JP6410543B2 - Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof - Google Patents

Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof Download PDF

Info

Publication number
JP6410543B2
JP6410543B2 JP2014199403A JP2014199403A JP6410543B2 JP 6410543 B2 JP6410543 B2 JP 6410543B2 JP 2014199403 A JP2014199403 A JP 2014199403A JP 2014199403 A JP2014199403 A JP 2014199403A JP 6410543 B2 JP6410543 B2 JP 6410543B2
Authority
JP
Japan
Prior art keywords
less
hole
stainless steel
grain size
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014199403A
Other languages
Japanese (ja)
Other versions
JP2016069677A (en
Inventor
木村 謙
謙 木村
啓 三平
啓 三平
石丸 詠一朗
詠一朗 石丸
透 松橋
透 松橋
直樹 出倉
直樹 出倉
耕治 中原
耕治 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2014199403A priority Critical patent/JP6410543B2/en
Priority to PCT/JP2015/077562 priority patent/WO2016052528A1/en
Priority to CN201580042585.6A priority patent/CN106574350A/en
Publication of JP2016069677A publication Critical patent/JP2016069677A/en
Application granted granted Critical
Publication of JP6410543B2 publication Critical patent/JP6410543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、穴広げ性に優れたフェライト系ステンレス鋼鈑及びその製造方法に関する。   The present invention relates to a ferritic stainless steel plate excellent in hole expansibility and a method for producing the same.

フェライト系ステンレス鋼は優れた耐食性を有するため、多くの用途に用いられている。フェライト系ステンレス鋼の薄鋼板の場合、種々の加工が加えられて目的の形状に成形加工される場合が多い。加工は曲げ、張り出し、深絞り、伸びフランジ等のモードがあり、それぞれの加工に適した金属組織の制御が行われている。   Ferritic stainless steel has excellent corrosion resistance and is used in many applications. In the case of a ferritic stainless steel thin steel sheet, it is often formed into a desired shape by applying various processes. Processing has modes such as bending, overhanging, deep drawing, and stretch flange, and the metal structure suitable for each processing is controlled.

中でも伸びフランジ成形性は、加工により開けられたパンチ穴の拡がり率(穴拡げ性)を調査して得られる。フェライト系ステンレス鋼においては穴拡げ性を向上するための検討が行われてきた。特許文献1では2回冷延における圧下配分を適正化することにより、rmin値を高めて穴拡げ性を向上する手法が取られている。特許文献1の技術は2回冷延法が前提となるため、一般的な1回冷延法には適用できない。 Above all, stretch flange formability is obtained by investigating the expansion rate (hole expandability) of punch holes opened by processing. In ferritic stainless steels, studies have been made to improve hole expansibility. By optimizing the pressure distribution in the patent document 1, 2 Kaihiyanobe a technique of improving the hole expandability by increasing the r min values it has been taken. Since the technique of Patent Document 1 is based on the two-time cold rolling method, it cannot be applied to a general one-time cold rolling method.

析出物を制御することにより穴拡げ性を高める方法も知られている(特許文献2及び特許文献3)。特許文献2及び特許文献3では成分に加えて中間焼鈍条件を規定することにより析出物のサイズ及び密度を制御して穴拡げ性を改善する手法が開示されている。しかし、本技術は中間焼鈍が必須となるため、必ずしも効率的なプロセスとは言えない。   A method of improving hole expansibility by controlling precipitates is also known (Patent Document 2 and Patent Document 3). Patent Document 2 and Patent Document 3 disclose a method of improving the hole expandability by controlling the size and density of precipitates by defining intermediate annealing conditions in addition to the components. However, this technique is not necessarily an efficient process because intermediate annealing is essential.

一方で、フェライト系ステンレス鋼に微量のSnを添加し、耐銹性を向上する技術が知られている(特許文献4及び特許文献5)。特許文献4及び特許文献5においては、成分を規定し、耐銹性を向上させる手法が記載されているが、穴拡げ性については何ら記載されていない。また穴拡げ性は金属組織と大きな相関があることが考えられるが、金属組織制御に関する示唆はされていない。   On the other hand, a technique for adding a small amount of Sn to ferritic stainless steel to improve weather resistance is known (Patent Document 4 and Patent Document 5). In Patent Document 4 and Patent Document 5, a method for defining components and improving weather resistance is described, but there is no description about hole expansibility. Moreover, it is considered that the hole expandability has a large correlation with the metal structure, but no suggestion regarding the metal structure control has been made.

穴拡げ性は局部変形に対応することから素材の延性及び深絞り性と定性的に相関があることが知られているが、工程を付加することなく穴拡げ性を向上させる手法が確立されていなのが現状である。   It is known that hole expansibility correlates qualitatively with the ductility and deep drawability of the material because it corresponds to local deformation, but a technique to improve hole expansibility without adding a process has been established. This is the current situation.

特開平4−311518号公報JP-A-4-31518 特開2003−213376号公報JP 2003-213376 A 特開2004−360003号公報JP 2004-360003 A 特開2009−174036号公報JP 2009-174036 A 特開2010−159487号公報JP 2010-159487 A

このような背景のもと、本発明は、鋼の成分及び金属組織を制御することにより、穴拡げ性に優れたフェライト系ステンレス鋼を提供することを目的とする。特に、既存のプロセスでの製造を前提とし、特殊な工程を経ることなく、成分とプロセス条件の調整により、穴広げ性を向上させる金属組織を得ることを課題とする。   In view of such a background, an object of the present invention is to provide a ferritic stainless steel excellent in hole expansibility by controlling steel components and metal structure. In particular, it is an object of the present invention to obtain a metal structure that improves hole expansibility by adjusting components and process conditions without passing through a special process on the premise of manufacturing by an existing process.

本発明者らは上記課題を解決するために、穴拡げ性に及ぼす成分及び金属組織の影響を調査した。特に、耐銹性向上のために添加するSnに着目し、Snの含有量と、穴広げ性の関係を徹底的に調査した。その結果、Snの含有量と結晶粒度および穴広げ性の間に関係があることを知見した。言い換えれば、Snの含有量と結晶粒度をある範囲に制御することにより穴拡げ性を極大にできることを見出した。   In order to solve the above-mentioned problems, the present inventors investigated the influence of components and metal structure on hole expansibility. In particular, focusing on Sn added for improving weather resistance, the relationship between the Sn content and the hole expanding property was thoroughly investigated. As a result, it was found that there is a relationship between the Sn content, the crystal grain size, and the hole expandability. In other words, it has been found that the hole expandability can be maximized by controlling the Sn content and the crystal grain size within a certain range.

結晶粒度番号(GSN)が8.0と6.3の素材を用いて穴拡げ率を測定した結果を図1に示す。結晶粒度番号6.3の場合、Sn添加量を増加しても穴拡げ率はほとんど変化しない。一方、結晶粒度番号8.0の場合、穴拡げ率はSn添加量が0.01%を超えると高くなり、Sn:0.03%で極大を示し、それ以上の添加量では低下する。   FIG. 1 shows the result of measuring the hole expansion rate using materials having a crystal grain size number (GSN) of 8.0 and 6.3. In the case of the crystal grain size number 6.3, the hole expansion rate hardly changes even when the Sn addition amount is increased. On the other hand, in the case of the crystal grain size number 8.0, the hole expansion rate increases when the Sn addition amount exceeds 0.01%, shows a maximum at Sn: 0.03%, and decreases at an addition amount beyond that.

