KR100771832B1 - Method for producing ferritic stainless steel sheets having excellent ridging property - Google Patents

Method for producing ferritic stainless steel sheets having excellent ridging property Download PDF

Info

Publication number
KR100771832B1
KR100771832B1 KR1020010081201A KR20010081201A KR100771832B1 KR 100771832 B1 KR100771832 B1 KR 100771832B1 KR 1020010081201 A KR1020010081201 A KR 1020010081201A KR 20010081201 A KR20010081201 A KR 20010081201A KR 100771832 B1 KR100771832 B1 KR 100771832B1
Authority
KR
South Korea
Prior art keywords
annealing
stainless steel
less
cold
ferritic stainless
Prior art date
Application number
KR1020010081201A
Other languages
Korean (ko)
Other versions
KR20030050695A (en
Inventor
박수호
박재석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010081201A priority Critical patent/KR100771832B1/en
Publication of KR20030050695A publication Critical patent/KR20030050695A/en
Application granted granted Critical
Publication of KR100771832B1 publication Critical patent/KR100771832B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0468Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 열간압연 후 열연소둔을 생략하고 냉간압연과 소둔조건을 제어함으로써 리징성을 향상시키는 페라이트계 스테인레스강의 제조방법에 관한 것으로, 중량%로 C : 0.10%이하, Si : 1.0%이하, Mn : 1.0%이하, P : 0.040%이하, S : 0.030%이하, Cr : 15.0 ~ 20.0%, Al : 0.2%이하 그리고 N : 0.05%이하를 함유하고 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 구성된 페라이트계 스테인레스강의 제조방법에 있어서, 상기와 같이 조성된 페라이트계 스테인레스강 슬라브를 열간압연하는 단계와, 열연판을 소둔하지 않고 연속냉간압연기에서 냉간압연하는 단계와, 냉연판을 800 ~ 900℃ 온도에서 1시간 ~ 10시간 유지하여 상소둔하거나 또는 850 ~ 1000℃ 온도로 가열하여 10초 ~ 5분 동안 유지한 후 급냉하여 연속소둔하는 단계와, 냉연소둔판을 다시 20단 냉간압연기에서 냉간압연하는 단계와, 냉연판을 800 ~ 900℃ 온도에서 5초 ~ 3분 동안 연속소둔하는 단계를 포함한다. 또한, 상기 페라이트계 스테인레스강 슬라브의 오스테나이트 최대 분율(max)은 15 ~ 40%인 것이 바람직하다. The present invention relates to a method for producing a ferritic stainless steel that improves ridging by eliminating hot rolling after hot rolling and controlling cold rolling and annealing conditions. : Less than 1.0%, P: Less than 0.040%, S: Less than 0.030%, Cr: 15.0 to 20.0%, Al: Less than 0.2% and N: less than 0.05%, ferrite composed of the remaining Fe and other unavoidable impurities In the manufacturing method of the stainless steel, the step of hot rolling the ferritic stainless steel slab formed as described above, the step of cold rolling in a continuous cold rolling machine without annealing the hot rolled plate, and the cold rolled plate at a temperature of 800 ~ 900 ℃ After annealing by maintaining for 1 hour to 10 hours or by heating to 850 ~ 1000 ℃ temperature for 10 seconds to 5 minutes, followed by quenching and continuous annealing, cold rolling annealing plate again cold pressure in 20 stage cold rolling mill A step, and a cold-rolled sheet, which comprises a step of continuous annealing for 5-3 seconds at a temperature of 800 ~ 900 ℃. In addition, the austenitic maximum fraction ( max ) of the ferritic stainless steel slab is preferably 15 to 40%.

스테인레스강, 페라이트계, 리징성, 연속소둔Stainless steel, ferritic, ridging, continuous annealing

Description

리징성이 향상된 페라이트계 스테인레스강의 제조방법{Method for producing ferritic stainless steel sheets having excellent ridging property} Method for producing ferritic stainless steel with improved ridging property {Method for producing ferritic stainless steel sheets having excellent ridging property}             

도 1은 본 발명의 실시예에 따른 페라이트계 스테인레스강의 제조방법을 설명하기 위한 블록도.1 is a block diagram illustrating a method of manufacturing a ferritic stainless steel according to an embodiment of the present invention.

도 2는 종래와 본 발명의 페라이트계 스테인레스강의 제조방법에 의해 각각 제조된 시편의 리징 높이 측정결과를 비교한 그래프이다.
Figure 2 is a graph comparing the result of the ridging height of the specimen prepared by the conventional method of manufacturing ferritic stainless steel of the present invention.

본 발명은 페라이트계 스테인레스강의 제조방법에 관한 것이며, 특히, 열간압연 후 열연소둔을 생략하고 연속냉간압연기에서 냉간압연하여 상소둔 또는 연속소둔한 다음 20단 냉간압연기에서 냉간압연 후 연속소둔함에 따라 리징성이 향상된 페라이트계 스테인레스강의 제조방법에 관한 것이다. The present invention relates to a method for producing a ferritic stainless steel, and in particular, after hot rolling, hot rolling annealing is omitted, followed by cold rolling in a continuous cold rolling mill, annealing or continuous annealing, followed by continuous annealing after cold rolling in a 20 stage cold rolling mill. It relates to a method for producing ferritic stainless steel with improved properties.

