JP2020510135A - Ferritic stainless steel excellent in ridging property and surface quality and manufacturing method thereof - Google Patents

Ferritic stainless steel excellent in ridging property and surface quality and manufacturing method thereof Download PDF

Info

Publication number
JP2020510135A
JP2020510135A JP2019531659A JP2019531659A JP2020510135A JP 2020510135 A JP2020510135 A JP 2020510135A JP 2019531659 A JP2019531659 A JP 2019531659A JP 2019531659 A JP2019531659 A JP 2019531659A JP 2020510135 A JP2020510135 A JP 2020510135A
Authority
JP
Japan
Prior art keywords
rolling
stainless steel
hot
less
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019531659A
Other languages
Japanese (ja)
Other versions
JP7116064B2 (en
Inventor
ホ パク,スウ
ホ パク,スウ
マン イ,ゲ
マン イ,ゲ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2020510135A publication Critical patent/JP2020510135A/en
Application granted granted Critical
Publication of JP7116064B2 publication Critical patent/JP7116064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

熱延焼鈍熱処理前に冷間圧延をさらに実施することによって、断面の中心部の微細組織を変化させて最終製品のリッジング特性および表面品質に優れたフェライト系ステンレス鋼およびその製造方法が開示される。本発明によるオーステナイト系ステンレス鋼は、重量%で、C:0.005〜0.1%、Si:0.01〜2.0%、Mn:0.01〜1.5%、P:0.05%以下、S:0.005%以下、Cr:10〜30%、N:0.005〜0.1%、Al:0.005〜0.2%、残りのFeおよびその他不可避な不純物を含み、γmaxが20%以上50%未満であり、表面の微細溝の面積率が2.0%以下である。Disclosed is a ferritic stainless steel excellent in ridged properties and surface quality of the final product by changing the microstructure in the center of the cross section by further performing cold rolling before the hot rolling annealing heat treatment, and a method for producing the same. . The austenitic stainless steel according to the present invention is, by weight%, C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0.01 to 1.5%, P: 0. 05% or less, S: 0.005% or less, Cr: 10 to 30%, N: 0.005 to 0.1%, Al: 0.005 to 0.2%, the remaining Fe and other unavoidable impurities. Γmax is 20% or more and less than 50%, and the area ratio of fine grooves on the surface is 2.0% or less.

Description

本発明は、リッジング性および表面品質に優れたフェライト系ステンレス鋼およびその製造方法に関し、より詳細には、熱間圧延後、熱延焼鈍熱処理前に冷間圧延をさらに実施することによって、厚さ中心部の組織を改善して、リッジング性および表面品質を向上させたフェライト系ステンレス鋼およびその製造方法に関する。 The present invention relates to a ferritic stainless steel excellent in ridging properties and surface quality and a method for producing the same, and more particularly, after hot rolling, further performing cold rolling before hot rolling annealing heat treatment to increase the thickness. The present invention relates to a ferritic stainless steel having improved ridgeability and surface quality by improving the structure of a central part, and a method for producing the same.

一般的に、ステンレス鋼は、成分系や金属組織によって分類される。金属組織による場合、ステンレス鋼は、オーステナイト系、フェライト系、マルテンサイト系、二相系に分類される。このようなステンレス鋼のうちフェライト系ステンレス鋼は、高価な合金元素が少なく添加されながらも、耐食性に優れていて、各種キッチン用品、自動車排気系部品、建築材料、家電製品などに主に使用されており、外装用に使用される場合、高品質の表面光沢度が要求される鋼種である。 In general, stainless steels are classified according to component systems and metal structures. According to the metal structure, stainless steel is classified into austenitic, ferritic, martensitic, and two-phase systems. Among such stainless steels, ferritic stainless steels are excellent in corrosion resistance, while adding a small amount of expensive alloying elements, and are mainly used for various kitchen appliances, automobile exhaust system parts, building materials, home appliances, and the like. This is a steel type that requires high quality surface gloss when used for exteriors.

しかしながら、フェライト系ステンレス鋼は、ディープドローイング(deep drawing)のような成形加工時に圧延方向に平行なシワ形状の表面欠陥であるリッジング(ridging)欠陥が発生する問題点を有している。リッジング欠陥は、製品の外観を悪化させると共に、リッジングがひどく発生する場合、成形後に研磨工程が追加されて製造時間が増加し、製造コストが上昇する問題が発生する。そのため、フェライト系ステンレス鋼の用途拡大のためには、リッジング特性の改善と共に、優れた表面品質の確保が必要である。 However, the ferritic stainless steel has a problem that a wrinkling surface defect, which is a wrinkle-shaped surface defect parallel to the rolling direction, occurs at the time of forming such as deep drawing. Ridging defects deteriorate the appearance of products, and when ridges are severely generated, a polishing step is added after molding to increase the manufacturing time and increase the manufacturing cost. Therefore, in order to expand the applications of ferritic stainless steel, it is necessary to improve the ridging characteristics and ensure excellent surface quality.

リッジングの発生原因は、根源的に鋳造組織内の柱状晶の発達に起因する。すなわち、一定の方位を有する柱状晶が、圧延または焼鈍工程で破壊されずに残留する場合、引張加工時に周辺の再結晶組織と異なる幅および厚さ方向の変形挙動によってリッジング欠陥として表出される。このようなリッジング欠陥を解消するために、リッジングを誘発する組織を除去するための多様な試みが行われてきた。主に等軸晶率を向上させて柱状晶の分率を減らすことによって、リッジング性を改善したり、製造工程中に熱間圧延温度、熱間圧延の圧下率、焼鈍温度の制御など工程変数の調節を通じてリッジングを低減した。 The origin of the ridge is basically caused by the development of columnar crystals in the cast structure. That is, when columnar crystals having a certain orientation remain without being destroyed in the rolling or annealing process, they appear as ridged defects due to deformation behavior in the width and thickness directions different from the surrounding recrystallized structure during tensile processing. Various attempts have been made to remove the ridge-inducing tissue in order to eliminate such ridging defects. Process variables such as controlling the hot rolling temperature, hot rolling reduction, and annealing temperature during the manufacturing process by improving the equiaxed crystal ratio and reducing the fraction of columnar crystals, mainly during the manufacturing process Ridging was reduced through the adjustment of

しかしながら、熱間圧延後に高温で巻き取った熱延板を熱延焼鈍の前に対称圧延または非対称圧延した後、連続して焼鈍熱処理して集合組織を改善しようとする試みは殆どないのが現状である。 However, at present, there are few attempts to improve the texture by performing symmetrical or asymmetrical rolling of a hot-rolled sheet that has been wound at a high temperature after hot rolling before hot-rolling annealing, and then continuously performing annealing heat treatment. It is.

韓国特許公開第10−2008−0061863号公報(2008.07.03.公開)Korean Patent Publication No. 10-2008-0061863 (2008.7.03. Published) 韓国特許公開第10−2014−0080348号公報(2014.06.30.公開)Korean Patent Publication No. 10-2014-0080348 (2014.06.30. Published)

本発明は、フェライト系ステンレス鋼の熱延焼鈍熱処理前に冷間圧延をさらに実施することによって、断面の中心部の微細組織を変化させて、最終製品のリッジング特性および表面品質に優れたフェライト系ステンレス鋼およびその製造方法を提供する。 The present invention changes the microstructure of the center of the cross-section by further performing cold rolling before hot rolling annealing heat treatment of ferritic stainless steel, thereby improving the ridging characteristics and surface quality of the final product. A stainless steel and a method for manufacturing the same are provided.

本発明の一実施例によるリッジング性および表面品質に優れたフェライト系ステンレス鋼は、重量%で、C:0.005〜0.1%、Si:0.01〜2.0%、Mn:0.01〜1.5%、P:0.05%以下、S:0.005%以下、Cr:10〜30%、N:0.005〜0.1%、Al:0.005〜0.2%、残りのFeおよびその他不可避な不純物を含み、下記式(1)で表されるγmaxが20%以上50%未満である。 The ferritic stainless steel having excellent ridging properties and surface quality according to one embodiment of the present invention is, by weight%, C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0. 0.01 to 1.5%, P: 0.05% or less, S: 0.005% or less, Cr: 10 to 30%, N: 0.005 to 0.1%, Al: 0.005 to 0. 2%, includes the remaining Fe and other unavoidable impurities, a gamma max is less than 20% 50% represented by the following formula (1).

(1)420×C+470×N+10×Mn+180−11.5×Cr−11.5×Si−52.0×Al (1) 420 × C + 470 × N + 10 × Mn + 180-11.5 × Cr-11.5 × Si-52.0 × Al

ここで、C、N、Mn、Cr、Si、Alは、各元素の含量(重量%)を意味する。 Here, C, N, Mn, Cr, Si, and Al mean the content (% by weight) of each element.