このように結晶粒度番号とSn含有量の最適組み合わせが存在することを見出した。この理由は明らかではないが、Snは結晶粒界に偏析しやすい元素であることから、結晶粒界面積(結晶粒度に対応)とSn量の組み合わせにより、結晶粒界に適正なSn量が偏析し、粒界の結合性を強化して穴拡げ性を向上させたものと考えられる。   Thus, it has been found that there exists an optimum combination of the grain size number and the Sn content. The reason for this is not clear, but since Sn is an element that easily segregates at the grain boundaries, an appropriate amount of Sn segregates at the grain boundaries by combining the grain boundary area (corresponding to the crystal grain size) and the Sn amount. In addition, it is considered that the bondability of the grain boundaries was strengthened to improve the hole expansibility.

本発明は、この知見を基に成されたものであり、その要旨は以下のとおりである。
(1)
重量%で、
C:0.0005〜0.020%、
Si:0.01〜1.0%、
Mn:0.01〜1.0%、
P:0.050%未満、
S:0.010%未満、
Cr:10.0〜15.0%、
N:0.0005〜0.020%、
Sn:0.010〜0.050%
Ti:0.03〜0.25%、
Nb:0.030%未満、
を含有し、残部が実質的に鉄及び不可避的不純物である鋼組成を有し、結晶粒の結晶粒度番号が7.0以上9.5以下であることを特徴とする穴広げ性に優れたフェライト系ステンレス鋼板。
(2)
質量%で、
Al:0.003〜0.5%
を含有することを特徴とする(1)に記載の穴広げ性に優れたフェライト系ステンレス鋼板。
(3)
質量%で、
Ni:0.01〜0.50%、
Cu:0.01〜0.50%、
Mo:0.01〜0.50%
Sb:0.001〜0.30%、
Zr:0.005〜0.5%、
Co:0.005〜0.50%、
W:0.002〜0.50%、
V:0.02〜0.50%、
Ga:0.001〜0.10%のうち1種または2種以上を含有することを特徴とする(1)または(2)に記載の穴広げ性に優れたフェライト系ステンレス鋼板。
(4)
質量%で、
B:0.0003〜0.0025%、
Mg:0.0001〜0.0030%、
Ca:0.0003〜0.0030%
REM(希土類金属):0.002〜0.20%
Zn:0.002〜0.10%
Ta:0.002〜0.50%
Hf:0.002〜0.50%
As:0.001〜0.20%
Bi:0.001〜0.30%
Pb:0.001〜0.10%
Se:0.001〜0.10%
のうち1種または2種以上を含有することを特徴とする(1)乃至(3)の何れか一項に記載の穴広げ性に優れたフェライト系ステンレス鋼板。
(5)
(1)乃至(4)のいずれか1項に記載の成分を有する鋼を、熱間圧延における総圧下率を97%以上且つ最終パスの圧延仕上げ温度を950℃以下として熱間圧延を行った後、700℃未満の温度で巻き取り処理を行った後に、875℃以上950℃以下の温度に加熱して熱処理を実施し、その後冷間圧延における圧下率を50%以上85%未満となる冷間圧延を行ない、その後の熱処理工程において820〜900℃の範囲になるよう加熱し熱処理を行い、結晶粒の結晶粒度番号が7.0以上9.5以下であることを特徴とする穴広げ性に優れたフェライト系ステンレス鋼板の製造方法。
The present invention has been made based on this finding, and the gist thereof is as follows.
(1)
% By weight
C: 0.0005 to 0.020%,
Si: 0.01 to 1.0%,
Mn: 0.01 to 1.0%
P: less than 0.050%,
S: less than 0.010%,
Cr: 10.0-15.0%,
N: 0.0005 to 0.020%,
Sn: 0.010 to 0.050%
Ti: 0.03-0.25%,
Nb: less than 0.030%,
The balance is substantially iron and inevitable impurities, and the crystal grain size number of the crystal grains is 7.0 or more and 9.5 or less. Ferritic stainless steel sheet.
(2)
% By mass
Al: 0.003-0.5%
The ferritic stainless steel sheet having excellent hole expansibility as described in (1).
(3)
% By mass
Ni: 0.01 to 0.50%,
Cu: 0.01 to 0.50%,
Mo: 0.01 to 0.50%
Sb: 0.001 to 0.30%,
Zr: 0.005 to 0.5%,
Co: 0.005 to 0.50%,
W: 0.002 to 0.50%,
V: 0.02 to 0.50%,
Ga: Ferritic stainless steel sheet excellent in hole expansibility according to (1) or (2), characterized by containing one or more of 0.001 to 0.10%.
(4)
% By mass
B: 0.0003 to 0.0025%,
Mg: 0.0001 to 0.0030%,
Ca: 0.0003 to 0.0030%
REM (rare earth metal): 0.002 to 0.20%
Zn: 0.002-0.10%
Ta: 0.002 to 0.50%
Hf: 0.002 to 0.50%
As: 0.001 to 0.20%
Bi: 0.001 to 0.30%
Pb: 0.001 to 0.10%
Se: 0.001 to 0.10%
The ferritic stainless steel sheet having excellent hole expansibility according to any one of (1) to (3), wherein the ferritic stainless steel sheet contains one or more of them.
(5)
(1) to (4) the steel having any one of the components was hot-rolled at a total rolling reduction in hot rolling of 97% or more and a final finishing rolling temperature of 950 ° C. or less. Then, after performing a winding process at a temperature of less than 700 ° C., heat treatment is performed by heating to a temperature of 875 ° C. or more and 950 ° C. or less. performed between rolling, it has rows heating heat treated so that the range of eight hundred and twenty to nine hundred ° C. in a subsequent heat treatment step, spread hole grain size number of crystal grains, characterized in that 7.0 to 9.5 Of ferritic stainless steel sheet with excellent properties.

本発明によれば、鋼の成分系及び製造プロセスの各条件を制御することにより、既存の製造設備を適用し、特殊なプロセスを経ることなく、穴広げ性に優れたフェライト系ステンレス鋼板を提供できる。   According to the present invention, by controlling each component of the steel component system and the manufacturing process, it is possible to apply existing manufacturing equipment and provide a ferritic stainless steel sheet having excellent hole expandability without going through a special process. it can.

Sn含有量と穴広げ率の関係を示す図である。It is a figure which shows the relationship between Sn content and a hole expansion rate. Snを約0.03%含有するステンレス鋼における結晶粒度と穴広げ率の関係を示す図である。It is a figure which shows the relationship between the crystal grain size and the hole expansion rate in the stainless steel containing about 0.03% of Sn.

