KR100729526B1 - Method for producing ferritic stainless steel sheets having excellent ridging property - Google Patents
Method for producing ferritic stainless steel sheets having excellent ridging property Download PDFInfo
- Publication number
- KR100729526B1 KR100729526B1 KR1020010039688A KR20010039688A KR100729526B1 KR 100729526 B1 KR100729526 B1 KR 100729526B1 KR 1020010039688 A KR1020010039688 A KR 1020010039688A KR 20010039688 A KR20010039688 A KR 20010039688A KR 100729526 B1 KR100729526 B1 KR 100729526B1
- Authority
- KR
- South Korea
- Prior art keywords
- stainless steel
- less
- ferritic stainless
- annealing
- hot
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0463—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
본 발명은 열간압연 후 고온에서 단시간 열처리하는 연속소둔을 행한 다음 냉간압연 후 상소둔함으로써 리징성을 향상시키는 페라이트계 스테인레스강의 제조방법을 제공하는 데 그 목적이 있다. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing ferritic stainless steel which improves ridging property by performing continuous annealing for a short time heat treatment at high temperature after hot rolling and then annealing after cold rolling.
위와 같은 목적을 달성하기 위한 본 발명에 따르면, 중량%로 C : 0.10%이하, Si : 1.0%이하, Mn : 1.0%이하, P : 0.040%이하, S : 0.030%이하, Cr : 15.0 ~ 20.0%, Al : 0.2%이하 그리고 N : 0.05%이하를 함유하고 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 구성된 페라이트계 스테인레스강의 제조방법에 있어서, 상기와 같이 조성된 페라이트계 스테인레스강 슬라브를 열간압연하는 단계와, 열간압연판을 850 ~ 1000℃온도로 가열하여 10초 ~ 5분 동안 유지한 후 급냉하여 연속소둔하는 단계와, 연속소둔된 열간압연판을 냉간압연하는 단계와, 냉간압연판을 800 ~ 900℃ 온도에서 1시간 ~ 10시간 유지하여 상소둔하는 단계를 포함한다. 또한, 페라이트계 스테인레스강 슬라브의 오스테나이트 최대 분율(max)은 15 ~ 40%인 것을 특징으로 한다. According to the present invention for achieving the above object, by weight% C: 0.10% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Cr: 15.0 ~ 20.0 In the method for producing a ferritic stainless steel containing%, Al: 0.2% or less and N: 0.05% or less, and the remaining Fe and other unavoidable impurities, hot-rolled ferritic stainless steel slabs Step, heating the hot rolled plate to a temperature of 850 ~ 1000 ℃ to maintain for 10 seconds to 5 minutes and then quenched continuously annealing, cold rolling the continuously annealed hot rolled plate, and cold rolled plate 800 And annealing by maintaining the temperature at ~ 900 ℃ 1 hour to 10 hours. In addition, the austenitic maximum fraction ( max ) of the ferritic stainless steel slab is characterized in that 15 to 40%.
스테인레스강, 페라이트, 리징성Stainless steel, ferrite, ridging
Description
도 1은 본 발명의 한 실시예에 따른 페라이트계 스테인레스강의 제조방법을 설명하기 위한 블록도이고, 1 is a block diagram for explaining a method of manufacturing a ferritic stainless steel according to an embodiment of the present invention,
도 2는 종래기술과 본 발명의 페라이트계 스테인레스강의 제조방법에 의해 각각 제조된 시편의 리징 높이 측정결과를 비교한 그래프이다.
Figure 2 is a graph comparing the measurement results of the ridging height of the specimen prepared by the prior art and the method of manufacturing a ferritic stainless steel of the present invention.
본 발명은 페라이트계 스테인레스강의 제조방법에 관한 것이며, 특히, 430 스테인레스 열간압연판을 고온에서 단시간 열처리하는 연속소둔을 행한 다음 냉간압연 후 상소둔하는 페라이트계 스테인레스강의 제조방법에 관한 것이다. The present invention relates to a method for producing ferritic stainless steel, and more particularly, to a method for producing ferritic stainless steel, which is subjected to continuous annealing to heat-treat a 430 stainless hot rolled sheet at a high temperature for a short time, followed by cold annealing.
