KR101522077B1 - Manufacturing method of ferritic stainless steel sheet with excellent ridging resistance - Google Patents

Manufacturing method of ferritic stainless steel sheet with excellent ridging resistance Download PDF

Info

Publication number
KR101522077B1
KR101522077B1 KR1020120150047A KR20120150047A KR101522077B1 KR 101522077 B1 KR101522077 B1 KR 101522077B1 KR 1020120150047 A KR1020120150047 A KR 1020120150047A KR 20120150047 A KR20120150047 A KR 20120150047A KR 101522077 B1 KR101522077 B1 KR 101522077B1
Authority
KR
South Korea
Prior art keywords
less
stainless steel
annealing
ridging
ferritic stainless
Prior art date
Application number
KR1020120150047A
Other languages
Korean (ko)
Other versions
KR20140080348A (en
Inventor
박지언
박수호
이문수
박동배
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020120150047A priority Critical patent/KR101522077B1/en
Publication of KR20140080348A publication Critical patent/KR20140080348A/en
Application granted granted Critical
Publication of KR101522077B1 publication Critical patent/KR101522077B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 탄소와 질소의 함량을 낮게 제어하여 리징 특성을 개선할 수 있는 내리징성이 우수한 페라이트계 스테인리스강 및 제조 방법에 관한 것으로서, 본 발명의 일 실시형태에 따른 내리징성이 우수한 페라이트계 스테인리스강 제조 방법은 C: 0.0005 ~ 0.03wt%, N: 0.010 ~ 0.03wt%, Si: 0.01 ~ 0.50wt%, Mn: 0.01 ~ 0.70wt%, P: 0.001 ~ 0.035wt%, S: 0.0001 ~ 0.005wt%, Cr: 15.0 ~ 17.0wt%, Ni: 0.001 ~ 0.50wt%, 나머지 Fe와 기타 불가피한 불순물로 이루어지면서 C와 N의 함량합이 0.04wt% 이하인 슬래브를 제조하고, 상기 슬래브를 열간 압연, 1차 소둔, 냉간 압연 및 2차 소둔을 실시하되, 상기 슬래브의 내부조직 중 최대 오스테나이트상의 양(γmax)이 10%미만이고, 오스테나이트 변태온도(Ac1)가 850℃ 이상인 것을 특징으로 한다.The present invention relates to a ferritic stainless steel excellent in anti-ridging property capable of improving ridging characteristics by controlling the content of carbon and nitrogen to a low level, and a ferritic stainless steel having excellent anti-ridging properties according to an embodiment of the present invention. The method for producing the steel sheet according to claim 1, wherein the steel sheet contains 0.0005 to 0.03 wt% of C, 0.010 to 0.03 wt% of N, 0.01 to 0.50 wt% of Si, 0.01 to 0.70 wt% of Mn, 0.001 to 0.035 wt% of P, By weight, Cr: 15.0 to 17.0% by weight, Ni: 0.001 to 0.50% by weight, the balance Fe and other unavoidable impurities, and the sum of C and N is 0.04% by weight or less. Wherein the maximum austenite phase amount? Max in the internal structure of the slab is less than 10% and the austenite transformation temperature Ac1 is not less than 850 占 폚.

Description

내리징성이 우수한 페라이트계 스테인리스강 제조 방법{Manufacturing method of ferritic stainless steel sheet with excellent ridging resistance}Technical Field [0001] The present invention relates to a ferritic stainless steel sheet having excellent ridging resistance,

본 발명은 내리징성이 우수한 페라이트계 스테인리스강 및 제조 방법에 관한 것으로서, 더욱 상세하게는 탄소와 질소의 함량을 낮게 제어하여 리징 특성을 개선할 수 있는 내리징성이 우수한 페라이트계 스테인리스강 및 제조 방법에 관한 것이다.
The present invention relates to a ferritic stainless steel excellent in anti-ridging property, and more particularly to a ferritic stainless steel excellent in anti-ridging property capable of improving the ridging characteristics by controlling the content of carbon and nitrogen to be low .

일반적으로 스테인리스강은 화학성분이나 금속조직에 따라 분류된다. 금속조직에 따를 경우, 스테인리스강은 오스테나이트계(300계), 페라이트계(400계), 마르텐사이트계, 이상계로 분류된다.Generally, stainless steel is classified according to chemical composition or metal structure. According to the metal structure, the stainless steel is classified into an austenitic system (300 system), a ferrite system (400 system), a martensitic system, and an ideal system.

이러한 스테인리스강 중 페라이트계 스테인리스강은 내식성이 우수하여 각종 주방용품, 자동차 배기계 부품, 건축자재, 가전제품 등에 주로 사용되고 있으며, 딥드로잉(Deep Drawing)에 의해 성형가공하여 부품을 제조하므로 성형성이 중요한 품질특성 중의 하나이다. 또한 성형 후에 표면에 형성되는 결함을 저감하는 것이 중요하다.Among these stainless steels, ferritic stainless steel is excellent in corrosion resistance and is mainly used in various kitchen appliances, automobile exhaust system parts, building materials, household appliances, etc. Since the parts are manufactured by deep drawing, It is one of quality characteristics. It is also important to reduce defects formed on the surface after molding.

하지만, 페라이트계 스테인리스강은 딥드로잉과 같은 성형가공 시 압연방향에 평행하게 줄무늬 모양의 표면 결함인 리징(Ridging) 결함이 발생하는 문제점을 가지고 있다.However, ferritic stainless steels have a problem that ridging defects, which are stripe-like surface defects, are generated parallel to the rolling direction in a forming process such as deep drawing.

