a temperature range of 800 to 950 ° C. for 5 seconds to 5 minutes.
In addition, in this specification, all% which shows the component of steel is the mass%.
 本発明によれば、十分な耐食性および優れた成形性を有するフェライト系ステンレス鋼が得られる。 According to the present invention, a ferritic stainless steel having sufficient corrosion resistance and excellent formability can be obtained.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明のフェライト系ステンレス鋼は、プレス加工で建材部品、家電製品の部品、厨房器具、自動車部品などのさまざまな用途に使用されることを目的としている。これらの用途に適用するためには、十分な成形性(伸びおよび平均r値が大きく、|Δr|が小さいこと)が求められる。 The ferritic stainless steel of the present invention is intended to be used in various applications such as building material parts, home appliance parts, kitchen appliances, and automobile parts by press working. In order to be applied to these uses, sufficient formability (elongation and average r value are large and | Δr | is small) is required.
 例えば、張出し成形される球形の換気口フードの場合、伸び特性が不足していると成形時にもっとも伸びが劣位な方向にネッキングや破断が生じて成形できない。また、成形後の張出し部の板厚が成形前の鋼板の方向によって大きく異なることに起因した製品外観の悪化が生じる場合がある。あるいは、絞り加工などにより製造される大型鍋は、平均r値が低い場合はネッキングや破断が生じ、所定の製品形状に成形することができない。鍋の胴部分の板厚が場所によって大きく異なり伝熱特性上の不具合が生じる場合がある。あるいは、絞り加工による成形を行う場合、|Δr|が大きいと成形後の耳が大きくなり、成形後のトリミング工程の追加による製造コストの増加および切り捨てる鋼板の量が大きくなることによる製品歩留まりの低下が生じる。このように、伸びおよび平均r値が大きく、|Δr|が小さいことが望まれている。しかし、通常は平均r値が大きくなると|Δr|も大きくなってしまう。そこで、発明者らは、建材、輸送機器、家電製品、厨房機器、自動車部品などのさまざまな用途に用いられるプレス成形加工品を鋭意調査し、El≧25%、平均r値≧0.70、さらに|Δr|≦0.20を同時に満足すれば、多くの加工品がプレス成形できることを見出した。 For example, in the case of a spherical vent hood that is stretched and formed, if the elongation characteristics are insufficient, it cannot be molded due to necking or breakage in the direction of the worst elongation during molding. In addition, the appearance of the product may be deteriorated due to the fact that the thickness of the overhang portion after forming varies greatly depending on the direction of the steel plate before forming. Alternatively, large pans manufactured by drawing or the like are necked or broken when the average r value is low, and cannot be formed into a predetermined product shape. The plate thickness of the body of the pan varies greatly depending on the location, which may cause problems in heat transfer characteristics. Alternatively, when forming by drawing, if | Δr | is large, the ears after forming become large, the manufacturing cost is increased by adding a trimming process after forming, and the product yield is reduced by increasing the amount of steel sheet to be discarded. Occurs. Thus, it is desired that the elongation and average r value are large and | Δr | is small. However, | Δr | usually increases as the average r value increases. Therefore, the inventors have intensively investigated press-formed products used in various applications such as building materials, transportation equipment, home appliances, kitchen equipment, and automobile parts, and El ≧ 25%, average r value ≧ 0.70, and further | It has been found that many processed products can be press-molded if Δr | ≦ 0.20 is satisfied at the same time.
 フェライト系ステンレス鋼の中でも、日本工業規格JIS G 4305に規定されたSUS430LX(16mass%Cr-0.15mass%Tiあるいは16 mass%Cr-0.4 mass %Nb)、SUS436L(18mass%Cr-1.0mass%Mo-0.25mass%Ti)等は多量のTiやNbを含有し、伸び(El)および平均r値に優れた成形性を持ち、多くの用途に使用されている。しかし、これらの鋼種は多量のTiやNbを含有するために原料コストと製造コストが高く、価格が高い問題がある。一方、フェライト系ステンレス鋼の中でもっとも多く生産されているSUS430(16mass%)は、多量のTiやNbを含有していないので、SUS430LXやSUS436Lより安価であるが、成形性がSUS430LXやSUS436Lより劣る。そのため、成形性を向上させたSUS430が求められていた。 Among ferritic stainless steels, SUS430LX (16mass% Cr-0.15mass% Ti or 16mass% Cr-0.4 mass% Nb) and SUS436L (18mass% Cr-1.0mass% Mo-) specified in Japanese Industrial Standard JIS G4305 0.25 mass% Ti) contains a large amount of Ti and Nb, has excellent formability in elongation (El) and average r value, and is used in many applications. However, since these steel types contain a large amount of Ti and Nb, there is a problem that the raw material cost and the manufacturing cost are high and the price is high. On the other hand, SUS430 (16 mass%), which is most produced among ferritic stainless steels, is less expensive than SUS430LX and SUS436L because it does not contain a large amount of Ti and Nb, but its formability is lower than that of SUS430LX and SUS436L. Inferior. Therefore, SUS430 having improved formability has been demanded.
 そこで、発明者らは多量のTiやNbを含有しないSUS430(16mass%)系の成分でEl≧25%、平均r値≧0.70、|Δr|≦0.20を満足するフェライト系ステンレス鋼を得る方法を鋭意検討した。また、熱間圧延後のフェライト系ステンレス鋼板を冷間圧延する前に焼鈍(以下、熱延板焼鈍と称する)する方法には、箱焼鈍(バッチ焼鈍)と連続焼鈍があるが、長時間を要して生産性の低い箱焼鈍ではなく、生産性の高い連続焼鈍により所定の成形性を得ること検討した。 Therefore, the inventors have obtained a method of obtaining ferritic stainless steel satisfying El ≧ 25%, average r value ≧ 0.70, and | Δr | ≦ 0.20 with a SUS430 (16 mass%) system component not containing a large amount of Ti or Nb. We studied diligently. In addition, there are box annealing (batch annealing) and continuous annealing as methods for annealing (hereinafter referred to as hot rolled sheet annealing) before cold rolling the ferritic stainless steel sheet after hot rolling. In short, instead of box annealing with low productivity, it was studied to obtain a predetermined formability by continuous annealing with high productivity.
 連続焼鈍炉を用いた従来技術においての課題は、熱延板焼鈍をフェライト単相温度域で行っているために十分な再結晶が生じず、十分な伸びが得られないとともに、コロニーが冷延板焼鈍後にまで残存するために|Δr|が大きいことであった。そこで発明者らは、熱延板焼鈍をフェライト相とオーステナイト相の二相域で行った後に、常法で冷間圧延ならびに冷延板焼鈍を行い、最終的に再度フェライト単相組織とすることを考案した。すなわち、熱延板焼鈍をフェライト単相温度域よりも高温のフェライト相とオーステナイトの二相域で行うことにより、フェライト相の再結晶が促進されるために、熱間圧延によって加工ひずみが導入されたフェライト結晶粒が冷延板焼鈍後にまで残存することが回避され、冷延板焼鈍後の伸びが向上する。また、熱延板焼鈍でフェライト相からオーステナイト相が生成する際に、オーステナイト相が焼鈍前のフェライト相とは異なった結晶方位を有して生成するために、フェライト相のコロニーが効果的に破壊される。そのため、冷間圧延および冷延板焼鈍を行った後の冷延焼鈍板の金属組織では、r値を向上させるγ-ファイバー集合組織が発達する。また、コロニーが分断されて、金属組織の異方性が緩和され、|Δr|が小さくなるという優れた特性が得られる。 The problem with the prior art using a continuous annealing furnace is that the hot-rolled sheet annealing is performed in the ferrite single-phase temperature range, so that sufficient recrystallization does not occur, sufficient elongation cannot be obtained, and the colony is cold-rolled. In order to remain even after annealing, | Δr | was large. Therefore, after performing the hot-rolled sheet annealing in the two-phase region of the ferrite phase and the austenite phase, the inventors shall perform cold rolling and cold-rolled sheet annealing by a conventional method, and finally make a ferrite single-phase structure again. Devised. That is, by performing hot-rolled sheet annealing in the two-phase region of the ferrite phase and austenite at a temperature higher than the ferrite single-phase temperature region, recrystallization of the ferrite phase is promoted, so work strain is introduced by hot rolling. It is avoided that the ferrite crystal grains remain until after the cold-rolled sheet annealing, and the elongation after the cold-rolled sheet annealing is improved. Also, when the austenite phase is generated from the ferrite phase by hot-rolled sheet annealing, the austenite phase is generated with a crystal orientation different from that of the ferrite phase before annealing, which effectively destroys the ferrite phase colony. Is done. Therefore, a γ-fiber texture that improves the r value develops in the metal structure of the cold-rolled annealed sheet after cold rolling and cold-rolled sheet annealing. Moreover, the colony is divided, the anisotropy of the metal structure is relaxed, and an excellent characteristic that | Δr | becomes small is obtained.