페라이트계 스테인레스 냉간압연제품은 딥드로잉(Deep Drawing)과 같은 성형가공에 의해 각종 주방용품, 자동차부품 등에 널리 사용되고 있는데, 프레스 성형시 줄무늬 모양의 리징(Ridging)결함이 발생하는 문제점을 가지고 있다. 이러한 리징결함은 제품의 외관을 나쁘게 할 뿐만 아니라 리징이 심하게 발생할 경우 성형 후에 연마공정이 추가되기 때문에 제조원가의 상승과 함께 제품의 질적저하를 초래하는 문제점이 있다.Ferritic stainless cold rolled products are widely used in various kitchen utensils and automobile parts by molding processing such as deep drawing, and have a problem in that a stripe-shaped ridging defect occurs during press molding. This ridding defect not only degrades the appearance of the product, but also causes the quality of the product along with the increase in manufacturing cost because the polishing process is added after molding if the ridging occurs badly.
이와 같은 리징의 원인은 아직까지 명확하게 밝혀지지 않았지만 대개 다음과 같은 사상으로 알려지고 있다. 즉 최종 냉간압연소둔판에 있어서 다른 집합조직을 가지는 부위의 소성이방성에 의해 표면에 요철로 나타나게 된다. 특히 조대한 주조조직에 기인하여 열간압연판에 존재하는 {001}<110> 결정방위를 가지는 조대한 결정립군(群)의 형성에 의한 것으로 알려져 있다. The cause of such leasing has not been clarified yet, but is generally known by the following thoughts. That is, in the final cold rolled annealing plate, irregularities appear on the surface by the plastic anisotropy of the sites having different textures. In particular, it is known that the formation of coarse grain groups having a {001} <110> crystal orientation present in the hot rolled sheet due to the coarse casting structure.
종래의 리징성을 개선하기 위한 대책은 앞서 언급한 추정기구에 근거하여 대개 3가지로 이루어지고 있다. 즉 (1)조대한 결정립군의 기원인 응고 결정립의 미세화, (2)조대한 결정립군의 집합조직의 무질서화(랜덤화), (3)조대한 결정립군의 분해이다. 상기 (1)의 경우 예를 들면 일본 특허 공보 소50-123294 에 기술된 바와 같이 주상정의 등축정화를 위한 전자교반, 응고결정립의 미세화를 위한 응고결정핵의 도입과 주조온도의 저하에 의한 급격한 응고가 구체적인 대책으로서 제시되었다. 상기 (2)에 대해서는 일본 특허 공보 소 57-70234 에 나타낸 바와 같이 제조공정 중에서 재결정을 촉진시키기 위한 열간압연온도(가열온도, 마무리온도, 권취온도 등), 압하율, 소둔온도 등의 적정화와 냉간압연 재결정 회수의 증가를 도모한 냉간압연시의 중간소둔공정의 추가, 열간압연시의 연신변형 외에 폭방향 변형의 부가 및 입내 석출물과 오스테나이트상의 이용, 그리고 열간압연윤활의 적정화를 들 수 있다. 또한 상기 (3)에서는 일본 특허 공보 평6-81036 에 기술한 바와 같이 변태의 도입을 의도한 성분 변경과 특수한 열처리 공정이 제안되어 있다. 이와 같은 대부분의 종래기술은 각각을 단독으로 실시하는 것이 아니라 몇가지 기술의 조합에 의해 효과의 증대를 노리고 있다.Conventional measures to improve the ridging ability is generally made of three based on the above-mentioned estimation mechanism. That is, (1) miniaturization of coagulated grains, the origin of coarse grain groups, (2) disorder of aggregates of coarse grain groups (randomization), and (3) decomposition of coarse grain groups. In the case of (1), for example, as described in Japanese Patent Publication No. 50-123294, electron stirring for columnar crystallization, introduction of solidification crystal nuclei for miniaturization of solidification grains, and rapid solidification due to a decrease in casting temperature Is proposed as a concrete measure. For the above (2), as shown in Japanese Patent Publication No. 57-70234, it is appropriate to optimize the hot rolling temperature (heating temperature, finishing temperature, winding temperature, etc.), rolling reduction rate, annealing temperature and the like to promote recrystallization during the manufacturing process and cold. The addition of an intermediate annealing process during cold rolling to increase the number of recrystallizations of the rolling, the addition of the stretching deformation during hot rolling, the addition of widthwise deformation, the use of intragranular precipitates and austenite phases, and the optimization of hot rolling lubrication. In addition, in (3), as described in Japanese Patent Publication No. Hei 6-81036, a component change intended for introduction of transformation and a special heat treatment step are proposed. Most of these prior arts aim to increase the effect by a combination of several techniques, rather than performing each one alone.