また、本発明の一実施例によれば、前記ステンレス鋼は、表面の微細溝の面積率が2.0%以下であってもよい。 According to one embodiment of the present invention, the stainless steel may have an area ratio of fine grooves on the surface of 2.0% or less.

また、本発明の一実施例によれば、前記ステンレス鋼は、リッジング高さが12μm以下であってもよい。 According to an embodiment of the present invention, the stainless steel may have a ridge height of 12 μm or less.

また、本発明の一実施例によれば、前記ステンレス鋼は、r−bar値が1.2以上であってもよい。 According to an embodiment of the present invention, the stainless steel may have an r-bar value of 1.2 or more.

本発明の一実施例によるリッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法は、重量%で、C:0.005〜0.1%、Si:0.01〜2.0%、Mn:0.01〜1.5%、P:0.05%以下、S:0.005%以下、Cr:10〜30%、N:0.005〜0.1%、Al:0.005〜0.2%、残りのFeおよびその他不可避な不純物を含み、下記式(1)で表されるγmaxが20%以上50%未満を満たすスラブを製造する段階と、前記スラブを再加熱して熱間圧延する段階と、前記熱間圧延された熱延板を巻き取る段階と、前記巻き取られた熱延板を熱延焼鈍熱処理する前に、冷間圧延する段階と、を含む。 The method for producing a ferritic stainless steel having excellent ridging property and surface quality according to an embodiment of the present invention is described as follows: C: 0.005 to 0.1%, Si: 0.01 to 2.0% by weight. Mn: 0.01 to 1.5%, P: 0.05% or less, S: 0.005% or less, Cr: 10 to 30%, N: 0.005 to 0.1%, Al: 0.005 0.2%, including the remainder of Fe and other unavoidable impurities, reheated and steps represented by gamma max to produce a slab which satisfies the less than 20% to 50% by the following formula (1), said slab Hot rolling, winding the hot-rolled hot-rolled sheet, and cold-rolling the hot-rolled sheet before hot-rolling annealing heat treatment.

(1)420×C+470×N+10×Mn+180−11.5×Cr−11.5×Si−52.0×Al (1) 420 × C + 470 × N + 10 × Mn + 180-11.5 × Cr-11.5 × Si-52.0 × Al

ここで、C、N、Mn、Cr、Si、Alは、各元素の含量(重量%)を意味する。 Here, C, N, Mn, Cr, Si, and Al mean the content (% by weight) of each element.

また、本発明の一実施例によれば、前記熱延板を巻き取る段階での巻取温度は、750℃以上であってもよい。 According to an embodiment of the present invention, a winding temperature at a step of winding the hot-rolled sheet may be 750 ° C. or more.

また、本発明の一実施例によれば、前記冷間圧延する段階は、非対称冷間圧延で実施することができる。 According to an embodiment of the present invention, the step of cold rolling may be performed by asymmetric cold rolling.

また、本発明の一実施例によれば、前記冷間圧延または前記非対称冷間圧延は、30%以上の圧下率で実施することができる。 According to one embodiment of the present invention, the cold rolling or the asymmetric cold rolling can be performed at a rolling reduction of 30% or more.

また、本発明の一実施例によれば、前記非対称冷間圧延は、上下圧延ロールの速度比(V/V)が1.25以上であり、圧延形状因子(l/d)が1.7以上である圧延条件で実施することができる。 According to an embodiment of the present invention, in the asymmetric cold rolling, the speed ratio (V h / V l ) of the upper and lower rolling rolls is 1.25 or more, and the rolling shape factor (l / d) is 1 0.7 or more.

また、本発明の一実施例によれば、前記非対称冷間圧延後に熱延焼鈍、2次冷間圧延および冷延焼鈍を実施して製造されたステンレス鋼のリッジング高さが10μm以下であってもよい。 According to an embodiment of the present invention, the ridge height of the stainless steel manufactured by performing hot rolling annealing, secondary cold rolling and cold rolling annealing after the asymmetric cold rolling is 10 μm or less, Is also good.

また、本発明の一実施例によれば、前記冷間圧延する段階後に、熱延焼鈍熱処理する段階;をさらに含むことができる。 According to an embodiment of the present invention, the method may further include performing a hot-rolling annealing heat treatment after the cold rolling.

また、本発明の一実施例によれば、前記熱延焼鈍熱処理は、550〜950℃の温度範囲で60分以内で実施することができる。 Further, according to an embodiment of the present invention, the hot rolling annealing heat treatment can be performed within a temperature range of 550 to 950 ° C. within 60 minutes.

また、本発明の一実施例によれば、前記熱延焼鈍熱処理後に、熱延焼鈍材の断面の厚さ中心部の組織の平均縦横比が4.0以下であってもよい。 According to one embodiment of the present invention, after the hot-rolling annealing heat treatment, the average aspect ratio of the structure at the center of the thickness of the cross section of the hot-rolled annealing material may be 4.0 or less.

本発明の実施例によるフェライト系ステンレス鋼およびその製造方法は、熱延焼鈍熱処理前に冷間圧延を通じて鋼板断面の厚さ中心部の組織のバンド組織の縦横比を低く制御して、製品表面のリッジング欠陥の発生を抑制することができる。 The ferritic stainless steel according to the embodiment of the present invention and the method of manufacturing the same, by controlling the aspect ratio of the band structure of the structure at the center of the thickness of the cross section of the steel sheet through cold rolling before hot-rolling annealing heat treatment, to control the product surface Ridging defects can be suppressed.

また、本発明の実施例によるフェライト系ステンレス鋼およびその製造方法は、鋼板表面の微細溝の面積率が低いため、優れた表面光沢度を示すことができる。 In addition, the ferritic stainless steel and the method of manufacturing the same according to the embodiment of the present invention can exhibit excellent surface gloss because the area ratio of the fine grooves on the surface of the steel sheet is low.

また、本発明の実施例によるフェライト系ステンレス鋼およびその製造方法は、優れたリッジング性と共に、高いr値を有し、成形時にリッジング高さを減少させることができる。 In addition, the ferritic stainless steel and the method of manufacturing the same according to the embodiment of the present invention have a high r-value with excellent ridging properties, and can reduce the ridge height during molding.

本発明の実施例による比較例3の圧延方向に平行な断面の微細組織写真である。9 is a microstructure photograph of a cross section parallel to a rolling direction of Comparative Example 3 according to an example of the present invention. 本発明の実施例による実施例2の表面を光学顕微鏡で撮影した写真である。4 is a photograph taken by an optical microscope of the surface of Example 2 according to an example of the present invention. 本発明の実施例による比較例4の表面を光学顕微鏡で撮影した写真である。9 is a photograph taken by an optical microscope of a surface of Comparative Example 4 according to an example of the present invention.

本発明の一実施例によるリッジング性および表面品質に優れたフェライト系ステンレス鋼は、重量%で、C:0.005〜0.1%、Si:0.01〜2.0%、Mn:0.01〜1.5%、P:0.05%以下、S:0.005%以下、Cr:10〜30%、N:0.005〜0.1%、Al:0.005〜0.2%、残りのFeおよびその他不可避な不純物を含み、下記式(1)で表されるγmaxが20%以上50%未満である。 The ferritic stainless steel having excellent ridging properties and surface quality according to one embodiment of the present invention is, by weight%, C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0. 0.01 to 1.5%, P: 0.05% or less, S: 0.005% or less, Cr: 10 to 30%, N: 0.005 to 0.1%, Al: 0.005 to 0. 2%, includes the remaining Fe and other unavoidable impurities, a gamma max is less than 20% 50% represented by the following formula (1).

(1)420×C+470×N+10×Mn+180−11.5×Cr−11.5×Si−52.0×Al (1) 420 × C + 470 × N + 10 × Mn + 180-11.5 × Cr-11.5 × Si-52.0 × Al

ここで、C、N、Mn、Cr、Si、Alは、各元素の含量(重量%)を意味する。 Here, C, N, Mn, Cr, Si, and Al mean the content (% by weight) of each element.

以下では、本発明の実施例を添付の図面を参照して詳細に説明する。以下の実施例は、本発明の属する技術分野における通常の知識を有する者に本発明の思想を十分に伝達するために提示するものである。本発明は、ここで提示した実施例だけに限定されず、他の形態に具体化されることもできる。図面は、本発明を明確にするために、説明と関係ない部分の図示を省略し、理解を助けるために構成要素のサイズを多少誇張して表現することができる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following examples are provided in order to sufficiently convey the ideas of the present invention to those having ordinary knowledge in the technical field to which the present invention belongs. The invention is not limited to the embodiments presented here, but can be embodied in other forms. In the drawings, for clarity of the present invention, illustrations of parts that are not relevant to the description are omitted, and the sizes of components may be exaggerated for the sake of understanding.