이러한 리징 결함은 제품의 외관을 나쁘게 할 뿐만 아니라 리징이 심하게 발생할 경우 성형 후에 연마공정이 추가되기 때문에 제조단가가 높아지는 문제점이 있다.Such ridging defects not only deteriorate the appearance of the product but also cause a problem in that when the ridging is severe, a polishing process is added after molding, resulting in an increase in manufacturing cost.

리징의 발생원인은 아직까지 명확하게 밝혀지지 않았지만 대개 다음과 같이 알려져 왔다. 최종 냉연 소둔판에서 다른 집합조직을 가지는 부위의 소성이방성에 의해 표면에 요철이 나타나게 되는데, 특히 조대한 주조조직에 기인하여 열연판에 존재하는 {001}//ND 결정방위를 가지는 조대한 결정립군의 형성에 의한 것으로 알려져 있다. 이러한 조대한 결정립군은 냉간 압연 후에도 그대로 밀집하여 있어 리징을 발생시키게 되므로, 제조공정 전반에 걸쳐 즉, 연주에서부터 냉연 소둔 공정에 이르기까지 조대한 결정립군을 효과적으로 감소시키고 콜로니(colony) 조직을 제거해야만 리징이 없는 강판을 얻을 수 있다.The cause of ridging has not yet been clarified, but it has generally been known as: Unevenness appears on the surface due to the plastic anisotropy of the region having different texture in the final cold-rolled and annealed sheet. Particularly, coarse grains having {001} // ND crystal orientation existing in the hot- And the like. Since these coarse grains are densely packed as they are after cold rolling, they cause ridging. Therefore, it is necessary to effectively reduce the number of coarse grains and to remove colony tissues throughout the manufacturing process, that is, from performance to cold- A steel sheet without ridging can be obtained.

그동안 많은 연구가들에 의해 페라이트계 스테인리스강의 리징성을 개선시키는 다양한 제조방법이 제안되어 왔다. 예로 등축정율을 향상시켜 주상정의 분율을 줄임으로서 리징성을 개선하는 방법이 있다. Various manufacturing methods have been proposed by many researchers to improve the ridging properties of ferritic stainless steels. For example, there is a method of improving the ridging property by improving the equilibrium constant and decreasing the fraction of the main phase.

또한, 제조공정 중 공정변수 조절을 통한 리징성을 개선하는 방법이 있다. 예를 들어 압연 온도, 압연시 압하율, 냉간 압연 후 소둔 처리시 소둔온도를 조절하는 방법이 있다. 특히, 냉간 압연 후 소둔 처리시 소둔온도를 조절하는 방법에 대해서는 "내리징성이 우수한 Ti 첨가 페라이트계 스테인리스강 및 그 제조방법(공개특허 10-2012-0066476)" 등에서 구체적으로 공지되어 있다.Further, there is a method of improving the ridging property by controlling the process parameters during the manufacturing process. For example, there is a method of controlling the rolling temperature, the rolling reduction rate, and the annealing temperature during annealing after cold rolling. In particular, the method of controlling the annealing temperature in the annealing treatment after cold rolling is specifically known in "Ti-added ferritic stainless steel excellent in anti-ridging property and its manufacturing method (Patent Publication 10-2012-0066476) ".

한편, 종래의 페라이트계 스테인리스강 중 리징을 저감시킨 강종으로는 STS 430이 있는데, STS 430은 C+N이 600ppm 이상으로서, 최대 오스테나이트 상의 양이 30% 이상되어 열간압연 도중 밴드조직을 효과적으로 파괴하여 리징을 저감시켰다.On the other hand, the conventional ferritic stainless steels have STS 430 as a steel grade with reduced ridging. The STS 430 has a C + N of 600 ppm or more and a maximum austenite phase content of 30% or more, thereby effectively destroying the band structure during hot rolling Thereby reducing ridging.

그러나 이와 같은 기술은 많은 C, N으로 인해 가공성이 저하될 뿐만 아니라, 열연 이후 열처리 공정에서 오스테나이트 상변태(Ac1) 온도 이상으로 소재가 노출되면 산세시 입계침식 발생에 의한 골든더스트 등의 결함으로 인해 표면 품질이 저하되는 문제가 있었다.However, such a technology is not only deteriorated in workability due to a large number of C and N, but also causes a defect in the steel due to a defect such as a golden dust due to intergranular erosion when the material is exposed to austenite phase transformation temperature (Ac1) There has been a problem that the surface quality is deteriorated.

또한 이러한 문제점을 해결하기 위해서 저온에서 장시간 소둔을 행하면 되지만 이는 제품의 생산성을 저하시키는 주요 원인 중에 하나였다.
In order to solve these problems, annealing may be performed at a low temperature for a long time, but this is one of the main causes of deteriorating the productivity of the product.

공개특허 10-2012-0066476 (2012. 06. 22)Patent Document 1: Japanese Patent Application Laid-Open No. 2001-0066476 (June 22, 2012)

본 발명은 탄소(C)와 질소(N)의 양을 낮게 제어하여 최대 오스테나이트 상의 양이 적고, 고온에서 짧은 시간 동안 소둔하여 재결정이 잘 일어나도록 함에 따라 리징 결함 발생을 억제할 수 있는 내리징성이 우수한 페라이트계 스테인리스강 및 그 제조 방법을 제공한다.
The present invention relates to a method for producing a steel ingot having a low amount of austenite phase by controlling the amount of carbon (C) and nitrogen (N) to a low level and annealing for a short time at a high temperature, This excellent ferritic stainless steel and its manufacturing method are provided.