일반적으로 430 스테인레스강은 열간압연 소둔공정을 거치는데 비교적 저온(800 ~ 850℃)에서 장시간(35 ~ 50시간) 열처리하는 상소둔(Box Annealing)을 행하고 있다. 열간압연판 소둔의 목적은 재결정에 의한 열간압연 집합조직을 파괴하고 오스테나이트상(상온에서 마르텐사이트상)을 페라이트+탄화물로 분해하는 2가지의 야금학적 인자를 만족시킴으로써, 성형가공시에 발생하는 리징을 저감시키고, 성형성을 향상시키며, 냉간압연성을 향상시키기 위한 것이다. 그런데, 이러한 상소둔 공정은 에너지 소모가 클 뿐 아니라 장시간의 열처리에 따른 생산성 저하의 문제점이 발생한다. Generally, 430 stainless steel undergoes a hot rolling annealing process, and performs box annealing for heat treatment at a relatively low temperature (800 to 850 ° C.) for a long time (35 to 50 hours). The purpose of hot rolled sheet annealing is to break down the hot rolled texture by recrystallization and satisfy two metallurgical factors that decompose the austenite phase (martensite phase at room temperature) into ferrite + carbides. The purpose is to reduce leasing, improve moldability, and improve cold rolling. However, such annealing process not only has a large energy consumption, but also causes a problem of lowering productivity due to prolonged heat treatment.
그래서, 최근에는 리징성이나 성형성을 개선함과 동시에 대량생산 체제에 적합한 열간압연소둔공정의 연속화 또는 열간압연소둔공정의 생략화를 통한 생산성 향상에 관한 연구 및 기술개발이 집중되고 있는 실정이다. Therefore, in recent years, research and technology development have been focused on improving productivity by sequencing the hot rolling annealing process or eliminating the hot rolling annealing process suitable for mass production systems while improving the ridging and formability.
이런 기술에 대한 자료는 다수의 특허로 제안되어 있는 데, 그 중에서, 일본 특허공고 소59-43977호, 소59-43978호(1984.10.25)에는 430 스테인레스강에 Al을 0.1 ∼ 0.15% 첨가하고, 연속주조시 슬라브(slab)의 등축정율을 높이는 동시에, 비교적 저온가열 및 강압화로 열간압연한 열간압연판을 고온 단시간에 연속소둔하는 제조방법에 관한 내용이 기술되어 있다.Data on this technology have been proposed in a number of patents. Among them, Japanese Patent Publication Nos. 59-43977 and 59-43978 (1984.10.25) add 0.1 to 0.15% of Al to 430 stainless steel. This article describes a method for producing a hot rolled hot rolled sheet that is hot-rolled by relatively low temperature heating and hardening at a high temperature in a short time, while increasing the isoaxial crystallization rate of the slab during continuous casting.
또, 일본 특허공고 소57-64402호(1982.4.19), 소59-576호(1984.1.7)에는 430 스테인레스강에 Al을 첨가하고 열간압연 공정을 제어하며 열간압연소둔 공정을 생 략함으로써 에너지를 절약하고 생산성을 향상시키는 방법에 관한 내용이 기술되어 있다.In addition, Japanese Patent Publication Nos. 57-64402 (April 19, 1982) and 59-576 (1984.1.7) add Al to 430 stainless steel, control the hot rolling process, and omit the hot rolling annealing process. How to save money and improve productivity.
또한, 일본 S사에서는 430 스테인레스강에 Al을 첨가하지 않고 상소둔 공정을 생략하는 압연방법에 관한 내용이 소개되어 있다. 즉, 이 방법은 열간압연 중 석출된 오스테나이트상을 마르텐사이트상의 형태로 열간압연판내에 석출시켜 열간압연소둔을 생략하고, 냉간압연시에는 페라이트 기지내에서 변형의 집중처로 작용하도록 한 것이다. 즉, 이런 변형집중처에서는 냉간압연소둔 공정에서 페라이트의 재결정 핵생성처로 작용하여 입도 미세화가 일어나며, 이런 결정립의 미세화에 의해 리징성을 개선한 것이다. In addition, the Japanese S company introduces the rolling method which omits the annealing process without adding Al to 430 stainless steel. That is, in this method, the austenite phase precipitated during hot rolling is precipitated in a hot rolled sheet in the form of martensite phase, so that hot rolling annealing is omitted, and during cold rolling, it acts as a concentration destination of deformation in the ferrite matrix. That is, in this strain concentration zone, the recrystallization nucleation site of ferrite in the cold rolling annealing process results in finer grain size, and the refinement of the grains improves the ridging property.