페라이트계 스테인레스 냉연제품은 딥드로잉(Deep Drawing)과 같은 성형가공에 의해 각종 주방용품, 자동차부품 등에 널리 사용되고 있는데, 이 페라이트계 스 테인레스강은 프레스 성형시 줄무늬 모양의 리징(Ridging)결함이 발생하는 문제점을 가지고 있다. 이러한 리징결함은 제품의 외관을 나쁘게 할 뿐만 아니라 리징이 심하게 발생할 경우 성형 후에 연마공정이 추가되기 때문에 제조단가가 높아지는 문제점이 있다.Ferritic stainless steel cold rolled products are widely used in various kitchen utensils and automobile parts by molding processing such as deep drawing, and this ferritic stainless steel has streaked ridding defects during press molding. I have a problem. Such ridging defects not only deteriorate the appearance of the product, but also have a problem in that the manufacturing cost increases because the grinding process is added after molding if the ridging occurs badly.

이와 같은 리징의 원인은 아직까지 명확하게 밝혀지지 않았지만 대개 다음과 같이 알려져 왔다. 즉 최종 냉연소둔판에 있어서 다른 집합조직을 가지는 부위의 소성이방성에 의해 표면에 요철로 나타나게 된다. 특히 조대한 주조조직에 기인하여 열연판에 존재하는 {001}<110> 결정방위를 가지는 조대한 결정립군(群)의 형성에 의한 것으로 알려져 있다. The cause of such leasing has not been clarified yet, but it is usually known as follows. That is, in the final cold-rolled annealing plate, irregularities appear on the surface by plastic anisotropy of a site having a different texture. In particular, it is known that the formation of coarse grain groups having a {001} <110> crystal orientation present in the hot rolled sheet due to the coarse cast structure.

이러한 리징성을 개선하기 위한 종래의 대책은 위에 언급한 추정기구에 근거하여 대개 3가지로 구분되어지고 있다. 즉 (1)조대한 결정립군의 기원인 응고 결정립의 미세화, (2)조대한 결정립군의 집합조직의 무질서화(랜덤화), (3)조대한 결정립군의 분해이다. Conventional countermeasures for improving such ridging are generally classified into three types based on the above-mentioned estimation mechanism. That is, (1) miniaturization of coagulated grains, the origin of coarse grain groups, (2) disorder of aggregates of coarse grain groups (randomization), and (3) decomposition of coarse grain groups.

상기 (1)의 경우 예를 들면 일본 특허공개공보 소50-123294호에 기술된 바와 같이 주상정의 등축정화를 위한 전자교반, 응고결정립의 미세화를 위한 응고결정핵의 도입과 주조온도의 저하에 의한 급격한 응고에 대해서 구체적인 대책으로서 제시되었다. In the case of (1), for example, as described in Japanese Patent Application Laid-open No. 50-123294, electron stirring for columnar crystallization, introduction of solidification crystal nuclei for miniaturization of solidification grains, and reduction of casting temperature It is proposed as a concrete countermeasure against rapid solidification.

상기 (2)를 위해서는 일본 특허공개공보 소57-70234호에 나타낸 바와 같이 제조공정 중에서 재결정을 촉진시키기 위한 열간압연온도(가열온도, 마무리온도, 권취온도 등), 압하율, 소둔온도 등의 적정화와 냉연 재결정 회수의 증가를 도모한 냉연시의 중간소둔공정의 추가, 열간압연시의 연신변형 외에 폭방향 변형의 부가 및 입내 석출물과 오스테나이트상의 이용 그리고 열연윤활의 적정화를 들 수 있다.For the above (2), as shown in Japanese Patent Application Laid-Open No. 57-70234, it is appropriate to optimize the hot rolling temperature (heating temperature, finishing temperature, winding temperature, etc.), rolling reduction rate, annealing temperature, etc. to promote recrystallization during the manufacturing process. And the addition of an intermediate annealing process during cold rolling to increase the number of re-crystallizations of cold rolling, the addition of stretching deformation during hot rolling, the addition of widthwise deformation, the use of intragranular precipitates and austenite phases, and the optimization of hot rolling lubrication.

상기 (3)의 경우는 일본 특허공개공보 평6-81036호에 기술한 바와 같이 변태의 도입을 의도한 성분 변경과 특수한 열처리 공정이 제안되어 있다. 이들 대부분의 종래기술은 각각을 단독으로 실시하는 것이 아니라 몇가지 기술의 조합에 의해 효과의 증대를 노리고 있다.In the case of (3), as described in Japanese Patent Application Laid-Open No. Hei 6-81036, a component change intended for introduction of transformation and a special heat treatment step have been proposed. Most of these prior arts are aimed at increasing the effect by a combination of several techniques, rather than performing each individually.