以下に、本発明について説明する。
本発明者らは、13%Crステンレス鋼を基本成分として、種々の元素の添加量を変化させてサイズの異なる鋼塊を作製した。鋼塊を種々の条件で熱間圧延後、冷間圧延と熱処理の組み合わせにより1.0mm厚の鋼板を作製した。最終焼鈍温度を調整して結晶粒径を調整した。得られた鋼板より90mm角の鋼板を切り出し、穴拡げ試験に供した。穴拡げ試験は直径10mmの円形状の穴をクリアランスが12.5%となるように打ち抜いた後、60°円錐ポンチにて押し込み成形して穴縁の亀裂が板厚を貫通したときに試験を停止した。穴広げ率λは、試験後の穴径と試験前の穴径から下記(1)の計算式で求めた。
The present invention will be described below.
The inventors made 13% Cr stainless steel as a basic component, and produced steel ingots having different sizes by changing the addition amount of various elements. After the steel ingot was hot-rolled under various conditions, a steel plate having a thickness of 1.0 mm was produced by a combination of cold rolling and heat treatment. The crystal grain size was adjusted by adjusting the final annealing temperature. A 90 mm square steel plate was cut out from the obtained steel plate and subjected to a hole expansion test. The hole expansion test is performed when a circular hole with a diameter of 10 mm is punched out so that the clearance becomes 12.5%, and then pressed by a 60 ° conical punch, and the hole edge crack penetrates the plate thickness. Stopped. The hole expansion ratio λ was obtained from the following equation (1) from the hole diameter after the test and the hole diameter before the test.

穴広げ率λ(%)=((試験後の穴径−試験前の穴径)/試験前の穴径)×100・・・(1) Hole expansion ratio λ (%) = ((hole diameter after test−hole diameter before test) / hole diameter before test) × 100 (1)

その結果、結晶粒径をある範囲に制御した場合に、穴拡げ性を極大にするSn量が存在することを知見した。結晶粒度番号(GSN)が8.0と6.3の素材を用いて穴拡げ率を測定した結果を図1に示す。粒度番号6.3の場合、Sn添加量を増加しても穴拡げ率はほとんど変化しない。一方、粒度番号8.0の場合、穴拡げ率はSn添加量が0.01%を超えると高くなり、Sn:0.03%で極大を示し、それ以上の添加量では低下する。このように結晶粒径によって穴拡げ性に対するSn添加の効果が異なることが判明した。   As a result, it was found that there is an amount of Sn that maximizes the hole expandability when the crystal grain size is controlled within a certain range. FIG. 1 shows the result of measuring the hole expansion rate using materials having a crystal grain size number (GSN) of 8.0 and 6.3. In the case of the particle size number 6.3, the hole expansion rate hardly changes even when the Sn addition amount is increased. On the other hand, in the case of the particle size number 8.0, the hole expansion rate increases when the Sn addition amount exceeds 0.01%, shows a maximum at Sn: 0.03%, and decreases at an addition amount beyond that. Thus, it was found that the effect of Sn addition on the hole expansibility differs depending on the crystal grain size.

次に、本発明に係るフェライト系ステンレス鋼板の成分元素の限定理由と製造条件の限定理由を述べる。なお、組成についての%の表記は、特に断りがない限り質量%を意味する。   Next, the reasons for limiting the constituent elements of the ferritic stainless steel sheet according to the present invention and the reasons for limiting the manufacturing conditions will be described. In addition, the description of% about a composition means the mass% unless there is particular notice.

<C:0.0005〜0.020%>
Cは、多量に添加されると加工性の劣化を招く。また溶接部の鋭敏化による耐食性を招く場合があるため少ない方が好ましい。ただし、過度に低減することは製鋼段階でのコスト増加を招くため、その下限値は0.0005%とする。なお、安定的な製造性の観点からは0.0015%以上とすることが好ましい。上限は耐食性の点から0.020%とする。なお、深絞り性、曲げ性等を考慮すると0.0080%以下とすることが好ましく、さらに好ましくは0.0060%以下である。
<C: 0.0005 to 0.020%>
When C is added in a large amount, the workability is deteriorated. Moreover, since the corrosion resistance by the sensitization of a welded part may be caused, less is preferable. However, excessive reduction leads to an increase in cost at the steelmaking stage, so the lower limit is made 0.0005%. From the viewpoint of stable productivity, the content is preferably 0.0015% or more. The upper limit is 0.020% from the viewpoint of corrosion resistance. In consideration of deep drawability, bendability, etc., it is preferably 0.0080% or less, more preferably 0.0060% or less.

<Si:0.01〜1.0%>
Siは、脱酸元素として活用する場合や、耐酸化性の向上のために積極的に添加する場合があるが、極低Si化はコスト増加を招くためその下限を0.01%とする。なお、脱酸の観点から、0.03%以上とすることが好ましい。また多量の添加は材質硬質化による穴拡げ性の低下を招くことがあるため、上限は1.0%とするのがよい。なお、加工性、安定製造性の観点からは0.30%以下とすることが好ましく、さらに0.20%以下とすることが好ましい。さらに加工性、安定製造性を確実にするために0.15%以下にすることが望ましい。
<Si: 0.01 to 1.0%>
Si may be used as a deoxidizing element or may be actively added to improve oxidation resistance. However, since the extremely low Si causes an increase in cost, the lower limit is set to 0.01%. From the viewpoint of deoxidation, it is preferably 0.03% or more. Moreover, since addition of a large amount may cause a decrease in hole expansibility due to hardening of the material, the upper limit is preferably set to 1.0%. In view of workability and stable productivity, the content is preferably 0.30% or less, and more preferably 0.20% or less. Furthermore, it is desirable to make it 0.15% or less in order to ensure workability and stable manufacturability.

<Mn:0.01〜1.0%>
MnもSi同様脱酸元素として活用する場合があるが、Mnの過度な低化はコストの増加を招くためその下限を0.01%とする。なお、精錬コストの点から0.03%以上とすることが好ましく、さらに好ましくは0.07%以上である。また多量のMn添加は材質硬質化を招くことがあるため上限を1.0%とするのがよい。なお、加工性、安定製造性の観点からは0.30%以下とすることが好ましく、さらに0.25%以下とすることが好ましい。さらに加工性、安定製造性を確実にするために0.15%以下にすることが望ましい。
<Mn: 0.01 to 1.0%>
Mn may also be used as a deoxidizing element like Si, but excessive reduction of Mn causes an increase in cost, so the lower limit is made 0.01%. In addition, it is preferable to set it as 0.03% or more from the point of refining cost, More preferably, it is 0.07% or more. Moreover, since a large amount of Mn may cause hardening of the material, the upper limit is preferably set to 1.0%. In view of workability and stable productivity, the content is preferably 0.30% or less, and more preferably 0.25% or less. Furthermore, it is desirable to make it 0.15% or less in order to ensure workability and stable manufacturability.

<P:0.050%未満>
Pは、不可避的不純物である。原料から不純物元素として混入する場合があるが、その含有量は少ないほど良い。Pが大量に存在すると二次加工性の劣化を招くため、不可避的不純物ではあるが上限を0.050%未満と制限する。なお、加工性劣化の抑制の観点から、0.035%以下とすることが好ましく、さらに好ましくは0.030%未満である。一方、P量の下限は特に決める必要はないが、過度の低減は原料及び製鋼コストの増大に繋がるため、この点からは0.005%を下限としてもよく、さらには0.010%以上としてもよい。
<P: less than 0.050%>
P is an inevitable impurity. Although it may be mixed from the raw material as an impurity element, the smaller the content, the better. If P is present in a large amount, the secondary workability is deteriorated. Therefore, although it is an unavoidable impurity, the upper limit is limited to less than 0.050%. In addition, from a viewpoint of suppression of workability deterioration, it is preferable to set it as 0.035% or less, More preferably, it is less than 0.030%. On the other hand, it is not necessary to determine the lower limit of the amount of P. However, excessive reduction leads to an increase in raw material and steelmaking costs. From this point, 0.005% may be the lower limit, and further 0.010% or more Also good.