그러나, 앞서 설명한 종래기술의 제조방법에 의하면 리징성이 약간 개선될 수는 있으나 현저하게 향상되지는 못한다는 문제점이 있다. 또한 리징성의 문제는 냉간압연후 연속소둔할 때 소둔 열처리 시간이 매우 짧아서 재결정이 충분히 일어나지 않기 때문에 획기적으로 리징성을 개선하는 데 어려운 문제점이 있다.
However, according to the manufacturing method of the prior art described above, there is a problem that the ridging property may be slightly improved but not significantly improved. In addition, the problem of ridging property is difficult to improve the ridging property significantly because re-crystallization does not occur sufficiently because the annealing heat treatment time is very short when continuous annealing after cold rolling.
따라서, 본 발명은 앞서 설명한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 열간압연 후 고온에서 단시간 열처리하는 연속소둔을 행한 다음 냉간압연 후 상소둔함에 따라 재결정을 충분히 시켜 조대한 결정립군을 파괴시킴으로써 리징성을 향상시키는 페라이트계 스테인레스강의 제조방법을 제공하는 데 그 목적이 있다.
Accordingly, the present invention has been made in order to solve the problems of the prior art as described above, after performing continuous annealing for a short time heat treatment at high temperature after hot rolling and then sufficiently recrystallized by cold annealing to coarse grain group It is an object of the present invention to provide a method for producing ferritic stainless steel which improves ridging property by breaking.
상기의 목적을 달성하기 위한 본 발명은, 중량%로 C : 0.10%이하, Si : 1.0%이하, Mn : 1.0%이하, P : 0.040%이하, S : 0.030%이하, Cr : 15.0 ~ 20.0%, Al : 0.2%이하 그리고 N : 0.05%이하를 함유하고 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 이루어진 페라이트계 스테인레스강의 제조방법에 있어서, 상기와 같이 조성된 페라이트계 스테인레스강 슬라브를 열간압연하는 단계와, 상기 열간압연된 열간압연판을 850 ~ 1000℃ 온도로 가열하여 10초 ~ 5분 동안 유지한 후 급냉하여 연속소둔하는 단계와, 상기 연속소둔된 열간압연판을 냉간압연하는 단계와, 상기 냉간압연판을 800 ~ 900℃ 온도에서 1시간 ~ 10시간 유지하여 상소둔하는 단계를 포함하는 리징성이 우수한 페라이트계 스테인레스강의 제조방법을 특징으로 한다.The present invention for achieving the above object, by weight% C: 0.10% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Cr: 15.0 ~ 20.0% In the manufacturing method of ferritic stainless steel containing Al: 0.2% or less and N: 0.05% or less, and the remaining Fe and other inevitable impurities, hot rolling the ferritic stainless steel slab formed as described above And heating the hot rolled hot rolled plate to a temperature of 850 to 1000 ° C. for 10 seconds to 5 minutes, followed by quenching and continuous annealing, cold rolling the continuously annealed hot rolled plate, and Characterized in a method for producing a ferritic stainless steel excellent in ridging properties, including the step of annealing the cold rolled plate maintained at 800 ~ 900 ℃ temperature for 1 hour to 10 hours.
또한, 본 발명은 상기 페라이트계 스테인레스강 슬라브의 오스테나이트 최대 분율(max)이 15 ~ 40% 인 것을 특징으로 한다.In addition, the present invention is characterized in that the austenitic maximum fraction ( max ) of the ferritic stainless steel slab is 15 to 40%.
이하, 본 발명을 도면과 실시예를 통하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings and examples.
