KR100963109B1 - High chrome ferritic stainless steels - Google Patents
High chrome ferritic stainless steels Download PDFInfo
- Publication number
- KR100963109B1 KR100963109B1 KR1020070119532A KR20070119532A KR100963109B1 KR 100963109 B1 KR100963109 B1 KR 100963109B1 KR 1020070119532 A KR1020070119532 A KR 1020070119532A KR 20070119532 A KR20070119532 A KR 20070119532A KR 100963109 B1 KR100963109 B1 KR 100963109B1
- Authority
- KR
- South Korea
- Prior art keywords
- capl
- less
- elongation
- work hardening
- ferritic stainless
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
본 발명은 연신율이 개선된 17~20%의 크롬(Cr)을 함유한 페라이트계 스테인리스강에 관한 것이다. 본 발명은 중량%로, C:0.05이하, Ti:1.0이하, Si:1.0이하, Mn:1.0이하, P:0.04이하, S:0.03이하, Cr:17.0~20, Ni:0.5이하, Mo:1.0이하, N:0.05이하, Cu:1.0이하, Al:0.15이하, Nb:1.0이하, 잔부 Fe 및 기타 통상적인 불순물로 이루어진 스테인리스강 슬라브의 연신율을 하기의 수식에 의한 가공경화지수와 소성이방성 값과의 상관관계를 이용하여 제어한다.The present invention relates to a ferritic stainless steel containing 17-20% of chromium (Cr) with improved elongation. In the present invention, C: 0.05 or less, Ti: 1.0 or less, Si: 1.0 or less, Mn: 1.0 or less, P: 0.04 or less, S: 0.03 or less, Cr: 17.0 to 20, Ni: 0.5 or less, and Mo: The work hardening index and plastic anisotropy value of the elongation of stainless steel slab composed of 1.0 or less, N: 0.05 or less, Cu: 1.0 or less, Al: 0.15 or less, Nb: 1.0 or less, balance Fe and other common impurities Control by using correlation with.
연신율 : EL(%)=6.54 + 86.0×n + 3.52×rElongation: EL (%) = 6.54 + 86.0 × n + 3.52 × r
(n : 인장시험 시 변형률 5~10% 영역에서의 가공경화지수(n: Work hardening index in the range of 5 ~ 10% strain in tensile test
r : 15% 인장변형 후 측정된 소성이방성 값) r: Plastic anisotropy measured after 15% tensile strain
페라이트계 스테인리스강, 연신율, 소성이방성 Ferritic Stainless Steel, Elongation, Plastic Anisotropy
Description
본 발명은 고크롬 페라이트계 스테인리스강에 관한 것으로, 특히 건축자재, 주방용기, 가전제품 등에 주로 사용되는 17~20%의 크롬을 함유한 냉연판재에 있어서 최종 소둔재의 연신율을 예측하여 제어할 수 있는 고크롬 페라이트계 스테인리스강에 관한 것이다.The present invention relates to a high chromium ferritic stainless steel, in particular, can be predicted and controlled the elongation of the final annealing material in the cold rolled sheet containing 17 to 20% of chromium mainly used in building materials, kitchen containers, home appliances, etc. High chromium ferritic stainless steel.
일반적으로 페라이트(ferrite)계 스테인리스강은 낮은 가공경화지수(n)에 기인하여 오스테나이트 스테인리스강 대비 연신율이 열위한 것으로 알려져 있다. 일반적인 연신율 평가를 위해서 주로 인장시험이 수행되는데, 판재의 인장시험 시 가공경화지수는 응력-변형률 곡선에서 균일변형률을 제어하는 인자로 알려져 있다.In general, ferrite stainless steels are known to have poor elongation compared to austenitic stainless steels due to their low work hardening index (n). Tensile tests are mainly performed for general elongation evaluation, and the work hardening index is known as a factor controlling the uniform strain in the stress-strain curve.