<S:0.010%未満>
Sは、不可避的不純物である。原料から不純物元素として混入する場合がある。耐食性を劣化させる元素でありその含有量は少ないほど良いため、不可避的不純物ではあるが上限を0.010%未満と制限する。また含有量が低いほど耐食性は良好でありため、好ましくは0.0030%未満である。更に好ましくは0.0010%未満である。一方、過度の低減は精錬コストの増加に繋がるため、下限を0.0002%としてもよく、さらには0.0005%以上としてもよい。
<S: less than 0.010%>
S is an inevitable impurity. In some cases, it is mixed as an impurity element from the raw material. Since it is an element that degrades corrosion resistance and its content is preferably as small as possible, the upper limit is limited to less than 0.010% although it is an unavoidable impurity. Moreover, since corrosion resistance is so favorable that content is low, Preferably it is less than 0.0030%. More preferably, it is less than 0.0010%. On the other hand, since excessive reduction leads to an increase in refining costs, the lower limit may be set to 0.0002%, and further may be set to 0.0005% or more.

<Cr:10.0〜15.0%>
Crは、耐食性を確保する上で極めて重要な元素であり、不動態被膜を形成して安定的な耐食性を発揮する。この効果を得るには10.0%以上が必要である。なお、耐食性及び安定製造性の観点から、12.0%以上とすることが好ましい。
一方、多量の添加は製造時の靭性劣化を招くため、上限は15.0%とする。なお、穴拡げ性の点からは14.0%以下とすることが好ましい。さらに好ましくは13.5%以下である。
<Cr: 10.0 to 15.0%>
Cr is an extremely important element for ensuring corrosion resistance, and forms a passive film to exhibit stable corrosion resistance. In order to obtain this effect, 10.0% or more is necessary. In addition, it is preferable to set it as 12.0% or more from a viewpoint of corrosion resistance and stable productivity.
On the other hand, addition of a large amount causes toughness deterioration during production, so the upper limit is made 15.0%. In addition, it is preferable to set it as 14.0% or less from the point of hole expansibility. More preferably, it is 13.5% or less.

<N:0.0005〜0.020%>
NもCと同様に加工性の低下、ストレッチャーストレインの発生をもたらす元素であるため少ない方が好ましい。ただし、過度に低減することは製鋼段階でのコスト増加を招くため、その下限値は0.0005%としてもよい。なお、安定的な製造性の観点からは0.0015%以上とすることが好ましく、さらに好ましくは0.0030%以上である。またN加工性が低下することに加えて溶接部の耐食性が低下するため上限を0.020%とする。なお、加工性の観点からは0.015%以下とすることが好ましく、さらに好ましくは0.010%以下である。
<N: 0.0005 to 0.020%>
N, like C, is an element that causes a decrease in workability and the generation of stretcher strains, so a smaller amount is preferable. However, since excessive reduction causes an increase in cost at the steelmaking stage, the lower limit value may be 0.0005%. From the viewpoint of stable productivity, the content is preferably 0.0015% or more, and more preferably 0.0030% or more. In addition to the decrease in N workability, the corrosion resistance of the welded portion decreases, so the upper limit is made 0.020%. In addition, from the viewpoint of workability, it is preferably 0.015% or less, and more preferably 0.010% or less.

<Sn:0.010〜0.05%>
Snは、本発明において重要な元素であり、結晶粒径との組み合わせにより、穴拡げ性を極大にする元素である。その効果を発現するには0.010%以上の添加量が必要であるため、これを下限とする。なお、当該効果をより安定して確保するためには、0.015%以上とすることが好ましい。さらに好ましくは0.020%以上とするとよい。また0.050%を超えて添加しても穴拡げ向上の効果は発揮されないためこれを上限とする。なお、穴拡げ性及び原料コストの観点からは0.040%とすることが好ましく、さらに好ましくは0.035%以下とするとよい。
また、Snは特許文献4及び特許文献5に記載されているように耐銹性向上にも寄与する。Snの含有量が上記範囲内であれば、耐銹性向上効果も得ることができる。
<Sn: 0.010 to 0.05%>
Sn is an important element in the present invention, and is an element that maximizes hole expansibility in combination with the crystal grain size. Since the addition amount of 0.010% or more is necessary to exhibit the effect, this is the lower limit. In addition, in order to ensure the said effect more stably, it is preferable to set it as 0.015% or more. More preferably, it may be 0.020% or more. Moreover, even if it adds exceeding 0.050%, since the effect of a hole expansion improvement is not exhibited, this is made an upper limit. In addition, it is preferable to set it as 0.040% from a viewpoint of hole expansibility and raw material cost, It is good to set it as 0.035% or less more preferably.
Further, Sn contributes to improvement of weather resistance as described in Patent Document 4 and Patent Document 5. If the Sn content is within the above range, the effect of improving weather resistance can also be obtained.

<Ti:0.03〜0.25%>
Tiは、C及びNを析出物として固定して深絞り性を向上するのに重要な元素であり、加工性向上にも有効である。その効果を発揮するには0.03%以上の添加が必要であるため、これを下限とする。また深絞り性を考慮した場合には0.06%以上の添加が好ましい。さらに好ましくは0.1%以上とするとよい。一方、多量の添加は製品の延性劣化を招くことに加えて、製造時の圧延疵の発生を招く。このため上限を0.25%とする。原料コスト及び製造安定性を考慮すると上限は0.20%とすることが好ましい。
<Ti: 0.03-0.25%>
Ti is an important element for improving deep drawability by fixing C and N as precipitates, and is also effective for improving workability. In order to exert the effect, 0.03% or more must be added, so this is the lower limit. In consideration of deep drawability, addition of 0.06% or more is preferable. More preferably, the content is 0.1% or more. On the other hand, addition of a large amount leads to ductility deterioration of the product, and also causes generation of rolling wrinkles during production. For this reason, the upper limit is made 0.25%. In consideration of raw material cost and production stability, the upper limit is preferably 0.20%.

<Nb:0.030%未満>
Nbは、添加することによって材料の硬質化を招くため、低い方が好ましい。但し、不純物として鋼中に含有する場合があるため、上限を0.030%とした。低い方が好ましく、上限は0.020%未満とすることが好ましい。
<Nb: less than 0.030%>
Since Nb causes the material to harden when added, Nb is preferably low. However, since it may be contained in steel as impurities, the upper limit was made 0.030%. The lower one is preferable, and the upper limit is preferably less than 0.020%.