본 발명의 스테인레스강 조성은 이미 공지되어 있는 페라이트계 스테인레스강이며, 그 구체적인 성분계는 중량%로 C : 0.10%이하, Si : 1.0%이하, Mn : 1 .0%이하, P : 0.040%이하, S : 0.030%이하, Cr : 15.0 ~ 20.0%, Al : 0.2%이하 그리고 N : 0.05%이하를 함유하고 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 이루어져 있다. The stainless steel composition of the present invention is a known ferritic stainless steel, the specific component system is by weight% C: 0.10% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Cr: 15.0 ~ 20.0%, Al: 0.2% or less and N: 0.05% or less, and the remaining Fe and other inevitable impurities.
상기와 같은 합금성분계로 이루어진 본 발명 페라이트계 스테인레스강 슬라브의 오스테나이트 최대 분율(max)이 15 ~ 40% 가 되도록 조성해야 한다. 왜냐하면, 오스테나이트 최대 분율이 15%이하인 경우에는 열간압연소둔 후 잔존하는 오스테나이트상(냉각시 마르텐사이트상)에 의한 결정립 미세화효과가 적어져서 리징성 개선에 거의 효과가 없으며, 그 오스테나이트 최대 분율이 40%를 넘게 되면 상기의 잔존하는 오스테나이트상이 너무 많아져서 마르텐사이트상에 의한 취화현상이 나타나기 때문이다. 따라서 본 발명의 오스테나이트 최대 분율(max)은 수학식 1에 의해 구해진다. The austenitic maximum fraction ( max ) of the ferritic stainless steel slab of the present invention made of the above alloy composition should be 15 to 40%. Because the maximum fraction of austenite is less than 15%, the grain refining effect of the austenite phase (martensite phase remaining) after hot rolling annealing is reduced, which is almost ineffective in improving the ridging property. If the amount exceeds 40%, the remaining austenite phase becomes too large, causing embrittlement of martensite phase. Therefore, the austenitic maximum fraction max of the present invention is obtained by the following equation.
이하, 본 발명에 따른 페라이트계 스테인레스강의 제조방법에 대한 양호한 실시예를 도면을 참조로 하여 상세히 설명하겠다. Hereinafter, a preferred embodiment of the method for producing a ferritic stainless steel according to the present invention will be described in detail with reference to the drawings.
도 1은 본 발명의 한 실시예에 따른 페라이트계 스테인레스강의 제조방법을 설명하기 위한 블록도이다.1 is a block diagram illustrating a method of manufacturing a ferritic stainless steel according to an embodiment of the present invention.
도 1에서 보이듯이, 상기와 같은 페라이트계 스테인레스강 슬라브를 열간압연한 후(S1), 850 ~ 1000℃ 온도로 가열하여 10초 ~ 5분 동안 유지한 후 급냉하는 연속소둔을 행한다(S2). 이와 같은 조건에서 작업하는 것은 열간압연판을 850℃ 이 하에서 단시간 열처리하면 재결정이 충분히 일어나지 않아 결정립 미세화 효과를 얻을 수 없고, 1000℃를 넘게 되면 결정립이 조대화되고 고온취화 현상이 일어나서 냉간압연시 판파단이 발생할 우려가 있기 때문에 본 발명의 연속소둔 가열온도는 850 ~ 1000℃ 범위가 바람직하다. 또한 상기 연속소둔로에서의 유지시간은 10초 이내에서는 재결정이 충분히 일어나지 않아 결정립 미세화 효과를 기대할 수 없고, 장시간 유지할수록 유리하지만 5분을 넘게 되면 생산성이 낮아지는 문제점이 발생하기 때문에 유지시간은 10초 ~ 5분 범위내가 바람직 하다. As shown in Figure 1, after the hot-rolled ferritic stainless steel slab as described above (S1), and heated to a temperature of 850 ~ 1000 ℃ to maintain for 10 seconds to 5 minutes and then performing a continuous annealing (S2). Working in such a condition is that if the hot rolled sheet is heat-treated under 850 ℃ for a short time, recrystallization does not occur sufficiently, and the grain refinement effect cannot be obtained. If it exceeds 1000 ℃, the grain is coarsened and high temperature embrittlement occurs. Since fracture may occur, the continuous annealing heating temperature of the present invention is preferably in the range of 850 to 1000 ° C. In addition, the holding time in the continuous annealing furnace is less than 10 seconds, the recrystallization does not occur sufficiently can not expect the effect of grain refinement, the longer it is advantageous to maintain the longer time, but the productivity is lowered after 5 minutes, the holding time is 10 It is preferably within the range of seconds to 5 minutes.