본 발명의 일 실시형태에 따른 내리징성이 우수한 페라이트계 스테인리스강 제조 방법은 C: 0.0005 ~ 0.03wt%, N: 0.010 ~ 0.03wt%, Si: 0.01 ~ 0.50wt%, Mn: 0.01 ~ 0.70wt%, P: 0.001 ~ 0.035wt%, S: 0.0001 ~ 0.005wt%, Cr: 15.0 ~ 17.0wt%, Ni: 0.001 ~ 0.50wt%, 나머지 Fe와 기타 불가피한 불순물로 이루어지면서 C와 N의 함량합이 0.04wt% 이하인 슬래브를 제조하고, 상기 슬래브를 열간 압연, 1차 소둔, 냉간 압연 및 2차 소둔을 실시하되, 상기 슬래브의 내부조직 중 최대 오스테나이트상의 양(γmax)이 10%미만이고, 오스테나이트 변태온도(Ac1)가 850℃ 이상인 것을 특징으로 한다.The ferritic stainless steel producing method according to one embodiment of the present invention is characterized in that it comprises 0.0005 to 0.03 wt% of C, 0.010 to 0.03 wt% of N, 0.01 to 0.50 wt% of Si, 0.01 to 0.70 wt% of Mn, 0.001 to 0.035 wt% of P, 0.0001 to 0.005 wt% of S, 15.0 to 17.0 wt% of Cr, 0.001 to 0.50 wt% of Ni, balance of Fe and other unavoidable impurities, and the sum of C and N is 0.04 wherein the slab is subjected to hot rolling, primary annealing, cold rolling and secondary annealing, wherein a maximum amount of austenite phase (? max) in the internal structure of the slab is less than 10% and austenite And the transformation temperature Ac1 is 850 DEG C or higher.

상기 최대 오스테나이트상의 양(γmax)은 하기의 식에 의해 계산되는 것을 특징으로 한다.And the maximum austenite phase amount? Max is calculated by the following equation.

γmax(%) = 420×[C]+470×[N]+23×[Ni]+9×[Cu]+10×[Mn]+180-11.5×[Cr]-11.5×[Si]-12.0×[Mo]-52.0×[Al]? 11.5 x [Si] -12.0 (%) = 420 x [C] + 470 x [N] + 23 x [Ni] + 9 x [Cu] + 10 x [Mn] X [Mo] -52.0 x [Al]

상기 오스테나이트 변태온도(Ac1)은 하기의 식에 의해 계산되는 것을 특징으로 한다.The austenite transformation temperature Ac1 is characterized by being calculated by the following equation.

Ac1(℃) = 310+35×([Cr]+1.72×[Mo]+2.09×[Si]+4.86×[Nb]+8.29×[V]+1.77×[Ti]+21.4×[Al]+46×[B]-7.14×[C]-8×[N]-3.28×[Ni]-1.89×[Mn]-0.51×[Cu])(Mo) + 2.09 x [Si] + 4.86 x Nb + 8.29 x V + 1.77 x Ti + 21.4 x Al + 46 × [B] -7.14 × [C] -8 × [N] -3.28 × [Ni] -1.89 × [Mn] -0.51 × [Cu]

상기 열간 압연 후 1차 소둔시 소둔온도를 920 ~ 960℃ 범위로 제어하는 것을 특징으로 한다.And the annealing temperature during the first annealing after the hot rolling is controlled to be in the range of 920 to 960 占 폚.

상기 열간 압연 이후 1차 소둔처리 된 스테인리스강은 재결정율이 80% 이상인 것을 특징으로 한다.The stainless steel subjected to the primary annealing after the hot rolling has a recrystallization ratio of 80% or more.

상기 냉간 압연 이후 2차 소둔처리 된 스테인리스강의 리징 높이가 20㎛ 이하인 것을 특징으로 한다.And the ridging height of the stainless steel subjected to the secondary annealing after the cold rolling is 20 占 퐉 or less.

한편, 본 발명의 일 실시형태에 따른 내리징성이 우수한 페라이트계 스테인리스강은 C: 0.0005 ~ 0.03wt%, N: 0.010 ~ 0.03wt%, Si: 0.01 ~ 0.50wt%, Mn: 0.01 ~ 0.70wt%, P: 0.001 ~ 0.035wt%, S: 0.0001 ~ 0.005wt%, Cr: 15.0 ~ 17.0wt%, Ni: 0.001 ~ 0.50wt%, 나머지 Fe와 기타 불가피한 불순물로 이루어지면서 C와 N의 함량합이 0.04wt% 이하이고, 리징 높이가 20㎛ 이하인 것을 특징으로 한다.On the other hand, ferritic stainless steels excellent in anti-ridging properties according to one embodiment of the present invention contain 0.0005 to 0.03 wt% of C, 0.010 to 0.03 wt% of N, 0.01 to 0.50 wt% of Si, 0.01 to 0.70 wt% of Mn, 0.001 to 0.035 wt% of P, 0.0001 to 0.005 wt% of S, 15.0 to 17.0 wt% of Cr, 0.001 to 0.50 wt% of Ni, balance of Fe and other unavoidable impurities, and the sum of C and N is 0.04 wt% or less, and the ridging height is 20 mu m or less.

상기 스테인리스강은 내부조직 중 최대 오스테나이트상의 양(γmax)이 10%미만이고, 오스테나이트 변태온도(Ac1)가 850℃ 이상인 것을 특징으로 한다.
The stainless steel is characterized in that the maximum amount of austenite phase (? Max) in the internal structure is less than 10% and the austenite transformation temperature (Ac1) is not less than 850 占 폚.