<結晶粒度番号が7.0から9.5>
本発明は、結晶粒の大きさ(結晶粒度番号)とSn添加量と穴広げ率が密接な関係を有すことを知見したことに基づいており、結晶粒度番号は重要な要件である。本発明で言う結晶粒はフェライト結晶粒である。結晶粒度番号は、JIS G 0552に準拠する。図1に示すように、結晶粒度番号が6.3の場合は、Snの含有量に関わらず穴広げ性はほとんど変化しない。一方、結晶粒度番号が8.0の場合は、Sn含有量が0.01%〜0.05%の範囲で穴広げ率が変化することを知見した。この時、Sn含有量が0.03%で穴広げ率は極大を示す。
<Grain size number is 7.0 to 9.5>
The present invention is based on the fact that the size of crystal grains (crystal grain size number), the amount of Sn added, and the hole expansion rate are closely related, and the crystal grain size number is an important requirement. The crystal grains referred to in the present invention are ferrite crystal grains. The crystal grain size number conforms to JIS G 0552. As shown in FIG. 1, when the crystal grain size number is 6.3, the hole expandability hardly changes regardless of the Sn content. On the other hand, when the crystal grain size number is 8.0, it has been found that the hole expansion ratio changes when the Sn content is in the range of 0.01% to 0.05%. At this time, the Sn content is 0.03%, and the hole expansion rate shows a maximum.

図2にSn含有量が約0.03%(0.028%〜0.031%)としたときの結晶粒度と穴広げ性の関係を示す。結晶粒度が8.0〜8.5程度を極大点となることが分かる。ここで、穴広げ性が良好である目安として穴広げ率λ=100を超える範囲として考えると、結晶粒度7〜9.5程度となることが分かる。本発明においては、この範囲であれば穴広げ性が良好となることが確認できたため、結晶粒を結晶粒度番号で7〜9.5と規定した。   FIG. 2 shows the relationship between the crystal grain size and the hole expandability when the Sn content is about 0.03% (0.028% to 0.031%). It can be seen that the crystal grain size is about 8.0 to 8.5. Here, it is understood that the crystal grain size is about 7 to 9.5 when the range of the hole expansion ratio λ = 100 is considered as a standard for good hole expansion performance. In the present invention, it was confirmed that the hole expandability was good within this range, so the crystal grains were defined as 7 to 9.5 in terms of crystal grain size number.

一方、結晶粒度番号が小さい場合、成形時の肌荒れが生じやすくなるため7.0を下限とする。肌荒れは粒度番号が大きいほど発生しにくいため、7.5以上とすることが好ましい。また結晶粒度番号が9.5を超えると強度が増加する反面、延性、穴拡げ性が低下する。このため結晶粒度番号の上限を9.5とする。また安定製造性の観点からは9.0以下とすることが好ましい。   On the other hand, when the crystal grain size number is small, rough skin is likely to occur during molding, so 7.0 is set as the lower limit. Since rough skin is less likely to occur as the particle size number is larger, it is preferably 7.5 or more. On the other hand, when the crystal grain size number exceeds 9.5, the strength increases, but the ductility and hole expansibility decrease. For this reason, the upper limit of the crystal grain size number is set to 9.5. Moreover, it is preferable to set it as 9.0 or less from a viewpoint of stable productivity.

また、本実施形態では、上記元素に加えて、Al:0.003〜1.0%を添加してもよい。
Alは脱酸元素として用いる場合があり、また耐酸化性を向上させることが知られているため必要に応じて添加してもよい。なお、脱酸に有効な量は0.003%であり、これを下限とすることが好ましく、ある程度の脱酸効果を得るためには下限を0.005%とすることが好ましい。また添加量が1.0%を超える場合には強度増加が大きくなり、成形性が劣化するおそれがあるため、これを上限とすることが好ましい。成形性を大きく低下させないために、より好ましくは、その上限を0.15%とよい。
In the present embodiment, in addition to the above elements, Al: 0.003 to 1.0% may be added.
Since Al is sometimes used as a deoxidizing element and is known to improve oxidation resistance, it may be added as necessary. The effective amount for deoxidation is 0.003%, which is preferably the lower limit, and in order to obtain a certain degree of deoxidation effect, the lower limit is preferably 0.005%. Further, when the addition amount exceeds 1.0%, the increase in strength is increased, and the moldability may be deteriorated. Therefore, this is preferably set as the upper limit. More preferably, the upper limit is 0.15% in order not to greatly reduce the moldability.

また、本実施形態では、上記元素に加えて、Ni:0.01〜0.50%、Cu:0.01〜0.50%、Mo:0.01〜0.50%、Sb:0.001〜0.30%、Zr:0.005〜0.50%、Co:0.005〜0.50%、W:0.002〜0.50%、V:0.02〜0.50%、Ga:0.001〜0.10%
の1種または2種以上を添加することが好ましい。
In this embodiment, in addition to the above elements, Ni: 0.01 to 0.50%, Cu: 0.01 to 0.50%, Mo: 0.01 to 0.50%, Sb: 0.0. 001 to 0.30%, Zr: 0.005 to 0.50%, Co: 0.005 to 0.50%, W: 0.002 to 0.50%, V: 0.02 to 0.50% , Ga: 0.001 to 0.10%
It is preferable to add one or more of these.

Ni,Cu及びMoは耐食性を向上させる元素であり、必要に応じて添加してもよい。いずれも0.01%以上の添加で効果が発揮されるため、これを下限とすることが好ましい。また多量の添加は材質の硬化、延性の劣化を招くため、Ni、CuおよびMoについては0.50%を上限とすることが好ましい。望ましくは、0.01〜0.10%である。   Ni, Cu, and Mo are elements that improve the corrosion resistance, and may be added as necessary. In any case, since the effect is exhibited by addition of 0.01% or more, it is preferable to set the lower limit. Moreover, since addition of a large amount causes hardening of a material and deterioration of ductility, about Ni, Cu and Mo, it is preferable to make 0.50% an upper limit. Desirably, it is 0.01 to 0.10%.

Sb、Zr、Co、Wも耐食性を向上させるために必要に応じて添加させることができる。これらは腐食速度を抑制するのに重要な元素であるが、過剰な添加は製造性及びコストを悪化させるため、Sbの範囲を0.001〜0.30%、Zr、Coの範囲を0.005〜0.50%、Wの範囲を0.002〜0.50%とした。より望ましくは0.01〜0.2%である。   Sb, Zr, Co, and W can also be added as necessary to improve the corrosion resistance. These are important elements for suppressing the corrosion rate, but excessive addition deteriorates manufacturability and cost, so the range of Sb is 0.001 to 0.30%, and the range of Zr and Co is 0.00. The range of 005 to 0.50% and W was 0.002 to 0.50%. More desirably, it is 0.01 to 0.2%.

Vは耐すき間腐食性を改善するため、必要に応じて添加することができる。ただしVの過度の添加は加工性を低下させる上、耐食性向上効果も飽和するため、Vの下限を0.02%、上限を0.50%とする。より望ましくは0.05〜0.30%である。   V improves crevice corrosion resistance and can be added as necessary. However, excessive addition of V lowers workability and also saturates the effect of improving corrosion resistance, so the lower limit of V is 0.02% and the upper limit is 0.50%. More desirably, it is 0.05 to 0.30%.

Ga:Gaは耐食性および加工性向上に寄与する元素であり、0.001〜0.10%の範囲で含有させることができる。より好ましくは0.002〜0.05%である。   Ga: Ga is an element contributing to corrosion resistance and workability improvement, and can be contained in a range of 0.001 to 0.10%. More preferably, it is 0.002 to 0.05%.

また、本実施形態では、上記元素に加えて、B:0.0003〜0.0025%、Mg:0.0001〜0.0030%、Ca:0.0003〜0.0030%の1種または2種以上を添加することができる。   In this embodiment, in addition to the above elements, one or two of B: 0.0003 to 0.0025%, Mg: 0.0001 to 0.0030%, Ca: 0.0003 to 0.0030% More seeds can be added.