일반적으로 스테인레스 430강은 열연 소둔 공정을 거치는데 비교적 저온(800 ~ 850℃)에서 장시간(35 ~ 50시간) 열처리하는 상소둔(Box Annealing)을 행하고 있다. 열연판 소둔의 목적은 재결정에 의한 열연 집합조직을 파괴하고 오스테나이트상(상온에서 마르텐사이트상)을 페라이트+탄화물로 분해하는 2가지의 야금학적 인자를 만족시킴으로써, 성형가공시에 발생하는 리징을 저감시키고, 성형성을 향상시키며, 냉연성을 향상시키기 위한 것이다. 그런데, 이러한 상소둔 공정은 에너지 소모가 클 뿐 아니라 장시간의 열처리에 따른 생산성 저하의 문제점이 발생한다. In general, stainless 430 steel undergoes a hot rolled annealing process, and performs box annealing for heat treatment at a relatively low temperature (800 to 850 ° C.) for a long time (35 to 50 hours). The purpose of hot-rolled sheet annealing is to eliminate the leasing that occurs during forming by satisfying two metallurgical factors that destroy the hot-rolled texture by recrystallization and decompose the austenite phase (martensite phase at room temperature) into ferrite + carbide. It is for reducing, improving moldability, and improving cold rolling property. However, such annealing process not only has a large energy consumption, but also causes a problem of lowering productivity due to prolonged heat treatment.

따라서, 최근에는 리징성이나 성형성을 개선함과 동시에 대량생산 체제에 적합한 열연소둔공정의 연속화 또는 열연소둔공정의 생략화를 통한 생산성 향상에 관한 연구 및 기술개발이 집중되고 있는 실정이다. Therefore, in recent years, research and technology development on the improvement of productivity through sequencing of the hot-rolling annealing process or omission of the hot-rolling annealing process suitable for mass production systems as well as improving the ridging property and the formability have been concentrated.

상기에 대한 기술은 다수의 특허공보에 수록되어 있는데, 그 중에서, 일본 특허공고공보 소59-43977호, 일본 특허공고공보 소59-43978호(1984.10.25)에는 스테인레스 430강에 Al을 0.1 ∼ 0.15% 첨가하고, 연속주조시 슬라브(slab)의 등축정율을 높이는 동시에, 비교적 저온가열 및 강압하로 열간압연한 열연판을 고온 단시 간에 연속소둔하는 제조방법에 관한 내용이 기술되어 있다.The above technique is described in a number of patent publications. Among them, Japanese Patent Publication No. 59-43977 and Japanese Patent Publication No. 59-43978 (1984.10.25) show that Al is 0.1 to 430 in stainless steel. A method for producing a hot-rolled hot rolled sheet, which is added at 0.15% and increases the isoaxial crystallization rate of the slab during continuous casting, and which is hot-rolled under relatively low temperature heating and high pressure, is described.

그러나 상기 열간압연할 때 열연판에 축적된 내부 변형에너지가 적기 때문에 열연 소둔조건에 상관없이 재결정이 잘 일어나지 않는 문제점이 있다.
However, there is a problem in that recrystallization does not occur well regardless of hot rolling annealing conditions because the internal strain energy accumulated in the hot rolled sheet is small when hot rolling.

따라서, 본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 열간압연판을 연속냉간압연기에서 냉간압연함에 따라 내부 변형에너지를 축적시킴으로써 소둔할 때 재결정을 충분히 시켜 조대한 결정립군을 파괴시키고 다시 냉간압연 후 소둔함으로써 리징성을 향상시키는 페라이트계 스테인레스강의 제조방법을 제공하는 데 그 목적이 있다.
Accordingly, the present invention has been made to solve the problems of the prior art as described above, when the hot rolled plate is cold rolled in a continuous cold rolling mill to accumulate internal strain energy to sufficiently recrystallize when the annealing to coarse grain group It is an object of the present invention to provide a method for producing ferritic stainless steel that improves ridging by breaking and annealing again after cold rolling.

위와 같은 목적을 달성하기 위한 본 발명에 따르면, 중량%로 C : 0.10%이하, Si : 1.0%이하, Mn : 1.0%이하, P : 0.040%이하, S : 0.030%이하, Cr : 15.0 ~ 20.0%, Al : 0.2%이하 그리고 N : 0.05%이하를 함유하고 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 구성된 페라이트계 스테인레스강의 제조방법에 있어서,According to the present invention for achieving the above object, by weight% C: 0.10% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Cr: 15.0 ~ 20.0 In the manufacturing method of ferritic stainless steel containing%, Al: 0.2% or less and N: 0.05% or less, and the remaining Fe and other inevitable impurities,

