JP2008019479A - Rolled austenitic stainless steel plate with excellent strength and ductility, and its manufacturing method - Google Patents

Rolled austenitic stainless steel plate with excellent strength and ductility, and its manufacturing method Download PDF

Info

Publication number
JP2008019479A
JP2008019479A JP2006192702A JP2006192702A JP2008019479A JP 2008019479 A JP2008019479 A JP 2008019479A JP 2006192702 A JP2006192702 A JP 2006192702A JP 2006192702 A JP2006192702 A JP 2006192702A JP 2008019479 A JP2008019479 A JP 2008019479A
Authority
JP
Japan
Prior art keywords
thickness
forging
less
rolling
reduction rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006192702A
Other languages
Japanese (ja)
Other versions
JP5116265B2 (en
Inventor
Yutaka Tadokoro
裕 田所
Shinji Tsuge
信二 柘植
Kazuhiro Suetsugu
和広 末次
Yoichi Yamamoto
洋一 山本
Toshinori Otsubo
稔典 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2006192702A priority Critical patent/JP5116265B2/en
Priority to KR1020087004097A priority patent/KR100987176B1/en
Priority to EP07767966.0A priority patent/EP2042616B1/en
Priority to CN200780000850XA priority patent/CN101341271B/en
Priority to PCT/JP2007/063186 priority patent/WO2008007572A1/en
Publication of JP2008019479A publication Critical patent/JP2008019479A/en
Application granted granted Critical
Publication of JP5116265B2 publication Critical patent/JP5116265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/026Rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolled product excellent in mechanical properties over all the cross sections, which is an extra thick stainless steel plate of ≥100 mm thickness for use at very low temperatures, such as a structural material for a superconducting coil of a nuclear fusion reactor and a structural material for LNG, and also to provide its manufacturing method. <P>SOLUTION: The objective rolled product can be manufactured by subjecting a steel ingot, which contains, by mass, ≤0.08% C, 0.10 to 0.22% N, ≥0.12% of (C+S), 0.01 to 2.0% Si, 0.1 to 2.0% Mn, 15 to 27% Cr, 8 to 20% Ni, ≤4% Mo, ≤0.1% Co, 0.1 to 3% Cu, 0.001 to 0.10% Al and 0.0005 to 0.01% Ca and has a calculated δ-ferrite quantity value (δcal) of -7 to 4% and a thickness of ≥650 mm, to forging at ≥0.5 reduction of area, to hot rolling at ≥1.5 reduction ratio and then to solution heat-treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、核融合炉の超電導コイルの構造材料やLNG(液化天然ガス)の構造材料に用いられる150K以下で特に有用な極低温用オーステナイト系ステンレス圧延鋼板に関するものである。特に、従来製造ができなかった100mm以上の厚さの圧延鋼板に関する。   The present invention relates to a cryogenic austenitic stainless rolled steel sheet particularly useful for a cryogenic temperature of 150 K or less, which is used as a structural material for a superconducting coil of a nuclear fusion reactor or a structural material for LNG (liquefied natural gas). In particular, the present invention relates to a rolled steel sheet having a thickness of 100 mm or more that could not be manufactured conventionally.

次世代のエネルギー源として期待される核融合炉の超電導コイルの構造材料は、非磁性であると同時に超電導温度の極低温域において高い強度特性が要求される。また、超電導コイルは大型装置となることが予想されているため、構造材料も肉厚の大きい厚板が不可欠となる。   A structural material for a superconducting coil of a nuclear fusion reactor, which is expected as a next-generation energy source, is non-magnetic and requires high strength characteristics in a superconducting temperature cryogenic region. Moreover, since the superconducting coil is expected to be a large device, a thick plate having a large thickness is indispensable for the structural material.

従来この用途には、特許文献1、特許文献2、特許文献3に記載されたように、Cを極力低減しNを多量添加して低温強度を確保しかつγ相を安定化したオーステナイト系ステンレス鋼が用いられてきた。   Conventionally, for this application, as described in Patent Document 1, Patent Document 2, and Patent Document 3, an austenitic stainless steel in which C is reduced as much as possible and a large amount of N is added to ensure low temperature strength and the γ phase is stabilized. Steel has been used.

非特許文献1には熱間圧延ステンレス鋼板及び鋼帯の規定があり,例えばSUS316LNであると耐力245N/mm2以上,引張強さ550N/mm2,伸び40以上と規定されている。 Non-Patent Document 1 defines hot-rolled stainless steel plates and steel strips. For example, SUS316LN specifies a proof stress of 245 N / mm 2 or more, a tensile strength of 550 N / mm 2 , and an elongation of 40 or more.