본 발명의 실시예에 따르면, 탄소(C)와 질소(N)의 양이 적도록 제어함에 따라 내부조직 중 최대 오스테나이트상의 양이 적게 생성되면서 오스테나이트 변태온도를 높게 유지할 수 있다. 이에 따라 열연 압연 후 소둔시 내부조직의 재결정율을 높일 수 있기 때문에 결정립이 조대화 되는 것을 방지하여 표면의 리징 결함 발생을 억제할 수 있다.According to the embodiment of the present invention, by controlling the amounts of carbon (C) and nitrogen (N) to be small, the amount of the maximum austenite phase in the internal structure is small and the austenite transformation temperature can be maintained high. Accordingly, since the recrystallization ratio of the internal structure can be increased during annealing after hot rolling, it is possible to prevent the crystal grains from coarsening and to suppress the occurrence of ridging defects on the surface.

이에 따라 본 발명의 실시예에 따르면 산세 후 입계 침식이 없으며 최종 냉연 및 소둔 후 리징 높이가 낮아 페라이트계 스테인리스강의 품질을 향상시키는 효과를 기대할 수 있다.
Accordingly, according to the embodiment of the present invention, there is no intergranular erosion after pickling, and since the final cold rolling and the ridging height after annealing are low, the effect of improving the quality of the ferritic stainless steel can be expected.

도 1a는 비교예에 따른 비교예의 920℃ 소둔 후 표면의 EPMA 분석사진이고,
도 1b는 본 발명에 따른 발명예의 920℃ 소둔 후 표면의 EPMA 분석사진이며,
도 2a는 본 발명에 따른 발명예의 920℃ 소둔에 이어 혼산 산세 후의 표면을 광학 현미경으로 촬영한 사진이고,
도 2b는 비교예에 따른 비교예의 920℃ 소둔에 이어 혼산 산세 후의 표면을 광학 현미경으로 촬영한 사진이며,
도 3은 본 발명에 따른 발명예의 소둔 온도에 따른 리징 높이를 나타낸 도면이다.
FIG. 1A is an EPMA analysis image of a surface of a comparative example according to a comparative example after annealing at 920 ° C.,
1B is an EPMA analysis image of the surface after annealing at 920 占 폚 according to the inventive example according to the present invention,
2A is a photograph of the surface of the surface after acidic pickling at 920 DEG C of the inventive example according to the present invention photographed by an optical microscope,
FIG. 2B is a photograph of the surface after the acidic pickling at 920 ° C. in the comparative example according to the comparative example, taken by an optical microscope,
3 is a view showing the ridging height according to the annealing temperature in the inventive example according to the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 C: 0.0005 ~ 0.03wt%, N: 0.010 ~ 0.03wt%, Si: 0.01 ~ 0.50wt%, Mn: 0.01 ~ 0.70wt%, P: 0.001 ~ 0.035wt%, S: 0.0001 ~ 0.005wt%, Cr: 15.0 ~ 17.0wt%, Ni: 0.001 ~ 0.50wt%, 나머지 Fe와 기타 불가피한 불순물로 이루어진 페라이트계 스테인리스강을 대상으로 한다.The present invention relates to a steel sheet comprising 0.0005 to 0.03 wt% of C, 0.010 to 0.03 wt% of N, 0.01 to 0.50 wt% of Si, 0.01 to 0.70 wt% of Mn, 0.001 to 0.035 wt% of P, 0.0001 to 0.005 wt% of S, , Cr: 15.0 to 17.0 wt%, Ni: 0.001 to 0.50 wt%, and Fe and other unavoidable impurities.

탄소(C)의 함량은 0.0005wt% 이상 0.03wt% 이하인 것이 바람직하다. 탄소(C)의 양이 0.0005 wt% 미만이면 고순도 제품을 만들기 위한 정련 가격이 비싸지고 0.03 wt%를 초과하면 소재의 불순물이 늘어 연신율이 떨어지는 문제가 있다.The content of carbon (C) is preferably 0.0005 wt% or more and 0.03 wt% or less. If the amount of carbon (C) is less than 0.0005 wt%, the refining price for producing a high-purity product becomes high. If the amount is more than 0.03 wt%, the impurities of the material are increased and the elongation is decreased.

질소(N)의 함량은 0.010wt% 이상 0.03wt% 이하인 것이 바람직하다. 질소(N)의 양이 0.010wt% 미만이면 슬래브의 등축정율이 낮아지고, 0.03 wt%를 초과하면 소재의 불순물이 증가하여 연신율이 떨어지는 문제가 있다.The content of nitrogen (N) is preferably 0.010 wt% or more and 0.03 wt% or less. When the amount of nitrogen (N) is less than 0.010 wt%, the equiaxed crystal ratio of the slab is lowered. When the amount of nitrogen (N) is more than 0.03 wt%, impurities of the material increase and the elongation is lowered.

특히 탄소(C)와 질소(N)의 함량합이 0.04wt% 이하인 것이 바람직하다. 이렇게 탄소(C)와 질소(N)의 양을 낮춤으로 인해 미세한 탄질화물의 석출을 줄여 제품의 가공성을 향상시키고, 최대 오스테나이트 상의 양(γmax)을 10% 미만으로 제어하고, 오스테나이트 상변태(Ac1) 온도를 850˚C 이상으로 하여 고온에서 소둔이 가능하도록 한다.In particular, the sum of the contents of carbon (C) and nitrogen (N) is preferably 0.04 wt% or less. By lowering the amount of carbon (C) and nitrogen (N), it is possible to improve the workability of the product by reducing precipitation of fine carbonitride and to control the amount of maximum austenite phase (γmax) to less than 10% Ac1) Allow the annealing at a high temperature by setting the temperature to 850˚C or higher.

이때 상기 최대 오스테나이트상의 양(γmax)은 하기의 [수학식 1]에 의해 계산된다.At this time, the maximum amount of the austenite phase (? Max) is calculated by the following formula (1).