本発明の一実施例によるリッジング性および表面品質に優れたフェライト系ステンレス鋼は、重量%で、C:0.005〜0.1%、Si:0.01〜2.0%、Mn:0.01〜1.5%、P:0.05%以下、S:0.005%以下、Cr:10〜30%、N:0.005〜0.1%、Al:0.005〜0.2%、残りのFeおよびその他不可避な不純物を含み、γmaxが20%以上50%未満を満たす。 The ferritic stainless steel having excellent ridging properties and surface quality according to one embodiment of the present invention is, by weight%, C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0. 0.01 to 1.5%, P: 0.05% or less, S: 0.005% or less, Cr: 10 to 30%, N: 0.005 to 0.1%, Al: 0.005 to 0. Γ max satisfies 20% or more and less than 50%, including 2%, the remaining Fe and other unavoidable impurities.

本発明によるフェライト系ステンレス鋼に含まれる各成分の役割およびその含量について説明すると、次の通りである。下記成分に対する%は、重量%を意味する。 The role and content of each component contained in the ferritic stainless steel according to the present invention will be described as follows. % Based on the following components means% by weight.

Cの含量は、0.005%以上0.1%以下である。 The content of C is 0.005% or more and 0.1% or less.

Cは、鋼材の強度に大きく影響を及ぼす元素であって、その含量が多すぎる場合、鋼材の強度が過度に上昇して軟性が低下するところ、0.1%以下に制限する。ただし、その含量が低い場合、鋼材に必要な強度が満たされないところ、0.005%以上添加する。 C is an element that greatly affects the strength of the steel material. If the content is too large, the strength of the steel material is excessively increased and the softness is reduced, but is limited to 0.1% or less. However, if the content is low, the strength required for the steel material is not satisfied, but 0.005% or more is added.

Siの含量は、0.01%以上2.0%以下である。 The content of Si is 0.01% or more and 2.0% or less.

Siは、製鋼時に溶鋼の脱酸とフェライト安定化のために添加される元素であって、本発明では、0.01%以上添加する。ただし、その含量が多すぎる場合、材質の硬化を起こして、鋼の軟性が低下するところ、2.0%以下に制限する。 Si is an element added for deoxidation of molten steel and stabilization of ferrite during steelmaking. In the present invention, Si is added in an amount of 0.01% or more. However, if the content is too large, the material is hardened, and the softness of the steel is reduced. However, the content is limited to 2.0% or less.

Mnの含量は、0.01%以上1.5%以下である。 The content of Mn is 0.01% or more and 1.5% or less.

Mnは、耐食性の改善に有効な元素であって、本発明では、0.01%以上添加し、より好ましくは0.2%以上添加する。ただし、その含量が多すぎる場合、溶接時にMn系フュームの発生が急増して溶接性が低下し、過度なMnS析出物の形成によって鋼の軟性が低下するところ、1.5%以下に限定し、より好ましくは1.0%以下に限定する。 Mn is an element effective for improving corrosion resistance. In the present invention, Mn is added in an amount of 0.01% or more, and more preferably 0.2% or more. However, if the content is too large, the occurrence of Mn-based fumes during welding increases sharply, lowering the weldability and excessive MnS precipitate formation lowers the softness of the steel. , More preferably 1.0% or less.

Pの含量は、0以上0.05%以下である。 The P content is 0 or more and 0.05% or less.

Pは、鋼中に不可避に含有される不純物であって、酸洗時に粒界腐食を起こしたり、熱間加工性を阻害する主要原因となる元素であるので、その含量をできるだけ低く制御することが好ましい。本発明では、前記P含量の上限を0.05%に管理する。 P is an impurity unavoidably contained in steel and causes intergranular corrosion at the time of pickling and is a main cause of inhibiting hot workability. Therefore, its content should be controlled as low as possible. Is preferred. In the present invention, the upper limit of the P content is controlled to 0.05%.

Sの含量は、0以上0.005%以下である。 The content of S is 0 or more and 0.005% or less.

Sは、鋼中に不可避に含有される不純物であって、結晶粒界に偏析して熱間加工性を阻害する主要原因となる元素であるので、その含量をできるだけ低く制御することが好ましい。本発明では、前記S含量の上限を0.005%に管理する。 S is an impurity unavoidably contained in steel and is an element that segregates at crystal grain boundaries and is a major cause of impairing hot workability, so that its content is preferably controlled as low as possible. In the present invention, the upper limit of the S content is controlled to 0.005%.

Crの含量は、10%以上30%以下である。 The Cr content is 10% or more and 30% or less.

Crは、鋼の耐食性の向上に効果的な元素であって、本発明では、10%以上添加する。ただし、その含量が多すぎる場合、製造費用が急増する問題があるところ、30%以下に限定する。 Cr is an element effective in improving the corrosion resistance of steel, and is added in an amount of 10% or more in the present invention. However, if the content is too large, there is a problem that the production cost increases rapidly. However, the content is limited to 30% or less.

Nの含量は、0.005%以上0.03%以下である。 The content of N is 0.005% or more and 0.03% or less.

Nは、窒化物を形成させる元素であって、侵入型として存在するので、過度に含有される場合、衝撃靭性および成形性の低下を招くところ、0.03%以下に限定する。 N is an element that forms a nitride, and is present as an interstitial type. Therefore, when excessively contained, it causes a decrease in impact toughness and formability. Therefore, N is limited to 0.03% or less.

Alの含量は、0.005%以上0.2%以下である。 The content of Al is 0.005% or more and 0.2% or less.

Alは、強力な脱酸剤であって、溶鋼中酸素の含量を低減する役割をするので、本発明では、0.005%以上添加する。ただし、その含量が多すぎる場合、非金属介在物の増加によって冷延ストリップのスリーブ欠陥が発生すると同時に、溶接性を劣化させるところ、0.2%以下に限定し、より好ましくは0.15%以下に限定する。 Al is a strong deoxidizing agent and plays a role in reducing the content of oxygen in molten steel. Therefore, in the present invention, Al is added in an amount of 0.005% or more. However, when the content is too high, the sleeve defect of the cold-rolled strip is generated due to the increase of nonmetallic inclusions, and at the same time, the weldability is deteriorated. However, the content is limited to 0.2% or less, more preferably 0.15%. Limited to the following.

γmaxは、高温での最大オーステナイト量に対応するよく知られたオーステナイト安定度の指数である。γmaxは、下記式(1)により計算される。本発明では、γmax値が20%以上50%未満を満たす。 γ max is a well-known austenite stability index that corresponds to the maximum austenite content at high temperatures. γ max is calculated by the following equation (1). In the present invention, the γ max value satisfies 20% or more and less than 50%.

(1)420×C+470×N+10×Mn+180−11.5×Cr−11.5×Si−52.0×Al (1) 420 × C + 470 × N + 10 × Mn + 180-11.5 × Cr-11.5 × Si-52.0 × Al

γmaxが20%未満であれば、熱間圧延中にオーステナイト相によるフェライト相の十分な変形の蓄積が行われず、フェライトバンドの再結晶が促進されないため、リッジング性の改善が得られない。一方、γmaxを高めるために、C、N、MnおよびNiなどのオーステナイト形成元素の含有量を高く制御することができるが、これらは、鋼材の硬質化や費用の上昇を招くので、γmaxは、50%未満とする必要がある。 When γ max is less than 20%, sufficient deformation of the ferrite phase due to the austenite phase is not performed during hot rolling, and recrystallization of the ferrite band is not promoted, so that improvement in ridgeability cannot be obtained. Meanwhile, in order to increase the gamma max, C, N, can be as high controlling the content of austenite-forming elements such as Mn and Ni, which are, therefore it causes an increase in hardening and cost of steel, gamma max Should be less than 50%.

上記のような成分系およびγmaxの範囲を満たすフェライト系ステンレス鋼の場合、熱延焼鈍熱処理前に再結晶のための変形エネルギー蓄積が十分であるので、リッジング性および成形性に有利な集合組織が形成され得る。 In the case of a ferritic stainless steel satisfying the above-mentioned component system and the range of γ max , since the deformation energy accumulation for recrystallization is sufficient before the hot-rolling annealing heat treatment, the texture advantageous for the ridging property and the formability is obtained. Can be formed.