しかしながら,厚み100mm以上の鋼板において,全断面にわたりこの規格を満足する圧延鋼板を得ることは製造工程上難しかった。その理由は,圧延製品で,全断面にわたり,微細な再結晶組織を得ることが困難であるからである。   However, it has been difficult in the manufacturing process to obtain a rolled steel sheet that satisfies this standard over the entire cross section in a steel sheet having a thickness of 100 mm or more. The reason is that it is difficult to obtain a fine recrystallized structure over the entire cross section of a rolled product.

強度と伸びを確保するには鋼塊の鋳造組織を全断面にわたり破砕し,熱処理後に微細な再結晶組織を得るために,加工歪を全断面くまなく導入する必要があり,そのためには圧減比を可能な限り大きくするのが有効である。しかしながら厚肉製品では圧延機の制約上圧延前素材の厚みには限界があり圧減比にも限界がある。したがって,加工歪を導入できない断面部位が発生し,特に板厚の1/4部位から中心部位にかけて加工歪が入りにくいため熱処理を施しても鋳造組織が残留しそれが粗大化して強度や伸びの低い部位が生じることになる。   In order to secure strength and elongation, it is necessary to crush the cast structure of the steel ingot over the entire cross section and to introduce a processing strain throughout the entire cross section in order to obtain a fine recrystallized structure after heat treatment. It is effective to make the ratio as large as possible. However, for thick-walled products, the thickness of the material before rolling is limited due to the limitations of the rolling mill, and the reduction ratio is also limited. Therefore, there is a cross-sectional area where machining strain cannot be introduced, and in particular, machining strain does not easily enter from the ¼ area of the plate thickness to the central area, so that even after heat treatment, the cast structure remains and becomes coarse, resulting in strength and elongation. Low sites will result.

特許文献1に関しては,N,Mnの高い極低温構造用オーステナイト系ステンレス鋼が開示されている。厚み100mm以上については開示されていない。   Patent Document 1 discloses a cryogenic structural austenitic stainless steel having a high N and Mn. A thickness of 100 mm or more is not disclosed.

特許文献2に関しては,N,Mn,Alが高い極低温耐力、靭性に優れた構造用オーステナイト系ステンレス鋼が開示されている。厚み100mm以上が開示されていない。   With respect to Patent Document 2, a structural austenitic stainless steel having a very high N, Mn, and Al cryogenic resistance and toughness is disclosed. A thickness of 100 mm or more is not disclosed.

特許文献3に関しては,Nb含有,Mnが高い耐再加熱特性に優れた極低温用オーステナイト系ステンレス鋼が開示されている。厚み100mm以上が開示されていない。   Patent Document 3 discloses a cryogenic austenitic stainless steel having excellent reheat resistance with Nb content and high Mn. A thickness of 100 mm or more is not disclosed.

特許文献4では極低温特性に優れた100mm以上のステンレス鋼厚板の製造方法が開示されている。CuやTiの添加については開示されていない。また,全断面にわたり均一な整粒組織を得るための加工熱処理方法が開示されているが,凝固組織微細化による均質化については開示されていない。   Patent Document 4 discloses a method for producing a stainless steel plate having a thickness of 100 mm or more that has excellent cryogenic properties. The addition of Cu or Ti is not disclosed. Further, a heat treatment method for obtaining a uniform sized structure over the entire cross section is disclosed, but homogenization by refining the solidified structure is not disclosed.

特許文献5では細粒化のための50mm厚と100mm厚のオーステナイト系ステンレス鋼厚板の熱間圧延方法が開示されている。成分範囲については開示されていない。   Patent Document 5 discloses a hot rolling method for 50 mm and 100 mm thick austenitic stainless steel thick plates for grain refinement. The component range is not disclosed.

特許文献6では高強度オーステナイトステンレス鋼板の製造方法(Ti含有)が開示されている。Tiは,凝固組織微細化,圧延時の表面疵発生防止のため添加している。溶体化処理は省略されており,また厚み100mm以上の規定は開示されていない。   Patent Document 6 discloses a method for producing a high-strength austenitic stainless steel sheet (containing Ti). Ti is added to refine the solidification structure and prevent surface flaws during rolling. The solution treatment is omitted, and the provision of a thickness of 100 mm or more is not disclosed.