상기와 같이 조성된 페라이트계 스테인레스강 슬라브를 열간압연하는 단계와, 열연판을 소둔하지 않고 연속냉간압연기에서 냉간압연하는 단계와, 냉연판을 800 ~ 900℃ 온도에서 1시간 ~ 10시간 유지하여 상소둔하거나 또는 850 ~ 1000℃ 온도로 가열하여 10초 ~ 5분 동안 유지한 후 급냉하여 연속소둔하는 단계와, 냉연 소둔판을 다시 20단 냉간압연기에서 냉간압연하는 단계와, 냉연판을 800 ~ 900℃ 온도에서 5초 ~ 3분 동안 연속소둔하는 단계를 포함한다. Hot rolling the ferritic stainless steel slab formed as described above, cold rolling in a continuous cold rolling machine without annealing the hot rolled plate, and maintaining the cold rolled plate at a temperature of 800 to 900 ° C. for 1 hour to 10 hours. 10 seconds to 5 minutes by dull or heated to a temperature of 850 ~ 1000 ℃, followed by quenching and continuous annealing, cold rolling annealing again in a 20-stage cold rolling mill, and cold rolling 800 to 900 Continuous annealing for 5 seconds to 3 minutes at a temperature ℃.

또한, 본 발명에 따르면, 상기 페라이트계 스테인레스강 슬라브의 오스테나이트 최대 분율(

Figure 112001033635410-pat00001
max)은 15 ~ 40% 인 것이 바람직하다.
Further, according to the present invention, the maximum fraction of austenite of the ferritic stainless steel slab (
Figure 112001033635410-pat00001
max ) is preferably 15 to 40%.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 페라이트계 스테인레스강은 이미 공지되어 있는 성분계로서 중량%로 C : 0.10%이하, Si : 1.0%이하, Mn : 1 .0%이하, P : 0.040%이하, S : 0.030%이하, Cr : 15.0 ~ 20.0%, Al : 0.2%이하 그리고 N : 0.05%이하를 함유하고 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 구성되어 있다. Ferritic stainless steel of the present invention is a known component system in terms of weight% C: 0.10% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Cr : 15.0 ~ 20.0%, Al: 0.2% or less and N: 0.05% or less, and the rest of Fe and other inevitable impurities.

상기와 같은 합금성분계에 있어서, 오스테나이트 최대 분율(

Figure 112001033635410-pat00002
max)이 15 ~ 40% 가 되도록 조정한다. 왜냐하면, 오스테나이트 최대 분율이 15%미만인 경우에는 열연소둔 후 잔존하는 오스테나이트상(냉각시 마르텐사이트상)에 의한 결정립 미세화효과가 적어서 리징성 개선이 크지 않고, 40%를 넘게 되면 열연소둔 후 잔존하는 오스테나이트상이 너무 많아서 마르텐사이트상에 의한 취화현상이 나타나기 때문이다. 이런 오스테나이트 최대 분율(
Figure 112001033635410-pat00003
max)은 수학식 1에 의해 구해진다. In the alloy component system as described above, the maximum fraction of austenite (
Figure 112001033635410-pat00002
max ) is adjusted to 15 ~ 40%. Because, when the maximum fraction of austenite is less than 15%, the grain refining effect of the austenite phase (martensite phase) remaining after hot annealing is small and the leaching property is not improved. This is because there is too much austenite phase and embrittlement phenomenon by martensite phase appears. This austenitic maximum fraction (
Figure 112001033635410-pat00003
max ) is obtained by the equation (1).

Figure 112001033635410-pat00004
오스테나이트 최대 분율( max) = 420(%C) + 470(%N) + 23(%Ni) + 9(%Cu) + 10(%Mn) + 180 - 11.5(%Cr) - 11.5(%Si) - 12(%Mo) - 52(%Al)
Figure 112001033635410-pat00004
Austenitic maximum fraction ( max ) = 420 (% C) + 470 (% N) + 23 (% Ni) + 9 (% Cu) + 10 (% Mn) + 180-11.5 (% Cr)-11.5 (% Si )-12 (% Mo)-52 (% Al)

다음은 본 발명에 따른 페라이트계 스테인레스강의 제조방법의 양호한 실시예를 도면을 참조로 하여 상세히 설명한다. Next, a preferred embodiment of a method for manufacturing ferritic stainless steel according to the present invention will be described in detail with reference to the drawings.

도 1은 본 발명의 한 실시예에 따른 페라이트계 스테인레스강의 제조방법을 설명하기 위한 블록도이다. 1 is a block diagram illustrating a method of manufacturing a ferritic stainless steel according to an embodiment of the present invention.

도 1에서 보듯이, 상기와 같이 조성된 페라이트계 스테인레스강 슬라브를 열간압연한 후(S1), 열연판을 소둔하지 않고 연속냉간압연기에서 냉간압연한다(S2). 이와 같은 조건에서 작업하는 것은 열연판에 축적된 변형에너지가 적어서 재결정이 잘 일어나지 않는 것을 보완하기 위한 것이고 연속냉간압연기에서 냉간압연함으로써 생산성을 높일 수 있기 때문이다. As shown in Figure 1, after the hot-rolled ferritic stainless steel slab composition as described above (S1), it is cold rolled in a continuous cold rolling machine (S2) without annealing the hot rolled plate. Working in such a condition is to compensate for less recrystallization due to the small amount of strain energy accumulated in the hot-rolled sheet and because the productivity can be increased by cold rolling in a continuous cold rolling mill.