B,Mg及びCaは二次加工性、耐リジング性を向上させる効果を持つ元素である。その効果はB:0.0003%、Mg:0.0001%、Ca:0.0003%以上で効果を発揮するためこれを下限とすることが好ましい。一方、多量の低下は製造時の歩留まり低下をもたらす場合があるため、上限をB:0.0025%、Mg及びCa:0.0030%とすることが好ましい。なお、より好ましい添加範囲はB及びCa:0.0003〜0.0010%、Mg:0.0002〜0.0008%である。   B, Mg and Ca are elements having an effect of improving secondary workability and ridging resistance. Since the effect is exhibited at B: 0.0003%, Mg: 0.0001%, Ca: 0.0003% or more, it is preferable to set this as the lower limit. On the other hand, since a large amount of decrease may cause a decrease in yield during production, the upper limit is preferably set to B: 0.0025%, Mg and Ca: 0.0030%. In addition, a more preferable addition range is B and Ca: 0.0003-0.0010%, Mg: 0.0002-0.0008%.

また、本実施形態では、上記元素に加えて、REM(希土類金属):0.002〜0.20%、Zn:0.002〜0.10%、Ta:0.002〜0.50%、Hf:0.002〜0.50%、As:0.001〜0.20%、Bi:0.001〜0.30%、Pb:0.001〜0.10%、Se:0.001〜0.10%、のうち1種または2種以上を含有することが出来る。これら元素は強度の確保、耐食性の向上等に作用する元素である。上記の範囲内であれば有用に作用するため、これを上下限範囲とした。   In this embodiment, in addition to the above elements, REM (rare earth metal): 0.002 to 0.20%, Zn: 0.002 to 0.10%, Ta: 0.002 to 0.50%, Hf: 0.002 to 0.50%, As: 0.001 to 0.20%, Bi: 0.001 to 0.30%, Pb: 0.001 to 0.10%, Se: 0.001 One or two or more of 0.10% can be contained. These elements are elements that act to ensure strength, improve corrosion resistance, and the like. If it is within the above range, it works effectively, so this was made the upper and lower limit range.

次に製造条件について述べる。
本発明は結晶粒度番号と成分、特にSn量の最適値を見つけた点に新規性がある。結晶粒度は最終熱処理温度及びその前のひずみ量の影響を大きく受ける。
そのため、熱間圧延における総圧下率を97%以上とする。熱間圧延における総圧下率はその後の熱処理における再結晶粒径並びに再結晶集合組織に大きく影響する。総圧下率が97%未満であると熱間圧延後の結晶粒径が粗大になり、後述の冷間圧延及び熱処理条件では所定の結晶粒度が得られないため、これを下限とした。総圧下率の上限は特に定める必要ないが、圧延機への負荷を考慮すると99%とすることが望ましい。熱間圧延における総圧下率は、熱延前のスラブ厚(板厚)をt0、熱延終了後の板厚をtとしたとき、以下の関係となる。従って、理論的には熱間圧延における総圧下率は100%以上となることはない。
Next, manufacturing conditions will be described.
The present invention is novel in that it has found an optimum value of grain size number and components, particularly Sn content. The grain size is greatly affected by the final heat treatment temperature and the amount of strain before that.
Therefore, the total rolling reduction in hot rolling is set to 97% or more. The total rolling reduction in hot rolling greatly affects the recrystallized grain size and recrystallized texture in the subsequent heat treatment. If the total rolling reduction is less than 97%, the crystal grain size after hot rolling becomes coarse, and a predetermined crystal grain size cannot be obtained under the cold rolling and heat treatment conditions described later. The upper limit of the total rolling reduction is not particularly required, but is preferably 99% in consideration of the load on the rolling mill. The total rolling reduction in hot rolling has the following relationship, where t 0 is the slab thickness (sheet thickness) before hot rolling, and t f is the thickness after hot rolling. Therefore, theoretically, the total reduction ratio in the hot rolling does not become 100% or more.

総圧下率=(t0−tf)/t0 =1−tf/t0 Total rolling reduction = (t 0 −t f ) / t 0 = 1−t f / t 0

熱間圧延における最終パスの圧延仕上げ温度を950℃以下とする。圧延仕上げ温度が950℃を超えると最終熱処理後に所定の結晶粒度を得られないためである。圧延仕上げ温度の下限は、圧延機への負荷及び圧延疵の抑制を考慮すると700℃とするとよい。   The rolling finishing temperature of the final pass in hot rolling is set to 950 ° C. or lower. This is because if the rolling finishing temperature exceeds 950 ° C., a predetermined crystal grain size cannot be obtained after the final heat treatment. The lower limit of the rolling finishing temperature is preferably 700 ° C. in consideration of the load on the rolling mill and the suppression of rolling wrinkles.

熱間圧延後の巻取り温度は700℃未満とする。巻取温度が700℃以上であるとその後の熱処理において結晶粒が粗大化して、最終的に所定の結晶粒度を得られないためである。   The coiling temperature after hot rolling is less than 700 ° C. This is because if the coiling temperature is 700 ° C. or higher, the crystal grains are coarsened in the subsequent heat treatment, and a predetermined crystal grain size cannot be finally obtained.

熱間圧延後の熱処理における最高温度を875℃以上とする。これを下回ると未再結晶組織が残存し、製品のリジング性、穴拡げ性が劣化するためである。また熱処理温度の上限は950℃とする。これを超えると結晶粒が粗大化し、最終熱処理後の結晶粒径の粗大化を招いて穴拡げ性が劣化するため、これを上限とした。   The maximum temperature in the heat treatment after hot rolling is set to 875 ° C. or higher. This is because below this range, an unrecrystallized structure remains, and the ridging property and hole expansibility of the product deteriorate. The upper limit of the heat treatment temperature is 950 ° C. If it exceeds this, the crystal grains become coarse, and the crystal grain diameter after the final heat treatment becomes coarse and the hole expandability deteriorates, so this was made the upper limit.

最終熱処理前の冷間圧延の圧下率を50%以上85%未満とする。冷間圧延圧下率はその後の再結晶粒径に大きく影響をする。冷間圧延の圧下率が50%未満の場合、再結晶の駆動力が小さいために未再結晶組織となる場合がある、また再結晶したとしてもその結晶粒径が大きくなり、結晶粒度番号が7.0未満となるためこれを下限とした。冷間圧延の圧下率は高いほど再結晶粒径は細かくなるため、できれば60%以上とすることが好ましい。また冷間圧延圧下率が高いほど、冷延機への負荷が大きくなるため、上限は85%とした。冷延時の安定性(板厚、形状等)を考慮すると80%以下とすることが好ましい。なお冷間圧延の条件については、用いるワークロールのロール粗度、ロール径、さらには圧延油、圧延パス回数、圧延速度、圧延温度を変えても、熱処理後に得られる金属組織は大きく変化ないため、これら条件についてはは特に規定しない。   The rolling reduction of the cold rolling before the final heat treatment is 50% or more and less than 85%. The cold rolling reduction ratio greatly affects the subsequent recrystallized grain size. When the rolling reduction of cold rolling is less than 50%, the recrystallization driving force is small, so there may be an unrecrystallized structure. Even if recrystallization occurs, the crystal grain size becomes large, and the crystal grain size number is Since it was less than 7.0, this was made into the minimum. The higher the rolling reduction in cold rolling, the finer the recrystallized grain size, so 60% or more is preferable if possible. Further, the higher the cold rolling reduction ratio, the greater the load on the cold rolling mill, so the upper limit was set to 85%. In consideration of stability during cold rolling (plate thickness, shape, etc.), it is preferably 80% or less. As for the conditions of cold rolling, even if the roll roughness of the work roll used, roll diameter, rolling oil, number of rolling passes, rolling speed, rolling temperature are changed, the metal structure obtained after heat treatment does not change significantly. These conditions are not specified.