特許文献7では鍛造による連続鋳造スラブの表面にワレを発生させずにザク欠陥を圧着消滅させる97mm厚のステンレス鋼極厚鋼板の製造方法が開示されている。厚み100mm以上および成分範囲については開示されていない。   Patent Document 7 discloses a method for producing a 97 mm thick stainless steel extra-thick steel sheet that eliminates cracks on the surface of a continuously cast slab by forging without causing cracks. The thickness of 100 mm or more and the component range are not disclosed.

以上より,従来技術としては,極低温における耐力,靭性等機械的性質に優れたステンレス鋼が開示されているが,100mm以上の極めて厚みの大きい圧延製品に関し,全断面にわたって機械的性質の優れた100mm以上の極めて厚みの大きい圧延製品及び製造方法は開示されていない。   From the above, stainless steel with excellent mechanical properties such as proof stress and toughness at cryogenic temperatures has been disclosed as the prior art. However, regarding rolled products with an extremely large thickness of 100 mm or more, the mechanical properties were excellent over the entire cross section. A rolled product and a manufacturing method with an extremely large thickness of 100 mm or more are not disclosed.

圧延に比べ鍛造では,鍛造機における素材の厚みの制約が圧延機より小さく圧減比を大きくできることや,板厚が増す方向にも加工できるので,厚肉製品でも全断面に加工歪を導入することができ,その結果全断面にわたり微細な再結晶組織を得ることを実現しやすい。しかし、すべてを鍛造のみで仕上げるとコストアップや生産性低下を招く。   Forging compared to rolling, the material thickness in the forging machine is smaller than that of the rolling mill, and the reduction ratio can be increased, and processing can be performed in the direction of increasing plate thickness. As a result, it is easy to achieve a fine recrystallized structure over the entire cross section. However, if everything is finished only by forging, cost increases and productivity declines.

特開昭60−13063号公報JP-A-60-13063 特開昭61−52351号公報JP-A-61-52351 特開平2−57668号公報Japanese Patent Laid-Open No. 2-57668 特開平7−316653号公報JP 7-316653 A 特開平7−310120号公報JP 7-310120 A 特開平8−104920号公報JP-A-8-104920 特開平11−131138号公報Japanese Patent Laid-Open No. 11-131138 JIS G4304(2005)JIS G4304 (2005)

本発明は、核融合炉の超電導コイルの構造材料やLNG(液化天然ガス)の構造材料等極低温において使用される材料について、100mm以上の極めて厚みのステンレス鋼板に関し,全断面にわたって機械的性質の優れた圧延製品およびそれを得るための製造方法を提供することを目的とする。   The present invention relates to a material used at a very low temperature, such as a structural material of a superconducting coil of a nuclear fusion reactor or a structural material of LNG (liquefied natural gas). An object is to provide an excellent rolled product and a production method for obtaining the same.

極低温においてNを多量に添加した高強度のオーステナイト系ステンレス鋼,特に肉厚の大きい厚板圧延製品の,表層より板厚1/4〜板厚3/4の部位においては鍛造や圧延において加工歪の入り難い部位であり,特に当該部位の強度及び延性を確保することは困難である。   High strength austenitic stainless steel with a large amount of N added at extremely low temperatures, especially thick rolled products with a large thickness, are processed by forging or rolling at a thickness of 1/4 to 3/4 of the surface layer. It is a site where distortion is difficult to enter, and it is particularly difficult to ensure the strength and ductility of the site.

そこで、本発明者らは,種々の合金を詳細に調査することによって,まず成分を規定することにより極低温においても最低限必要とされる強度及び延性を確保できる知見を得た。すなわち圧延鋼板を全厚にわたって強度及び延性を確保するためには、高強度に有効な元素を適正範囲に調整し,安定して高い効果を得るために成分調整により凝固組織微細化をおこなうことが有効である。   Therefore, the present inventors have obtained a finding that, by examining various alloys in detail, first, by specifying the components, the minimum required strength and ductility can be secured even at extremely low temperatures. In other words, in order to ensure the strength and ductility of the rolled steel sheet over its entire thickness, it is necessary to adjust the elements effective for high strength to an appropriate range and refine the solidification structure by adjusting the components in order to obtain a stable and high effect. It is valid.