例えば、本発明の一実施例によるフェライト系ステンレス鋼は、リッジング高さが12μm以下であってもよく、r−bar値が1.2以上であってもよい。 For example, the ferritic stainless steel according to an embodiment of the present invention may have a ridge height of 12 μm or less and an r-bar value of 1.2 or more.

また、本発明の一実施例によるフェライト系ステンレス鋼は、鋼表面の微細溝の面積率が2.0%以下であってもよい。表面の微細溝の面積率は、光沢度と相関性があり、微細溝の面積率が低いほど光沢度が高くなる。本発明によるフェライト系ステンレス鋼は、鋼表面の微細溝の面積率が2.0%以下を満たして、美麗な表面を示すことができる。 Further, in the ferritic stainless steel according to one embodiment of the present invention, the area ratio of the fine grooves on the steel surface may be 2.0% or less. The area ratio of the fine grooves on the surface has a correlation with the glossiness, and the lower the area ratio of the fine grooves, the higher the glossiness. The ferritic stainless steel according to the present invention can exhibit a beautiful surface when the area ratio of the fine grooves on the steel surface satisfies 2.0% or less.

次に、リッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法について説明する。 Next, a method for producing a ferritic stainless steel having excellent ridging properties and surface quality will be described.

フェライト系ステンレス鋼のリッジング性および表面品質を向上させるためには、成形性に有利な集合組織の形成を促進させ、リッジングを誘発するバンド組織を除去しなければならない。前記集合組織の形成およびバンド組織の除去のためには、熱延板の焼鈍熱処理時に再結晶を促進させることが重要であり、このために、焼鈍熱処理前に変形エネルギーを十分に蓄積させることが必要である。熱延板に変形エネルギーを蓄積させるために、熱間圧延仕上げ温度を低下させる試みが行われてきたが、変形エネルギーの蓄積には不十分であった。これに伴い、本発明では、変形エネルギーの蓄積による再結晶を促進するために熱延焼鈍熱処理前に冷間圧延を実施して、成形性に有利な集合組織を形成した。 In order to improve the ridgeability and surface quality of ferritic stainless steel, it is necessary to promote the formation of a texture advantageous for formability and to remove a band structure that induces ridge. For the formation of the texture and removal of the band structure, it is important to promote recrystallization during annealing heat treatment of the hot-rolled sheet. For this reason, it is necessary to sufficiently store deformation energy before the annealing heat treatment. is necessary. Attempts have been made to lower the hot rolling finish temperature in order to accumulate deformation energy in the hot-rolled sheet, but this has been insufficient for accumulating deformation energy. Accordingly, in the present invention, in order to promote recrystallization by accumulating deformation energy, cold rolling was performed before hot-rolling annealing heat treatment to form a texture advantageous for formability.

一般的に板材の圧延変形時に変形状態は、せん断変形と平面変形の二つの因子で示すことができる。従来の対称圧延では、板材の表面層は、せん断変形が作用し、中央層に行くほど本質的特性である対称性に起因してせん断変形率が減少して、板材の中央層では、せん断変形率が常に0である。すなわち板材の中央層には、常に平面変形が作用する。本発明では、非対称圧延を適用して板材の厚さ中心部にせん断変形を作用させることができる。非対称圧延を適用するとき、多くの圧延変数が存在し、この変数を最適化する場合にのみ、すべての厚さ層で適切なせん断変形率が作用して再結晶を活性化させて微細組織を変化させることによって、最終冷延製品の表面品質に重要なリッジング高さを低減することができる。 In general, the deformation state at the time of rolling deformation of a sheet material can be represented by two factors, shear deformation and plane deformation. In conventional symmetric rolling, the surface layer of the sheet material undergoes shear deformation, and the shear deformation rate decreases due to symmetry, which is an essential characteristic as it goes to the central layer, and the shear layer deforms in the central layer of the sheet material. The rate is always zero. That is, plane deformation always acts on the central layer of the plate material. In the present invention, it is possible to apply shear deformation to the center of the thickness of the sheet material by applying asymmetric rolling. When applying asymmetric rolling, there are many rolling variables, and only when optimizing these variables, the appropriate shear deformation acts on all thickness layers to activate the recrystallization and reduce the microstructure. Variations can reduce the ridge height, which is important for the surface quality of the final cold rolled product.

本発明の一実施例によるフェライト系ステンレス鋼の製造方法は、重量%で、C:0.005〜0.1%、Si:0.01〜2.0%、Mn:0.01〜1.5%、P:0.05%以下、S:0.005%以下、Cr:10〜30%、N:0.005〜0.1%、Al:0.005〜0.2%、残りのFeおよびその他不可避な不純物を含み、γmaxが20%以上50%未満を満たすスラブを製造する段階と、前記スラブを再加熱して熱間圧延する段階と、前記熱間圧延された熱延板を巻き取る段階と、前記巻き取られた熱延板を熱延焼鈍熱処理する前に、冷間圧延する段階と、を含む。 The method for manufacturing a ferritic stainless steel according to an embodiment of the present invention is as follows: C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0.01 to 1. 5%, P: 0.05% or less, S: 0.005% or less, Cr: 10 to 30%, N: 0.005 to 0.1%, Al: 0.005 to 0.2%, remaining includes Fe and other unavoidable impurities, gamma max the steps to manufacture a slab satisfying the 20% or more and less than 50%, comprising the steps of hot rolling and reheating the slab, hot-rolled sheet, which is rolled between the heat And cold rolling the rolled hot-rolled sheet before performing the hot-rolling annealing heat treatment.

熱間圧延された熱延板を熱延焼鈍熱処理する前に、さらに冷間圧延を実施することによって、再結晶促進のための変形エネルギーを蓄積することができる。 Before the hot-rolled hot-rolled sheet is subjected to hot-rolling annealing heat treatment, deformation energy for accelerating recrystallization can be accumulated by further performing cold rolling.

前記冷間圧延に先立って、製造されたスラブは、再加熱されて熱間圧延される。熱間圧延された熱延板は、巻取器で高温巻取(black coil)されるが、熱間圧延後、巻き取る間にオーステナイト相からフェライト相に相変態させるために、巻取温度は、750℃以上であってもよい。 Prior to the cold rolling, the manufactured slab is reheated and hot rolled. The hot-rolled hot-rolled sheet is hot-coiled by a winder. After hot rolling, the winding temperature is set to a phase transformation from an austenite phase to a ferrite phase during winding. , 750 ° C or higher.

一方、本発明の一実施例によるフェライト系ステンレス鋼の製造方法は、巻き取られた熱延板を熱延焼鈍熱処理する前に冷間圧延する段階において、前記冷間圧延は、非対称冷間圧延で実施することができる。 On the other hand, in the method of manufacturing a ferritic stainless steel according to an embodiment of the present invention, in the step of performing cold rolling before hot-rolling annealing heat treatment of the rolled hot-rolled sheet, the cold rolling is performed by asymmetric cold rolling. Can be implemented.

上述したように、本発明では、非対称圧延を適用して板材の厚さ中心部にせん断変形を起こすことができる。厚さ中心部に適切なせん断変形が作用して再結晶を活性化させて微細組織を変化させることによって、最終冷延製品の表面品質に重要なリッジング高さを低減することができる。 As described above, in the present invention, it is possible to cause shear deformation at the center of the thickness of the sheet material by applying asymmetric rolling. Appropriate shear deformation acts on the center of the thickness to activate the recrystallization and change the microstructure, thereby reducing the ridge height, which is important for the surface quality of the final cold-rolled product.

非対称冷間圧延は、圧下率30%以上、上下圧延ロールの速度比(V/V)が1.25以上および圧延形状因子(l/d)が1.7以上である圧延条件で実施することができる。 The asymmetric cold rolling is performed under rolling conditions in which the rolling reduction is 30% or more, the speed ratio ( Vh / Vl ) of the upper and lower rolling rolls is 1.25 or more, and the rolling shape factor (l / d) is 1.7 or more. can do.

非対称冷間圧延で厚さ中心部までせん断変形を起こすためには、上下圧延ロールの速度比(V/V)が1.25以上でなければならない。1.25未満では、厚さ中心部までせん断変形が付与されないことがある。ここで、Vは、速いロールの速度を意味し、Vは、遅いロールの速度を意味する。 In order to cause shear deformation up to the center of the thickness in asymmetric cold rolling, the speed ratio ( Vh / Vl ) of the upper and lower rolling rolls must be 1.25 or more. If it is less than 1.25, shear deformation may not be provided up to the center of the thickness. Here, Vh means a fast roll speed, and Vl means a slow roll speed.

