JP2002332549A - Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor - Google Patents

Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor

Info

Publication number
JP2002332549A
JP2002332549A JP2001139576A JP2001139576A JP2002332549A JP 2002332549 A JP2002332549 A JP 2002332549A JP 2001139576 A JP2001139576 A JP 2001139576A JP 2001139576 A JP2001139576 A JP 2001139576A JP 2002332549 A JP2002332549 A JP 2002332549A
Authority
JP
Japan
Prior art keywords
less
stainless steel
max
steel strip
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001139576A
Other languages
Japanese (ja)
Inventor
Hiroki Tomimura
宏紀 冨村
Hiroshi Fujimoto
廣 藤本
Kenichi Morimoto
憲一 森本
Yasutoshi Kunitake
保利 國武
Naoto Hiramatsu
直人 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2001139576A priority Critical patent/JP2002332549A/en
Priority to PCT/JP2002/004524 priority patent/WO2002092867A1/en
Priority to EP02769555A priority patent/EP1386977B1/en
Priority to CNB028094530A priority patent/CN1249262C/en
Priority to US10/477,015 priority patent/US20040140023A1/en
Priority to DE60213784T priority patent/DE60213784T2/en
Priority to KR10-2003-7013121A priority patent/KR20030094325A/en
Publication of JP2002332549A publication Critical patent/JP2002332549A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys

Abstract

PROBLEM TO BE SOLVED: To provide a stainless steel strip having excellent shape fixability in which the defects of shape such as springback and twist appearing in a formed product can be reduced by using an inexpensive material having a low Ni content, and to provide a production method therefor. SOLUTION: The stainless steel strip is obtained by subjecting ferritic stainless steel having a composition containing, by mass, <=0.10% C, <=1.0% Si, <=1.0% Mn, <=0.050% P, <=0.020% S, <=2.0% Ni, 8.0 to 22.0% Cr and <=0.05% N, and, if required, further containing one or more kinds selected from <=0.10% Al, <=1.0% Mo, <=1.0% Cu, 0.01 to 0.50% Ti, 0.01 to 0.50% Nb, 0.01 to 0.30% V, 0.01 to 0.30% Zr and 0.0010 to 0.0100% B, and the balance Fe with inevitable impurities to hot rolling, and thereafter subjecting the steel sheet to batch annealing at 700 to 880 deg.C for 1 to 24 hrs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プレス成型や曲げ加
工、ロールフォーミングなどの加工に供される加工成形
品の加工後のスプリングバック、ねじれなどの形状不良
を少なくできる形状凍結性に優れたステンレス鋼帯およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has an excellent shape freezing property which can reduce shape defects such as springback and torsion after processing of a molded product subjected to processing such as press molding, bending and roll forming. The present invention relates to a stainless steel strip and a method for producing the same.

【0002】[0002]

【従来の技術】ステンレス鋼帯(以下薄鋼板を含め鋼帯
と称す。)は、意匠性、耐食性などに優れた鋼板で、建
物の内外装材や家電機器のフレーム、厨房部材などさま
ざまな用途に用いられている。しかし、普通鋼と比較す
ると、弾性歪み量が大きいため、製品に弾性回復に起因
する形状不良が発生する。例えば、単純な曲げ製品の場
合、成形後、製品が金型から離れる際に弾性歪みは開放
されるため、製品角度は設計角度よりも大きくなる。こ
の現象は一般的にスプリングバックと呼ばれており、成
形の際の不具合の一つである。
2. Description of the Related Art A stainless steel strip (hereinafter referred to as a steel strip including a thin steel sheet) is a steel sheet having excellent design and corrosion resistance, and is used for various purposes such as interior and exterior materials of buildings, frames of home electric appliances, kitchen members, and the like. It is used for However, compared to ordinary steel, since the elastic strain amount is large, a shape defect due to elastic recovery occurs in the product. For example, in the case of a simple bent product, the elastic angle is released when the product separates from the mold after molding, so that the product angle is larger than the design angle. This phenomenon is generally called springback, and is one of the problems during molding.

【0003】また浅絞り製品の場合、製品が金型から離
れた後も弾性歪みは完全には開放されず、フランジやパ
ンチ底部に残存するため、製品のねじれなど不具合が生
じる。これらステンレス鋼の不具合をカバーするには、
これまではステンレス鋼の中では軟質なSUS304が
使用されてきた。
[0003] In the case of a shallow drawn product, the elastic strain is not completely released even after the product is separated from the mold, and remains on the flange or the bottom of the punch, causing problems such as twisting of the product. To cover these stainless steel deficiencies,
Until now, soft SUS304 has been used in stainless steel.

【0004】[0004]

【発明が解決しようとする課題】しかし、オーステナイ
ト系ステンレス鋼はNiを多量に含有するために、おの
ずと材料コストが高くつく。そこで本発明は、このよう
な問題を解消すべく案出されたものであり、Ni含有量
の少ない安価な材料を用いて、成型加工製品の加工後の
スプリングバック、ねじれなどの形状不良を少なくでき
る形状凍結性に優れたステンレス鋼帯およびその製造方
法を提供することを目的とする。
However, since austenitic stainless steel contains a large amount of Ni, the material cost is naturally high. Therefore, the present invention has been devised to solve such a problem. By using an inexpensive material having a low Ni content, it is possible to reduce shape defects such as springback and torsion after processing of a molded product. It is an object of the present invention to provide a stainless steel strip excellent in shape freezing property and a method for producing the same.