계속해서, 상기의 열간압연판을 연속소둔을 행한 후 냉간압연을 행한다(S3). 상기 냉간압연 후에는 800 ~ 900℃ 온도에서 1시간 ~ 10시간 동안 유지하여 상소둔한다(S4). 이와 같은 조건에서 작업하는 것은 800℃이하에서는 재결정이 충분히 일어나지 않고, 900℃를 넘게 되면 오스테나이트상이 잔존하여 성형성이 나빠지기 때문이다. 또, 유지시간 1시간 이내에서는 재결정이 충분히 일어나지 않고, 장시간 유지할수록 탄질화물 석출이 용이하여 성형성에 유리하지만 10시간을 넘게 되면 생산성이 낮아질 뿐만 아니라 에너지 소모량이 많아 제조비용이 높아지기 때문이다.Subsequently, after performing continuous annealing of said hot rolled sheet, cold rolling is performed (S3). After the cold rolling is maintained at 800 ~ 900 ℃ temperature for 1 hour to 10 hours to annealing (S4). The reason for working under such conditions is that recrystallization does not sufficiently occur at 800 ° C. or lower, and when it exceeds 900 ° C., an austenite phase remains and moldability deteriorates. In addition, recrystallization does not sufficiently occur within 1 hour of holding time, and carbon dioxide is easier to deposit as it is maintained for a long time, which is advantageous in formability. However, when it is more than 10 hours, not only productivity is lowered but also energy consumption is high and manufacturing cost increases.
즉, 본 발명의 제조방법은 열간압연판을 고온에서 단시간 연속소둔함으로써 열간압연소둔시 재결정촉진에 의한 결정립 미세화 효과 및 오스테나이트상을 잔존시킬 수 있다. 그리고, 냉간압연에서 열간압연소둔 후 잔존하는 오스테나이트상(냉각시 마르텐사이트상)을 변형의 집중처로 이용하여 냉간압연소둔 공정에서 재결정의 핵생성처로 작용되도록 함과 동시에 일정시간 열처리하는 상소둔함으로써 충분히 재결정시켜 결정립 미세화에 의한 조대한 집합조직을 파괴시킴에 따라 리징성을 개선할 수 있었다.That is, in the manufacturing method of the present invention, by continuously annealing the hot rolled sheet at a high temperature for a short time, the grain refining effect and the austenite phase due to the recrystallization promotion during the hot rolled annealing can be left. In addition, by using the austenite phase (martensite phase during cooling) that remains after hot rolling annealing in cold rolling as a concentrator for deformation, it acts as a nucleation site for recrystallization in the cold rolling annealing process, and at the same time, heat-anneals it for a certain time. It was possible to improve the ridging property by sufficiently recrystallization and destroying the coarse texture by grain refinement.
다음은 실험예를 통하여 본 발명을 구체적으로 설명하겠다. Next, the present invention will be described in detail through experimental examples.
하기의 표 1과 같은 조성을 갖는 페라이트계 스테인레스강 잉고트 시편을 사용하여 열간압연을 행한다. 이 때, 열간압연조건으로서 재가열온도는 1250℃, 마무리압연온도는 850 ~ 900℃ 그리고 권취온도는 700℃로 한다.Hot rolling is performed using ferritic stainless steel ingot specimens having the composition shown in Table 1 below. At this time, as the hot rolling conditions, the reheating temperature is 1250 ° C, the finishing rolling temperature is 850-900 ° C, and the winding temperature is 700 ° C.
계속해서, 850 ~ 1000℃에서 1분간 연속소둔한 열간압연소둔판을 냉간압연 및 냉간압연소둔하여 품질특성 평가용 시편을 제조하여, 인장시험에 의해 리징높이를 측정한다. 여기에서, 리징성은 인장시험 후의 표면조도를 측정하여 리징 높이로 평가하는데 리징높이가 낮을수록 유리하다.Subsequently, the hot rolled annealing plate continuously annealed at 850 to 1000 ° C. for 1 minute is cold rolled and cold rolled to form a specimen for evaluation of quality characteristics, and the ridging height is measured by a tensile test. Here, the ridging property is measured by measuring the surface roughness after the tensile test to the ridging height, the lower the ridging height is advantageous.