 また、マルテンサイト相を含んだ熱延焼鈍板を冷間圧延すると、マルテンサイト相がフェライト相に比べて硬質なために、マルテンサイト相近傍のフェライト相が優先的に変形して圧延ひずみが集中し、冷延板焼鈍時の再結晶サイトが一層増加する。これにより、冷延板焼鈍時の再結晶がより促進され、冷延板焼鈍後の金属組織の異方性が一層緩和される。 Also, when cold-rolling a hot-rolled annealed sheet containing a martensite phase, the martensite phase is harder than the ferrite phase, so the ferrite phase near the martensite phase is preferentially deformed and the rolling strain is concentrated. And the recrystallization site at the time of cold-rolled sheet annealing further increases. Thereby, recrystallization at the time of cold-rolled sheet annealing is further promoted, and the anisotropy of the metal structure after the cold-rolled sheet annealing is further relaxed.
 さらに、各種成分について二相域熱延板焼鈍の効果を詳細に検討した結果、多量のTiやNbを含有させなくても、適切な成分より、伸び(El)が25%以上、平均r値が0.70以上、|Δr|が0.20以下の優れた成形性が得られることを見出した。 Furthermore, as a result of detailed examination of the effects of two-phase region hot-rolled sheet annealing for various components, even if a large amount of Ti or Nb is not contained, the elongation (El) is 25% or more and the average r value from the appropriate components It was found that excellent moldability with an A of 0.70 or more and | Δr | of 0.20 or less can be obtained.
 次に、本発明のフェライト系ステンレス鋼の成分組成について説明する。
以下、特に断らない限り%は質量%を意味する。
Next, the component composition of the ferritic stainless steel of the present invention will be described.
Hereinafter, unless otherwise specified,% means mass%.
 C: 0.005~0.05%
Cはオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためには0.005%以上の含有が必要である。しかし、C量が0.05%を超えると鋼板が硬質化して延性が低下する。そのため、C量は0.005~0.05%の範囲とする。下限は、好ましくは0.01%、さらに好ましくは0.015%である。上限は、好ましくは0.035%、さらに好ましくは0.03%、より一層好ましくは0.025%である。
C: 0.005-0.05%
C promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range where the ferrite phase and the austenite phase appear during hot-rolled sheet annealing. In order to acquire this effect, 0.005% or more needs to be contained. However, if the C content exceeds 0.05%, the steel sheet becomes hard and the ductility decreases. Therefore, the C content is in the range of 0.005 to 0.05%. The lower limit is preferably 0.01%, more preferably 0.015%. The upper limit is preferably 0.035%, more preferably 0.03%, and even more preferably 0.025%.
 Si: 0.02~0.50%
Siは鋼溶製時に脱酸剤として作用する元素である。この効果を得るためには0.02%以上の含有が必要である。しかし、Si量が0.50%を超えると、鋼板が硬質化して熱間圧延時の圧延負荷が増大する。また、冷延板焼鈍後の延性が低下する。そのため、Si量は0.02~0.50%の範囲とする。好ましくは0.10~0.50%の範囲である。さらに好ましくは0.25~0.35%の範囲である。
Si: 0.02-0.50%
Si is an element that acts as a deoxidizer during steel melting. In order to obtain this effect, a content of 0.02% or more is necessary. However, if the Si content exceeds 0.50%, the steel sheet becomes hard and the rolling load during hot rolling increases. Moreover, the ductility after cold-rolled sheet annealing decreases. Therefore, the Si content is in the range of 0.02 to 0.50%. Preferably it is 0.10 to 0.50% of range. More preferably, it is in the range of 0.25 to 0.35%.
 Mn: 0.05~1.0%
MnはCと同様にオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためには0.05%以上の含有が必要である。しかし、Mn量が1.0%を超えるとMnSの生成量が増加して耐食性が低下する。そのため、Mn量は0.05~1.0%の範囲とする。下限は、好ましくは0.1%、さらに好ましくは0.2%である。上限は、好ましくは0.8%、さらに好ましくは0.35%である、より一層好ましくは0.3%である。
Mn: 0.05-1.0%
Mn, like C, promotes the formation of an austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing. In order to acquire this effect, 0.05% or more needs to be contained. However, if the amount of Mn exceeds 1.0%, the amount of MnS produced increases and the corrosion resistance decreases. Therefore, the Mn content is in the range of 0.05 to 1.0%. The lower limit is preferably 0.1%, more preferably 0.2%. The upper limit is preferably 0.8%, more preferably 0.35%, and still more preferably 0.3%.
 P: 0.04%以下
Pは粒界偏析による粒界破壊を助長する元素であるため低い方が望ましく、上限を0.04%とする。好ましくは0.03%以下である。さらに好ましくは0.01%以下である。
P: 0.04% or less
P is an element that promotes grain boundary fracture due to grain boundary segregation, so a lower value is desirable, and the upper limit is made 0.04%. Preferably it is 0.03% or less. More preferably, it is 0.01% or less.
 S: 0.01%以下
SはMnSなどの硫化物系介在物となって存在して延性や耐食性等を低下させる元素である。特に含有量が0.01%を超えた場合にそれらの悪影響が顕著に生じる。そのためS量は極力低い方が望ましく、本発明ではS量の上限を0.01%とする。好ましくは0.007%以下である。さらに好ましくは0.005%以下である。
S: 0.01% or less
S is an element that exists as sulfide inclusions such as MnS and reduces ductility, corrosion resistance, and the like. In particular, when the content exceeds 0.01%, those adverse effects are remarkable. Therefore, it is desirable that the S amount be as low as possible. In the present invention, the upper limit of the S amount is 0.01%. Preferably it is 0.007% or less. More preferably, it is 0.005% or less.
 Cr: 15.5~18.0%
Crは鋼板表面に不動態皮膜を形成して耐食性を向上させる効果を有する元素である。この効果を得るためにはCr量を15.5%以上とする必要がある。しかし、Cr量が18.0%を超えると、熱延板焼鈍時にオーステナイト相の生成が不十分となり、所定の材料特性が得られない。そのため、Cr量は15.5~18.0%の範囲とする。好ましくは16.0~18.0%の範囲である。さらに好ましくは16.0~17.25%の範囲である。
Cr: 15.5-18.0%
Cr is an element having an effect of improving the corrosion resistance by forming a passive film on the steel sheet surface. In order to obtain this effect, the Cr content needs to be 15.5% or more. However, if the Cr content exceeds 18.0%, the austenite phase is not sufficiently generated during hot-rolled sheet annealing, and predetermined material characteristics cannot be obtained. Therefore, the Cr content is in the range of 15.5 to 18.0%. Preferably it is 16.0 to 18.0% of range. More preferably, it is in the range of 16.0 to 17.25%.