【課題を解決するための手段】本発明の形状凍結性に優
れたフェライト系ステンレス鋼帯は、その目的を達成す
るため、質量%において、C:0.10%以下、Si:
1.0%以下、Mn:1.0%以下、P:0.050%
以下、S:0.020%以下、Ni:2.0%以下、C
r:8.0〜22.0%、N:0.05%以下、さらに
場合によってはAl:0.10%以下、Mo:1.0%
以下、Cu:1.0%以下、Ti:0.01〜0.50
%、Nb:0.01〜0.50%、V:0.01〜0.
30%、Zr:0.01〜0.30%またはB:0.0
010〜0.0100%の一種以上を、下記(1)式で
定義されるFM値が0以下となるような割合で含有し、
残部がFeおよび不可避的不純物からなる組成を有し、
面内異方性rmax−rminが0.80以下で、0.2%耐
力異方度σmax−σminが20N/mm2以下であること
を特徴とするものである。 (1)FM=420C-11.5Si+7Mn+23Ni-3.5Cr-12Mo+9Cu-49Ti-
50Nb-23V-52Al+470N+20 強度的には、圧延方向、圧延方向に対して45°方向な
らびに圧延方向と垂直方向の0.2%耐力値が350N
/mm2以下のものが好ましい。また、上記成分組成を
有するフェライト系ステンレス鋼を熱間圧延後、700
〜880℃で1〜24時間のバッチ焼鈍をすることで得
るものである。
In order to achieve the object, the ferritic stainless steel strip of the present invention having excellent shape freezing properties has a C content of 0.10% or less and a Si content of 0.1% by mass.
1.0% or less, Mn: 1.0% or less, P: 0.050%
Below, S: 0.020% or less, Ni: 2.0% or less, C
r: 8.0 to 22.0%, N: 0.05% or less, and in some cases, Al: 0.10% or less, Mo: 1.0%
Hereinafter, Cu: 1.0% or less, Ti: 0.01 to 0.50
%, Nb: 0.01-0.50%, V: 0.01-0.
30%, Zr: 0.01 to 0.30% or B: 0.0
One or more of 010 to 0.0100% is contained in such a ratio that the FM value defined by the following formula (1) becomes 0 or less,
The balance has a composition consisting of Fe and unavoidable impurities,
The in-plane anisotropy r max -r min is 0.80 or less, and the 0.2% proof stress anisotropy σ maxmin is 20 N / mm 2 or less. (1) FM = 420C-11.5Si + 7Mn + 23Ni-3.5Cr-12Mo + 9Cu-49Ti-
50Nb-23V-52Al + 470N + 20 In terms of strength, the 0.2% proof stress in the rolling direction, 45 ° direction to the rolling direction and perpendicular to the rolling direction is 350N.
/ Mm 2 or less. After hot-rolling a ferritic stainless steel having the above-mentioned composition, 700
It is obtained by performing batch annealing at 8880 ° C. for 1 to 24 hours.

【0005】[0005]

【作用】本発明者らは、加工時のスプリングバック等の
形状変化が小さい、すなわち成形時の形状凍結性に優れ
たフェライト系ステンレス鋼帯を得る手段を種々検討し
た結果、成分ならびに加工熱処理を最適化することで達
成されることを見出した。特に、これまで着目されてい
なかった面内異方性rmax−rminと0.2%耐力異方度
σmax−σminの2つのパラメータを組み合わせること
で、フェライト系ステンレス鋼帯に優れた形状凍結性を
付与できることを見出した。
The present inventors have studied various means for obtaining a ferritic stainless steel strip having a small shape change such as springback during processing, that is, excellent in shape freezing property during forming. It has been found that this can be achieved by optimization. In particular, hitherto by combining two parameters planar anisotropy r max -r min and 0.2% proof stress, which has not been noted different Katado sigma max - [sigma] min, excellent ferritic stainless steel strip It has been found that shape freezing can be imparted.

【0006】実際の加工品を成型加工しようとする場
合、一軸方向の変形のみではなく、多軸方向の変形を考
えなければならず、本発明者らは、形状凍結性は各方向
での特性値さらにはその各方向での異方性が形状凍結性
に大きく影響していることを見出した。特に、重要な因
子は圧延方向(L方向)、圧延方向に対して45°方向
(D方向)ならびに圧延方向に対して垂直方向(T方
向)での、r値と0.2%耐力の差である。各方向でラ
ンクフォード値r値が異なると同一歪みを付加した時の
板厚減肉が場所により異なり、製品化交互の歪み分布が
発生し形状凍結性が劣ることになる。また、0.2%耐
力が方向で異なるということは、加工時に一定応力で成
形する時に場所により付与される歪みが異なることにな
り、形状凍結性に悪影響を及ぼすことになる。
[0006] When molding an actual processed product, it is necessary to consider not only the deformation in the uniaxial direction but also the deformation in the multiaxial direction. It was found that the value and furthermore the anisotropy in each direction greatly affected the shape freezing property. In particular, the important factor is the difference between the r value and the 0.2% proof stress in the rolling direction (L direction), the direction at 45 ° to the rolling direction (D direction) and the direction perpendicular to the rolling direction (T direction). It is. If the Rankford value r is different in each direction, the thickness reduction when the same strain is applied differs depending on the location, and the strain distribution is alternated in commercialization, resulting in poor shape freezing property. Further, the difference in the 0.2% proof stress in the direction means that the strain applied varies depending on the location when molding with a constant stress at the time of processing, which adversely affects the shape freezing property.

【0007】したがって、加工時の形状凍結性を良くす
るためには、面内異方性rmax−rm inと0.2%耐力異
方度σmax−σminの上記2つのパラメータを小さくする
ことが有効である。(なお、maxとminは、L方
向、D方向、T方向での最大値、最小値である。) このような異方性、異方度を小さくするためには、フェ
ライト系ステンレス鋼のフェライト再結晶粒に異方性を
なくし、面方位を均一化させる必要がある。面内異方性
max−rminおよび0.2%耐力異方度σmax−σmin
小さくするには、固溶しているCおよびNを炭窒化物と
してフェライト単相のマトリックス中に均一微細に析出
分散させることが必要である。
Accordingly, in order to improve the shape fixability at the time of processing, reduce the two parameters planar anisotropy r max -r m in a 0.2% yield different Katado sigma max - [sigma] min It is effective to do. (Note that max and min are the maximum and minimum values in the L, D, and T directions.) To reduce such anisotropy and anisotropy, the ferrite stainless steel It is necessary to eliminate anisotropy in the recrystallized grains and make the plane orientation uniform. In order to reduce the in-plane anisotropy r max -r min and the 0.2% proof stress anisotropy σ maxmin , C and N in solid solution are converted into carbonitrides in a ferrite single phase matrix. It is necessary to uniformly disperse and disperse.