여기서, 균일변형률은 인장 도중에 시편에서 폭 방향으로 확산이 발생하여 응력이 감소하기 시작하는 순간의 변형률을 의미한다. 따라서 n값(인장시험 시 변형률 5~10% 영역에서의 가공경화지수)의 증가는 균일변형률을 증가시켜 연신율을 증가시키는 역할을 한다. 일반적으로 n값은 합금원소와 그 함량에 의하여 가장 크 게 좌우된다. 합금원소량이 증가하면 n값은 감소하는 경향을 갖는다. 페라이트계 스테인리스강에서는 침입형 고온 원소인 탄소와 질소의 함량이 n값에 큰 영향을 미치며, 치환형 고용원소인 인과 실리콘 등이 n값에 큰 악영향을 미치는 것으로 알려져 있다. 따라서, 성분적 측면에서 보았을 때 연신율을 향상시키기 위해서는 합금원소의 양을 최소화 하는 것이 바람직하다. Here, the uniform strain refers to the strain at the moment when the diffusion begins to decrease in the width direction in the specimen during the tension, the stress begins to decrease. Therefore, the increase of n value (work hardening index in the range of 5 ~ 10% strain in tensile test) increases the strain rate by increasing uniform strain. In general, the n value is most dependent on the alloying element and its content. As the alloying element amount increases, the n value tends to decrease. In ferritic stainless steels, the contents of carbon and nitrogen, which are invasive high-temperature elements, have a great influence on n value, and phosphorus and silicon, which are substituted solid solution elements, are known to have a great negative effect on n value. Therefore, it is desirable to minimize the amount of alloying elements in order to improve the elongation from the component point of view.
그리고, 건축자재, 주방용기, 가전제품 등 내식성이 중요한 용도에 사용되는 17~20%의 크롬을 함유한 페라이트계 스테인리스강은 치환형 고용원소인 크롬을 다량 함유하고 있다. 이에 따라, 크롬 함량이 적은 페라이트계 스테인리스강 대비 연신율이 열위하다. 이러한 이유로 고크롬을 함유한 페라이트계 스테인리스강에서는 침입형 고용원소를 저감시켜 연신율의 감소를 억제하려는 것이 일반적인 합금설계의 방향이다. 그러나, 고크롬의 제조시 탄소와 질소를 낮추는 것은 제강공정에서 큰 부하를 초래하여 최종제품의 단가를 상승시키는 원인이 되는 문제점이 있다.In addition, ferritic stainless steel containing 17 to 20% of chromium, which is used in construction materials, kitchen containers, home appliances, and the like, in which corrosion resistance is important, has a large amount of chromium, which is a substituted solid solution. Accordingly, the elongation is inferior to that of the ferritic stainless steel with less chromium content. For this reason, in the ferritic stainless steel containing high chromium, it is a general direction of alloy design to reduce the invasive solid solution and to reduce the elongation. However, lowering carbon and nitrogen in the manufacture of high chromium has a problem that causes a large load in the steelmaking process and increases the unit cost of the final product.
따라서, 본 발명의 목적은 소재의 성분제어가 아닌 다른 방법으로 연신율을 개선시키기 위한 방법을 찾고자 함이며, 특히 소재의 소성이방성(r) 값과 가공경화지수(n) 값을 상호 조절하여 연신율을 제어할 수 있는 고크롬 페라이트계 스테인리스강을 제공하는 데 있다.Accordingly, an object of the present invention is to find a method for improving the elongation by other methods other than the control of the composition of the material, and in particular, by controlling the plastic anisotropy (r) value and the work hardening index (n) of the material mutually. To provide a controllable high chromium ferritic stainless steel.
본 발명은 중량%로, C: 0초과~0.05이하, Ti: 0초과~1.0이하, Si: 0초과~1.0이하, Mn: 0초과~1.0이하, P: 0초과~0.04이하, S: 0초과~0.03이하, Cr:17.0~20, Ni: 0초과~0.5이하, Mo: 0초과~1.0이하, N: 0초과~0.05이하, Cu: 0초과~1.0이하, Al: 0초과~0.15이하, Nb: 0초과~1.0이하, 잔부 Fe 및 기타 통상적인 불순물로 이루어진 스테인리스강 슬라브의 연신율을 하기의 수식에 의한 가공경화지수와 소성이방성 값과의 상관관계를 이용하여 제어한다.The present invention is in weight percent, C: greater than 0 to 0.05 or less, Ti: greater than 0 to 1.0 or less, Si: greater than 0 to 1.0 or less, Mn: greater than 0 to 1.0 or less, P: greater than 0 to 0.04 or less, S: 0 More than 0.03 or less, Cr: 17.0-20, Ni: greater than 0 and less than 0.5, Mo: greater than 0 and less than 1.0, N: greater than 0 and less than 0.05, Cu: greater than 0 and less than 1.0, Al: greater than 0 and less than 0.15 , Nb: greater than 0 to 1.0 or less, elongation of the stainless steel slab composed of the balance Fe and other common impurities is controlled by using the correlation between the work hardening index and the plastic anisotropy value according to the following formula.