冷延後の最終熱処理工程における最高温度を820℃以上とする。820℃未満であると再結晶不足のため、材料が硬質化して穴拡げ性が低下する。再結晶を確実にするには、好ましくは、下限を850℃にするとよい。また900℃以上では粒成長により結晶粒度番号が7.0未満となるため、これを上限とする。好ましくは880℃以下にするとよい。   The maximum temperature in the final heat treatment step after cold rolling is set to 820 ° C. or higher. If the temperature is lower than 820 ° C., the material becomes hard due to insufficient recrystallization, and the hole expansibility decreases. In order to ensure recrystallization, the lower limit is preferably set to 850 ° C. At 900 ° C. or higher, the grain size number becomes less than 7.0 due to grain growth, so this is the upper limit. Preferably it is 880 degrees C or less.

また本発明の効果は2回冷延、3回冷延後に最終熱処理を行っても同様の効果が発揮されるが、製造の効率性を考えると1回冷延法で製造することが好ましい。   The effect of the present invention can be obtained by performing the final heat treatment after the cold rolling twice and the third cold rolling, but it is preferable to manufacture by the single cold rolling method in view of production efficiency.

なお、熱間圧延後の熱処理および冷間圧延後の熱処理における保持時間は、特に規定するものではないが、結晶粒度の安定製造性の観点から1秒以上とすることが好ましい。また保持時間が長いと製造性が低下することから保持時間の最大値は100秒とすることが好ましい。さらに好ましくは60秒以内にするとよい。熱処理後の冷却速度は遅すぎると結晶粒度に影響を及ぼすため、1℃/秒を下限とする。冷却速度の上限は製造コストの大幅な増加の無いように100℃/秒にするとよい。強制風冷、ミスト噴霧、水冷等は上記の範囲を満足する。
以上の製造プロセスを経ることにより、結晶粒度番号7.0〜9.5となるステンレス鋼板を得ることができる。
The holding time in the heat treatment after the hot rolling and the heat treatment after the cold rolling is not particularly specified, but is preferably 1 second or more from the viewpoint of stable productivity of the crystal grain size. In addition, if the holding time is long, the manufacturability deteriorates, so the maximum holding time is preferably 100 seconds. More preferably, it may be within 60 seconds. If the cooling rate after the heat treatment is too slow, the grain size is affected, so 1 ° C./second is the lower limit. The upper limit of the cooling rate is preferably 100 ° C./second so as not to significantly increase the manufacturing cost. Forced air cooling, mist spraying, water cooling, etc. satisfy the above range.
By going through the above manufacturing process, a stainless steel plate having a grain size number of 7.0 to 9.5 can be obtained.

実施例により本発明の効果を説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。   The effects of the present invention will be described with reference to examples, but the present invention is not limited to the conditions used in the following examples.

表1の成分組成(質量%)を有する鋼を溶製した。次に、得られた鋼塊より板厚90mmの鋼片に切断採取し、種々の条件で熱間圧延、熱延板焼鈍、冷間圧延を実施し1.0mm厚の冷延鋼板を作製した。その後、種々の温度で熱処理を行った。熱処理実施後に金属組織観察を行い、結晶粒度番号を測定した。結晶粒度番号の測定はJIS Z 0552に準拠した。得られた焼鈍板より穴拡げ率を測定した。測定方法は前述同様、90mm角の鋼板を切り出し、直径10mmの円形状の穴をクリアランスが12.5%となるように打ち抜いた後、60°円錐ポンチにて押し込み成形して求めた。穴拡げ試験はn=5で実施し、平均値を用いた。   Steel having the component composition (% by mass) shown in Table 1 was melted. Next, the steel ingot obtained from the steel ingot was cut and collected into a steel piece having a thickness of 90 mm, and hot rolled, hot rolled sheet annealed, and cold rolled were performed under various conditions to produce a 1.0 mm thick cold rolled steel sheet . Thereafter, heat treatment was performed at various temperatures. After the heat treatment, the metal structure was observed and the crystal grain size number was measured. The measurement of the grain size number was based on JIS Z 0552. The hole expansion rate was measured from the obtained annealed plate. As described above, a 90 mm square steel plate was cut out, a circular hole having a diameter of 10 mm was punched out so that the clearance would be 12.5%, and the measurement was performed by pressing with a 60 ° conical punch. The hole expansion test was performed with n = 5, and an average value was used.

表2に得られた特性を記載する。本願発明で得られた鋼板は穴拡げ率が100%以上である。一方、比較鋼(比較法)では穴拡げ率が100%に満たない。   Table 2 lists the properties obtained. The steel sheet obtained by the present invention has a hole expansion rate of 100% or more. On the other hand, in the comparative steel (comparative method), the hole expansion rate is less than 100%.

本発明によれば、穴拡げ性に優れたフェライト系ステンレス鋼板を得ることができ、あらゆる産業分野で利用することができる。   ADVANTAGE OF THE INVENTION According to this invention, the ferritic stainless steel plate excellent in hole expansibility can be obtained, and it can utilize in all industrial fields.

Figure 0006410543
Figure 0006410543

Figure 0006410543
Figure 0006410543

Figure 0006410543
Figure 0006410543

Claims (5)