[수학식 1][Equation 1]

γmax(%) = 420×[C]+470×[N]+23×[Ni]+9×[Cu]+10×[Mn]+180-11.5×[Cr]-11.5×[Si]-12.0×[Mo]-52.0×[Al]? 11.5 x [Si] -12.0 (%) = 420 x [C] + 470 x [N] + 23 x [Ni] + 9 x [Cu] + 10 x [Mn] X [Mo] -52.0 x [Al]

그리고, 상기 오스테나이트 변태온도(Ac1)은 하기의 [수학식 2]에 의해 계산되는 내리징성이 우수한 페라이트계 스테인리스강 제조 방법.The austenite transformation temperature (Ac1) is excellent in anti-ridging property as calculated by the following formula (2).

[수학식 2]&Quot; (2) "

Ac1(℃) = 310+35×([Cr]+1.72×[Mo]+2.09×[Si]+4.86×[Nb]+8.29×[V]+1.77×[Ti]+21.4×[Al]+46×[B]-7.14×[C]-8×[N]-3.28×[Ni]-1.89×[Mn]-0.51×[Cu])(Mo) + 2.09 x [Si] + 4.86 x Nb + 8.29 x V + 1.77 x Ti + 21.4 x Al + 46 × [B] -7.14 × [C] -8 × [N] -3.28 × [Ni] -1.89 × [Mn] -0.51 × [Cu]

상기 [수학식 1] 및 [수학식 2]에 기재된 원소 중 앞에서 함량의 범위를 한정하지 않은 원소들은 그 함량을 제한할 필요가 없는 원소들이어서 그 함량의 범위를 한정하지 않은 것이다. 물론 상기 [수학식 1] 및 [수학식 2]의 계산을 위해서는 그 함량의 범위를 한정하지 않은 원소들의 함량까지 측정하여야 함은 자명한 사실이다.The elements not limited in the content among the elements described in the above-mentioned [Mathematical Formulas 1] and [Mathematical Expression 2] are elements which do not need to be limited in their contents, and the range of the content is not limited. Of course, it is a matter of course that for the calculation of the above-mentioned [Equation 1] and [Equation 2], it is necessary to measure up to the content of the elements not limited in the content.

한편, 실리콘(Si)의 함량은 0.01wt% 이상 0.50wt% 이하인 것이 바람직하다. 실리콘(Si)의 양이 0.01wt% 미만이면 정련 가격이 비싸지는 문제가 있고, 0.5wt%를 초과하면 소재의 불순물이 증가하여 연신율이 떨어지는 문제가 있다.On the other hand, the content of silicon (Si) is preferably 0.01 wt% or more and 0.50 wt% or less. If the amount of silicon (Si) is less than 0.01 wt%, there is a problem that the refining price is expensive. If the amount is more than 0.5 wt%, the impurities of the material increase and the elongation becomes poor.

망간(Mn)의 함량은 0.01wt% 이상 0.70wt% 이하인 것이 바람직하다. 망간(Mn)의 양이 0.01wt% 미만이면 정련 가격이 비싸지는 문제가 있고, 0.7wt%를 초과하면 소재의 불순물이 증가하여 연신율이 떨어지는 문제가 있다.The content of manganese (Mn) is preferably 0.01 wt% or more and 0.70 wt% or less. When the amount of manganese (Mn) is less than 0.01 wt%, there is a problem that the refining price is expensive. When the amount is more than 0.7 wt%, the impurities of the material increase and the elongation becomes low.

인(P)의 함량은 0.001wt% 이상 0.035wt% 이하인 것이 바람직하다. 인(P)의 양이 0.001wt% 미만이면 정련 가격이 비싸지는 문제가 있고, 0.035wt%를 초과하면 소재의 불순물이 증가하여 연신율이 떨어지는 문제가 있다. The content of phosphorus (P) is preferably 0.001 wt% or more and 0.035 wt% or less. If the amount of phosphorus (P) is less than 0.001 wt%, there is a problem that the refining price becomes expensive. When the amount of phosphorus (P) is more than 0.035 wt%, the impurities of the material increase and the elongation becomes poor.

황(S)의 함량은 0.0001wt% 이상 0.005wt% 이하인 것이 바람직하다. 황(S)의 양이 0.0001wt% 미만이면 정련 가격이 비싸지는 문제가 있고 0.005wt%를 초과하면 내식성과 가공성이 나빠지는 문제가 있다.The content of sulfur (S) is preferably 0.0001 wt% or more and 0.005 wt% or less. If the amount of sulfur (S) is less than 0.0001 wt%, there is a problem that the refining price is expensive. When the amount is more than 0.005 wt%, corrosion resistance and workability deteriorate.

크롬(Cr)의 함량은 15.0wt% 이상 17.0wt%의 이하인 것이 바람직하다. 크롬(Cr)의 양이 15.0wt% 미만이면 내식성 및 내산화성이 나빠지는 문제가 있고, 17.0wt%를 초과하면 연신율이 떨어지고 원가가 상승하는 문제가 있다.The content of chromium (Cr) is preferably 15.0 wt% or more and 17.0 wt% or less. When the amount of chromium (Cr) is less than 15.0 wt%, the corrosion resistance and oxidation resistance deteriorate. When the amount of chromium (Cr) is more than 17.0 wt%, the elongation rate decreases and the cost increases.

니켈(Ni)의 함량은 0.001wt% 이상 0.50wt% 이하인 것이 바람직하다. 니켈(Ni)의 양이 0.001wt% 미만이면 정련 가격이 비싸지는 문제가 있고, 0.5wt%를 초과하면 소재의 불순물이 증가하여 연신율이 떨어지는 문제가 있다.The content of nickel (Ni) is preferably 0.001 wt% or more and 0.50 wt% or less. If the amount of nickel (Ni) is less than 0.001 wt%, there is a problem that the refining price is expensive. If the amount is more than 0.5 wt%, the impurities of the material increase and the elongation rate decreases.