 Al: 0.001~0.10%
AlはSiと同様に脱酸剤として作用する元素である。この効果を得るためには0.001%以上の含有が必要である。しかし、Al量が0.10%を超えると、Al2O3等のAl系介在物が増加し、表面性状が低下しやすくなる。そのため、Al量は0.001~0.10%の範囲とする。好ましくは0.001~0.05%の範囲である。さらに好ましくは0.001~0.03%の範囲である。
Al: 0.001 to 0.10%
Al, like Si, is an element that acts as a deoxidizer. In order to acquire this effect, 0.001% or more needs to be contained. However, when the Al content exceeds 0.10%, Al-based inclusions such as Al 2 O 3 increase, and the surface properties tend to deteriorate. Therefore, the Al content is set in the range of 0.001 to 0.10%. Preferably it is 0.001 to 0.05% of range. More preferably, it is in the range of 0.001 to 0.03%.
 N: 0.01~0.06%
Nは、C、Mnと同様にオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためにはN量を0.01%以上とする必要がある。しかし、N量が0.06%を超えると延性が著しく低下する上、Cr窒化物の析出を助長することによる耐食性の低下が生じる。そのため、N量は0.01~0.06%の範囲とする。好ましくは0.01~0.05%の範囲である。さらに好ましくは0.02~0.04%の範囲である。
N: 0.01-0.06%
N, like C and Mn, promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing. In order to obtain this effect, the N content needs to be 0.01% or more. However, when the N content exceeds 0.06%, the ductility is remarkably lowered and the corrosion resistance is lowered by promoting the precipitation of Cr nitride. Therefore, the N content is in the range of 0.01 to 0.06%. Preferably it is 0.01 to 0.05% of range. More preferably, it is in the range of 0.02 to 0.04%.
 残部はFeおよび不可避的不純物である。 The balance is Fe and inevitable impurities.
 以上の成分組成により本発明の効果は得られるが、さらに製造性あるいは材料特性を向上させる目的で以下の元素を含有することができる。 Although the effects of the present invention can be obtained by the above component composition, the following elements can be contained for the purpose of further improving manufacturability or material properties.
 Cu:0.1~1.0%、Ni: 0.1~1.0%、Mo: 0.1~0.5%、Co: 0.01~0.5%のうちから選ばれる1種または2種以上
 CuおよびNiはいずれも耐食性を向上させる元素であり、特に高い耐食性が要求される場合には含有することが有効である。また、CuおよびNiにはオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。これらの効果は各々0.1%以上の含有で顕著となる。しかし、Cu含有量が1.0%を超えると熱間加工性が低下する場合があり好ましくない。そのためCuを含有する場合は0.1~1.0%とする。好ましくは0.2~0.8%の範囲である。さらに好ましくは0.3~0.5%の範囲である。Ni含有量が1.0%を超えると加工性が低下するため好ましくない。そのためNiを含有する場合は0.1~1.0%とする。好ましくは0.1~0.6%の範囲である。さらに好ましくは0.1~0.3%の範囲である。
One or more selected from Cu: 0.1 to 1.0%, Ni: 0.1 to 1.0%, Mo: 0.1 to 0.5%, Co: 0.01 to 0.5% Both Cu and Ni are elements that improve corrosion resistance. In particular, it is effective to contain it when high corrosion resistance is required. Further, Cu and Ni have an effect of promoting the formation of the austenite phase and expanding the two-phase temperature range in which the ferrite phase and the austenite phase appear during hot-rolled sheet annealing. These effects become significant when the content is 0.1% or more. However, if the Cu content exceeds 1.0%, the hot workability may decrease, which is not preferable. Therefore, when Cu is contained, the content is set to 0.1 to 1.0%. Preferably it is 0.2 to 0.8% of range. More preferably, it is in the range of 0.3 to 0.5%. If the Ni content exceeds 1.0%, the workability decreases, which is not preferable. Therefore, when Ni is contained, the content is made 0.1 to 1.0%. Preferably it is 0.1 to 0.6% of range. More preferably, it is in the range of 0.1 to 0.3%.
 Moは耐食性を向上させる元素であり、特に高い耐食性が要求される場合には含有することが有効である。この効果は0.1%以上の含有で顕著となる。しかし、Mo含有量が0.5%を超えると熱延板焼鈍時にオーステナイト相の生成が不十分となり、所定の材料特性が得られなくなり好ましくない。そのため、Moを含有する場合は0.1~0.5%とする。好ましくは0.1~0.3%の範囲である。 Mo is an element that improves corrosion resistance, and it is effective to contain it particularly when high corrosion resistance is required. This effect becomes significant when the content is 0.1% or more. However, if the Mo content exceeds 0.5%, the austenite phase is not sufficiently generated during hot-rolled sheet annealing, and predetermined material characteristics cannot be obtained. Therefore, if it contains Mo, the content is made 0.1 to 0.5%. Preferably it is 0.1 to 0.3% of range.
 Coは靭性を向上させる元素である.この効果は0.01%以上の含有によって得られる。一方、含有量が0.5%を超えると製造性を低下させる.そのため、Coを含有する場合の含有量は0.01~0.5%の範囲とする。 Co is an element that improves toughness. This effect is obtained when the content is 0.01% or more. On the other hand, if the content exceeds 0.5%, the productivity is lowered. Therefore, if Co is contained, the content is made 0.01 to 0.5%.
 V: 0.01~0.25%、Ti: 0.001~0.10%、Nb: 0.001~0.10%、Mg: 0.0002~0.0050%、B: 0.0002~0.0050%、REM: 0.01~0.10%、Ca: 0.0002~0.0020%のうちから選ばれる1種または2種以上
 V: 0.01~0.25%
Vは鋼中のCおよびNと化合して、固溶C、Nを低減する。これにより、平均r値を向上させる。さらに、熱延板での炭窒化物析出挙動を制御して熱延・焼鈍起因の線状疵の発生を抑制して表面性状を改善する。これらの効果を得るためにはV量を0.01%以上含有する必要がある。しかし、V量が0.25%を超えると加工性が低下するとともに、製造コストの上昇を招く。そのため、Vを含有する場合は0.01~0.25%の範囲とする。好ましくは0.03~0.20%の範囲である。さらに好ましくは0.05~0.15%の範囲である。
V: 0.01-0.25%, Ti: 0.001-0.10%, Nb: 0.001-0.10%, Mg: 0.0002-0.0050%, B: 0.0002-0.0050%, REM: 0.01-0.10%, Ca: 0.0002-0.0020% One or more selected from V: 0.01-0.25%
V combines with C and N in the steel to reduce solute C and N. This improves the average r value. Furthermore, the surface property is improved by controlling the carbonitride precipitation behavior on the hot-rolled sheet to suppress the occurrence of linear flaws caused by hot-rolling and annealing. In order to obtain these effects, the V content needs to be 0.01% or more. However, if the V amount exceeds 0.25%, the workability is lowered and the manufacturing cost is increased. Therefore, when V is contained, the content is made 0.01 to 0.25%. Preferably it is 0.03 to 0.20% of range. More preferably, it is 0.05 to 0.15% of range.
 Ti: 0.001~0.10%、Nb:0.001~0.10%、
TiおよびNbはVと同様に、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶C、Nを低減させ、冷延板焼鈍後の加工性を向上させる効果がある。これらの効果を得るためには、0.001%以上のTi、0.001%以上のNbを含有する必要がある。しかし、Ti量が0.10%あるいはNb量が0.10%を超えると、過剰なTiNおよびNbCの析出により良好な表面性状を得ることができない。そのため、Tiを含有する場合は0.001~0.10%の範囲、Nbを含有する場合は0.001~0.10%の範囲とする。Ti量は好ましくは0.001~0.015%の範囲である。さらに好ましくは0.003~0.010%の範囲である。Nb量は好ましくは0.001~0.025%の範囲である。さらに好ましくは0.005~0.020%の範囲である。
Ti: 0.001-0.10%, Nb: 0.001-0.10%,
Ti and Nb, like V, are elements with a high affinity with C and N, and precipitate as carbides or nitrides during hot rolling, reducing the solid solution C and N in the matrix, and cold-rolled sheet annealing There is an effect of improving the later workability. In order to obtain these effects, it is necessary to contain 0.001% or more of Ti and 0.001% or more of Nb. However, when the Ti content is 0.10% or the Nb content exceeds 0.10%, good surface properties cannot be obtained due to the precipitation of excess TiN and NbC. Therefore, when Ti is contained, the range is 0.001 to 0.10%, and when Nb is contained, the range is 0.001 to 0.10%. The amount of Ti is preferably in the range of 0.001 to 0.015%. More preferably, it is in the range of 0.003 to 0.010%. The amount of Nb is preferably in the range of 0.001 to 0.025%. More preferably, it is in the range of 0.005 to 0.020%.