【0008】炭窒化物を均一微細に析出分散させておけ
ば、この微細な炭窒化物を、その後冷延→焼鈍の過程で
生成するフェライト再結晶の核として利用できるので、
面方位を均一にさせることができ、その結果面内異方性
max−rminと0.2%耐力異方度σmax−σminを小さ
くすることができる。本発明では、バッチ焼鈍条件を選
定することにより、焼鈍時に炭窒化物を均一に析出分散
させ、再結晶粒の面方位を均一化させたフェライト系の
ステンレス鋼帯を得ることができ、成形時の形状凍結性
を高めることができたものである。
If the carbonitrides are uniformly and finely precipitated and dispersed, the fine carbonitrides can be used as nuclei for recrystallization of ferrite generated in the process of cold rolling and annealing thereafter.
The plane orientation can be made uniform, and as a result, the in-plane anisotropy r max -r min and the 0.2% proof stress anisotropy σ maxmin can be reduced. In the present invention, by selecting batch annealing conditions, it is possible to uniformly precipitate and disperse carbonitrides during annealing to obtain a ferritic stainless steel strip in which the plane orientation of recrystallized grains is made uniform. Can improve the shape freezing property.

【0009】[0009]

【実施の態様】以下、本発明ステンレス鋼に含まれる合
金成分、含有量、製造条件等を説明する。C:0.10%以下 Cは、バッチ焼鈍時に炭化物を形成し、それが最終焼鈍
での再結晶フェライトなランダム化再結晶核として働
く。しかし、Cは冷延焼鈍後の強度を上昇させる元素で
あり、あまり高いと靭性の低下を招くため、0.10%
以下とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The alloy components, contents, production conditions and the like contained in the stainless steel of the present invention will be described below. C: 0.10% or less C forms carbides during batch annealing, which acts as randomized recrystallization nuclei of recrystallized ferrite in final annealing. However, C is an element that increases the strength after cold-rolling annealing, and if it is too high, it causes a decrease in toughness.
It was as follows.

【0010】Si:1.0%以下 Siは通常脱酸のために使用するが、固溶強化能が高
く、その含有量が過剰であると材質が硬化し、延性の低
下を招くので、1.0%を上限とした。Mn:1.0%以下 Mnは、オーステナイト形成元素であり、FM値の制御
に有効利用できるとともに、固溶強化能が小さく材質へ
の悪影響が少ない。しかし、含有量が多いと溶製時にM
nヒュームが生成する等、製造性が低下するので、その
上限を1.0%とした。
Si: 1.0% or less Si is usually used for deoxidation. However, Si has a high solid solution strengthening ability, and if its content is excessive, the material is hardened and the ductility is reduced. 0.0% was made the upper limit. Mn: 1.0% or less Mn is an austenite-forming element, can be effectively used for controlling the FM value, and has a small solid solution strengthening ability and has little adverse effect on the material. However, when the content is large, M
Since the manufacturability deteriorates due to generation of n fume, the upper limit is set to 1.0%.

【0011】P:0.050%以下 Pは、熱間加工性に有害な元素である。特に0.050
%を超えるとその影響は顕著になる。S:0.020%以下 Sは、結晶粒界に偏析しやすく、粒界脆化により熱間加
工性の低下等を促進する元素であり、0.020%を超
えるとその影響は顕著になる。
P: 0.050% or less P is an element harmful to hot workability. Especially 0.050
%, The effect becomes significant. S: 0.020% or less S is an element that easily segregates at crystal grain boundaries and promotes reduction in hot workability due to grain boundary embrittlement. When S exceeds 0.020%, the effect becomes significant. .

【0012】Ni:2.0%以下 Niは、Mnと同様にオーステナイト形成元素であり、
FM値の制御に有効利用できる元素である。しかし、
2.0を超える添加は硬質化やコスト上昇を招くので
2.0%を上限とした。Cr:8.0〜22.0% Crは、ステンレス鋼としての耐食性を発揮するために
少なくとも8%必要である。一方、多量の含有は靭性や
加工性の低下を招くので、上限は22.0%とした。
Ni: 2.0% or less Ni is an austenite-forming element like Mn.
It is an element that can be effectively used for controlling the FM value. But,
Since addition exceeding 2.0 causes hardening and cost increase, the upper limit is 2.0%. Cr: 8.0 to 22.0% Cr must be at least 8% to exhibit the corrosion resistance of stainless steel. On the other hand, a large amount causes reduction in toughness and workability, so the upper limit was set to 22.0%.

【0013】N:0.05%以下 Nは、Cと同様にバッチ焼鈍で、窒化物を形成し、それ
が最終焼鈍での再結晶フェライトの結晶方位ランダム化
の再結晶核として働く。しかしNは冷延焼鈍材の強度を
上昇させる元素であり、あまり高いと靭性の低下を招く
ため、0.05%以下とした。
N: 0.05% or less N forms a nitride by batch annealing like C, and it acts as a recrystallization nucleus for randomizing the crystal orientation of recrystallized ferrite in final annealing. However, N is an element that increases the strength of the cold-rolled annealed material. If N is too high, the toughness is reduced.