계속해서, 냉연판을 800 ~ 900℃ 온도에서 1시간 ~ 10시간 유지하여 상소둔하거나 또는 850 ~ 1000℃ 온도로 가열하여 10초 ~ 5분 동안 유지한 후 급냉하여 연속소둔한다(S3). 상기의 냉연판을 상소둔할 때 800℃미만에서는 재결정이 충분히 일어나지 않고, 900℃를 넘게 되면 오스테나이트상이 잔존하여 성형성이 나빠지기 때문이다. 상기 유지시간이 1시간 이내에서는 재결정이 충분히 일어나지 않고, 장시간 유지할수록 탄질화물 석출이 용이하여 성형성에 유리하지만, 10시간을 넘게 되면 생산성이 낮아질 뿐만 아니라 에너지 소모량이 많아 제조비용이 높아지기 때문이다. Subsequently, the cold rolled sheet is maintained at 800 to 900 ° C. for 1 hour to 10 hours, or annealed, or heated to 850 to 1000 ° C. for 10 seconds to 5 minutes, and then quenched and continuously annealed (S3). This is because, when annealing the cold rolled sheet, the recrystallization does not sufficiently occur at less than 800 ° C, and if it exceeds 900 ° C, the austenite phase remains and the moldability deteriorates. This is because the recrystallization does not occur sufficiently within 1 hour, and the longer the retention time, the easier the carbonitride precipitates, which is advantageous in moldability.

또한, 상기의 냉연판을 연속소둔할 때 850℃ 미만에서 단시간 열처리하면 재결정이 충분히 일어나지 않아 결정립 미세화 효과를 얻을 수 없고, 1000℃를 넘게 되면 고온취화 현상이 일어나서 냉간압연시 판파단이 발생할 우려가 있기 때문이다. 상기 연속소둔시 유지시간 10초 이내에서는 재결정이 충분히 일어나지 않고, 장시간 유지할수록 유리하지만 5분을 넘게 되면 생산성이 낮아지는 문제점이 발생하게 된다. In addition, when the cold rolled sheet is continuously annealed at a temperature of less than 850 ° C. for a short time, recrystallization does not occur sufficiently to obtain a grain refining effect. Because there is. Within 10 seconds of continuous annealing, recrystallization does not occur sufficiently, and the longer the retention time is, the more advantageous it is.

계속해서, 20단 냉간압연기에서 냉간압연을 행한다(S4). 냉연 후에는 800 ~ 900℃ 온도에서 5초 ~ 3분 동안 연속소둔한다(S5). 이와 같은 조건에서 작업하는 것은 800℃ 미만에서는 재결정이 충분히 일어나지 않고, 900℃를 넘게 되면 오스테나이트상이 잔존하여 성형성이 나빠지기 때문이다. Then, cold rolling is performed in a 20 stage cold rolling mill (S4). After cold rolling, continuous annealing for 5 seconds to 3 minutes at a temperature of 800 ~ 900 ℃ (S5). The reason for working under such conditions is that recrystallization does not occur sufficiently below 800 ° C, and when it exceeds 900 ° C, the austenite phase remains and moldability deteriorates.

즉, 상술한 바와 같이 본 발명의 페라이트계 스테인레스강 제조방법은 열연판을 소둔하지 않고 연속냉간압연기에서 냉간압연함에 따라 내부 변형에너지를 축적시킴으로써 소둔할 때 재결정을 충분히 시켜 조대한 결정립군을 파괴시키고, 다시 냉간압연 후 소둔함으로써 조대한 집합조직을 파괴시킴에 따라 리징성을 개선할 수 있다. That is, as described above, the ferritic stainless steel manufacturing method of the present invention does not anneal the hot rolled sheet but accumulates internal strain energy as it is cold rolled in a continuous cold rolling mill to sufficiently recrystallize when annealed to destroy coarse grain groups. In addition, by re-annealing after cold rolling, the ridging property can be improved by destroying the coarse texture.

다음은 실시예를 통하여 본 발명을 구체적으로 설명한다. The following describes the present invention in detail by way of examples.