연신율 : EL(%)=6.54 + 86.0×n + 3.52×rElongation: EL (%) = 6.54 + 86.0 × n + 3.52 × r
(n : 인장시험 시 변형률 5~10% 영역에서의 가공경화지수(n: Work hardening index in the range of 5 ~ 10% strain in tensile test
r : 15% 인장변형 후 측정된 소성이방성 값) r: Plastic anisotropy measured after 15% tensile strain
본 발명에 따른 고크롬 페라이트계 스테인리스강은 합금의 성분 제어뿐만 아니라, 소성이방성값과 가공경화지수값을 변화를 통하여 집합조직을 개선시킴으로써 열위한 연신율을 개선시킬 수 있다. 따라서, 연신율 향상을 위해서, 적정한 소성이방성값과 가공경화지수값을 통한 집합조직의 개선(r값)이 필수적으로 요구되며, 이 경우 제품의 연신율을 합금조성의 변화없이 더욱 향상시킬 수 있는 효과가 있다. 또한 본 발명은 판재의 방향에 따라 존재하는 연신율의 이방성을 쉽게 예측할 수 있는 부가적인 장점이 있다.The high chromium ferritic stainless steel according to the present invention can improve the elongation of heat by improving the texture by changing the plastic anisotropy value and the work hardening index value, as well as the component control of the alloy. Therefore, in order to improve the elongation, it is essential to improve the texture (r value) through proper plastic anisotropy value and work hardening index value. In this case, the effect of further improving the elongation of the product without changing the alloy composition is required. have. In addition, the present invention has the additional advantage that can easily predict the anisotropy of the elongation present according to the direction of the plate.
이하, 본 발명의 실시예를 도면들을 참조하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
본 발명의 실시예를 통하여, 소성이방성(r)이 증가하면 연신율이 증가함을 발견하였다. 본 발명의 주요한 특징은 가공경화지수가 연신율에 미치는 영향을 포함하여 인장시험시 연신율이 다음과 같은 형태의 수식으로 기술될 수 있다는 것이다.Through the embodiment of the present invention, it was found that the elongation increases as the plastic anisotropy (r) increases. The main feature of the present invention is that the elongation in the tensile test can be described by the following formula, including the effect of the work hardening index on the elongation.
(n : 인장시험 시 변형률 5~10% 영역에서의 가공경화지수(n: Work hardening index in the range of 5 ~ 10% strain in tensile test
r : 15% 인장변형 후 측정된 소성이방성 값) r: Plastic anisotropy measured after 15% tensile strain
수학식 1에서 가공경화지수 n값은 인장시험시 힘(P)과 공칭변형률(e) 곡선에서 다음과 같이 수학식 2로 정의된다. 하기 수학식 2에서 하부첨자 1과 2는 각각 5%, 10% 공칭변형률을 의미한다.In
수학식 1에서 소성이방성 r값은 15% 공칭변형 후 시편의 폭(W)측정으로 계산된 값이며, 다음의 수학식 3으로 정의된다. 하기 수학식 3에서 하부첨자 0은 인장변형 전 시료를 의미하며, L은 시편 게이지부 길이이다.In
일반적으로 페라이트(ferrite)계 스테인리스강의 소성이방성(r)은 소재의 심가공성 척도로 사용되고 있으며, 그 소재의 미세조직이 보유한 방향성 집합조직에 크게 의존한다. 본 발명의 특징은 소재의 심가공성의 척도인 소성이방성(r)이 연신율을 제어하는 주요인자라는 것이다. In general, the plastic anisotropy (r) of ferrite stainless steel is used as a measure of the deep workability of the material, and is highly dependent on the directional texture of the microstructure of the material. A feature of the present invention is that plastic anisotropy (r), which is a measure of the deep workability of a material, is a major factor controlling elongation.