【0014】以下の元素は、必要に応じて添加される。Al:0.10%以下 Alは、脱酸のために有効な元素であるが、過剰な添加
は非金属介在物の存在による靭性低下や表面欠陥の原因
となる。そのため下記FM値のバランスを取りつつ選択
的に添加されるが、上限は0.10%とする。Mo:1.0%以下 Moは、耐食性を改善するのに有効な元素であるが、過
剰な添加は高温での固溶強化や動的再結晶の遅滞によ
り、熱間加工性の低下をもたらすので、含有させる場合
は1.0%以下とする。Cu:1.0%以下 Cuは、溶製時のスクラップからの混入等、不可避的に
含有される場合が多いが、過度の含有は熱間加工性や耐
食性を低下させるので1.0%以下にする。
The following elements are added as needed. Al: 0.10% or less Al is an element effective for deoxidation, but excessive addition causes a decrease in toughness and surface defects due to the presence of nonmetallic inclusions. Therefore, it is selectively added while keeping the following FM value balance, but the upper limit is set to 0.10%. Mo: 1.0% or less Mo is an element effective for improving corrosion resistance. However, excessive addition causes reduction in hot workability due to solid solution strengthening at high temperatures and delay of dynamic recrystallization. Therefore, when it is contained, the content is made 1.0% or less. Cu: 1.0% or less Cu is inevitably contained in many cases, such as mixing from scrap at the time of melting, but excessive content lowers hot workability and corrosion resistance, so 1.0% or less. To

【0015】Ti:0.01〜0.50% Nb:0.01〜0.50% V:0.01〜0.30% Zr:0.01〜0.30% Ti、Nb、Vは固溶Cを炭化物として析出させる効果
による加工性向上、Zrは、鋼中のOを酸化物として捕
らえることによる加工性や靭性向上の面から有効な元素
である。しかしながら、多量に添加すると製造性が低下
するので、添加する場合の好ましい添加量はTi、Nb
は0.01〜0.50%、V、Zrは0.01〜0.3
0%である。
Ti: 0.01 to 0.50% Nb: 0.01 to 0.50% V: 0.01 to 0.30% Zr: 0.01 to 0.30% Ti, Nb and V are solid Zr is an effective element from the viewpoint of improving workability and toughness by capturing O in steel as an oxide by the effect of precipitating dissolved C as carbide. However, if a large amount is added, the productivity is reduced. Therefore, when adding, a preferable addition amount is Ti, Nb.
Is 0.01 to 0.50%, and V and Zr are 0.01 to 0.3%.
0%.

【0016】B:0.0010〜0.0100% Bは、熱延板の変態相分布を均一分散化させ、これが最
終組織のフェライト組織の集合組織を形成させずに、ラ
ンダム化に有効に働く。その効果は0.0010%未満
では十分ではない。一方、0.0100%を超えると熱
間加工性の低下や溶接性の低下を招くので、含有させる
場合の好ましい含有量は0.0010〜0.0100%
である。
B: 0.0010 to 0.0100% B uniformly disperses the transformed phase distribution of the hot-rolled sheet, and this effectively works for randomization without forming a texture of a ferrite structure as a final structure. . An effect of less than 0.0010% is not sufficient. On the other hand, if the content exceeds 0.0100%, a decrease in hot workability and a decrease in weldability are caused. Therefore, a preferable content when the content is 0.0010 to 0.0100%.
It is.

【0017】FM値≦0 上記のような個々の成分範囲規定の他に、鋼帯製造過程
のバッチ焼鈍においてオーステナイト相が形成すること
を避け、形状凍結性を向上させるためには次式(1)で
定義されるFM値を規定した。この値を0以下にするこ
とで、バッチ焼鈍工程の高温においてオーステナイトが
形成しないように工夫した。このFM値が0以上になる
と、フェライト相中に部分的にオーステナイト相が形成
される。オーステナイト相はフェライト相に比してCお
よびNを多く固溶できる。そのためにフェライト相中に
部分的にオーステナイト相が形成されると、両相でCお
よびNの固溶度が変わり、この固溶度の不均一化が面内
異方性や耐力異方性を生じさせることになる。
FM value ≦ 0 In addition to the above-mentioned individual component ranges, in order to avoid the formation of an austenite phase and improve the shape freezing property in the batch annealing in the steel strip manufacturing process, the following formula (1) is used. ) Were defined. By reducing this value to 0 or less, a device was devised so that austenite was not formed at the high temperature in the batch annealing step. When the FM value becomes 0 or more, an austenite phase is partially formed in the ferrite phase. The austenite phase can dissolve more C and N than the ferrite phase. Therefore, when the austenite phase is partially formed in the ferrite phase, the solid solubility of C and N changes in both phases, and the non-uniformity of the solid solubility causes in-plane anisotropy and proof anisotropy. Will be caused.

【0018】(1)FM=420C-11.5Si+7Mn+23Ni-3.5Cr-12
Mo+9Cu-49Ti-50Nb-23V-52Al+470N+20
(1) FM = 420C-11.5Si + 7Mn + 23Ni-3.5Cr-12
Mo + 9Cu-49Ti-50Nb-23V-52Al + 470N + 20

【0019】面内異方性rmax−rmin≦0.80 0.2%耐力異方度σmax−σmin20N/mm2 上記で説明したように、面内異方性rmax−rminおよび
0.2%耐力異方度σ max−σmminの2つのパラメータ
は小さい方が好ましい。本発明者らが、FM値0以下の
各種鋼帯を成形し、成形後の上記2つのパラメータと形
状凍結性の関係を整理してみた所、面内異方性rmax
minが0.8以下であり、0.2%耐力異方度σmax
σminが20N/mm2以下だと、形状凍結性に優れるこ
とを見出した。
[0019]In-plane anisotropy r max −r min ≦ 0.80 0.2% proof stress anisotropy σ maxmin 20 N / mm 2  As described above, the in-plane anisotropy rmax-Rminand
0.2% proof stress anisotropy σ max−σmminTwo parameters
Is preferably smaller. The present inventors, FM value 0 or less
The above two parameters and shapes after forming various steel strips
After examining the relationship between the freezing properties, the in-plane anisotropy rmax
rminIs 0.8 or less, and 0.2% proof stress anisotropy σmax
σminIs 20 N / mmTwoIf below, excellent shape freezing property
And found.

【0020】0.2%耐力≦350N/mm2 形状凍結性に優れたフェライト系ステンレス鋼を得るた
めには、マルテンサイトが生成しない完全なフェライト
組織とし、0.2%耐力は350N/mm2以下とする
ことが好ましい。0.2%耐力がこの値を超えて高くな
ると、必然的に塑性変形するための負荷応力は大きくな
り、スプリングバック等が大きくなり、形状凍結性は劣
ることになる。
In order to obtain a ferritic stainless steel excellent in shape freezing property, 0.2% proof stress ≦ 350 N / mm 2 , a complete ferrite structure in which martensite is not formed, and 0.2% proof stress is 350 N / mm 2 It is preferable to set the following. If the 0.2% proof stress is higher than this value, the applied stress for inevitably plastic deformation increases, springback and the like increase, and the shape freezing property deteriorates.