표 1 과 같은 조성을 갖는 페라이트계 스테인레스강(본 발명강 A,B,C) 잉고트 시편을 사용하여 표 2와 같은 본 발명의 방법으로 열간압연을 행하였다. 이 때, 열간압연조건으로서 재가열온도는 1250℃, 마무리압연온도는 850 ~ 900℃ 그리고 권취온도는 700℃로 하였다. 계속해서, 열연판을 연속냉간압연기에서 압연한 후 800 ~ 900℃ 온도에서 5시간 유지하여 상소둔하거나, 850 ~ 1000℃ 에서 1분간 연속소둔한 냉연소둔판을 냉간압연 및 소둔한 다음 품질특성 평가용 시편을 제조하 여, 인장시험에 의해 리징(Ridging)높이를 측정하였다. 여기에서, 리징성은 인장시험 후의 표면조도를 측정하여 리징 높이로 평가하는데 리징 높이가 낮을 수록 유리하다.Hot-rolling was performed by the method of the present invention as shown in Table 2 using ferritic stainless steel (Inventive steels A, B and C) ingot specimens having the composition shown in Table 1. At this time, as the hot rolling conditions, the reheating temperature was 1250 ° C, the finish rolling temperature was 850-900 ° C, and the winding temperature was 700 ° C. Subsequently, the hot rolled sheet was rolled in a continuous cold rolling mill, followed by annealing for 5 hours at 800 to 900 ° C., or cold rolling and annealing for 1 minute at 850 to 1000 ° C., followed by cold rolling and annealing. A test specimen was prepared, and the ridging height was measured by a tensile test. Here, the ridging property is measured by measuring the surface roughness after the tensile test to the ridging height, the lower the ridging height is advantageous.

한편, 비교강(D)는 표 2의 종래방법(Ⅰ,Ⅱ)의 조건으로 제조하여 리징높이를 측정하였다.On the other hand, the comparative steel (D) was manufactured under the conditions of the conventional methods (I, II) of Table 2 and measured the ridging height.

구 분(w%)Classification (w%) CC SiSi MnMn CrCr AlAl NN

Figure 112001033635410-pat00005
max
Figure 112001033635410-pat00005
max 비 고Remarks 발명강 Invention steel AA 0.0520.052 0.390.39 0.380.38 16.2316.23 0.0030.003 0.030.03 31.131.1 P : trace S : traceP: trace S: trace BB 0.0470.047 0.400.40 0.250.25 16.3416.34 0.0020.002 0.01140.0114 18.418.4 CC 0.0520.052 0.420.42 0.250.25 16.3816.38 0.1340.134 0.0250.025 18.418.4 비교강Comparative steel DD 0.0440.044 0.400.40 0.230.23 16.5016.50 0.0630.063 0.0110.011 11.411.4

종래방법(Ⅰ)Conventional Method (Ⅰ) 열간압연 →상소둔 →냉간압연 →연속소둔 Hot Rolled → Upper Annealed → Cold Rolled → Continuous Annealed 종래방법(Ⅱ)Conventional Method (Ⅱ) 열간압연 →연속소둔 →냉간압연 →연속소둔 Hot Rolled → Continuous Annealed → Cold Rolled → Continuous Annealed 본 발명법Invention method 열간압연 →냉간압연(연속냉간압연기) →상소둔 또는 연속소둔 → 냉간압연(20단 냉간압연기) →연속소둔 Hot rolling → cold rolling (continuous cold rolling mill) → normal annealing or continuous annealing → cold rolling (20 stage cold rolling mill) → continuous annealing

상기 표 1의 화학성분의 A,B,C,D강을 표 2에 나타낸 종래방법과 본발명법으로 제조한 시편의 리징 높이 측정결과를 도 2 에 도시하였다. The measurement results of the ridging height of the specimens prepared by the conventional method and the present invention of A, B, C, and D steel of the chemical components of Table 1 are shown in FIG. 2.

도 2 는 종래기술과 본 발명의 페라이트계 스테인레스강의 제조방법에 의해 각각 제조된 시편의 리징높이 측정결과를 비교한 그래프이다. 도 2에서 보듯이, 종래방법(Ⅰ)의 상소둔에 의해 제조된 강은 종래방법(Ⅱ)보다 A강을 제외하고 리징 높이가 높은 수준을 나타내고 있으며, 또한 비교강(D)에 있어서도 종래방법(Ⅰ,Ⅱ) 에 비해 본발명법으로 제조한 시편의 리징 높이가 더 낮은 수준을 나타내었다.Figure 2 is a graph comparing the measurement results of the ridging height of the specimen prepared by the prior art and the method of manufacturing ferritic stainless steel of the present invention. As shown in Fig. 2, the steel produced by the ordinary annealing of the conventional method (I) shows a higher level of ridging height except the A steel than the conventional method (II), and also the conventional method in the comparative steel (D). Compared to (I, II), the ridging height of the specimen prepared by the present invention showed a lower level.

따라서 본발명법은 종래방법 보다 리징 높이가 매우 낮게 나타냄으로써, 본 발명의 제조방법으로 페라이트계 스테인레스강을 제조할 경우 리징성이 현저하게 향상됨을 알 수 있다.
Therefore, the present invention shows that the leaching height is very low than the conventional method, it can be seen that the leaching property is remarkably improved when the ferritic stainless steel is manufactured by the manufacturing method of the present invention.