다음은, 표 2에 나타낸 종래방법과 본발명법의 제조조건으로 제조한 시편의 리징 높이 측정결과를 도 2에 도시하였다. Next, the results of the measurement of the ridging height of the specimen prepared by the conventional method shown in Table 2 and the manufacturing conditions of the present invention is shown in FIG.
도 2는 종래기술과 본 발명의 페라이트계 스테인레스강의 제조방법에 의해 각각 제조된 시편의 리징높이 측정결과를 비교한 그래프이다. Figure 2 is a graph comparing the measurement results of the ridging height of the specimen prepared by the prior art and the method of manufacturing a ferritic stainless steel of the present invention.
도 2에서 보이듯이, 종래방법에 비해 본발명의 방법에 의해 제조한 시편의 리징 높이가 매우 낮게 나타남을 알 수 있다. 특히 본 발명강(A,B,C)과 비교강(D)내에서도 제조조건이 다르고 슬라브의 오스테나이트 최대 분율을 적절히 조절함에 따라 현격한 리징성 개선효과가 나타남을 알수 있다.As shown in Figure 2, it can be seen that the ridging height of the specimen produced by the method of the present invention is very low compared to the conventional method. In particular, the present invention steel (A, B, C) and comparative steel (D) is different in the manufacturing conditions, it can be seen that a significant improvement in the ridging property by properly adjusting the maximum fraction of austenite of the slab.
즉, 본 발명의 제조방법에 의해 각종 주방용품, 자동차부품등에 널리 이용되는 페라이트계 스테인레스강을 제조할 경우 리징성 개선으로 최종제품의 품질개선과 원가절감에 기여할 수 있다.
That is, when manufacturing the ferritic stainless steel widely used in various kitchen utensils, automobile parts, etc. by the manufacturing method of the present invention can improve the quality of the final product and cost reduction by improving the ridging property.
상술한 바와 같이 본 발명의 페라이트계 스테인레스강의 제조방법은 오스테나이트 최대 분율(max)을 적절히 조절한 슬라브를 열간압연 후 고온에서 단시간 열처리하는 연속소둔을 행한 다음 냉간압연 후 상소둔함에 따라 리징성을 현저하게 향상시키는 효과를 얻을 수 있으며, 이에 따라 성형 가공 후에 미려한 표면을 얻을 수 있을 뿐만 아니라 최종제품의 연마공정 생략에 의한 제조원가 절감효과를 기대할 수 있다. As described above, in the method of manufacturing the ferritic stainless steel of the present invention, the slab obtained by appropriately adjusting the maximum fraction of austenite ( max ) is subjected to continuous annealing in which heat treatment is performed for a short time at high temperature after hot rolling, followed by cold annealing. It is possible to obtain an effect of remarkably improving, thereby not only obtain a beautiful surface after the molding process, but also reduce the manufacturing cost by omitting the polishing process of the final product.
이상에서 본 발명의 페라이트계 스테인레스강의 제조방법에 대한 기술사상을 첨부도면과 함께 서술하였지만 이는 본 발명의 가장 양호한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다.Although the technical idea of the method for manufacturing the ferritic stainless steel of the present invention has been described with the accompanying drawings, this is illustrative of the best embodiment of the present invention and is not intended to limit the present invention.