【0021】焼鈍条件:(700〜880)℃×(1〜
24)Hr フェライト系ステンレス鋼を製造する際、上記のように
面内異方性rmax−rm inおよび0.2%耐力異方度σ
max−σminを小さくするには、固溶しているCおよびN
を炭窒化物としてフェライト単相のマトリックス中に均
一に析出分散させることが必要である。バッチ温度が7
00℃を下回ると炭窒化物が十分に析出できず、また8
80℃超えて高すぎると再結晶フェライトの優先成長
(二次再結晶)が起こり、逆に異方性が大きくなる。炭
窒化物を十分析出させるためには少なくとも1時間以上
の均熱が必要であるが、長時間の加熱は必要なく経済的
な面から24時間以内とした。
Annealing conditions: (700 to 880) ° C. × (1 to
24) making the Hr ferritic stainless steel, in-plane anisotropy as described above r max -r m in and 0.2% proof stress different Katado σ
To reduce max- σ min , C and N
Must be uniformly precipitated and dispersed as a carbonitride in a ferrite single-phase matrix. Batch temperature is 7
If the temperature is lower than 00 ° C., carbonitrides cannot be sufficiently precipitated, and
If the temperature exceeds 80 ° C. and is too high, preferential growth of recrystallized ferrite (secondary recrystallization) occurs, and conversely, the anisotropy increases. At least one hour of soaking is required to sufficiently precipitate carbonitrides, but heating is not required for a long time, and the heating is performed within 24 hours from an economical viewpoint.

【0022】[0022]

【実施例】表1に示す化学成分値(質量%)とFM値を
有する鋼を、真空溶解炉にて溶解後、鍛造、熱延で板厚
3.0mmとし、表2に示すバッチ焼鈍や中間焼鈍を施
した。さらに酸洗後、冷間圧延により板厚0.5mmと
し、880℃×1分均熱・空冷の仕上げ焼鈍を施して酸
洗した。得られた鋼板を供試材として、下記の方法でラ
ンクフォード値、0.2%耐力を測定した。
EXAMPLE Steel having the chemical composition values (mass%) and FM values shown in Table 1 was melted in a vacuum melting furnace, then forged and hot-rolled to a sheet thickness of 3.0 mm. Intermediate annealing was performed. Further, after pickling, the plate was cold-rolled to a sheet thickness of 0.5 mm, and subjected to finish annealing at 880 ° C. × 1 minute soaking and air cooling to perform pickling. The obtained steel sheet was used as a test material, and the Rankford value and 0.2% proof stress were measured by the following methods.

【0023】r値 JIS13B号試験片を用い15%の引張り歪みを与え
た後、圧延方向(L方向)、圧延方向に対して45°方
向(D方向)ならびに圧延方向に対し垂直方向(T方
向)でのr値を求めた。上記3方向で求めた値の中で、
最大値から最小値の差分を面内異方性rmax−rminとし
た。
After applying 15% tensile strain using a r-value JIS13B test piece, the rolling direction (L direction), the direction at 45 ° to the rolling direction (D direction), and the direction perpendicular to the rolling direction (T direction) ) Was determined. Among the values obtained in the above three directions,
The difference between the maximum value and the minimum value was defined as in-plane anisotropy r max -r min .

【0024】0.2%耐力 JIS13号試験片を用い、歪み速度3.3×10−4
で引張り歪みを与えた後、圧延方向(L方向)、圧延方
向に対して45°方向(D方向)ならびに圧延方向に対
し垂直方向(T方向)での0.2%耐力を求めた。上記
3方向で求めた値の中で、最大値から最小値の差分を
0.2%耐力異方度σmax−σminとした。
A 0.2% proof stress JIS No. 13 test piece was used, and the strain rate was 3.3 × 10 −4.
Then, 0.2% proof stress in the rolling direction (L direction), the 45 ° direction (D direction) with respect to the rolling direction, and the direction perpendicular to the rolling direction (T direction) was determined. Among the values obtained in the above three directions, the difference between the maximum value and the minimum value was defined as 0.2% proof stress anisotropy σ max −σ min .

【0025】形状凍結性 図1に示すようなA〜Eの構成である形状(A〜D:1
0mm×36mm、E:□40mm)のものを、の
ような採り方で採取し、角型ポンチでEの各辺の90°
曲げを行った(R/t=8 R:ポンチ先端径4mm、
t:試験板厚0.5mm)。成形条件は200tonメ
カプレスを用い、板押さえ圧20ton、成形速度20
0mm/minで実施し、角筒曲げ後のスプリングバッ
ク角度を測定した。図1の矢印(1)〜(8)の8箇所
のスプリング角度Δθを測定し、その最大値をΔθmax
とした。
Shape Freezing Properties Shapes (A to D: 1 to A) shown in FIG.
(0 mm x 36 mm, E: □ 40 mm), and sampled by a square punch, 90 ° on each side of E with a square punch
Bending was performed (R / t = 8 R: punch tip diameter 4 mm,
t: test plate thickness 0.5 mm). The molding conditions were as follows: 200 ton mechanical press, plate holding pressure 20 ton, molding speed 20
The measurement was performed at 0 mm / min, and the springback angle after bending the rectangular cylinder was measured. The spring angles Δθ at eight locations indicated by arrows (1) to (8) in FIG. 1 are measured, and the maximum value is defined as Δθ max.
And

【0026】各熱処理後の面内異方性rmax−rmin
0.2%耐力異方度σmax−σminならびに最大スプリン
グ角度Δθmaxを併せて表2に示す。最大スプリング角
度分布を面内異方性rmax−rmin、0.2%耐力異方度
σmax−σminの関係で整理したものが図2である。
In-plane anisotropy r max -r min after each heat treatment,
Table 2 also shows the 0.2% proof stress anisotropy σ maxmin and the maximum spring angle Δθ max . FIG. 2 shows the maximum spring angle distribution arranged in a relationship of in-plane anisotropy r max -r min and 0.2% proof stress anisotropy σ maxmin .