본 발명은 내리징성이 우수한 스테인리스강을 제조하기 위하여 상기와 같은 조성을 갖는 용강을 통상의 방법으로 연주하여 슬래브를 생산한 후 이를 열간 압연, 1차 소둔, 냉간 압연 및 2차 소둔을 실시한다.
In order to manufacture a stainless steel excellent in anti-ridging property, molten steel having the above composition is produced by a conventional method to produce a slab, followed by hot rolling, primary annealing, cold rolling and secondary annealing.

[실시예][Example]

이하 실시예를 사용하여 본 발명을 설명한다.The following examples illustrate the present invention.

하기의 표 1과 같은 합금성분으로 조성되는 용강을 이용하여 연속주조된 슬래브로부터 열간 압연한 4 ~ 5mm 두께의 열연판을 1차 소둔시 하기의 표 2와 같이 소둔온도를 변경하면서 열처리 한 후 냉간 압연 및 2차 소둔을 실시하였다. 그리고, 그에 따른 재결정율(%), 결정립크기(㎛), 입계 침식 및 리징(㎛)이 결과를 표 2에 나타내었다.The hot-rolled steel sheets of 4 to 5 mm in thickness, hot-rolled from the continuously cast slabs using molten steel as shown in Table 1 below, were heat-treated while changing the annealing temperature as shown in Table 2 below, Followed by rolling and secondary annealing. The recrystallization ratio (%), grain size (占 퐉), grain boundary erosion and ridging (占 퐉) are shown in Table 2.

[표 1][Table 1]

Figure 112012106167783-pat00001
Figure 112012106167783-pat00001

[표 2][Table 2]

Figure 112012106167783-pat00002
Figure 112012106167783-pat00002

상기 표 1 및 표 2에서 알 수 있듯이 합금성분의 조성 및 소둔온도를 전술된 바람직한 범위 내로 제어하는 경우에 재결정율이 80% 이상으로 유지되면서 결정립크기가 500㎛보다 작게 형성되어 리징의 높이가 20㎛보다 작게 형성되는 것을 확인할 수 있었다.As can be seen from Tables 1 and 2, when the composition of the alloy component and the annealing temperature are controlled within the preferable range, the grain size is formed to be smaller than 500 μm while the recrystallization ratio is maintained at 80% or more, Mu] m.

한편, 발명예는 본 발명에 따른 합금성분, 즉 표 1에의 발명예에서 제시된 합금성분으로 조성되는 용강을 이용하여 연속주조된 슬래브를 오스테나이트 변태점(Ac1) 온도 이상인 920℃에서 열처리하여 그 내부조직을 EPMA 촬영하였고, 비교예는 종래의 일반적인 STS 430강, 즉 표 1의 비교예에서 제시된 합금성분으로 조성되는 용강을 이용하여 연속주조된 슬래브를 오스테나이트 변태점(Ac1) 온도 이상인 920℃에서 열처리하여 그 내부조직을 EPMA 촬영하였다.On the other hand, in the case of the present invention, the continuous cast slab is heat-treated at 920 캜, which is above the austenite transformation point (Ac 1) temperature, using the molten steel constituted by the alloy component according to the present invention, And the comparative example was heat treated at 920 占 폚, which is higher than the austenite transformation point (Ac1) temperature, using a conventional STS 430 steel, that is, a continuous cast slab using molten steel as an alloy component shown in Table 1 The internal tissues were photographed by EPMA.

도 1a는 비교예에 따른 비교예의 920℃ 소둔 후 표면의 EPMA 분석사진이고, 도 1b는 본 발명에 따른 발명예의 920℃ 소둔 후 표면의 EPMA 분석사진으로서, 원소 C와 Cr의 분포를 맵핑한 것이고, 도 2a는 본 발명에 따른 발명예의 920℃ 소둔에 이어 혼산 산세 후의 표면을 광학 현미경으로 촬영한 사진이고, 도 2b는 비교예에 따른 비교예의 920℃ 소둔에 이어 혼산 산세 후의 표면을 광학 현미경으로 촬영한 사진이다.FIG. 1A is an EPMA analysis image of a surface after annealing at 920.degree. C. in a comparative example according to a comparative example, FIG. 1B is an EPMA analysis image of a surface after annealing at 920.degree. C. according to the inventive example of the present invention, , FIG. 2A is a photograph of the surface after the 920 ° C. annealing of the inventive example according to the present invention, and FIG. 2B is a photograph of the surface after the 980 ° C. annealing of the comparative example according to the comparative example, It is a photograph taken.

도 1a의 사진에서 알 수 있듯이, 비교예의 경우 Ac1온도 이상에서 열처리하게 되면 열처리 중 오스테나이트 상변태에 의해 크롬 열화 영역(Cr depleted zone)이 발생하게 된다. 이와 같은 크롬 열화 영역(Cr depleted zone)은 혼산 산세시에 도 2a에서와 같이 과도한 입계 침식을 유발하여 표면 품질을 저하시키는 것을 확인할 수 있었다.As can be seen from the photograph of FIG. 1A, in the comparative example, when the heat treatment is performed at the Ac1 temperature or more, a chromium deteriorated zone occurs due to the austenite phase transformation during the heat treatment. The Cr depleted zone, as shown in FIG. 2A, causes excessive intergranular erosion at the time of mixed acid picking, and thus it is confirmed that the surface quality is deteriorated.