표 1은 A합금과 B합금의 성분 조성을 나타낸 것이고, 표 2는 A합금과 B합금의 제조공정을 나타낸 것이다.Table 1 shows the composition of the alloy A and B alloy, Table 2 shows the manufacturing process of the alloy A and B alloy.
본 발명이 갖는 특성을 예시하기 위하여 하기 표 1과 같이 17~20%의 Cr을 함유한 A,B 두 합금을 준비하였다. A합금은 실제 생산라인에서 최종적으로 제조되었으며, B합금은 실제 생산라인에서 연속주조되고 열간 압연된 3.5mm 두께의 열연판을 채취하여 실험실에서 표 2와 같은 각각의 제조공정을 통하여 제조되었다.In order to illustrate the characteristics of the present invention, as shown in Table 1, two alloys A and B containing 17 to 20% Cr were prepared. The alloy A was finally manufactured in the actual production line, and the alloy B was manufactured through the respective manufacturing processes as shown in Table 2 in the laboratory by taking a 3.5 mm thick hot rolled plate continuously cast and hot rolled in the actual production line.
표 3에서는 본 발명의 실시예에 사용된 페라이트 스테인리스강의 연신율 (EL), 균일연신율(TS_EL), Post-load maximum 연신율(PLM_EL), 가공경화지수(n)와 소성이방성(r)을 나타내었다.Table 3 shows the elongation (EL), uniform elongation (TS_EL), post-load maximum elongation (PLM_EL), work hardening index (n) and plastic anisotropy (r) of the ferritic stainless steel used in the examples of the present invention.
여기서, Post-load maximum 연신율(PLM_EL)은 균일연신율에서 파단까지의 연신율을 나타낸다. 또한 표 3에 인장시험 및 r값 평가를 위한 판재시료의 채취방향을 압연 방향으로부터 기울기(degree)로 함께 표시하였다.Here, the post-load maximum elongation (PLM_EL) represents the elongation from uniform elongation to fracture. In addition, in Table 3, the sampling direction of the plate sample for the tensile test and r value evaluation is also shown in a slope (degree) from the rolling direction.
(㎜)thickness
(Mm)
(%)PLM_EL
(%)
EL(%)Example
EL (%)
EL(%)Comparative example
EL (%)
도 1은 본 발명에 의한 수식을 사용하여 구한 연신율 예측값(실시예)과 실제 연신율 측정값(비교예)을 도시한 그래프이다. 수학식 1로 예측한 실시예의 예측신뢰도는 R2=91.7%이었으며, 비교예로 사용된 예측수식은 EL(%)=8.89 + 104×n이었으며 예측신뢰도는 R2=61.9%이었다. 따라서, 종래의 가공경화지수(n)만을 고려한 수식보다, 가공경화지수(n)와 소성이방성(r)을 함께 고려한 본 발명의 연신율 예측 정도가 월등히 우수함을 알 수 있다.1 is a graph showing elongation predicted values (examples) and actual elongation measured values (comparative examples) obtained using the equations according to the present invention. The predicted reliability of the embodiment predicted by
도 2는 도 2는 가공경화지수가 상이한 두 합금의 연신율 측정값과 수식을 사용하여 구한 본 발명에 의한 연신율 예측값을 도시한 그래프이다. A합금에 비하여, B합금의 경우 가공경화지수가 높기 때문에 균일변형률(TS_EL)이 높게 나타나고 있으며, 그 결과 B합금의 연신율이 A합금보다 높게 나타나고 있음을 표 3으로부터 알 수 있다. 이와 같이, 가공경화지수가 상이한 두 합금의 경우에도 수학식 1로 예측할 경우에 예측치와 실측치가 동일한 직선 상에서 군집하여 나타남을 보여준다.FIG. 2 is a graph showing elongation predicted values according to the present invention obtained using elongation measured values and formulas of two alloys having different work hardening indices. Compared to the alloy A, since the work hardening index of alloy B is high, the uniform strain (TS_EL) is high. As a result, it can be seen from Table 3 that the elongation of the alloy B is higher than that of the alloy A. As described above, even when two alloys having different work hardening indices are predicted by
도 3은 소성이방성(r)의 증가에 따른 Post-load maximum 연신율(PLM_EL)의 변화를 도시한 것으로 본 발명에서 연신율 예측 시 소성이방성을 고려하여야 하는 사유를 설명하기 위한 그래프이다.3 is a graph illustrating a change in post-load maximum elongation (PLM_EL) according to an increase in plastic anisotropy (r), and is a graph for explaining the reason for considering plastic anisotropy when elongation is predicted in the present invention.