【0027】 [0027]

【0028】 [0028]

【0029】図2の結果からわかるように、面内異方性
max−rminが0.8以下で、0.2%耐力異方度σ
max−σminが20N/mm2以下の両方を満たす本発明
例のものは、最大スプリング角が3°以下であり、形状
凍結性に優れている。これに対して、上記2つのパラメ
ータが所定の数値範囲内にない比較例のものは、最大ス
プリング角が3°を超え、形状凍結性に劣っている。
As can be seen from the results shown in FIG. 2, when the in-plane anisotropy r max -r min is 0.8 or less, the 0.2% proof stress anisotropy σ
The examples of the present invention satisfying both max- σ min of 20 N / mm 2 or less have a maximum spring angle of 3 ° or less and are excellent in shape freezing property. On the other hand, in the case of the comparative example in which the above two parameters are not within the predetermined numerical ranges, the maximum spring angle exceeds 3 °, and the shape freezing property is poor.

【0030】[0030]

【発明の効果】以上に説明したように、フェライト系ス
テンレス鋼のフェライト再結晶粒の面方位を均一にさ
せ、r値の面内異方性、0.2%耐力の異方度を極力小
さくすることにより、成形時に形状凍結性を優れたもの
とし、寸法制度が厳しい有機EL素子用絶縁封止部材等
のIT関連部品や各種精密プレス品、建築部材等に適し
たフェライト系ステンレス鋼帯を提供することが可能と
なった。
As described above, the plane orientation of ferrite recrystallized grains of ferritic stainless steel is made uniform, and the in-plane anisotropy of the r value and the anisotropy of 0.2% proof stress are minimized. By doing this, it is possible to improve the shape freezing property at the time of molding, and to use ferritic stainless steel strips suitable for IT related parts such as insulating sealing members for organic EL elements, etc., various precision pressed products, building materials, etc., which have strict dimensional accuracy. It became possible to provide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 形状凍結性を評価するために行った角筒曲げ
試験ならびに形状測定の概念を示す図。
FIG. 1 is a diagram showing the concept of a square tube bending test and shape measurement performed for evaluating shape freezing properties.

【図2】 最大スプリング角度に及ぼす面内異方性r
max−rminと0.2%耐力異方度σmax−σminの関係を
示す図。
FIG. 2 Influence of in-plane anisotropy r on maximum spring angle
max -r min and diagrams showing the relationship between 0.2% yield different Katado σ maxmin.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 憲一 山口県新南陽市野村南町4976番地 日新製 鋼株式会社ステンレス事業本部内 (72)発明者 國武 保利 山口県新南陽市野村南町4976番地 日新製 鋼株式会社ステンレス事業本部内 (72)発明者 平松 直人 山口県新南陽市野村南町4976番地 日新製 鋼株式会社ステンレス事業本部内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kenichi Morimoto 4976 Nomura Minamicho, Shinnanyo-shi, Yamaguchi Prefecture Inside Nisshin Steel Co., Ltd. Nisshin Steel Corporation Stainless Steel Business Unit (72) Inventor Naoto Hiramatsu No. 4976 Nomura Minamimachi, Shinnanyo City, Yamaguchi Prefecture Nisshin Steel Corporation Stainless Steel Business Unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%において、C:0.10%以下、
Si:1.0%以下、Mn:1.0%以下、P:0.0
50%以下、S:0.020%以下、Ni:2.0%以
下、Cr:8.0〜22.0%、N:0.05%以下
を、下記(1)式で定義されるFM値が0以下となるよ
うな割合で含有し、残部がFeおよび不可避的不純物か
らなる組成を有し、面内異方性rmax−rminが0.80
以下で、0.2%耐力異方度σmax−σminが20N/m
2以下であることを特徴とする成形加工時の形状凍結
性に優れたフェライト系ステンレス鋼帯。 (1)FM=420C-11.5Si+7Mn+23Ni-3.5Cr-12Mo+9Cu-49Ti-
50Nb-23V-52Al+470N+20
1. A mass% of C: 0.10% or less,
Si: 1.0% or less, Mn: 1.0% or less, P: 0.0
FM defined by the following formula (1): 50% or less, S: 0.020% or less, Ni: 2.0% or less, Cr: 8.0 to 22.0%, N: 0.05% or less The content is such that the value is 0 or less, the balance has a composition consisting of Fe and unavoidable impurities, and the in-plane anisotropy r max -r min is 0.80.
Below, 0.2% proof stress anisotropy σ maxmin is 20 N / m
Excellent ferritic stainless steel strip in shape fixability during molding, characterized in that at m 2 or less. (1) FM = 420C-11.5Si + 7Mn + 23Ni-3.5Cr-12Mo + 9Cu-49Ti-
50Nb-23V-52Al + 470N + 20
【請求項2】 請求項1に記載の成分に加えて、さらに
質量%において、Al:0.10%以下、Mo:1.0
%以下、Cu:1.0%以下、Ti:0.01〜0.5
0%、Nb:0.01〜0.50%、V:0.01〜
0.30%、Zr:0.01〜0.30%またはB:
0.0010〜0.0100%の一種以上を、下記
(1)式で定義されるFM値が0以下となるような割合
で含有し、残部がFeおよび不可避的不純物からなる組
成を有し、面内異方性rmax−rminが0.80以下で、
0.2%耐力異方度σmax−σminが20N/mm2以下
であることを特徴とする成形加工時の形状凍結性に優れ
たフェライト系ステンレス鋼帯。 (1)FM=420C-11.5Si+7Mn+23Ni-3.5Cr-12Mo+9Cu-49Ti-
50Nb-23V-52Al+470N+20
2. In addition to the components described in claim 1, Al: 0.10% or less and Mo: 1.0 in mass%.
%, Cu: 1.0% or less, Ti: 0.01 to 0.5
0%, Nb: 0.01 to 0.50%, V: 0.01 to
0.30%, Zr: 0.01 to 0.30% or B:
0.0010 to 0.0100% of one or more kinds are contained in such a ratio that the FM value defined by the following formula (1) becomes 0 or less, and the balance has a composition consisting of Fe and unavoidable impurities; The in-plane anisotropy r max -r min is 0.80 or less,
A ferritic stainless steel strip having excellent shape freezing property at the time of forming, characterized in that the 0.2% proof stress anisotropy σ maxmin is 20 N / mm 2 or less. (1) FM = 420C-11.5Si + 7Mn + 23Ni-3.5Cr-12Mo + 9Cu-49Ti-
50Nb-23V-52Al + 470N + 20
【請求項3】 圧延方向、圧延方向に対して45°方向
ならびに圧延方向と垂直方向の0.2%耐力値が350
N/mm2以下である請求項1または2に記載の成形加
工時の形状凍結性に優れたフェライト系ステンレス鋼
帯。
3. A 0.2% proof stress value of 350 in the rolling direction, a direction at 45 ° to the rolling direction and a direction perpendicular to the rolling direction.
Excellent ferritic stainless steel strip in shape fixability during molding according to claim 1 or 2 is N / mm 2 or less.
【請求項4】 請求項1または2に記載の成分組成を有
するフェライト系ステンレス鋼を熱間圧延後、700〜
880℃で1〜24時間のバッチ焼鈍を行うことを特徴
とする請求項1または2に記載の成形加工時の形状凍結
性に優れたフェライト系ステンレス鋼帯の製造方法。
4. After hot-rolling a ferritic stainless steel having the component composition according to claim 1 or 2,
The method for producing a ferritic stainless steel strip having excellent shape freezing property during forming according to claim 1 or 2, wherein batch annealing is performed at 880 ° C for 1 to 24 hours.
JP2001139576A 2001-05-10 2001-05-10 Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor Pending JP2002332549A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001139576A JP2002332549A (en) 2001-05-10 2001-05-10 Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
PCT/JP2002/004524 WO2002092867A1 (en) 2001-05-10 2002-05-09 Ferritic stainless steel strip excellent in freeze of shape formed by working
EP02769555A EP1386977B1 (en) 2001-05-10 2002-05-09 Ferritic stainless steel strip excellent in freeze of shape formed by working
CNB028094530A CN1249262C (en) 2001-05-10 2002-05-09 Ferritic stainless steel strip excellent in freeze of shape formed by working
US10/477,015 US20040140023A1 (en) 2001-05-10 2002-05-09 Ferritic stainless steel strip excellent in freeze of shape formed by working
DE60213784T DE60213784T2 (en) 2001-05-10 2002-05-09 BELTS OF FERRITIC STAINLESS STEEL WITH EXCELLENT CONSERVATION OF THE MOLDING SHAPED BY MACHINING
KR10-2003-7013121A KR20030094325A (en) 2001-05-10 2002-05-09 Ferritic stainless steel strip excellent in freeze of shape formed by working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001139576A JP2002332549A (en) 2001-05-10 2001-05-10 Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor

Publications (1)

Publication Number Publication Date
JP2002332549A true JP2002332549A (en) 2002-11-22

Family

ID=18986327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001139576A Pending JP2002332549A (en) 2001-05-10 2001-05-10 Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor

Country Status (7)

Country Link
US (1) US20040140023A1 (en)
EP (1) EP1386977B1 (en)
JP (1) JP2002332549A (en)
KR (1) KR20030094325A (en)
CN (1) CN1249262C (en)
DE (1) DE60213784T2 (en)
WO (1) WO2002092867A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284771A (en) * 2006-04-20 2007-11-01 Nippon Steel & Sumikin Stainless Steel Corp Cr-containing steel sheet having excellent shape-fixability and production method therefor
KR100963109B1 (en) 2007-11-22 2010-06-14 주식회사 포스코 High chrome ferritic stainless steels
JP2015521693A (en) * 2012-06-28 2015-07-30 ポスコ Low chromium ferritic stainless steel with improved corrosion resistance and ridge resistance
WO2017082628A1 (en) * 2015-11-12 2017-05-18 주식회사 포스코 Ferritic stainless steel having excellent surface quality, and manufacturing method therefor
JP2018154857A (en) * 2017-03-15 2018-10-04 日新製鋼株式会社 Ferritic stainless steel hot rolled steel strip and manufacturing method of steel strip
JP2019178362A (en) * 2018-03-30 2019-10-17 日鉄ステンレス株式会社 Steel sheet for ferrite based stainless steel pipe

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494551B2 (en) 2002-06-17 2009-02-24 Jfe Steel Corporation Ferritic stainless steel plate with Ti and method for production thereof
JP2007283378A (en) * 2006-04-19 2007-11-01 Fujifilm Corp Press die, drawing method, and press-formed article
SE530155C2 (en) * 2006-07-26 2008-03-11 Sandvik Intellectual Property Ferritic chromium stainless steel for fuel cells, contains preset amount of carbon, silicon, manganese, chromium, nickel, molybdenum, niobium, titanium, zirconium, rare earth metals, aluminum and nitrogen
CN100532579C (en) * 2007-04-30 2009-08-26 郑州永通特钢有限公司 Method for smelting base material of low phosphorous stainless steel by using low-grade limonite containing nickel-chromium
WO2009025125A1 (en) * 2007-08-20 2009-02-26 Jfe Steel Corporation Ferritic stainless steel plate excellent in punchability and process for production of the same
CN101768702B (en) * 2008-12-31 2012-05-30 宝山钢铁股份有限公司 Medium-chromium ferrite stainless steel for automobile with high formability and acidic corrosion resistance as well as manufacturing method thereof
CN101649418B (en) * 2009-09-10 2011-06-01 山西太钢不锈钢股份有限公司 Ferrite stainless steel cold-rolled steel band and manufacturing method thereof
CN102140574B (en) * 2011-05-11 2012-09-05 北京冶金正源科技有限公司 Annealing process for improving deep drawability of 430 ferrite stainless steel
UA111115C2 (en) * 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. cost effective ferritic stainless steel
CN103789677B (en) * 2014-02-11 2016-04-20 江苏省沙钢钢铁研究院有限公司 A kind of High Strength Steel Bar with high corrosion resistance and preparation method thereof
CN105220074A (en) * 2015-10-22 2016-01-06 山西太钢不锈钢股份有限公司 Chrome ferritic high temperature steel making method in a kind of boiler swing pipe tray use
CN106435129B (en) * 2016-06-30 2021-04-02 宝钢德盛不锈钢有限公司 Ferritic stainless steel with good toughness and corrosion resistance and manufacturing method thereof
KR102279909B1 (en) * 2019-11-19 2021-07-22 주식회사 포스코 Ferritic stainless steel having high magnetic permeability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032050A (en) * 1999-07-21 2001-02-06 Nippon Steel Corp Ferritic stainless steel excellent in shape fixability at the time of bending and its production