 Mg: 0.0002~0.0050%
Mgは熱間加工性を向上させる効果がある元素である。この効果を得るためには0.0002%以上の含有が必要である。しかし、Mg量が0.0050%を超えると表面品質が低下する。そのため、Mgを含有する場合は0.0002~0.0050%の範囲とする。好ましくは0.0005~0.0035%の範囲である。さらに好ましくは0.0005~0.0020%の範囲である。
Mg: 0.0002-0.0050%
Mg is an element that has the effect of improving hot workability. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the Mg content exceeds 0.0050%, the surface quality decreases. Therefore, when Mg is contained, the content is made 0.0002 to 0.0050%. Preferably it is 0.0005 to 0.0035% of range. More preferably, it is in the range of 0.0005 to 0.0020%.
 B: 0.0002~0.0050%
Bは低温二次加工脆化を防止するのに有効な元素である。この効果を得るためには0.0002%以上の含有が必要である。しかし、B量が0.0050%を超えると熱間加工性が低下する。そのため、Bを含有する場合は0.0002~0.0050%の範囲とする。好ましくは0.0005~0.0035%の範囲である。さらに好ましくは0.0005~0.0020%の範囲である。
B: 0.0002-0.0050%
B is an effective element for preventing low temperature secondary work embrittlement. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the amount of B exceeds 0.0050%, the hot workability decreases. Therefore, when B is contained, the content is made 0.0002 to 0.0050%. Preferably it is 0.0005 to 0.0035% of range. More preferably, it is in the range of 0.0005 to 0.0020%.
 REM: 0.01~0.10%
REMは耐酸化性を向上させる元素であり、特に溶接部の酸化皮膜形成を抑制し溶接部の耐食性を向上させる効果がある。この効果を得るためには0.01%以上の含有が必要である。しかし、0.10%を超えて含有すると冷延板焼鈍時の酸洗性などの製造性を低下させる。また、REMは高価な元素であるため、過度な含有は製造コストの増加を招くため好ましくない。そのため、REMを含有する場合は0.01~0.10%の範囲とする。
REM: 0.01-0.10%
REM is an element that improves the oxidation resistance, and in particular has the effect of suppressing the formation of an oxide film at the weld and improving the corrosion resistance of the weld. In order to obtain this effect, a content of 0.01% or more is necessary. However, if the content exceeds 0.10%, productivity such as pickling at the time of cold-rolled sheet annealing is lowered. Moreover, since REM is an expensive element, excessive inclusion causes an increase in manufacturing cost, which is not preferable. Therefore, when REM is contained, the content is made 0.01 to 0.10%.
 Ca: 0.0002~0.0020%
Caは、連続鋳造の際に発生しやすいTi系介在物の晶出によるノズルの閉塞を防止するのに有効な成分である。この効果を得るためには0.0002%以上の含有が必要である。しかし、Ca量が0.0020%を超えるとCaSが生成して耐食性が低下する。そのため、Caを含有する場合は0.0002~0.0020%の範囲とする。好ましくは0.0005~0.0015%の範囲である。さらに好ましくは0.0005~0.0010%の範囲である。
Ca: 0.0002-0.0020%
Ca is an effective component for preventing nozzle clogging due to crystallization of Ti-based inclusions that are likely to occur during continuous casting. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the Ca content exceeds 0.0020%, CaS is generated and the corrosion resistance is lowered. Therefore, when Ca is contained, the content is made 0.0002 to 0.0020%. Preferably it is 0.0005 to 0.0015% of range. More preferably, it is 0.0005 to 0.0010% of range.
 次に本発明のフェライト系ステンレス鋼の製造方法について説明する。
本発明のフェライト系ステンレス鋼は上記成分組成を有する鋼スラブに対して、熱間圧延を施し、次いで900~1000℃の温度範囲で5秒~15分間保持する熱延板焼鈍を行い熱延焼鈍板とし、次いで冷間圧延を施した後、800~950℃の温度範囲で5秒~5分間保持する冷延板焼鈍を行うことで得られる。
Next, the manufacturing method of the ferritic stainless steel of this invention is demonstrated.
The ferritic stainless steel of the present invention is hot-rolled annealed by subjecting a steel slab having the above composition to hot rolling, followed by hot-rolled sheet annealing in a temperature range of 900 to 1000 ° C. for 5 seconds to 15 minutes. It is obtained by subjecting it to a sheet, followed by cold rolling, followed by cold-rolled sheet annealing in a temperature range of 800 to 950 ° C. for 5 seconds to 5 minutes.
 まずは、上記した成分組成からなる溶鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊-分塊法により鋼素材(スラブ)とする。このスラブを、1100~1250℃で1~24時間加熱するか、あるいは加熱することなく鋳造まま直接、熱間圧延して熱延板とする。 First, the molten steel having the above component composition is melted by a known method such as a converter, electric furnace, vacuum melting furnace or the like, and is made into a steel material (slab) by a continuous casting method or an ingot-bundling method. This slab is heated at 1100 to 1250 ° C. for 1 to 24 hours, or directly hot-rolled as cast without heating to form a hot-rolled sheet.
 次いで、熱間圧延を行う。巻取りでは、巻取り温度を500℃以上850℃以下とすることが好ましい。500℃未満では巻取り後の再結晶が不十分となって冷延板焼鈍後の延性が低下する場合があるため好ましくない。850℃超で巻き取ると粒径が大きくなり、プレス加工時に肌荒れが発生してしまう場合がある。したがって、巻取り温度は500~850℃の範囲が好ましい。 Next, hot rolling is performed. In winding, the winding temperature is preferably 500 ° C. or higher and 850 ° C. or lower. If it is less than 500 ° C., recrystallization after winding is insufficient, and ductility after cold-rolled sheet annealing may be lowered, which is not preferable. When it winds up above 850 degreeC, a particle size will become large and rough skin may generate | occur | produce at the time of press work. Therefore, the winding temperature is preferably in the range of 500 to 850 ° C.
 その後、フェライト相とオーステナイト相の二相域温度となる900~1000℃の温度で5秒~15分間保持する熱延板焼鈍を行う。 After that, hot-rolled sheet annealing is performed for 5 seconds to 15 minutes at a temperature of 900 to 1000 ° C., which is a two-phase temperature range of a ferrite phase and an austenite phase.
 次いで、必要に応じて酸洗を施し、冷間圧延および冷延板焼鈍を行う。さらに、必要に応じて酸洗を施して製品とする。 Then, pickling is performed as necessary, and cold rolling and cold rolled sheet annealing are performed. Furthermore, pickling is performed as necessary to obtain a product.
 冷間圧延は伸び性、曲げ性、プレス成形性および形状矯正の観点から、50%以上の圧下率で行うことが好ましい。また、本発明では、冷延-焼鈍を2回以上繰り返しても良い。 Cold rolling is preferably performed at a rolling reduction of 50% or more from the viewpoints of extensibility, bendability, press formability, and shape correction. In the present invention, cold rolling and annealing may be repeated twice or more.
 冷延板の焼鈍は、良好な成形性を得るために800~950℃の温度で5秒~5分間保持する。また、より光沢を求めるためにBA焼鈍(光輝焼鈍)を行っても良い。 The cold rolled sheet is annealed at a temperature of 800 to 950 ° C for 5 seconds to 5 minutes in order to obtain good formability. Further, BA annealing (bright annealing) may be performed to obtain more gloss.
 なお、さらに表面性状を向上させるために、研削や研磨等を施してもよい。 In addition, in order to further improve the surface properties, grinding or polishing may be performed.
 製造条件の好適な限定理由について、以下に説明する。 The reason why the manufacturing conditions are preferably limited will be described below.