도 3을 참고하면, 페라이트계강의 인장시험 시, Post-load maximum 연신율(PLM_EL)이 r값의 증가와 함께 증가하는 경향을 분명히 나타내고 있다. 이는 본 발명의 가장 특징적인 사항으로서 집합조직의 발달이 강한 페라이트계 스테인리스강의 연신율 예측은 가공경화지수(n) 뿐만 아니라, 소성이방성(r)이 함께 고려되어야 함을 의미한다.Referring to FIG. 3, the post-load maximum elongation (PLM_EL) is clearly shown to increase with increasing r value in the tensile test of ferritic steel. This is the most characteristic feature of the present invention, the elongation prediction of ferritic stainless steel with strong development of texture means that not only the work hardening index (n) but also the plastic anisotropy (r) should be considered together.
이상에서와 같이 상세한 설명과 도면을 통해 본 발명의 최적 실시예를 개시하였다. 용어들은 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.As described above, the preferred embodiment of the present invention has been disclosed through the detailed description and the drawings. The terms are used only for the purpose of describing the present invention and are not used to limit the scope of the present invention as defined in the meaning or claims. Therefore, those skilled in the art will understand that various modifications and equivalent other embodiments are possible from this. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
도 1은 본 발명에 의한 수식을 사용하여 구한 연신율 예측값(실시예)과 실제 연신율 측정값(비교예)을 도시한 그래프도.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing elongation predicted values (examples) and actual elongation measured values (comparative examples) obtained using the equation according to the present invention.
도 2는 가공경화지수가 상이한 두 합금의 연신율 측정값과 수식을 사용하여 구한 본 발명에 의한 연신율 예측값을 도시한 그래프도.2 is a graph showing elongation predicted values according to the present invention obtained using elongation measured values and formulas of two alloys having different work hardening indices.
도 3은 소성이방성(r)의 증가에 따른 Post-load maximum 연신율(PLM_EL)의 변화를 도시한 것으로 본 발명에서 연신율 예측 시 소성이방성을 고려하여야 하는 사유를 설명하기 위한 그래프도.FIG. 3 is a graph illustrating changes in post-load maximum elongation (PLM_EL) according to an increase in plastic anisotropy (r).