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153831A (en) * 1983-02-23 1984-09-01 Sumitomo Metal Ind Ltd Manufacture of heat resistant ferritic stainless steel plate
JP2772237B2 (en) * 1994-03-29 1998-07-02 川崎製鉄株式会社 Method for producing ferritic stainless steel strip with small in-plane anisotropy
JP4065579B2 (en) * 1995-09-26 2008-03-26 Jfeスチール株式会社 Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP4221107B2 (en) * 1999-03-19 2009-02-12 新日本製鐵株式会社 Method for producing ferritic stainless steel sheet with excellent surface properties
JP2001032023A (en) * 1999-07-23 2001-02-06 Nippon Steel Corp Manufacture of ferritic stainless steel excellent in surface characteristic and workability
US6413332B1 (en) * 1999-09-09 2002-07-02 Kawasaki Steel Corporation Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
JP2001107149A (en) * 1999-09-30 2001-04-17 Kawasaki Steel Corp Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3769479B2 (en) * 2000-08-07 2006-04-26 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for fuel tanks with excellent press formability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032050A (en) * 1999-07-21 2001-02-06 Nippon Steel Corp Ferritic stainless steel excellent in shape fixability at the time of bending and its production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284771A (en) * 2006-04-20 2007-11-01 Nippon Steel & Sumikin Stainless Steel Corp Cr-containing steel sheet having excellent shape-fixability and production method therefor
JP4740021B2 (en) * 2006-04-20 2011-08-03 新日鐵住金ステンレス株式会社 Cr-containing thin steel sheet having excellent shape freezing property and method for producing the same
KR100963109B1 (en) 2007-11-22 2010-06-14 주식회사 포스코 High chrome ferritic stainless steels
JP2015521693A (en) * 2012-06-28 2015-07-30 ポスコ Low chromium ferritic stainless steel with improved corrosion resistance and ridge resistance
WO2017082628A1 (en) * 2015-11-12 2017-05-18 주식회사 포스코 Ferritic stainless steel having excellent surface quality, and manufacturing method therefor
JP2018154857A (en) * 2017-03-15 2018-10-04 日新製鋼株式会社 Ferritic stainless steel hot rolled steel strip and manufacturing method of steel strip
JP2019178362A (en) * 2018-03-30 2019-10-17 日鉄ステンレス株式会社 Steel sheet for ferrite based stainless steel pipe
JP7178791B2 (en) 2018-03-30 2022-11-28 日鉄ステンレス株式会社 Steel plates for ferritic stainless steel pipes

Also Published As

Publication number Publication date
DE60213784T2 (en) 2006-11-30
US20040140023A1 (en) 2004-07-22
EP1386977A4 (en) 2004-12-15
KR20030094325A (en) 2003-12-11
EP1386977B1 (en) 2006-08-09
EP1386977A1 (en) 2004-02-04
DE60213784D1 (en) 2006-09-21
CN1507500A (en) 2004-06-23
CN1249262C (en) 2006-04-05
WO2002092867A1 (en) 2002-11-21

Similar Documents

Publication Publication Date Title
TWI519653B (en) Austenite-ferrite duplex stainless steel sheet having small in-plane anisotropy and method for manufacturing the same
JP2002332549A (en) Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
CN107709592B (en) Ferrite series stainless steel plate and its manufacturing method
JPH07138704A (en) High strength and high ductility dual-phase stainless steel and its production
JP6811112B2 (en) Ferrite Duplex Stainless Steel Sheet and Its Manufacturing Method
JP5376927B2 (en) Manufacturing method of high proportional limit steel plate with excellent bending workability
JPH0814004B2 (en) Method for producing high-ductility and high-strength dual-phase chrome stainless steel strip with excellent corrosion resistance
CN110343970A (en) A kind of hot rolling high strength and ductility medium managese steel and preparation method thereof having lower Mn content
CN105917016A (en) Ferritic stainless steel and method for producing same
CN107058866A (en) Ferrito-martensite cold-rolled biphase steel and preparation method thereof
WO2014045542A1 (en) Easily worked ferrite stainless-steel sheet
JP2002332548A (en) Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
CN102747301A (en) High-strength stainless steel cold-rolled sheet strip and manufacturing method thereof
JP2002275595A (en) Ferritic stainless steel sheet having excellent ridging resistance and deep drawability and method of manufacturing for the same
JP3370441B2 (en) Duplex stainless steel sheet with excellent elongation characteristics and method for producing the same
JPH07107178B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JPH10324956A (en) Ferritic stainless steel sheet excellent in ridging property and workability and manufacturing therefor
JPH0741854A (en) Production of ferrite single phase stainless hot rolled steel sheet excellent in toughness
JPS60106952A (en) Process hardenable stainless steel of substantially austenite and manufacture
JPH07100822B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method
JPH07150244A (en) Production of ferritic stainless steel for cold working
JP3836358B2 (en) Ferritic stainless steel strip with excellent shape freezing property and manufacturing method thereof
WO2019039339A1 (en) Method for production of ni-containing steel sheet
JP5228994B2 (en) Manufacturing method of ferritic stainless steel material and manufacturing method of ferritic stainless steel pipe

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120424