圧延形状因子(l/d)も、厚さ中心部までせん断変形を起こすために、1.7以上が要求される。それ未満では、厚さ中心部までせん断変形が付与されないことがある。圧延ロールのサイズおよび圧下率に関連した圧延形状因子は、圧延時にせん断変形を付加する尺度であって、下記式(2)で定義される。 The rolling shape factor (l / d) is also required to be 1.7 or more in order to cause shear deformation up to the center of the thickness. If it is less than that, shear deformation may not be given to the center of the thickness. The rolling shape factor related to the size of the rolling roll and the rolling reduction is a measure for adding shear deformation during rolling, and is defined by the following equation (2).

ここで、lは、圧延ロールバイト内のロールと板材の接触弧を投影した長さ、dは、板材の平均厚さ(d=(h+h)/2)、rは、圧延ロールの半径、hは、板材の初期厚さ、hは、板材の最終厚さを意味する。 Here, 1 is the length of the projected contact arc between the roll in the rolling roll tool and the plate, d is the average thickness of the plate (d = (h 0 + h) / 2), and r is the radius of the roll. , h 0 is the initial thickness of the plate material, h means the final thickness of the plate material.

本発明は、熱延焼鈍熱処理前に冷間圧延するにあたって、非対称圧延時の圧延変数とリッジング性、成形性および表面品質との相関性を調査した結果であって、上下圧延ロールの速度比、圧下率、そして圧延形状因子(l/d)を調節して、リッジング性および表面品質を改善することにその特徴がある。 The present invention is a result of investigating the correlation between the rolling variables and the ridgeability during asymmetric rolling, formability and surface quality during cold rolling before hot rolling annealing heat treatment, the speed ratio of the upper and lower rolling rolls, It is characterized in that the rolling reduction and the rolling form factor (l / d) are adjusted to improve the ridging property and the surface quality.

前記冷間圧延または非対称冷間圧延を実施した熱延板に、引き続いて熱延焼鈍熱処理を実施することができる。熱延焼鈍熱処理は、550〜950℃の温度範囲で60分以内で実施することができる。熱延焼鈍熱処理は、熱間圧延された熱延板の軟性をより向上させるために実施される工程であって、これを通じて炭窒化物の析出と再結晶を誘導することができる。このためには、焼鈍温度550℃以上で実施する必要がある。ただし、焼鈍温度が950℃を超過したり焼鈍時間が60分を超過する場合、結晶粒が粗大化されて、成形性やリッジング特性を低下させるおそれがある。一方、焼鈍時間の下限は、特に定める必要はないが、十分な効果を得るためには、30秒以上実施することが好ましい。 The hot-rolled sheet that has been subjected to the cold rolling or the asymmetric cold rolling can be subsequently subjected to a hot-rolling annealing heat treatment. The hot rolling annealing heat treatment can be performed within a temperature range of 550 to 950 ° C. within 60 minutes. The hot-rolling annealing heat treatment is a process performed to further improve the softness of the hot-rolled hot-rolled sheet, and can induce precipitation and recrystallization of carbonitride. For this purpose, it is necessary to carry out at an annealing temperature of 550 ° C. or higher. However, if the annealing temperature exceeds 950 ° C. or the annealing time exceeds 60 minutes, the crystal grains may be coarsened and the formability and the ridging characteristics may be reduced. On the other hand, the lower limit of the annealing time does not need to be particularly defined, but it is preferable to perform the annealing for 30 seconds or more in order to obtain a sufficient effect.

前記熱処理した熱延焼鈍板は、圧延方向に平行な方向の断面の厚さ中心部の組織の平均縦横比が4.0以下であってもよい。縦横比とは、圧延方向のフェライト粒径と板厚さ方向のフェライト粒径の比(圧延方向の粒径/板厚さ方向の粒径)を言う。平均縦横比が4.0を超過する場合、圧延方向に展伸したフェライト組織により冷間加工性が低下し得る。また、厚さ中心部に圧延方向に長く伸びたバンド組織が熱延焼鈍板に残存すると、冷間圧延時にバンド組織に起因した変形不均一により表面に凹凸が発生して、表面光沢度を低下させるので、平均縦横比を4.0以下に限定する。 In the heat-rolled annealed sheet, the average aspect ratio of the structure at the center of the thickness of the cross section in the direction parallel to the rolling direction may be 4.0 or less. The aspect ratio means the ratio of the ferrite grain size in the rolling direction to the ferrite grain size in the sheet thickness direction (grain size in the rolling direction / grain size in the sheet thickness direction). If the average aspect ratio exceeds 4.0, the cold workability may decrease due to the ferrite structure extended in the rolling direction. In addition, if a band structure elongated in the rolling direction at the center of the thickness remains on the hot-rolled annealed sheet, irregularities are generated on the surface due to uneven deformation due to the band structure during cold rolling, and the surface gloss decreases. Therefore, the average aspect ratio is limited to 4.0 or less.

本発明によるリッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法を上述したように制御した場合以外に特に限定しない条件は、通常のフェライト系ステンレス鋼の製造方法に準じて行うことができる。また、前記熱延焼鈍板を冷間圧延および冷延焼鈍熱処理して冷延鋼鈑に製造することができることはもちろんである。 Conditions that are not particularly limited except when the method for producing a ferritic stainless steel excellent in ridging property and surface quality according to the present invention is controlled as described above can be performed according to a normal method for producing a ferritic stainless steel. . Further, it is needless to say that the hot-rolled annealed sheet can be cold-rolled and subjected to a cold-rolling annealing heat treatment to produce a cold-rolled steel sheet.

以下、好ましい実施例を通じて本発明をより詳細に説明することとする。 Hereinafter, the present invention will be described in more detail through preferred embodiments.

実施例
下記表1の組成を有する溶鋼を連続鋳造してスラブを製造し、スラブを再加熱して熱間圧延後に初期厚さ3〜7mmの熱延板を熱延焼鈍熱処理前に1次冷間圧延を実施した。
Example A slab was manufactured by continuously casting molten steel having the composition shown in Table 1 below, and the slab was reheated and hot-rolled with an initial thickness of 3 to 7 mm after hot-rolling before hot-rolling annealing heat treatment. Was subjected to primary cold rolling.

1次冷間圧延は、通常の冷間圧延または非対称冷間圧延で20〜50%の圧下率で圧延した。1次冷間圧延された熱延板を熱延焼鈍熱処理および酸洗した後の50〜85%の圧下率で2次冷間圧延を実施し、冷延焼鈍熱処理および酸洗を経て試験片を製作した。 The primary cold rolling was performed at a rolling reduction of 20 to 50% by ordinary cold rolling or asymmetric cold rolling. After the first cold-rolled hot-rolled sheet is subjected to hot-rolling annealing heat treatment and pickling, the second cold-rolling is performed at a rolling reduction of 50 to 85%, and the test piece is subjected to cold-rolling annealing heat treatment and pickling. Made.

前記試験片の圧延方向に対して0°、45°、90°方向の引張試験片を加工して、15%引張試験後にr値(Lankford value)を測定した。方向別に測定されたr値(r、r45、r90)からr−bar値(r−bar=(r+r90+2*r45)/4)を計算した。また、リッジング高さは、前記試験片を加工して15%引張試験後に表面粗度を測定した。下記表2に本実施例に使用されたフェライト系ステンレス鋼の圧延条件の変化によるr−barおよびリッジング高さ(Wt)の測定結果を示した。 Tensile test specimens were machined in directions of 0 °, 45 °, and 90 ° with respect to the rolling direction of the test specimen, and the r value (Lankford value) was measured after a 15% tensile test. Measured r values for each direction (r 0, r 45, r 90) r-bar value from (r-bar = (r 0 + r 90 + 2 * r 45) / 4) was calculated. The ridge height was determined by processing the test piece and measuring the surface roughness after a 15% tensile test. Table 2 below shows the measurement results of the r-bar and the ridge height (Wt) according to changes in the rolling conditions of the ferritic stainless steel used in this example.