또한, 이 기술분야의 통상의 지식을 가진 자이면 누구나 본 발명의 기술사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.In addition, it is obvious that any person skilled in the art can make various modifications and imitations without departing from the scope of the technical idea of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010039688A KR100729526B1 (en) | 2001-07-04 | 2001-07-04 | Method for producing ferritic stainless steel sheets having excellent ridging property |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010039688A KR100729526B1 (en) | 2001-07-04 | 2001-07-04 | Method for producing ferritic stainless steel sheets having excellent ridging property |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030003848A KR20030003848A (en) | 2003-01-14 |
KR100729526B1 true KR100729526B1 (en) | 2007-06-15 |
Family
ID=27713308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020010039688A KR100729526B1 (en) | 2001-07-04 | 2001-07-04 | Method for producing ferritic stainless steel sheets having excellent ridging property |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100729526B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100963109B1 (en) | 2007-11-22 | 2010-06-14 | 주식회사 포스코 | High chrome ferritic stainless steels |
KR101258756B1 (en) | 2010-12-27 | 2013-04-29 | 주식회사 포스코 | Ferritic stainless steel with improved ridging property and method of manufacturing the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101279052B1 (en) * | 2009-12-23 | 2013-07-02 | 주식회사 포스코 | Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof |
KR101279051B1 (en) * | 2009-12-28 | 2013-07-02 | 주식회사 포스코 | Ferritic stainless steel and method for manufacturing the same |
EP2982770B8 (en) * | 2013-04-01 | 2017-12-27 | Hitachi Metals, Ltd. | Method for producing steel for blades |
US10968499B2 (en) * | 2014-12-11 | 2021-04-06 | Jfe Steel Corporation | Ferritic stainless steel and process for producing same |
KR102326044B1 (en) * | 2019-12-20 | 2021-11-15 | 주식회사 포스코 | Ferritic stainless steel with improved magnetization properties and manufacturing method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000036162A (en) * | 1996-09-16 | 2000-06-26 | 리차드 씨. 베이커 | Light weight, high performance vibration-damping system |
KR20010079456A (en) * | 2001-07-20 | 2001-08-22 | 김해용 | Method for manufacturing the aseptic packing nutrient cooked rice |
-
2001
- 2001-07-04 KR KR1020010039688A patent/KR100729526B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000036162A (en) * | 1996-09-16 | 2000-06-26 | 리차드 씨. 베이커 | Light weight, high performance vibration-damping system |
KR20010079456A (en) * | 2001-07-20 | 2001-08-22 | 김해용 | Method for manufacturing the aseptic packing nutrient cooked rice |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100963109B1 (en) | 2007-11-22 | 2010-06-14 | 주식회사 포스코 | High chrome ferritic stainless steels |
KR101258756B1 (en) | 2010-12-27 | 2013-04-29 | 주식회사 포스코 | Ferritic stainless steel with improved ridging property and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
KR20030003848A (en) | 2003-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101713046B (en) | Preparation method of superfine grain martensitic steel reinforced and controlled by nano precipitated phase | |
US11401569B2 (en) | High-strength cold-rolled steel sheet and method for manufacturing same | |
EP4159886A1 (en) | Ultrahigh-strength dual-phase steel and manufacturing method therefor | |
JP2024511848A (en) | Low-carbon, low-alloy, highly formable duplex steel with tensile strength ≧590MPa, hot-dip galvanized duplex steel, and manufacturing method thereof | |
CN109554615A (en) | A kind of tensile strength 900MPa grades of analysis of producing hot rolled TRIP and preparation method thereof | |
CN107012398A (en) | A kind of Nb-microalloying TRIP steel and preparation method thereof | |
KR100729526B1 (en) | Method for producing ferritic stainless steel sheets having excellent ridging property | |
JP3468048B2 (en) | Manufacturing method of high carbon cold rolled steel sheet with excellent formability | |
KR100480356B1 (en) | Method of producing ferritic stainless steel sheets having excellent ridging property | |
KR100598576B1 (en) | Method for producing ferritic stainless steel sheets having excellent press formability and ridging properity | |
KR100771832B1 (en) | Method for producing ferritic stainless steel sheets having excellent ridging property | |
JP4744033B2 (en) | Manufacturing method of ferritic stainless steel sheet with excellent workability | |
EP0247264B1 (en) | Method for producing a thin casting of cr-series stainless steel | |
JP5167314B2 (en) | Method for producing ferritic stainless steel with excellent ridging resistance | |
JP2512650B2 (en) | Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality | |
JPH0830241B2 (en) | Steel sheet having excellent workability and toughness and good hardenability, and a method for producing the same | |
KR100479993B1 (en) | A method for producing a high carbon steel strip with high elongation and hardenability | |
JP3818025B2 (en) | Method for producing cold-rolled steel sheet with small anisotropy | |
KR100415666B1 (en) | A ferritic stainless steel having improved formability, ridging resistance and a method for manufacturing it | |
JPH1088237A (en) | Production of cold rolled high carbon steel strip | |
JPH03223420A (en) | Production of high strength steel | |
KR100958026B1 (en) | Method for producing ferritic stainless steel sheets having excellent ridging property | |
WO2023162614A1 (en) | Hot stamped compact | |
CN116656924A (en) | Acid pickling annealed plate and preparation method thereof | |
KR101406454B1 (en) | Soft tempered black plate steel sheet having excellent aging resistance and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130607 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140526 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150526 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160602 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20170609 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20180612 Year of fee payment: 12 |