 900~1000℃の温度で5秒~15分間保持する熱延板焼鈍
熱延板焼鈍は本発明が優れた成形性を得るために極めて重要な工程である。熱延板焼鈍温度が900℃未満では十分な再結晶が生じないうえ、フェライト単相域となるため、二相域焼鈍によって発現する本発明の効果が得られない。しかし、熱延板焼鈍温度が1000℃を超えると、オーステナイト相の生成量が低下する。そのため、熱延板焼鈍後に生成するマルテンサイト相の量が減少し、フェライト相とマルテンサイト相を含む金属組織を冷間圧延することによる、マルテンサイト相近傍のフェライト相への圧延ひずみの集中による金属組織の異方性緩和効果を十分に得ることができず、所定の|Δr|を得ることができない。焼鈍時間が5秒未満の場合、所定の温度で焼鈍したとしてもオーステナイト相の生成とフェライト相の再結晶が十分に生じないため、所望の成形性が得られない。一方、焼鈍時間が15分を超えるとCr炭窒化物の一部が固溶してオーステナイト相中へのC濃化が助長され、熱延板焼鈍後にオーステナイト相が変態して生成するマルテンサイト相への過度なC濃化が生じる。このマルテンサイト相は冷延板焼鈍時に炭化物とフェライト相へと分解し、多量の炭化物を含むフェライト相へと変化する。これにより冷延板焼鈍後の金属組織は、熱延板焼鈍時にフェライト相であったため粒内および粒界上の炭化物が少ないフェライト粒と、熱延板焼鈍時にオーステナイト相であったため粒内および粒界上の炭化物が過度に多いフェライト粒の混粒組織となる。このような金属組織となった場合、炭化物が少ない粒と多い粒の間の硬度差に起因して、成形時に両者の粒の界面に変形ひずみが集中し、粒界上の炭化物を起点としたボイドの生成が助長され、延性が低下する。そのため、熱延板焼鈍は900~1000℃の温度で、5秒~15分間保持する。好ましくは、910~960℃の温度で15秒~3分間保持である。 
Hot-rolled sheet annealing, which is held at a temperature of 900 to 1000 ° C. for 5 seconds to 15 minutes, is an extremely important process for the present invention to obtain excellent formability. When the hot-rolled sheet annealing temperature is less than 900 ° C., sufficient recrystallization does not occur and the ferrite single-phase region is formed, so that the effect of the present invention expressed by the two-phase region annealing cannot be obtained. However, when the hot-rolled sheet annealing temperature exceeds 1000 ° C., the amount of austenite phase produced decreases. Therefore, the amount of martensite phase generated after hot-rolled sheet annealing is reduced, and cold rolling of the metal structure containing the ferrite phase and martensite phase results in concentration of rolling strain on the ferrite phase near the martensite phase. The anisotropic relaxation effect of the metal structure cannot be sufficiently obtained, and the predetermined | Δr | cannot be obtained. When the annealing time is less than 5 seconds, even if annealing is performed at a predetermined temperature, generation of austenite phase and recrystallization of the ferrite phase do not occur sufficiently, so that desired formability cannot be obtained. On the other hand, when the annealing time exceeds 15 minutes, a part of Cr carbonitride dissolves and C concentration in the austenite phase is promoted, and the austenite phase transforms and forms after hot-rolled sheet annealing. Excessive C concentration occurs. This martensite phase decomposes into a carbide and a ferrite phase during cold-rolled sheet annealing, and changes to a ferrite phase containing a large amount of carbide. As a result, the microstructure after cold-rolled sheet annealing was a ferrite phase during hot-rolled sheet annealing, so there were few carbides in the grains and on the grain boundaries, and the austenite phase during hot-rolled sheet annealing, so that the grains and grains It becomes a mixed grain structure of ferrite grains with excessive carbide on the boundary. When such a metal structure is formed, due to the difference in hardness between the grains with few carbides and the grains with many carbides, deformation strain concentrates at the interface between the grains during molding, and the carbides on the grain boundaries are the starting point. Formation of voids is promoted and ductility is reduced. Therefore, hot-rolled sheet annealing is held at a temperature of 900 to 1000 ° C. for 5 seconds to 15 minutes. Preferably, the holding is performed at a temperature of 910 to 960 ° C. for 15 seconds to 3 minutes.
 800~950℃の温度で5秒~5分間保持する冷延板焼鈍
 冷延板焼鈍は熱延板焼鈍で形成したフェライト相とマルテンサイト相の二相組織をフェライト単相組織とするために重要な工程である。冷延板焼鈍温度が800℃未満では再結晶が十分に生じず所定の延性および平均r値を得ることができない。一方、冷延板焼鈍温度が950℃を超えた場合、当該温度がフェライト相とオーステナイト相の二相温度域となる鋼成分では冷延板焼鈍後にマルテンサイト相が生成するために鋼板が硬質化し、所定の延性を得ることができない。また、当該温度がフェライト単相温度域となる鋼成分であったとしても、結晶粒の著しい粗大化により、鋼板の光沢度が低下するため表面品質の観点で好ましくない。焼鈍時間が5秒未満の場合、所定の温度で焼鈍したとしてもフェライト相の再結晶が十分に生じないため、所定の延性および平均r値を得ることができない。焼鈍時間が5分を超えると、結晶粒が著しく粗大化し、鋼板の光沢度が低下するため表面品質の観点で好ましくない。そのため、冷延板焼鈍は800~950℃の範囲で5秒~5分間保持とする。好ましくは、850℃~900℃で15秒~3分間保持である。
Cold-rolled sheet annealing, which is held at a temperature of 800-950 ° C for 5 seconds to 5 minutes. It is a difficult process. If the cold-rolled sheet annealing temperature is less than 800 ° C., sufficient recrystallization does not occur and the predetermined ductility and average r value cannot be obtained. On the other hand, when the cold-rolled sheet annealing temperature exceeds 950 ° C, the steel component becomes hard because the martensite phase is formed after the cold-rolled sheet annealing in the steel component in which the temperature is a two-phase temperature range of the ferrite phase and the austenite phase. The predetermined ductility cannot be obtained. Moreover, even if the temperature is a steel component in the ferrite single-phase temperature range, the glossiness of the steel sheet is lowered due to marked coarsening of crystal grains, which is not preferable from the viewpoint of surface quality. When the annealing time is less than 5 seconds, even if annealing is performed at a predetermined temperature, the ferrite phase is not sufficiently recrystallized, so that the predetermined ductility and average r value cannot be obtained. If the annealing time exceeds 5 minutes, the crystal grains become extremely coarse and the glossiness of the steel sheet is lowered, which is not preferable from the viewpoint of surface quality. Therefore, cold-rolled sheet annealing is held at 800 to 950 ° C for 5 seconds to 5 minutes. The holding is preferably performed at 850 ° C. to 900 ° C. for 15 seconds to 3 minutes.
 以下、本発明を実施例により詳細に説明する。
表1に示す化学組成を有するステンレス鋼を50kg小型真空溶解炉にて溶製した。これらの鋼塊を1150℃で1h加熱後、熱間圧延を施して3.5mm厚の熱延板とした。次いで、これらの熱延板に表2に記載の条件で熱延板焼鈍を施した後、表面にショットブラスト処理と酸洗による脱スケールを行った。さらに、板厚0.7mmまで冷間圧延した後、表2に記載の条件で冷延板焼鈍を行った後、酸洗による脱スケール処理を行い、冷延酸洗焼鈍板を得た。
Hereinafter, the present invention will be described in detail with reference to examples.
Stainless steel having the chemical composition shown in Table 1 was melted in a 50 kg small vacuum melting furnace. These steel ingots were heated at 1150 ° C. for 1 h and then hot rolled to form 3.5 mm thick hot rolled sheets. Subsequently, these hot-rolled sheets were subjected to hot-rolled sheet annealing under the conditions shown in Table 2, and then the surfaces were descaled by shot blasting and pickling. Furthermore, after cold-rolling to a sheet thickness of 0.7 mm, after performing cold-rolled sheet annealing under the conditions shown in Table 2, descaling treatment by pickling was performed to obtain a cold-rolled pickled and annealed sheet.