通常圧延を実施した比較例3〜7は、r−bar値が1以下であり、リッジング高さは、14μm以上と高く現れた。熱間圧延後、熱延焼鈍熱処理に先立って1次冷間圧延を行った比較例1および2の場合には、圧下率が30%未満で行われて、r−bar値が1.2以下と現れて、成形性が不利であることが分かった。実施例1〜3のように、熱延焼鈍熱処理前に1次冷間圧延を行い、かつ、圧下率30%以上で行う場合、1.2以上のr−bar値を得ることができ、肉眼で観察が難しいため、加工品の外観特性を低下させない程度である12μm以下のリッジング高さを達成することができた。 In Comparative Examples 3 to 7 in which normal rolling was performed, the r-bar value was 1 or less, and the ridge height was as high as 14 μm or more. In the case of Comparative Examples 1 and 2 in which primary cold rolling was performed prior to hot rolling annealing heat treatment after hot rolling, the reduction was performed at a rolling reduction of less than 30%, and the r-bar value was 1.2 or less. Appeared that the moldability was disadvantageous. As in Examples 1 to 3, when the primary cold rolling is performed before the hot rolling annealing heat treatment and the reduction is performed at a reduction rate of 30% or more, an r-bar value of 1.2 or more can be obtained. Since the observation was difficult, the ridge height of 12 μm or less, which did not degrade the appearance characteristics of the processed product, could be achieved.

実施例4〜6は、実施例1〜3で1次冷間圧延を対称圧延でなく、非対称圧延で実施したことを除いては、残りの条件は、同一であり、比較例8および9も、比較例1および2で1次冷間圧延を対称圧延でなく、非対称圧延で実施したことを除いては、残りの条件は、同一である。 The remaining conditions are the same in Examples 4 to 6, except that the primary cold rolling was performed not in symmetric rolling but in asymmetric rolling in Examples 1 to 3, and Comparative Examples 8 and 9 were also the same. The remaining conditions are the same except that the primary cold rolling in Comparative Examples 1 and 2 is not a symmetric rolling but an asymmetric rolling.

対称圧延と比較して非対称圧延で1次冷間圧延を実施した場合、リッジング高さが約20%以上減少することが分かった。特に、実施例4〜6は、10μm以下のリッジング高さを達成することができた。これを通じて、対称圧延でなく、非対称圧延時にせん断変形によってバンド組織を十分に微細化することができ、リッジング性が改善されることが分かった。 When primary cold rolling was performed by asymmetric rolling compared to symmetric rolling, it was found that the ridge height was reduced by about 20% or more. In particular, Examples 4 to 6 were able to achieve a ridge height of 10 μm or less. Through this, it has been found that the band structure can be sufficiently refined by shear deformation not in symmetric rolling but in asymmetric rolling, and the ridging property is improved.

熱間圧延後、熱延焼鈍熱処理に先立って1次冷間圧延を実施した比較例8および9の場合には、非対称圧延で実施しても、圧下率が30%未満で実施されて、r−bar値が1.2以下と現れて、成形性が不利であることが分かった。 In the case of Comparative Examples 8 and 9 in which the primary cold rolling was performed prior to the hot rolling annealing heat treatment after the hot rolling, even when the asymmetric rolling was performed, the reduction was performed at a rolling reduction of less than 30%, and r The -bar value appeared to be 1.2 or less, indicating that the moldability was disadvantageous.

すなわち、実施例4〜6のように、熱延焼鈍熱処理前に非対称冷間圧延を行い、かつ、総圧下率30%以上で行う場合、1.2以上のr−bar値を得ることができ、肉眼で観察が難しいため、加工品の外観特性を低下させない程度である12μm以下のリッジング高さを達成することができることが分かった。 That is, as in Examples 4 to 6, when asymmetric cold rolling is performed before hot-rolling annealing heat treatment and when the total rolling reduction is 30% or more, an r-bar value of 1.2 or more can be obtained. Further, it was found that the ridge height of 12 μm or less, which is a degree that does not deteriorate the appearance characteristics of the processed product, can be achieved because observation with the naked eye is difficult.

一方、熱延焼鈍前に冷間圧延を実施しない従来の製造方法で製造した熱延焼鈍材と本発明によって製造した熱延焼鈍材の平均縦横比を下記表3に示した。引き続いて、冷間圧延および冷延焼鈍熱処理を経た冷延焼鈍材の微細溝の面積率も、下記表3に示した。 On the other hand, Table 3 below shows the average aspect ratio of the hot-rolled annealed material manufactured by the conventional manufacturing method in which the cold rolling is not performed before the hot-rolled annealing and the hot-rolled annealed material manufactured by the present invention. Subsequently, the area ratio of the fine grooves of the cold-rolled annealed material that has been subjected to the cold rolling and the cold rolling annealing heat treatment is also shown in Table 3 below.

平均縦横比は、圧延方向に平行な熱延焼鈍材の断面微細組織を光学顕微鏡を使用して撮影した後、バンド組織の圧延方向の粒径と板厚さ方向の粒径を測定して、5個の結晶粒の平均縦横比を示した。図1は、比較例3の圧延方向に平行な断面の微細組織写真を示す。図1のように断面の微細組織写真から圧延方向に長く伸びたバンド組織の長さ方向と厚さ方向の長さを測定した後、平均縦横比を計算した。 Average aspect ratio, after taking a cross-sectional microstructure of the hot-rolled annealed material parallel to the rolling direction using an optical microscope, measure the grain size in the rolling direction and the thickness in the sheet thickness direction of the band structure, The average aspect ratio of five crystal grains is shown. FIG. 1 shows a microstructure photograph of a cross section parallel to the rolling direction of Comparative Example 3. As shown in FIG. 1, from the microstructure photograph of the cross section, the length in the length direction and the length in the thickness direction of the band structure elongated in the rolling direction were measured, and then the average aspect ratio was calculated.

微細溝の面積率は、冷延焼鈍材の表面を光学顕微鏡を使用して光源を最大とし、露出時間を長くして50倍で撮影した後、Image Analyzerで面積率を測定して評価した。代表的な測定結果を図2および図3に示した。 The area ratio of the microgrooves was evaluated by measuring the surface ratio of the cold-rolled annealed material by using an optical microscope with the light source at the maximum, prolonging the exposure time and photographing the surface at 50 times, and then measuring the area ratio with an Image Analyzer. Representative measurement results are shown in FIGS.

図2は、実施例2の表面を、図3は、比較例4の表面を示す。図面において微細溝の面積は、濃厚な色相で表現された部分を示す。図2に示された本発明による実施例2の微細溝の面積率が、図3の比較例4に比べて非常に減少したことが分かった。 FIG. 2 shows the surface of Example 2, and FIG. 3 shows the surface of Comparative Example 4. In the drawing, the area of the fine groove indicates a portion represented by a rich hue. It was found that the area ratio of the fine grooves of Example 2 according to the present invention shown in FIG. 2 was significantly reduced as compared with Comparative Example 4 of FIG.

1次冷間圧延を圧下率30%未満の通常圧延で実施した比較例1は、平均縦横比が6以上と高く、従来の製造方法で製造された比較例3および4は、平均縦横比が1次冷間圧延を実施した前記比較例1に比べて3倍近く上昇した。他方で、熱間圧延後、熱延焼鈍熱処理に先立って1次冷間圧延を圧下率30%以上の通常圧延で実施した実施例2、3と1次冷間圧延を圧下率30%以上の非対称圧延で実施した実施例5、6の場合には、熱延焼鈍材の平均縦横比が3以下と非常に低く現れた。 Comparative Example 1 in which primary cold rolling was performed by normal rolling with a rolling reduction of less than 30% had an average aspect ratio as high as 6 or more, and Comparative Examples 3 and 4 produced by a conventional production method had an average aspect ratio of The value increased nearly three times as compared with Comparative Example 1 in which primary cold rolling was performed. On the other hand, after the hot rolling, prior to the hot rolling annealing heat treatment, Examples 2 and 3 in which the primary cold rolling was carried out by normal rolling with a rolling reduction of 30% or more and the primary cold rolling with a rolling reduction of 30% or more. In the case of Examples 5 and 6 performed by asymmetric rolling, the average aspect ratio of the hot-rolled annealed material appeared as very low as 3 or less.

また、1次冷間圧延を通常圧延で実施した比較例1、3、4は、冷延焼鈍材の微細溝の面積率が2.2%以上と高いのに対し、熱間圧延後、熱延焼鈍熱処理に先立って1次冷間圧延を行った実施例2、3と1次冷間圧延を非対称圧延で実施した実施例5、6の場合には、微細溝の面積率が1.8%以下と低く現れた。 In Comparative Examples 1, 3, and 4 in which the primary cold rolling was performed by normal rolling, the area ratio of the fine grooves in the cold-rolled annealed material was as high as 2.2% or more. In Examples 2 and 3 in which the primary cold rolling was performed prior to the annealing heat treatment and Examples 5 and 6 in which the primary cold rolling was performed by asymmetric rolling, the area ratio of the fine grooves was 1.8. % Or less.