次に、鍛造および圧延工程を適切に組み合わせることにより鋼塊の鋳造組織を全断面にわたり破砕し,全断面に熱間加工歪みを導入して再結晶を促進させ均一な再結晶組織を得られることを明らかにした。すなわち、鋼塊を鍛造した後に圧延することにより、100mm以上の極めて厚みのステンレス鋼板に関し,全断面にわたって機械的性質の優れた圧延製品およびそれを得るための製造方法を実現することができる。   Next, by properly combining the forging and rolling processes, the cast structure of the steel ingot can be crushed over the entire cross section, and hot crystallization distortion can be introduced into the entire cross section to promote recrystallization and obtain a uniform recrystallized structure. Was revealed. That is, by rolling a steel ingot after forging, it is possible to realize a rolled product having excellent mechanical properties over the entire cross section and a manufacturing method for obtaining the same regarding a stainless steel plate having an extremely large thickness of 100 mm or more.

本発明はこの知見に基づいて構成されたもので、その要旨は下記のとおりである。
(1)質量%で、C:0.08%以下、N:0.10%以上0.22%以下、C+N:0.12%以上、Si:0.01%以上2.0%以下、Mn:0.1%以上2.0%以下、Cr:15%以上27%以下、Ni:8%以上20%以下、Mo:4%以下、Co:0.1%以下、Cu:0.1%以上3%以下、Al:0.001%以上0.10%以下、Ca:0.0005%以上0.01%以下を含有し、残部鉄および不可避不純物からなり、下記(I)式で定義するδフェライト量計算値(δcal;体積%)が−7%以上4%以下であり、厚さ方向の任意の部位において幅及び長さ方向の伸びが30%以上を特徴とする,厚さが100mm以上のオーステナイト系ステンレス圧延鋼板。
δcal(体積%)
=2.9×([Cr]+0.3[Si]+[Mo])−2.6×([Ni]+0.3×[Mn]+0.25×[Cu]+35×[C]+20×[N])−18 (I)
ただし、[元素記号]はそれぞれの元素の含有量(質量%)を意味する。
また、伸びは4Kで測定した値である。
(2)質量%でさらに、Ti:0.010%以上0.030%以下を含有することを特徴とする(1)記載のステンレス圧延鋼板。
(3)厚みが650mm以上の鋼塊を面積減少率0.5以上で鍛造し,圧減比1.5以上で熱間圧延後,固溶化熱処理を施して製造することを特徴とする,(1)または(2)記載のステンレス圧延鋼板及びその製造方法。
ここで,鍛造の面積減少率(A)は以下のように定義する。
鍛造前の鋼塊断面積(厚み×幅):A0
鍛造後の鋼塊断面積(厚み×幅):A1
A=(A0−A1)/A0
また,圧延の圧減比(R)を以下のように定義する。
圧延前のスラブ厚み:B0
圧延後のスラブ厚み:B1
R=B0/B1
(4)厚みが500mm以上の鋼塊に対し,厚みが減少する方向に面積減少率0.3以上の鍛造と、厚みが増す方向に面積減少率0.15以上の鍛造とを、交互にそれぞれ1回以上行い,その後圧減比1.5以上で熱間圧延後、固溶化熱処理を施すことを特徴とする(1)または(2)記載のステンレス圧延鋼板及びその製造方法。
ここで,厚みが減少、または増す方向の鍛造の面積減少率(C)は以下のように定義する。
n回目の鍛造後の鋼塊断面積(厚み×幅):Cn
n−1回目の鍛造後の鋼塊断面積(厚み×幅):Cn-1
C=(Cn-1−Cn)/Cn-1
また,圧延の圧減比(R)を以下のように定義する。
圧延前のスラブ厚み:B0
圧延後のスラブ厚み:B1
R=B0/B1
The present invention is configured based on this finding, and the gist thereof is as follows.
(1) By mass%, C: 0.08% or less, N: 0.10% or more and 0.22% or less, C + N: 0.12% or more, Si: 0.01% or more and 2.0% or less, Mn : 0.1% to 2.0%, Cr: 15% to 27%, Ni: 8% to 20%, Mo: 4% or less, Co: 0.1% or less, Cu: 0.1% 3% or less, Al: 0.001% or more and 0.10% or less, Ca: 0.0005% or more and 0.01% or less, consisting of remaining iron and inevitable impurities, defined by the following formula (I) The calculated amount of δ ferrite (δcal; volume%) is -7% or more and 4% or less, and the elongation in the width and length directions is 30% or more at any part in the thickness direction. The above austenitic stainless steel sheet.
δcal (volume%)
= 2.9 × ([Cr] +0.3 [Si] + [Mo]) − 2.6 × ([Ni] + 0.3 × [Mn] + 0.25 × [Cu] + 35 × [C] + 20 × [N])-18 (I)
However, [element symbol] means the content (% by mass) of each element.
The elongation is a value measured at 4K.
(2) The stainless rolled steel sheet according to (1), further containing Ti: 0.010% to 0.030% by mass%.
(3) A steel ingot having a thickness of 650 mm or more is forged at an area reduction rate of 0.5 or more, hot rolled at a reduction ratio of 1.5 or more, and then subjected to a solution heat treatment, The stainless rolled steel sheet according to 1) or (2) and a method for producing the same.
Here, the area reduction rate (A) of forging is defined as follows.
Steel ingot cross-sectional area before forging (thickness x width): A 0
Steel ingot cross-sectional area after forging (thickness x width): A 1
A = (A 0 −A 1 ) / A 0
The rolling reduction ratio (R) is defined as follows.
Slab thickness before rolling: B 0
Slab thickness after rolling: B 1
R = B 0 / B 1
(4) For a steel ingot with a thickness of 500 mm or more, forging with an area reduction rate of 0.3 or more in the direction of decreasing thickness and forging with an area reduction rate of 0.15 or more in the direction of increasing thickness alternately. The stainless rolled steel sheet according to (1) or (2), which is performed at least once, and then subjected to solution heat treatment after hot rolling at a reduction ratio of 1.5 or more, and a method for producing the same.
Here, the area reduction rate (C) of forging in the direction in which the thickness decreases or increases is defined as follows.
Steel ingot cross-sectional area after n-th forging (thickness x width): C n
Steel ingot cross-sectional area after n-1th forging (thickness × width): C n-1
C = (C n-1 −C n ) / C n-1
The rolling reduction ratio (R) is defined as follows.
Slab thickness before rolling: B 0
Slab thickness after rolling: B 1
R = B 0 / B 1