 かくして得られた冷延酸洗焼鈍板について以下の評価を行った。 The cold roll pickling annealed plate thus obtained was evaluated as follows.
 (1)延性の評価
冷延酸洗焼鈍板から、L方向(圧延方向と平行)、D方向(圧延方向と45°)およびC方向(圧延方向と直角)にJIS 13B号引張試験片を採取し、引張試験をJIS Z2241に準拠して行い、破断伸びを測定し、各方向の破断伸びが25%以上の場合を合格(○)、一方向でも25%未満のものがある場合を不合格(×)とした。
(1) Evaluation of ductility JIS 13B tensile test specimens were collected in the L direction (parallel to the rolling direction), D direction (45 ° to the rolling direction) and C direction (perpendicular to the rolling direction) from the cold-rolled pickled and annealed sheet. Then, the tensile test is performed in accordance with JIS Z2241, the elongation at break is measured, and when the elongation at break in each direction is 25% or more, it passes (○), and when there is less than 25% in one direction (X).
 (2)平均r値および|Δr|の評価
冷延酸洗焼鈍板から、圧延方向に対して平行(L方向)、45°(D方向)およびに直角(C方向)となる方向にJIS 13B号引張試験片を採取し、JIS Z2241に準拠した引張試験をひずみ15%まで行って中断し、各方向のr値を測定し平均r値(=(r+2r+r)/4)およびr値の面内異方性(Δr=(r-2r+r)/2)の絶対値(|Δr|)を算出した。ここで、r、r、rはそれぞれL方向、D方向およびC方向のr値である。平均r値は0.70以上を合格(○)、0.70未満を不合格(×)とした。|Δr|は0.20以下を合格(○)、0.20超を不合格(×)とした。
(2) Evaluation of average r value and | Δr | From the cold-rolled pickled and annealed sheet, JIS 13B in the direction parallel to the rolling direction (L direction), 45 ° (D direction) and perpendicular to the rolling direction (C direction) Tensile test specimens were collected, the tensile test according to JIS Z2241 was interrupted to a strain of 15%, the r value in each direction was measured, and the average r value (= (r L + 2r D + r C ) / 4) and The absolute value (| Δr |) of the in-plane anisotropy (Δr = (r L −2r D + r C ) / 2) of the r value was calculated. Here, r L , r D , and r C are r values in the L direction, the D direction, and the C direction, respectively. As for the average r value, 0.70 or more was regarded as acceptable (◯), and less than 0.70 was regarded as unacceptable (x). In | Δr |, 0.20 or less was accepted (◯), and more than 0.20 was rejected (x).
 (3)耐食性の評価
冷延酸洗焼鈍板から、60×100mmの試験片を採取し、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした試験片を作製し、JIS H 8502に規定された塩水噴霧サイクル試験に供した。塩水噴霧サイクル試験は、塩水噴霧(5質量%NaCl、35℃、噴霧2h)→乾燥(60℃、4h、相対湿度40%)→湿潤(50℃、2h、相対湿度≧95%)を1サイクルとして、8サイクル行った。
塩水噴霧サイクル試験を8サイクル実施後の試験片表面を写真撮影し、画像解析により試験片表面の発錆面積を測定し、試験片全面積との比率から発錆面積率((試験片中の発錆面積/試験片全面積)×100 [%])を算出した。発錆面積率が10%以下を特に優れた耐食性で合格(◎)、10%超25%以下を合格(○)、25%超を不合格(×)とした
 評価結果を熱延板焼鈍条件および冷延板焼鈍条件と併せて表2に示す。
(3) Evaluation of corrosion resistance A 60 x 100 mm test piece was taken from a cold rolled pickled and annealed plate, and the test piece was prepared by polishing the surface with # 600 emery paper and sealing the end face. Subjected to the prescribed salt spray cycle test. The salt spray cycle test consists of 1 cycle of salt spray (5 mass% NaCl, 35 ° C, spray 2h) → dry (60 ° C, 4h, relative humidity 40%) → wet (50 ° C, 2h, relative humidity ≥95%) As a result, 8 cycles were performed.
Photograph the surface of the specimen after 8 cycles of the salt spray cycle test, measure the rusting area on the specimen surface by image analysis, and calculate the rusting area ratio ((in the specimen) Rust area / total area of test piece) × 100 [%]) was calculated. Rust area ratio of 10% or less passed with excellent corrosion resistance (◎), more than 10% passed 25% or less passed (○), more than 25% rejected (×) The results are shown in Table 2 together with the cold rolled sheet annealing conditions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 鋼成分ならびに製造方法のいずれもが本発明の範囲を満たすNo.1~14、20~30および40~52では、破断伸び25%以上、平均r値で0.70以上、|Δr|が0.20以下と優れた成形性が確認された。さらに耐食性に関しても塩水噴霧サイクル試験を8サイクル実施後の試験片表面の発錆面積率がいずれも25%以下と良好な特性が得られている。 In No. 1-14, 20-30 and 40-52, both steel components and production methods satisfy the scope of the present invention, the elongation at break is 25% or more, the average r value is 0.70 or more, and | Δr | is 0.20 or less. Excellent moldability was confirmed. Furthermore, regarding corrosion resistance, the rusting area ratio on the surface of the test piece after performing the salt spray cycle test for 8 cycles has a good characteristic of 25% or less.
 特にNiを0.4%含有した鋼DおよびAC、Cuを0.3%含有した鋼F 、Cuを0.4%含有した鋼AR、Moを0.3%含有した鋼Gおよび鋼AIに対応するNo.4、No.22、No.6、No.50、No.7および No.41では、塩水噴霧サイクル試験後の発錆面積率が10%以下となっており、耐食性が一層向上した。 Especially No.4, No.4 corresponding to steel D and AC containing 0.4% Ni, steel F0.3 containing 0.3% Cu, steel AR containing 0.4% Cu, steel G containing 0.3% Mo and steel AI. In No. 6, No. 6, No. 50, No. 7 and No. 41, the rust area ratio after the salt spray cycle test was 10% or less, and the corrosion resistance was further improved.
 一方、Cr含有量が本発明の範囲を下回るNo.15では、所定の延性、平均r値および|Δr|は得られたものの、Cr含有量が不足したために所定の耐食性が得られなかった。 On the other hand, in No. 15 where the Cr content is below the range of the present invention, the predetermined ductility, average r value and | Δr | were obtained, but the predetermined corrosion resistance was not obtained because the Cr content was insufficient.
 Cr含有量が本発明の範囲を上回るNo.16では、十分な耐食性は得られたが、過剰にCrを含有したために熱延板焼鈍時にオーステナイト相が生成せず、所定の平均r値および|Δrを得ることができなかった。 In No. 16 where the Cr content exceeds the range of the present invention, sufficient corrosion resistance was obtained. However, since Cr was excessively contained, an austenite phase was not formed during hot-rolled sheet annealing, and a predetermined average r value and | Δr could not be obtained.
 C量が本発明の範囲を上回るNo.17では、所定の平均r値ならびに|Δr|は得られたが、固溶C量が増加したために鋼板強度が著しく上昇し、所定の延性が得られなかった。 In No. 17 in which the C content exceeds the range of the present invention, the predetermined average r value and | Δr | were obtained, but the steel solution strength was remarkably increased due to the increase in the amount of dissolved C, and the predetermined ductility was obtained. There wasn't.
 一方、C量が本発明の範囲を下回るNo.18では、Cによるオーステナイト相の安定化が不十分であったために、熱延板焼鈍中に十分な量のオーステナイト相が生成せず、所定の平均r値および|Δr|を得ることができなかった。 On the other hand, in No. 18 in which the amount of C is below the range of the present invention, since the austenite phase was not sufficiently stabilized by C, a sufficient amount of austenite phase was not generated during hot-rolled sheet annealing, and a predetermined amount was not obtained. The average r value and | Δr | could not be obtained.