重量%で、
C:0.0005〜0.020%、
Si:0.01〜1.0%、
Mn:0.01〜1.0%、
P:0.050%未満、
S:0.010%未満、
Cr:10.0〜15.0%、
N:0.0005〜0.020%、
Sn:0.010〜0.050%
Ti:0.03〜0.25%、
Nb:0.030%未満、
を含有し、残部が鉄及び不可避的不純物である鋼組成を有し、結晶粒の結晶粒度番号が7.0以上9.5以下であることを特徴とする穴広げ性に優れたフェライト系ステンレス鋼板。
% By weight
C: 0.0005 to 0.020%,
Si: 0.01 to 1.0%,
Mn: 0.01 to 1.0%
P: less than 0.050%,
S: less than 0.010%,
Cr: 10.0-15.0%,
N: 0.0005 to 0.020%,
Sn: 0.010 to 0.050%
Ti: 0.03-0.25%,
Nb: less than 0.030%,
Ferritic stainless steel with excellent hole-expandability, characterized in that it has a steel composition in which the balance is iron and inevitable impurities, and the crystal grain size number is 7.0 or more and 9.5 or less steel sheet.
質量%で、
Al:0.003〜0.5%
を含有することを特徴とする請求項1に記載の穴広げ性に優れたフェライト系ステンレス鋼板。
% By mass
Al: 0.003-0.5%
The ferritic stainless steel sheet having excellent hole expandability according to claim 1.
質量%で、
Ni:0.01〜0.50%、
Cu:0.01〜0.50%、
Mo:0.01〜0.50%
Sb:0.001〜0.30%、
Zr:0.005〜0.50%、
Co:0.005〜0.50%、
W:0.002〜0.50%、
V:0.02〜0.50%、
Ga:0.001〜0.10%
のうち1種または2種以上を含有することを特徴とする請求項1または2に記載の穴広げ性に優れたフェライト系ステンレス鋼板。
% By mass
Ni: 0.01 to 0.50%,
Cu: 0.01 to 0.50%,
Mo: 0.01 to 0.50%
Sb: 0.001 to 0.30%,
Zr: 0.005 to 0.50%,
Co: 0.005 to 0.50%,
W: 0.002 to 0.50%,
V: 0.02 to 0.50%,
Ga: 0.001 to 0.10%
The ferritic stainless steel sheet excellent in hole expansibility according to claim 1 or 2, wherein one or more of them are contained.
質量%で、
B:0.0003〜0.0025%、
Mg:0.0001〜0.0030%、
Ca:0.0003〜0.0030%
REM(希土類金属):0.002〜0.20%
Zn:0.002〜0.10%
Ta:0.002〜0.50%
Hf:0.002〜0.50%
As:0.001〜0.20%
Bi:0.001〜0.30%
Pb:0.001〜0.10%
Se:0.001〜0.10%
のうち1種または2種以上を含有することを特徴とする請求項1乃至3の何れか一項に記載の穴広げ性に優れたフェライト系ステンレス鋼板。
% By mass
B: 0.0003 to 0.0025%,
Mg: 0.0001 to 0.0030%,
Ca: 0.0003 to 0.0030%
REM (rare earth metal): 0.002 to 0.20%
Zn: 0.002-0.10%
Ta: 0.002 to 0.50%
Hf: 0.002 to 0.50%
As: 0.001 to 0.20%
Bi: 0.001 to 0.30%
Pb: 0.001 to 0.10%
Se: 0.001 to 0.10%
The ferritic stainless steel sheet excellent in hole expansibility according to any one of claims 1 to 3, wherein one or more of them are contained.
請求項1乃至4のいずれか1項に記載の成分を有する鋼を、熱間圧延における総圧下率を97%以上且つ最終パスの圧延仕上げ温度を950℃以下として熱間圧延を行い700℃未満の温度で巻き取り処理を行った後に、875℃以上950℃以下の温度で熱処理を実施し、その後圧下率を50%以上85%未満と冷間圧延を行ない、その後820〜900℃の温度で熱処理を行い、結晶粒の結晶粒度番号が7.0以上9.5以下であることを特徴とする穴広げ性に優れたフェライト系ステンレス鋼板の製造方法。 The steel having the component according to any one of claims 1 to 4 is hot-rolled with a total rolling reduction in hot rolling of 97% or more and a final finish rolling temperature of 950 ° C or less, and less than 700 ° C. After performing the winding process at a temperature of 875 ° C. or higher, heat treatment is performed at a temperature of 875 ° C. or higher and 950 ° C. or lower. There line heat treatment method superior ferritic stainless steel sheet hole expansion, wherein the grain size number of the crystal grains is 7.0 to 9.5.
JP2014199403A 2014-09-29 2014-09-29 Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof Active JP6410543B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014199403A JP6410543B2 (en) 2014-09-29 2014-09-29 Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof
PCT/JP2015/077562 WO2016052528A1 (en) 2014-09-29 2015-09-29 Ferrite-based stainless steel sheet having excellent hole expandability, and manufacturing method therefor
CN201580042585.6A CN106574350A (en) 2014-09-29 2015-09-29 Ferrite-based stainless steel sheet having excellent hole expandability, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014199403A JP6410543B2 (en) 2014-09-29 2014-09-29 Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016069677A JP2016069677A (en) 2016-05-09
JP6410543B2 true JP6410543B2 (en) 2018-10-24

Family

ID=55864078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014199403A Active JP6410543B2 (en) 2014-09-29 2014-09-29 Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6410543B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7186601B2 (en) * 2018-12-21 2022-12-09 日鉄ステンレス株式会社 Cr-based stainless steel used as a metal material for high-pressure hydrogen gas equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122513A1 (en) * 2010-03-29 2011-10-06 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet superior in surface glossiness and corrosion resistance and method for producing same
US20150292068A1 (en) * 2012-10-30 2015-10-15 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel having excellent heat resistance
US20150376732A1 (en) * 2013-02-04 2015-12-31 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet which is excellent in workability and method of production of same
CN103510013B (en) * 2013-09-29 2018-06-05 宝钢不锈钢有限公司 The stanniferous ferritic stainless steel and its manufacturing method of a kind of good wrinkle resistance

Also Published As

Publication number Publication date
JP2016069677A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP6226955B2 (en) Ferritic stainless steel sheet with small increase in strength after aging heat treatment and manufacturing method thereof
CN110959049B (en) Flat steel product with good aging resistance and method for the production thereof
JP2018536764A (en) Ultra-high-strength steel sheet excellent in formability and hole expansibility and manufacturing method thereof
JP2008019479A (en) Rolled austenitic stainless steel plate with excellent strength and ductility, and its manufacturing method
JP6945628B2 (en) High-strength composite structure steel with excellent burring properties in the low temperature range and its manufacturing method
JP6383368B2 (en) Cold rolled flat steel product for applying deep drawing and method for producing the same
WO2015105046A1 (en) Ferritic stainless steel and method for producing same
KR20180033202A (en) A moldable lightweight steel having improved mechanical properties and a method for producing a semi-finished product from said steel
JP2010121213A (en) Method for manufacturing high-strength low-specific gravity steel sheet excellent in ductility
JP6573459B2 (en) Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof
JP5407552B2 (en) Hot-rolled steel sheet with excellent formability and manufacturing method thereof
JP2020510135A (en) Ferritic stainless steel excellent in ridging property and surface quality and manufacturing method thereof
JP2005029889A (en) High strength low specific gravity steel sheet excellent in ductility, and its production method
JP6410543B2 (en) Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof
JP7421650B2 (en) High-strength ferritic stainless steel for clamps and its manufacturing method
JP2011528751A (en) Method for producing austenitic stainless steel sheet having high mechanical properties and steel sheet thus obtained
JP5071125B2 (en) High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape
JP7192112B2 (en) HIGH STRENGTH FERRITIC STAINLESS STEEL FOR CLAMP AND METHOD FOR MANUFACTURING SAME
US20170002436A1 (en) Ferritic lightweight steel sheet having excellent strength and ductility and method for manufacturing the same
JP5534112B2 (en) Hot-rolled steel sheet for cold rolling material and manufacturing method thereof
JP2018538441A (en) High-strength cold-rolled steel sheet excellent in shear workability and manufacturing method thereof
JPWO2019203251A1 (en) Hot rolled steel sheet
JP5644148B2 (en) Stainless cold-rolled steel sheet with excellent surface appearance after processing and method for producing the same
KR20140083166A (en) Stainless steel based on ferrite and method for manufacturing the same
WO2016052528A1 (en) Ferrite-based stainless steel sheet having excellent hole expandability, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180925

R150 Certificate of patent or registration of utility model

Ref document number: 6410543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250