すなわち実施例2、3、5、6の結果から明らかなように、熱延焼鈍材の平均縦横比が低いほど冷延焼鈍材の微細溝の面積率が低くなることが分かった。したがって、実施例のように、平均縦横比が4.0以下であり、微細溝の面積率が2.0%以下を満たすことによって、表面品質に優れた冷延鋼鈑が得られた。 That is, as is clear from the results of Examples 2, 3, 5, and 6, it was found that the lower the average aspect ratio of the hot-rolled annealed material, the lower the area ratio of the fine grooves in the cold-rolled annealed material. Therefore, as in the example, when the average aspect ratio was 4.0 or less and the area ratio of the fine grooves satisfied 2.0% or less, a cold-rolled steel sheet having excellent surface quality was obtained.

上述したように、本発明の例示的な実施例を説明したが、本発明は、これに限定されず、当該技術分野における通常の知識を有する者であれば、下記に記載する特許請求範囲の概念と範囲を外れない範囲内で多様な変更および変形が可能であることを理解することができる。 As described above, exemplary embodiments of the present invention have been described. However, the present invention is not limited to these embodiments, and any person having ordinary knowledge in the technical field may claim the following claims. It can be understood that various changes and modifications can be made without departing from the concept and scope.

本発明の実施例によるフェライト系ステンレス鋼は、鋼板の表面品質および光沢度に優れているので、各種キッチン用品、自動車排気系部品、建築材料、家電製品などに使用することができる。 Since the ferritic stainless steel according to the embodiment of the present invention has excellent surface quality and glossiness of a steel sheet, it can be used for various kitchen appliances, automobile exhaust system parts, building materials, home electric appliances and the like.

Claims (13)

重量%で、C:0.005〜0.1%、Si:0.01〜2.0%、Mn:0.01〜1.5%、P:0.05%以下、S:0.005%以下、Cr:10〜30%、N:0.005〜0.1%、Al:0.005〜0.2%、残りのFeおよびその他不可避な不純物を含み、
下記式(1)で表されるγmaxが20%以上50%未満である、リッジング性および表面品質に優れたフェライト系ステンレス鋼:
(1)420×C+470×N+10×Mn+180−11.5×Cr−11.5×Si−52.0×Al
ここで、C、N、Mn、Cr、Si、Alは、各元素の含量(重量%)を意味する。
By weight%, C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0.01 to 1.5%, P: 0.05% or less, S: 0.005 %, Cr: 10 to 30%, N: 0.005 to 0.1%, Al: 0.005 to 0.2%, including the remaining Fe and other unavoidable impurities,
A ferritic stainless steel excellent in ridging property and surface quality having a γ max represented by the following formula (1) of 20% or more and less than 50%:
(1) 420 × C + 470 × N + 10 × Mn + 180-11.5 × Cr-11.5 × Si-52.0 × Al
Here, C, N, Mn, Cr, Si, and Al mean the content (% by weight) of each element.
前記ステンレス鋼は、表面の微細溝の面積率が2.0%以下である、請求項1に記載のリッジング性および表面品質に優れたフェライト系ステンレス鋼。 The ferritic stainless steel according to claim 1, wherein the stainless steel has an area ratio of fine grooves on the surface of 2.0% or less. 前記ステンレス鋼は、リッジング高さが12μm以下である、請求項1に記載のリッジング性および表面品質に優れたフェライト系ステンレス鋼。 The ferritic stainless steel according to claim 1, wherein the stainless steel has a ridge height of 12 µm or less. 前記ステンレス鋼は、r−bar値が1.2以上である、請求項1に記載のリッジング性および表面品質に優れたフェライト系ステンレス鋼。 The ferritic stainless steel according to claim 1, wherein the stainless steel has an r-bar value of 1.2 or more. 重量%で、C:0.005〜0.1%、Si:0.01〜2.0%、Mn:0.01〜1.5%、P:0.05%以下、S:0.005%以下、Cr:10〜30%、N:0.005〜0.1%、Al:0.005〜0.2%、残りのFeおよびその他不可避な不純物を含み、下記式(1)で表されるγmaxが20%以上50%未満を満たすスラブを製造する段階と、
前記スラブを再加熱して熱間圧延する段階と、
前記熱間圧延された熱延板を巻き取る段階と、
前記巻き取られた熱延板を熱延焼鈍熱処理する前に、冷間圧延する段階と,を含むリッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法:
(1)420×C+470×N+10×Mn+180−11.5×Cr−11.5×Si−52.0×Al
ここで、C、N、Mn、Cr、Si、Alは、各元素の含量(重量%)を意味する。
By weight%, C: 0.005 to 0.1%, Si: 0.01 to 2.0%, Mn: 0.01 to 1.5%, P: 0.05% or less, S: 0.005 %, Cr: 10 to 30%, N: 0.005 to 0.1%, Al: 0.005 to 0.2%, including the remaining Fe and other unavoidable impurities, and is expressed by the following formula (1). Producing a slab in which the γ max to be satisfied satisfies 20% or more and less than 50%;
Re-heating and hot rolling the slab;
Winding the hot-rolled hot-rolled sheet,
A method of producing a ferritic stainless steel having excellent ridging properties and surface quality, comprising a step of performing cold rolling before subjecting the rolled hot-rolled sheet to a hot-rolling annealing heat treatment:
(1) 420 × C + 470 × N + 10 × Mn + 180-11.5 × Cr-11.5 × Si-52.0 × Al
Here, C, N, Mn, Cr, Si, and Al mean the content (% by weight) of each element.
前記熱延板を巻き取る段階での巻取温度は、750℃以上である、請求項5に記載のリッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法。 The method for producing a ferritic stainless steel according to claim 5, wherein a winding temperature at a step of winding the hot-rolled sheet is 750 ° C. or more. 前記冷間圧延する段階は、非対称冷間圧延で実施する、請求項5に記載のリッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法。 The method for producing a ferritic stainless steel having excellent ridgeability and surface quality according to claim 5, wherein the cold rolling is performed by asymmetric cold rolling. 前記冷間圧延または前記非対称冷間圧延は、30%以上の圧下率で実施する、請求項5または7に記載のリッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法。 The method for producing a ferritic stainless steel having excellent ridgeability and surface quality according to claim 5 or 7, wherein the cold rolling or the asymmetric cold rolling is performed at a rolling reduction of 30% or more. 前記非対称冷間圧延は、上下圧延ロールの速度比(V/V)が1.25以上であり、圧延形状因子(l/d)が1.7以上である圧延条件で実施する、請求項7に記載のリッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法。
ここで、
:速いロール速度
:遅いロール速度
l:圧延ロールバイト内のロールと板材の接触弧を投影した長さ
d:板材の平均厚さd=(h+h)/2
r:圧延ロールの半径
:板材の初期厚さ
h:板材の最終厚さ
The asymmetric cold rolling is performed under rolling conditions in which the speed ratio (V h / V l ) of the upper and lower rolling rolls is 1.25 or more, and the rolling shape factor (l / d) is 1.7 or more. Item 7. A method for producing a ferritic stainless steel having excellent ridging property and surface quality according to item 7.
here,
Vh : fast roll speed Vl : slow roll speed
l: length obtained by projecting the contact arc of the roll and plate in the rolling roll bite d: Average of the plate thickness d = (h 0 + h) / 2
r: radius of the rolling roll h 0 : initial thickness of the plate material h: final thickness of the plate material
前記非対称冷間圧延後、熱延焼鈍、2次冷間圧延および冷延焼鈍を実施して製造されたステンレス鋼のリッジング高さが10μm以下である、請求項9に記載のリッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法。 The ridging property and surface quality according to claim 9, wherein the ridge height of stainless steel produced by performing hot rolling annealing, secondary cold rolling and cold rolling annealing after the asymmetric cold rolling is 10 µm or less. Method for producing ferritic stainless steel with excellent properties. 前記冷間圧延する段階後に、熱延焼鈍熱処理する段階をさらに含む、請求項5に記載のリッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法。 The method for producing a ferritic stainless steel having excellent ridgeability and surface quality according to claim 5, further comprising a step of performing a hot rolling annealing heat treatment after the cold rolling step. 前記熱延焼鈍熱処理は、550〜950℃の温度範囲で60分以内で実施する、請求項11に記載のリッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法。 The method for producing a ferritic stainless steel having excellent ridgeability and surface quality according to claim 11, wherein the hot rolling annealing heat treatment is performed within a temperature range of 550 to 950 ° C within 60 minutes. 前記熱延焼鈍熱処理後に、熱延焼鈍材の断面の厚さ中心部の組織の平均縦横比が4.0以下である、請求項11に記載のリッジング性および表面品質に優れたフェライト系ステンレス鋼の製造方法。 The ferritic stainless steel according to claim 11, having an average aspect ratio of the structure at the center of the thickness of the cross-section of the hot-rolled annealed material of 4.0 or less after the hot-rolled annealing heat treatment. Manufacturing method.
JP2019531659A 2016-12-13 2017-07-04 FERRITIC STAINLESS STEEL EXCELLENT IN RIDGING PROPERTIES AND SURFACE QUALITY AND METHOD FOR MANUFACTURING SAME Active JP7116064B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0169696 2016-12-13
KR1020160169696A KR101921595B1 (en) 2016-12-13 2016-12-13 Ferritic stainless steel having excellent ridging property and excellent in surface quality and method of manufacturing the same
PCT/KR2017/007099 WO2018110785A1 (en) 2016-12-13 2017-07-04 Ferritic stainless steel with excellent ridging property and surface quality and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2020510135A true JP2020510135A (en) 2020-04-02
JP7116064B2 JP7116064B2 (en) 2022-08-09