 熱延板焼鈍温度がそれぞれ875℃あるいは871℃と低いNo.19あるいはNo.35では、熱延板焼鈍温度がフェライト単相温度となりオーステナイト相となったために、熱延板焼鈍後にマルテンサイト相が生成せず、マルテンサイトを含む鋼板を冷間圧延することによって得られる所定の金属組織の異方性緩和効果が得られず、所定の|Δr|が得られなかった。熱延板焼鈍温度がそれぞれ1014℃あるいは1011℃と高いNo.31あるいはNo.36では、焼鈍温度において生成するオーステナイト相の量が減少し、熱延板焼鈍後に生成するマルテンサイト相の量が減少したために、その後の冷間圧延による所定の金属組織の異方性緩和効果を得ることができず、所定の|Δr|が得られなかった。熱延板焼鈍時間が1秒と短いNo.32およびNo.37では、オーステナイト相の生成と十分な再結晶が生じなかったために、所定の延性、平均r値および|Δr|が得られなかった。冷延板焼鈍温度が780℃と低いNo.33およびNo.38では、再結晶が十分に生じず、冷間圧延による加工組織が残存した結果、所定の延性および平均r値が得られなかった。冷延板焼鈍温度が960℃と高いNo.34およびNo.39では、冷延板焼鈍時に再度オーステナイト相が生成し、冷延板焼鈍後にオーステナイト相がマルテンサイト相へと変態した結果、鋼板が著しく硬質化し所定の延性が得られなかった。また、冷延板焼鈍後の組織がマルテンサイト相を含んでいたためにr値が低下し、所定の平均r値を得ることができなかった。 In No. 19 or No. 35, where the hot-rolled sheet annealing temperature is as low as 875 ° C or 871 ° C, respectively, the hot-rolled sheet annealing temperature becomes the ferrite single-phase temperature and becomes the austenite phase. It was not formed, and the effect of anisotropic relaxation of a predetermined metal structure obtained by cold rolling a steel sheet containing martensite was not obtained, and a predetermined | Δr | was not obtained. In No.31 or No.36, where the hot-rolled sheet annealing temperature is as high as 1014 ° C or 1011 ° C, respectively, the amount of austenite phase generated at the annealing temperature decreases, and the amount of martensite phase generated after hot-rolled sheet annealing decreases. As a result, the effect of anisotropic relaxation of the predetermined metal structure by subsequent cold rolling could not be obtained, and the predetermined | Δr | could not be obtained. In No. 32 and No. 37 where the hot-rolled sheet annealing time was as short as 1 second, the austenite phase was not generated and sufficient recrystallization did not occur, so the predetermined ductility, average r value and | Δr | were not obtained. . In No. 33 and No. 38, where the cold-rolled sheet annealing temperature is as low as 780 ° C., sufficient recrystallization did not occur, and as a result of remaining the processed structure by cold rolling, the predetermined ductility and average r value could not be obtained. . In No. 34 and No. 39, where the cold-rolled sheet annealing temperature is as high as 960 ° C, the austenite phase was generated again during cold-rolled sheet annealing, and as a result of the transformation of the austenite phase to the martensite phase after cold-rolled sheet annealing, It was extremely hard and the prescribed ductility could not be obtained. Moreover, since the structure | tissue after cold-rolled sheet annealing contained the martensite phase, r value fell and the predetermined | prescribed average r value was not able to be obtained.
 以上のことから、本発明が提供する所定の成形性を得るためには、鋼成分および製造方法の双方が本発明の範囲を満たすことが必要であることが示された。 From the above, it has been shown that in order to obtain the predetermined formability provided by the present invention, both the steel components and the production method must satisfy the scope of the present invention.
 本発明で得られるフェライト系ステンレス鋼は、絞りを主体としたプレス成形品や高い耐食性を要求される用途、例えば建材、輸送機器、自動車部品への適用に特に好適である。 The ferritic stainless steel obtained in the present invention is particularly suitable for press-formed products mainly composed of a drawing and applications requiring high corrosion resistance, such as building materials, transportation equipment, and automobile parts.

Claims (5)

  1.  質量%で、C: 0.005~0.05%、Si: 0.02~0.50%、Mn: 0.05~1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 15.5~18.0%、Al: 0.001~0.10%、N: 0.01~0.06%を含有し、残部がFeおよび不可避的不純物からなり、El≧25%、平均r値≧0.70かつ|Δr|≦0.20であるフェライト系ステンレス鋼。 In mass%, C: 0.005 to 0.05%, Si: 0.02 to 0.50%, Mn: 0.05 to 1.0%, P: 0.04% or less, S: 0.01% or less, Cr: 15.5 to 18.0%, Al: 0.001 to 0.10% , N: Ferritic stainless steel containing 0.01 to 0.06%, the balance being Fe and inevitable impurities, El ≧ 25%, average r value ≧ 0.70 and | Δr | ≦ 0.20.
  2.  質量%で、C: 0.01~0.05%、Si: 0.02~0.50%、Mn: 0.2~1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 16.0~18.0%、Al: 0.001~0.10%、N: 0.01~0.06%を含有し、残部がFeおよび不可避的不純物からなり、El≧25%、平均r値≧0.70かつ|Δr|≦0.20であるフェライト系ステンレス鋼。 In mass%, C: 0.01 to 0.05%, Si: 0.02 to 0.50%, Mn: 0.2 to 1.0%, P: 0.04% or less, S: 0.01% or less, Cr: 16.0 to 18.0%, Al: 0.001 to 0.10% , N: Ferritic stainless steel containing 0.01 to 0.06%, the balance being Fe and inevitable impurities, El ≧ 25%, average r value ≧ 0.70 and | Δr | ≦ 0.20.
  3.  質量%で、さらに、Cu:0.1~1.0%、Ni: 0.1~1.0%、Mo: 0.1~0.5%、Co: 0.01~0.5%のうちから選ばれる1種または2種以上を含む請求項1または2に記載のフェライト系ステンレス鋼。 The mass% further comprises one or more selected from Cu: 0.1 to 1.0%, Ni: 0.1 to 1.0%, Mo: 0.1 to 0.5%, and Co: 0.01 to 0.5%. 2. Ferritic stainless steel according to 2.
  4.  質量%で、さらに、V: 0.01~0.25%、Ti: 0.001~0.10%、Nb: 0.001~0.10%、Mg: 0.0002~0.0050%、B: 0.0002~0.0050%、REM: 0.01~0.10%、Ca: 0.0002~0.0020%のうちから選ばれる1種または2種以上を含む請求項1~3のいずれか一項に記載のフェライト系ステンレス鋼。 In addition, V: 0.01-0.25%, Ti: 0.001-0.10%, Nb: 0.001-0.10%, Mg: 0.0002-0.0050%, B: 0.0002-0.0050%, REM: 0.01-0.10%, Ca: The ferritic stainless steel according to any one of claims 1 to 3, comprising one or more selected from 0.0002 to 0.0020%.
  5. 請求項1~4のいずれか一項に記載の成分組成を有する鋼スラブに対して、熱間圧延を施し、次いで900~1000℃の温度範囲で5秒~15分間保持する焼鈍を行い熱延焼鈍板とし、次いで冷間圧延を施した後、800~950℃の温度範囲で5秒~5分間保持する冷延板焼鈍を行うフェライト系ステンレス鋼の製造方法。 A steel slab having the component composition according to any one of claims 1 to 4 is hot-rolled and then annealed at a temperature range of 900 to 1000 ° C for 5 seconds to 15 minutes for hot rolling. A method for producing a ferritic stainless steel, which is annealed and then cold-rolled and then cold-rolled and annealed in a temperature range of 800 to 950 ° C. for 5 seconds to 5 minutes.