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070119532A KR100963109B1 (en) | 2007-11-22 | 2007-11-22 | High chrome ferritic stainless steels |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070119532A KR100963109B1 (en) | 2007-11-22 | 2007-11-22 | High chrome ferritic stainless steels |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090052957A KR20090052957A (en) | 2009-05-27 |
KR100963109B1 true KR100963109B1 (en) | 2010-06-14 |
Family
ID=40860528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070119532A KR100963109B1 (en) | 2007-11-22 | 2007-11-22 | High chrome ferritic stainless steels |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100963109B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220068743A (en) * | 2020-11-19 | 2022-05-26 | 주식회사 포스코 | Ferritic stainless steel with improved strength, workability and corrosion resistance |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015105046A1 (en) * | 2014-01-08 | 2015-07-16 | Jfeスチール株式会社 | Ferritic stainless steel and method for producing same |
CN116230143B (en) * | 2023-04-27 | 2023-07-11 | 燕山大学 | Design method for improving elongation of variable-thickness metal plate strip |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5144888A (en) | 1974-10-15 | 1976-04-16 | Sharp Kk | |
JP2002332549A (en) | 2001-05-10 | 2002-11-22 | Nisshin Steel Co Ltd | Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor |
KR20040110644A (en) * | 2003-06-20 | 2004-12-31 | 주식회사 포스코 | Ferritic stainless steel having an excellent elongation percentage and method thereof |
KR100729526B1 (en) | 2001-07-04 | 2007-06-15 | 주식회사 포스코 | Method for producing ferritic stainless steel sheets having excellent ridging property |
-
2007
- 2007-11-22 KR KR1020070119532A patent/KR100963109B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5144888A (en) | 1974-10-15 | 1976-04-16 | Sharp Kk | |
JP2002332549A (en) | 2001-05-10 | 2002-11-22 | Nisshin Steel Co Ltd | Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor |
KR100729526B1 (en) | 2001-07-04 | 2007-06-15 | 주식회사 포스코 | Method for producing ferritic stainless steel sheets having excellent ridging property |
KR20040110644A (en) * | 2003-06-20 | 2004-12-31 | 주식회사 포스코 | Ferritic stainless steel having an excellent elongation percentage and method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220068743A (en) * | 2020-11-19 | 2022-05-26 | 주식회사 포스코 | Ferritic stainless steel with improved strength, workability and corrosion resistance |
WO2022108058A1 (en) * | 2020-11-19 | 2022-05-27 | 주식회사 포스코 | Ferritic stainless steel with improved strength, workability, and corrosion resistance |
KR102424980B1 (en) | 2020-11-19 | 2022-07-25 | 주식회사 포스코 | Ferritic stainless steel with improved strength, workability and corrosion resistance |
Also Published As
Publication number | Publication date |
---|---|
KR20090052957A (en) | 2009-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101048946B1 (en) | Spring steel, method for producing spring using same and spring produced therefrom | |
EP2832876B1 (en) | High-strength stainless steel wire having excellent heat deformation resistance, high-strength spring, and method for manufacturing same | |
JP6306711B2 (en) | Martensitic steel with delayed fracture resistance and manufacturing method | |
KR100821059B1 (en) | Ferritic stainless steel with high corrosion resistance and stretchability and the method of manufacturing the same | |
KR102065814B1 (en) | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance | |
JP5091732B2 (en) | Stainless steel for low Ni springs with excellent sag resistance and bendability | |
JP6064896B2 (en) | Steel material with excellent fatigue crack propagation characteristics, method for producing the same, and method for determining steel materials with excellent fatigue crack propagation characteristics | |
KR20190042044A (en) | My sulfuric acid dew point corrosion steel | |
EP3075871B1 (en) | Soft magnetic steel and method for manufacturing same, and soft magnetic component obtained from soft magnetic steel | |
KR20190042042A (en) | My sulfuric acid dew point corrosion steel | |
JP6064897B2 (en) | High-strength steel material with excellent fatigue crack propagation resistance and its determination method | |
EP3674434A1 (en) | Low-ni austenitic stainless steel with excellent hot workability and hydrogen embrittlement resistance | |
EP3559295B1 (en) | An object comprising a duplex stainless steel and the use thereof | |
KR20210127922A (en) | High strength steel with improved mechanical properties | |
CN110062814A (en) | Low alloy steel plate with excellent intensity and ductility | |
EP3050987B1 (en) | Steel for high-strength bolts which has excellent delayed fracture resistance and bolt formability, and bolt | |
KR100963109B1 (en) | High chrome ferritic stainless steels | |
KR20100058851A (en) | Method for manufacturing ferritic stainless steel with improved formability and ridging property | |
WO2014157146A1 (en) | Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same | |
EP2220260A1 (en) | Low chrome ferritic stainless steel with high corrosion resistance and stretchability and method of manufacturing the same | |
KR101056235B1 (en) | Prediction of Material Properties of Austenitic Stainless Steel Cold Rolled Products | |
KR20100069875A (en) | Austenitic stainless steel having excellent hot workability with high manganese | |
KR102120697B1 (en) | Manufacturing method of ferritic stainless steel having excellent ridging property and formability | |
JP2010189719A (en) | Age-hardening type stainless steel sheet for spring | |
KR20120063793A (en) | Ferrite stainless-steel with good workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130531 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20140526 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20150526 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20160601 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20170526 Year of fee payment: 8 |