앞서 상세히 설명한 바와 같이 본 발명의 페라이트계 스테인레스강의 제조방법은 오스테나이트 최대 분율(

Figure 112001033635410-pat00006
max)을 적절히 조절한 슬라브를 열간압연 후 열연판을 소둔하지 않고 연속냉간압연기에서 냉간압연한 다음 소둔하고 나서 다시 냉연 후 소둔함에 따라 리징성을 현저하게 향상시키는 효과를 얻을 수 있으며, 이에 따라 성형 가공 후에 미려한 표면을 얻을 수 있을 뿐만 아니라 최종제품의 연마공정 생략에 의한 제조원가 절감효과를 기대할 수 있다. As described in detail above, the method of manufacturing the ferritic stainless steel of the present invention has a maximum fraction of austenite (
Figure 112001033635410-pat00006
max ) slab suitably adjusted after hot rolling is cold rolled in a continuous cold rolling machine without annealing after annealing, then annealing and then annealing again after cold rolling, thereby remarkably improving the ridging property. Not only can a beautiful surface be obtained after processing, but also manufacturing cost reduction effect can be expected by eliminating the polishing process of the final product.

이상에서 본 발명의 페라이트계 스테인레스강의 제조방법에 대한 기술사상을 첨부도면과 함께 서술하였지만 이는 본 발명의 가장 양호한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다.Although the technical idea of the method for manufacturing the ferritic stainless steel of the present invention has been described with the accompanying drawings, this is illustrative of the best embodiment of the present invention and is not intended to limit the present invention.

또한, 이 기술분야의 통상의 지식을 가진 자이면 누구나 본 발명의 기술사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.In addition, it is obvious that any person skilled in the art can make various modifications and imitations without departing from the scope of the technical idea of the present invention.

Claims (2)

중량%로 C : 0.10%이하, Si : 1.0%이하, Mn : 1.0%이하, P : 0.040%이하, S : 0.030%이하, Cr : 15.0 ~ 20.0%, Al : 0.2%이하 그리고 N : 0.05%이하를 함유하고 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 구성된 페라이트계 스테인레스강의 제조방법에 있어서, 상기와 같이 조성된 페라이트계 스테인레스강 슬라브를 열간압연하는 단계와, 열연판을 소둔하지 않고 연속냉간압연기에서 냉간압연하는 단계와, 냉연판을 800 ~ 900℃ 온도에서 1시간 ~ 10시간 유지하여 상소둔하거나 또는 850 ~ 1000℃ 온도로 가열하여 10초 ~ 5분 동안 유지한 후 급냉하여 연속소둔하는 단계와, 냉연소둔판을 다시 20단 냉간압연기에서 냉간압연하는 단계와, 냉연판을 800 ~ 900℃ 온도에서 5초 ~ 3분 동안 연속소둔하는 단계를 포함하는 것을 특징으로 하는 리징성이 향상된 페라이트계 스테인레스강의 제조방법.By weight% C: 0.10% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Cr: 15.0 ~ 20.0%, Al: 0.2% or less and N: 0.05% In the method of manufacturing a ferritic stainless steel containing the following Fe and other inevitable impurities, hot rolling of the ferritic stainless steel slab formed as above, and continuous cold rolling without annealing the hot rolled sheet. Cold rolling step, and the cold rolled sheet is maintained at 800 ~ 900 ℃ temperature for 1 hour to 10 hours or annealing or heated to 850 ~ 1000 ℃ temperature for 10 seconds to 5 minutes and then quenched continuously annealing And, the cold rolled annealing plate again cold-rolled in a 20-stage cold rolling mill, and the step of continuously annealing the cold rolled sheet at 800 ~ 900 ℃ temperature for 5 seconds to 3 minutes characterized in that the leasing properties improved ferrite system Made of stainless steel Way. 제1항에 있어서, 상기 페라이트계 스테인레스강 슬라브의 오스테나이트 최대 분율(
Figure 112001033635410-pat00007
max)은 15 ~ 40%인 것을 특징으로 하는 리징성이 향상된 페라이트계 스테인레스강의 제조방법.
The method of claim 1, wherein the maximum fraction of austenite of the ferritic stainless steel slab (
Figure 112001033635410-pat00007
max ) is 15 to 40% manufacturing method of ferritic stainless steel with improved ridging property.
KR1020010081201A 2001-12-19 2001-12-19 Method for producing ferritic stainless steel sheets having excellent ridging property KR100771832B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010081201A KR100771832B1 (en) 2001-12-19 2001-12-19 Method for producing ferritic stainless steel sheets having excellent ridging property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010081201A KR100771832B1 (en) 2001-12-19 2001-12-19 Method for producing ferritic stainless steel sheets having excellent ridging property

Publications (2)

Publication Number Publication Date
KR20030050695A KR20030050695A (en) 2003-06-25
KR100771832B1 true KR100771832B1 (en) 2007-10-30

Family

ID=29576401

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010081201A KR100771832B1 (en) 2001-12-19 2001-12-19 Method for producing ferritic stainless steel sheets having excellent ridging property

Country Status (1)