반면에, 도 1b 및 도 2b의 사진에서 알 수 있듯이, 최대 오스테나이트 상의 양이 10% 미만인 발명예는 열처리 후에도 크롬 열화 영역(Cr depleted zone)이 발생하지 않아 혼산 산세 후에도 표면 품질의 저하가 발생하지 않는 것을 확인할 수 있었다.On the other hand, as can be seen from the photographs of FIGS. 1B and 2B, in the case of the case where the amount of the maximum austenite phase is less than 10%, the Cr depleted zone does not occur even after the heat treatment, I could confirm that I did not.

한편, 도 3은 본 발명에 따른 발명예의 소둔 온도에 따른 리징 높이를 나타낸 도면이다.3 is a view showing the ridging height according to the annealing temperature in the inventive example according to the present invention.

도 3에서 알 수 있듯이 최대 오스테나이트 상이 10% 미만인 발명예는 열연 후 900℃ 이상에서 열처리하여 재결정이 80% 이상 발생하도록 함에 따라 열연 중에 형성된 밴드조직을 제거하여 최종 냉연 및 소둔 후 리징을 현저히 개선시킬 수 있다.As can be seen from FIG. 3, when the maximum austenite phase is less than 10%, the heat treatment is performed at a temperature of 900 ° C or higher after hot rolling to cause recrystallization of more than 80%, thereby removing the band structure formed during hot rolling, .

그러나 1000℃ 이상에서 열처리하게 되면 재결정이 80%이상 발생하더라도 소재의 결정립 크기가 500μm를 초과하여 최종 냉연 및 소둔 후 리징이 오히려 20μm를 초과하게 되는 것을 확인할 수 있었다.
However, when annealed at 1000 ℃ or more, it was confirmed that the crystal grain size of the material exceeded 500 袖 m even when recrystallization occurred at 80% or more, and the final cold rolling and lasing after annealing exceeded 20 탆.

본 발명을 첨부 도면과 전술된 바람직한 실시예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.
Although the present invention has been described with reference to the accompanying drawings and the preferred embodiments described above, the present invention is not limited thereto but is limited by the following claims. Accordingly, those skilled in the art will appreciate that various modifications and changes may be made thereto without departing from the spirit of the following claims.

Claims (6)

C: 0.0005 ~ 0.03wt%, N: 0.010 ~ 0.03wt%, Si: 0.01 ~ 0.50wt%, Mn: 0.01 ~ 0.70wt%, P: 0.001 ~ 0.035wt%, S: 0.0001 ~ 0.005wt%, Cr: 15.0 ~ 17.0wt%, Ni: 0.001 ~ 0.50wt%, 나머지 Fe와 기타 불가피한 불순물로 이루어지면서 C와 N의 함량합이 0.04wt% 이하인 슬래브를 제조하고,
상기 슬래브를 열간 압연, 1차 소둔, 냉간 압연 및 2차 소둔을 실시하되, 상기 1차 소둔시 소둔온도를 920 ~ 960℃ 범위로 제어하며,
상기 슬래브의 내부조직 중 최대 오스테나이트상의 양(γmax)이 10%미만이고, 오스테나이트 변태온도(Ac1)가 850℃ 이상이며,
상기 최대 오스테나이트상의 양(γmax)은 하기의 [수학식 1]에 의해 계산되고, 상기 오스테나이트 변태온도(Ac1)은 하기의 [수학식 2]에 의해 계산되는 내리징성이 우수한 페라이트계 스테인리스강 제조 방법.
[수학식 1]
γmax(%) = 420×[C]+470×[N]+23×[Ni]+9×[Cu]+10×[Mn]+180-11.5×[Cr]-11.5×[Si]-12.0×[Mo]-52.0×[Al]
[수학식 2]
Ac1(℃) = 310+35×([Cr]+1.72×[Mo]+2.09×[Si]+4.86×[Nb]+8.29×[V]+1.77×[Ti]+21.4×[Al]+46×[B]-7.14×[C]-8×[N]-3.28×[Ni]-1.89×[Mn]-0.51×[Cu])
0.001 to 0.035 wt% of P, 0.0001 to 0.005 wt% of S, 0.0005 to 0.03 wt% of C, 0.010 to 0.03 wt% of N, 0.01 to 0.50 wt% of Si, 0.01 to 0.70 wt% 15.0 to 17.0 wt%, Ni: 0.001 to 0.50 wt%, the balance Fe and other unavoidable impurities, and the sum of C and N is 0.04 wt% or less.
The slab is subjected to hot rolling, primary annealing, cold rolling and secondary annealing, wherein the annealing temperature in the primary annealing is controlled to be in the range of 920 to 960 占 폚,
The maximum austenite phase amount? Max in the internal structure of the slab is less than 10%, the austenite transformation temperature Ac1 is not less than 850 占 폚,
The amount of maximum austenite phase (max) is calculated by the following equation (1), and the austenite transformation temperature Ac1 is calculated from the following formula (2): ferritic stainless steel Gt;
[Equation 1]
? 11.5 x [Si] -12.0 (%) = 420 x [C] + 470 x [N] + 23 x [Ni] + 9 x [Cu] + 10 x [Mn] X [Mo] -52.0 x [Al]
&Quot; (2) "
(Mo) + 2.09 x [Si] + 4.86 x Nb + 8.29 x V + 1.77 x Ti + 21.4 x Al + 46 × [B] -7.14 × [C] -8 × [N] -3.28 × [Ni] -1.89 × [Mn] -0.51 × [Cu]
삭제delete 청구항 1에 있어서,
상기 열간 압연 이후 1차 소둔처리 된 스테인리스강은 재결정율이 80% 이상인 내리징성이 우수한 페라이트계 스테인리스강 제조 방법.
The method according to claim 1,
Wherein the stainless steel subjected to the primary annealing after the hot rolling has an excellent refractory property with a recrystallization ratio of 80% or more.
청구항 1에 있어서,
상기 냉간 압연 이후 2차 소둔처리 된 스테인리스강의 리징 높이가 20㎛ 이하인 내리징성이 우수한 페라이트계 스테인리스강 제조 방법.
The method according to claim 1,
Wherein the ridging height of the secondary annealed stainless steel after the cold rolling is 20 占 퐉 or less.
삭제delete 삭제delete
KR1020120150047A 2012-12-20 2012-12-20 Manufacturing method of ferritic stainless steel sheet with excellent ridging resistance KR101522077B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120150047A KR101522077B1 (en) 2012-12-20 2012-12-20 Manufacturing method of ferritic stainless steel sheet with excellent ridging resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120150047A KR101522077B1 (en) 2012-12-20 2012-12-20 Manufacturing method of ferritic stainless steel sheet with excellent ridging resistance