PCT/JP2015/000033 2014-01-08 2015-01-07 Ferritic stainless steel and method for producing same WO2015105046A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580003658.0A CN105874092A (en) 2014-01-08 2015-01-07 Ferritic stainless steel and method for producing same
JP2015547587A JP5987996B2 (en) 2014-01-08 2015-01-07 Ferritic stainless steel and manufacturing method thereof
KR1020167021191A KR20160105869A (en) 2014-01-08 2015-01-07 Ferritic stainless steel and method for producing same
KR1020187029065A KR20180114240A (en) 2014-01-08 2015-01-07 Ferritic stainless steel and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-001363 2014-01-08
JP2014001363 2014-01-08
JP2014-228502 2014-11-11
JP2014228502 2014-11-11

Publications (1)

Publication Number Publication Date
WO2015105046A1 true WO2015105046A1 (en) 2015-07-16

Family

ID=53523876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000033 WO2015105046A1 (en) 2014-01-08 2015-01-07 Ferritic stainless steel and method for producing same

Country Status (5)

Country Link
JP (1) JP5987996B2 (en)
KR (2) KR20180114240A (en)
CN (1) CN105874092A (en)
TW (1) TWI530571B (en)
WO (1) WO2015105046A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092713A1 (en) * 2014-12-11 2016-06-16 Jfeスチール株式会社 Stainless steel and production method therefor
CN107835865A (en) * 2015-07-17 2018-03-23 杰富意钢铁株式会社 Ferrite-group stainless steel hot rolled steel plate and hot-roll annealing plate and their manufacture method
CN115341147A (en) * 2022-08-19 2022-11-15 山西太钢不锈钢股份有限公司 Medium-chromium ferrite stainless steel for elevator panel and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3056054C (en) * 2017-03-30 2022-08-30 Nippon Steel Stainless Steel Corporation Ferritic stainless steel pipe having excellent salt tolerance in gap, pipe-end-thickened structure, welding joint, and welded structure
JP2019044255A (en) * 2017-09-07 2019-03-22 Jfeスチール株式会社 Ferritic stainless steel sheet
JP2019081916A (en) * 2017-10-27 2019-05-30 Jfeスチール株式会社 Ferritic stainless steel sheet and method for producing the same
CN113767181B (en) * 2019-05-29 2023-05-09 杰富意钢铁株式会社 Ferritic stainless steel sheet and method for producing same
CN111593266B (en) * 2020-05-15 2021-09-14 山西太钢不锈钢股份有限公司 Medium chromium type ferritic stainless steel
CN112974562B (en) * 2021-03-31 2023-04-07 甘肃酒钢集团宏兴钢铁股份有限公司 Production method of stainless steel hot-rolled coil for welding strip
CN113388780A (en) * 2021-05-25 2021-09-14 宁波宝新不锈钢有限公司 430 ferrite stainless steel for kitchenware panel and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158233A (en) * 1992-11-25 1994-06-07 Nippon Steel Corp Production of ferritic stainless steel thin slab excellent in toughness and ferritic stainless steel strip by the same thin slab
JP2001003143A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Ferritic stainless steel sheet excellent in workability and surface characteristics, and its manufacture
JP2002542040A (en) * 1999-04-22 2002-12-10 ユジノール A method for twin-roll continuous casting of ferritic stainless steel without microcracks
JP2009068034A (en) * 2007-09-11 2009-04-02 Jfe Steel Kk Ferritic stainless steel sheet superior in formability for extension flange, and manufacturing method therefor
WO2013136736A1 (en) * 2012-03-13 2013-09-19 Jfeスチール株式会社 Ferritic stainless steel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170154A (en) * 1994-12-15 1996-07-02 Nippon Steel Corp Ferritic stainless steel excellent in weldability
WO2000060134A1 (en) 1999-03-30 2000-10-12 Kawasaki Steel Corporation Ferritic stainless steel plate
JP2001089815A (en) * 1999-09-22 2001-04-03 Kawasaki Steel Corp Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP2001181798A (en) * 1999-12-20 2001-07-03 Kawasaki Steel Corp Hot rolled ferritic stainless steel sheet excellent in bendability, its manufacturing method, and method of manufacturing for cold rolled steel sheet
JP4374701B2 (en) * 2000-03-16 2009-12-02 Jfeスチール株式会社 Manufacturing method of ferritic stainless steel sheet for automobile exhaust system with excellent deep drawability
KR100547536B1 (en) * 2002-03-27 2006-01-31 신닛뽄세이테쯔 카부시키카이샤 Cast member and steel plate of ferritic stainless steel and manufacturing method thereof
EP1514949B1 (en) * 2002-06-17 2015-05-27 JFE Steel Corporation FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
JP2006274436A (en) * 2005-03-30 2006-10-12 Jfe Steel Kk Ferritic stainless sheet sheet and steel tube for bent tube having sectional shape for components
JP2009030078A (en) * 2007-07-24 2009-02-12 Nippon Steel & Sumikin Stainless Steel Corp High workability ferritic stainless steel sheet excellent in ridging resistance, and producing method therefor
KR100963109B1 (en) * 2007-11-22 2010-06-14 주식회사 포스코 High chrome ferritic stainless steels
CN104975237B (en) * 2011-06-16 2017-06-23 新日铁住金不锈钢株式会社 The excellent ferrite series stainless steel plate of wrinkle resistance and its manufacture method
CN102839328A (en) * 2011-06-24 2012-12-26 宝山钢铁股份有限公司 Ferritic stainless steel plate with high deep drawing quality and low anisotropy and preparation method of ferritic stainless steel plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158233A (en) * 1992-11-25 1994-06-07 Nippon Steel Corp Production of ferritic stainless steel thin slab excellent in toughness and ferritic stainless steel strip by the same thin slab
JP2002542040A (en) * 1999-04-22 2002-12-10 ユジノール A method for twin-roll continuous casting of ferritic stainless steel without microcracks
JP2001003143A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Ferritic stainless steel sheet excellent in workability and surface characteristics, and its manufacture
JP2009068034A (en) * 2007-09-11 2009-04-02 Jfe Steel Kk Ferritic stainless steel sheet superior in formability for extension flange, and manufacturing method therefor
WO2013136736A1 (en) * 2012-03-13 2013-09-19 Jfeスチール株式会社 Ferritic stainless steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092713A1 (en) * 2014-12-11 2016-06-16 Jfeスチール株式会社 Stainless steel and production method therefor
US10626486B2 (en) 2014-12-11 2020-04-21 Jfe Steel Corporation Stainless steel and production method therefor
CN107835865A (en) * 2015-07-17 2018-03-23 杰富意钢铁株式会社 Ferrite-group stainless steel hot rolled steel plate and hot-roll annealing plate and their manufacture method
CN115341147A (en) * 2022-08-19 2022-11-15 山西太钢不锈钢股份有限公司 Medium-chromium ferrite stainless steel for elevator panel and preparation method thereof
CN115341147B (en) * 2022-08-19 2023-09-26 山西太钢不锈钢股份有限公司 Medium chromium ferrite stainless steel for elevator panel and preparation method thereof

Also Published As

Publication number Publication date
TW201529866A (en) 2015-08-01
CN105874092A (en) 2016-08-17
JPWO2015105046A1 (en) 2017-03-23
KR20180114240A (en) 2018-10-17
KR20160105869A (en) 2016-09-07
JP5987996B2 (en) 2016-09-07
TWI530571B (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5987996B2 (en) Ferritic stainless steel and manufacturing method thereof
JP5884211B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP5888476B2 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
KR101705135B1 (en) Ferritic stainless steel sheet
WO2016092714A1 (en) Ferrite-based stainless steel and production method therefor
KR101941066B1 (en) Ferritic stainless steel and method for manufacturing the same
JP5862846B2 (en) Ferritic stainless steel and manufacturing method thereof
TWI605134B (en) Fertilizer-grained stainless steel hot-rolled steel sheet and hot-rolled annealing sheet, and methods for producing the same
CN107002199B (en) Stainless steel and method for producing same
WO2014147655A1 (en) Ferritic stainless steel sheet
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP2005350737A (en) Thin steel sheet for can provided with strong can body strength and press workability and its production method
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP2019081916A (en) Ferritic stainless steel sheet and method for producing the same
JP2001098327A (en) Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance
JP5900717B1 (en) Stainless steel sheet and manufacturing method thereof
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPWO2016092714A1 (en) Ferritic stainless steel and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015547587

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167021191

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15735591

Country of ref document: EP

Kind code of ref document: A1