Country Link
KR (1) KR100771832B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110785A1 (en) * 2016-12-13 2018-06-21 주식회사 포스코 Ferritic stainless steel with excellent ridging property and surface quality and manufacturing method therefor
KR101938588B1 (en) 2017-08-22 2019-01-15 주식회사 포스코 Manufacturing method of ferritic stainless steel having excellent ridging property

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180027689A (en) * 2016-09-06 2018-03-15 주식회사 포스코 Method of manufacturing ferritic stainless steel having excellent formability and ridging properties
KR102326044B1 (en) * 2019-12-20 2021-11-15 주식회사 포스코 Ferritic stainless steel with improved magnetization properties and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR850001011A (en) * 1983-07-21 1985-03-14 해롤드 오브스트러 Continuous extraction device and method
JPH04311518A (en) * 1991-04-10 1992-11-04 Kawasaki Steel Corp Production of cold rolled steel strip of ferritic stainless steel excellent in drilling workability
KR950003467A (en) * 1993-07-02 1995-02-16 조말수 Ferritic stainless steel manufacturing method with excellent intergranular corrosion resistance
KR19990032693A (en) * 1997-10-20 1999-05-15 이구택 Ferritic antibacterial stainless steel and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR850001011A (en) * 1983-07-21 1985-03-14 해롤드 오브스트러 Continuous extraction device and method
JPH04311518A (en) * 1991-04-10 1992-11-04 Kawasaki Steel Corp Production of cold rolled steel strip of ferritic stainless steel excellent in drilling workability
KR950003467A (en) * 1993-07-02 1995-02-16 조말수 Ferritic stainless steel manufacturing method with excellent intergranular corrosion resistance
KR19990032693A (en) * 1997-10-20 1999-05-15 이구택 Ferritic antibacterial stainless steel and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110785A1 (en) * 2016-12-13 2018-06-21 주식회사 포스코 Ferritic stainless steel with excellent ridging property and surface quality and manufacturing method therefor
KR101921595B1 (en) * 2016-12-13 2018-11-26 주식회사 포스코 Ferritic stainless steel having excellent ridging property and excellent in surface quality and method of manufacturing the same
CN110073022A (en) * 2016-12-13 2019-07-30 株式会社Posco Ferritic stainless steel and its manufacturing method with excellent corrugation characteristic and surface quality
JP2020510135A (en) * 2016-12-13 2020-04-02 ポスコPosco Ferritic stainless steel excellent in ridging property and surface quality and manufacturing method thereof
CN110073022B (en) * 2016-12-13 2021-06-29 株式会社Posco Ferritic stainless steel having excellent ridging property and surface quality and method for manufacturing the same
KR101938588B1 (en) 2017-08-22 2019-01-15 주식회사 포스코 Manufacturing method of ferritic stainless steel having excellent ridging property

Also Published As

Publication number Publication date
KR20030050695A (en) 2003-06-25

Similar Documents

Publication Publication Date Title
KR950013188B1 (en) Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy
KR100324892B1 (en) High-strength, high-strength superstructure tissue stainless steel and its manufacturing method
KR100500791B1 (en) FERRITIC Cr-CONTAINING STEEL SHEET HAVING EXCELLENT DUCTILITY, FORMABILITY, AND ANTI-RIDGING PROPERTIES, AND METHOD OF PRODUCING THE SAME
KR950013187B1 (en) Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
CN108441759B (en) A kind of 540MPa grades of hot rolling acid-cleaning steel plate and its manufacturing method
US20100326572A1 (en) Method for producing low yield strength cold rolled steel sheet excellent in uniformity
CN107012398A (en) A kind of Nb-microalloying TRIP steel and preparation method thereof
JP2007211313A (en) Ferritic stainless steel having excellent ridging resistance and its production method
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
KR100729526B1 (en) Method for producing ferritic stainless steel sheets having excellent ridging property
KR100771832B1 (en) Method for producing ferritic stainless steel sheets having excellent ridging property
JPH08253818A (en) Production of ferritic stainless steel strip reduced in inplane anisotropy and excellent in balance between strength and elongation
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
JP3995822B2 (en) Method for producing high purity ferritic stainless steel sheet with excellent ridging resistance
JP4744033B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent workability
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JPH07310122A (en) Production of ferritic stainless steel strip having excellent bulging formability
KR100598576B1 (en) Method for producing ferritic stainless steel sheets having excellent press formability and ridging properity
JP4003821B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JP5167314B2 (en) Method for producing ferritic stainless steel with excellent ridging resistance
JPH02290917A (en) Production of cold rolled ferritic stainless steel sheet
JPH10280047A (en) Production of ferritic stainless steel sheet excellent in roping resistance
CN109536690A (en) A kind of coexistence region heat treatment process of ferritic stainless steel hot-rolling strip
KR100415666B1 (en) A ferritic stainless steel having improved formability, ridging resistance and a method for manufacturing it

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120928

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131017

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140926

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150922

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161017

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171023

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181023

Year of fee payment: 12