Family

ID=62558783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019531659A Active JP7116064B2 (en) 2016-12-13 2017-07-04 FERRITIC STAINLESS STEEL EXCELLENT IN RIDGING PROPERTIES AND SURFACE QUALITY AND METHOD FOR MANUFACTURING SAME

Country Status (6)

Country Link
US (1) US20190316237A1 (en)
EP (1) EP3556888A1 (en)
JP (1) JP7116064B2 (en)
KR (1) KR101921595B1 (en)
CN (1) CN110073022B (en)
WO (1) WO2018110785A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102326044B1 (en) * 2019-12-20 2021-11-15 주식회사 포스코 Ferritic stainless steel with improved magnetization properties and manufacturing method thereof
CN115917029A (en) * 2020-10-23 2023-04-04 日铁不锈钢株式会社 Ferritic stainless steel and method for producing ferritic stainless steel
CN115055918B (en) * 2022-06-17 2023-09-19 首钢智新迁安电磁材料有限公司 Continuous rolling method of non-oriented silicon steel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332852B2 (en) * 1980-10-20 1988-07-01 Nippon Steel Corp
JPH09217124A (en) * 1996-02-15 1997-08-19 Nippon Steel Corp Production of ferritic stainless steel sheet excellent in roping resistance
JP3128487B2 (en) * 1995-10-04 2001-01-29 新日本製鐵株式会社 Method for producing ferritic stainless steel sheet with good ridging characteristics
JP2003073741A (en) * 2001-08-31 2003-03-12 Nisshin Steel Co Ltd Method for manufacturing ferritic stainless steels sheet superior in workability
JP2006328524A (en) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel thin sheet reduced in plane anisotropy upon forming and excellent in ridging resistance and roughening resistance, and method for producing the same
JP2006328525A (en) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp Low carbon-low nitrogen ferritic stainless steel thin sheet having reduced plane anisotropy upon forming and having excellent ridging resistance and roughening resistance, and method for producing the same
KR100771832B1 (en) * 2001-12-19 2007-10-30 주식회사 포스코 Method for producing ferritic stainless steel sheets having excellent ridging property
KR20080061863A (en) * 2006-12-28 2008-07-03 주식회사 포스코 Method of manufacturing a ferritic stainless steel with improved ridging property

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59576B2 (en) * 1980-08-09 1984-01-07 新日本製鐵株式会社 Manufacturing method of ferritic stainless thin steel sheet with excellent workability
JPH06271943A (en) * 1993-03-23 1994-09-27 Kawasaki Steel Corp Production of ferritic stainless steel sheet excellent in formability and ridging resistance and furthermore small in anisotropy
JPH1046293A (en) * 1996-07-26 1998-02-17 Nippon Steel Corp Ferritic stainless steel sheet excellent in ductility and ridging property
US6413332B1 (en) * 1999-09-09 2002-07-02 Kawasaki Steel Corporation Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
US20050241737A1 (en) * 2002-09-03 2005-11-03 Takumi Ujiro Cr steel for structural use and method for producing the same
ES2522582T3 (en) * 2007-08-31 2014-11-17 Aperam Alloys Imphy Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module comprising such a device, and thin layer deposition procedure
CN102796960A (en) * 2011-05-25 2012-11-28 宝山钢铁股份有限公司 Ferrite stainless steel with good plastic property and surface quality and preparation method thereof
KR101423823B1 (en) * 2012-06-28 2014-07-25 주식회사 포스코 Low chrome ferritic stainless steel with improved corrosion resistance and ridging property
KR101522077B1 (en) 2012-12-20 2015-05-20 주식회사 포스코 Manufacturing method of ferritic stainless steel sheet with excellent ridging resistance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332852B2 (en) * 1980-10-20 1988-07-01 Nippon Steel Corp
JP3128487B2 (en) * 1995-10-04 2001-01-29 新日本製鐵株式会社 Method for producing ferritic stainless steel sheet with good ridging characteristics
JPH09217124A (en) * 1996-02-15 1997-08-19 Nippon Steel Corp Production of ferritic stainless steel sheet excellent in roping resistance
JP2003073741A (en) * 2001-08-31 2003-03-12 Nisshin Steel Co Ltd Method for manufacturing ferritic stainless steels sheet superior in workability
KR100771832B1 (en) * 2001-12-19 2007-10-30 주식회사 포스코 Method for producing ferritic stainless steel sheets having excellent ridging property
JP2006328524A (en) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel thin sheet reduced in plane anisotropy upon forming and excellent in ridging resistance and roughening resistance, and method for producing the same
JP2006328525A (en) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp Low carbon-low nitrogen ferritic stainless steel thin sheet having reduced plane anisotropy upon forming and having excellent ridging resistance and roughening resistance, and method for producing the same
KR20080061863A (en) * 2006-12-28 2008-07-03 주식회사 포스코 Method of manufacturing a ferritic stainless steel with improved ridging property

Also Published As

Publication number Publication date
CN110073022A (en) 2019-07-30
KR20180068089A (en) 2018-06-21
EP3556888A4 (en) 2019-10-23
EP3556888A1 (en) 2019-10-23
JP7116064B2 (en) 2022-08-09
US20190316237A1 (en) 2019-10-17
CN110073022B (en) 2021-06-29
WO2018110785A1 (en) 2018-06-21
KR101921595B1 (en) 2018-11-26

Similar Documents

Publication Publication Date Title
US10550454B2 (en) Cold-rolled ferritic stainless steel sheet
CA2869700A1 (en) Hot rolled steel sheet for square column for building structural members and method for manufacturing the same
US10633730B2 (en) Material for cold-rolled stainless steel sheet
KR20170027745A (en) Method for manufacturing a high strength steel sheet and sheet obtained
WO2016092713A1 (en) Stainless steel and production method therefor
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP2018154857A (en) Ferritic stainless steel hot rolled steel strip and manufacturing method of steel strip
JP7116064B2 (en) FERRITIC STAINLESS STEEL EXCELLENT IN RIDGING PROPERTIES AND SURFACE QUALITY AND METHOD FOR MANUFACTURING SAME
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
KR20180027689A (en) Method of manufacturing ferritic stainless steel having excellent formability and ridging properties
JP2001192735A (en) FERRITIC Cr-CONTAINING COLD ROLLED STEEL SHEET EXCELLENT IN DUCTILITY, WORKABILITY AND RIDGING RESISTANCE AND PRODUCING METHOD THEREFOR
WO2016194273A1 (en) Hot-rolled steel sheet, full hard cold-rolled steel sheet, and method for producing hot-rolled steel sheet
KR101938588B1 (en) Manufacturing method of ferritic stainless steel having excellent ridging property
WO2021005971A1 (en) Hot rolled steel sheet
JP6225733B2 (en) High strength hot rolled steel sheet and method for producing the same
JP5921352B2 (en) Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP5167314B2 (en) Method for producing ferritic stainless steel with excellent ridging resistance
JP2007211337A (en) Cold-rolled steel sheet having excellent strain-aging resistance and low in-plane anisotropy and method for manufacture thereof
JPH11302739A (en) Production of ferritic stainless steel excellent in surface property and small in anisotropy
JP6410543B2 (en) Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof
JP2001098327A (en) Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance
JP5900717B1 (en) Stainless steel sheet and manufacturing method thereof
JP6756088B2 (en) Hot-rolled steel sheet with excellent cold workability and its manufacturing method
JP4639468B2 (en) Manufacturing method of thin hot-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210324

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210324

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210330

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210406

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210507

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210511

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211102

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220516

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220614

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220712

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220728

R150 Certificate of patent or registration of utility model

Ref document number: 7116064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350