Publications (2)

Publication Number Publication Date
KR20140080348A KR20140080348A (en) 2014-06-30
KR101522077B1 true KR101522077B1 (en) 2015-05-20

Family

ID=51131105

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120150047A KR101522077B1 (en) 2012-12-20 2012-12-20 Manufacturing method of ferritic stainless steel sheet with excellent ridging resistance

Country Status (1)

Country Link
KR (1) KR101522077B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180265951A1 (en) * 2014-10-02 2018-09-20 Jfe Steel Corporation Ferritic stainless steel and method for manufacturing the same
WO2016092714A1 (en) * 2014-12-11 2016-06-16 Jfeスチール株式会社 Ferrite-based stainless steel and production method therefor
US20180171430A1 (en) * 2015-07-02 2018-06-21 Jfe Steel Corporation Ferritic stainless steel sheet and method for manufacturing the same
KR20170056046A (en) * 2015-11-12 2017-05-23 주식회사 포스코 Ferritic stainless steel and method of manufacturing the same
KR101921595B1 (en) 2016-12-13 2018-11-26 주식회사 포스코 Ferritic stainless steel having excellent ridging property and excellent in surface quality and method of manufacturing the same
KR102181748B1 (en) * 2018-11-30 2020-11-24 주식회사 포스코 Ferritic stainless steel with improved magnetization properties and manufacturing method thereof
KR102497439B1 (en) * 2020-12-09 2023-02-08 주식회사 포스코 Ferritic stainless steel with improved ridging resistance and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332548A (en) * 2001-05-10 2002-11-22 Nisshin Steel Co Ltd Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
JP2006328525A (en) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp Low carbon-low nitrogen ferritic stainless steel thin sheet having reduced plane anisotropy upon forming and having excellent ridging resistance and roughening resistance, and method for producing the same
KR20110072698A (en) * 2009-12-23 2011-06-29 주식회사 포스코 Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof
KR20130075926A (en) * 2011-12-28 2013-07-08 주식회사 포스코 Ferritic stainless steel with good ridging property and the method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332548A (en) * 2001-05-10 2002-11-22 Nisshin Steel Co Ltd Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
JP2006328525A (en) * 2005-01-24 2006-12-07 Nippon Steel & Sumikin Stainless Steel Corp Low carbon-low nitrogen ferritic stainless steel thin sheet having reduced plane anisotropy upon forming and having excellent ridging resistance and roughening resistance, and method for producing the same
KR20110072698A (en) * 2009-12-23 2011-06-29 주식회사 포스코 Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof
KR20130075926A (en) * 2011-12-28 2013-07-08 주식회사 포스코 Ferritic stainless steel with good ridging property and the method of manufacturing the same

Also Published As

Publication number Publication date
KR20140080348A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
KR101522077B1 (en) Manufacturing method of ferritic stainless steel sheet with excellent ridging resistance
JP6285462B2 (en) 780 MPa class cold rolled duplex steel and method for producing the same
TWI404808B (en) Boron steel sheet with high quenching property and manufacturing method thereof
JP6143355B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after carburizing heat treatment
CN113015818B (en) High strength non-magnetic austenitic stainless steel and method for manufacturing same
JP4589747B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, its manufacturing method and strain relief annealing method
JP5304435B2 (en) Hot-rolled steel sheet with excellent hole-expandability and manufacturing method thereof
KR101485639B1 (en) Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof
CN111448326B (en) General ferritic stainless steel having excellent hot workability and method for manufacturing same
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
JPH0681037A (en) Production of hot rolled strip of dual phase stainless steel
JP2003155543A (en) Ferrite stainless steel having excellent deep drawability and reduced plane anisotropy, and production method therefor
KR20200032899A (en) Manufacturing method of ferritic stainless steel having excellent ridging property and formability
WO2020217873A1 (en) Thick steel plate
KR101421832B1 (en) Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof
KR101569589B1 (en) Ferritic stainless steel having excellentridging resistance and menufacturing method there of
KR101316907B1 (en) Ferritic stainless steel and method for manufacturing the same
US9790565B2 (en) Hot-rolled stainless steel sheet having excellent hardness and low-temperature impact properties
KR101938588B1 (en) Manufacturing method of ferritic stainless steel having excellent ridging property
KR101035767B1 (en) Hot-rolled steel sheet with good formability, and method for producing the same
JP2012153926A (en) Method for manufacturing ferritic stainless steel sheet
JP2007270168A (en) Method for producing chromium-containing ferritic steel sheet
KR101485640B1 (en) Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof
KR20140080353A (en) Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof
KR101569590B1 (en) Ferritic stainless steel having excellentridging resistance and formability and menufacturing method there of

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190515

Year of fee payment: 5