ここでの鍛造はプレスを使った自由鍛造であるが,鋼塊全体が所定の断面形状に達するまで,鋼塊の同一面同一方向においてプレスを数回に分けて行うことがある。この場合,すなわち,鋼塊全体が所定の断面形状に達するまでの,鋼塊の同一面同一方向におけるプレスによる一連の圧縮工程については,1回の鍛造工程とみなす。   Forging here is free forging using a press, but the press may be divided into several times in the same direction of the same surface of the steel ingot until the entire steel ingot reaches a predetermined cross-sectional shape. In this case, that is, a series of pressing steps by pressing in the same direction of the same surface of the steel ingot until the entire steel ingot reaches a predetermined cross-sectional shape is regarded as one forging step.

本発明により極低温での強度および延性が高く、厚さが100mm以上の厚板が得られる。本発明鋼は,次世代のエネルギー源として期待される熱核融合炉(ITER)用コイルの構造材料として適用が可能である。   According to the present invention, a thick plate having high strength and ductility at a very low temperature and a thickness of 100 mm or more can be obtained. The steel of the present invention can be applied as a structural material for a coil for a thermonuclear fusion reactor (ITER), which is expected as a next-generation energy source.

また,本発明鋼は、超電導機器の大型化やLNG(液化天然ガス)の構造物等において適用可能であるので、将来のエネルギー産業をはじめとする各種産業分野に対して大いに貢献することが期待され、工業的・社会的効果は大きい。   In addition, the steel of the present invention can be applied to the enlargement of superconducting equipment, LNG (liquefied natural gas) structures, etc., so it is expected to greatly contribute to various industrial fields including the future energy industry. Industrial and social effects are great.

従来より、厚みが100mm以上の鍛造製品は存在していたが,圧延鋼板は得られなかった。その理由は,断面に均一な結晶組織を得ようとすると,断面全体に歪を入れて固溶化熱処理をする必要があり,そのためにはスラブ厚をできるだけ大きくして圧減比を大きくする必要があるが,圧延機ではスラブ厚みに制限があり製造できなかったからである。   Conventionally, forged products having a thickness of 100 mm or more existed, but rolled steel sheets could not be obtained. The reason is that in order to obtain a uniform crystal structure in the cross section, it is necessary to add a strain to the entire cross section and perform solution heat treatment. For this purpose, it is necessary to increase the reduction ratio by increasing the slab thickness as much as possible. However, this is because the rolling mill has a limited slab thickness and cannot be manufactured.

鍛造工程であればスラブ厚を大きくすることは可能であるが,すべてを鍛造のみで仕上げるとコストアップや生産性低下を招く。   Although it is possible to increase the slab thickness in the forging process, finishing all with only forging results in increased costs and reduced productivity.

本発明においては、強度向上に有効な成分範囲を規定した鋼塊を,プロセス前半に鍛造し,プロセス後半に圧延することにより、強度と延性に優れた厚み100mm以上のオーステナイト系ステンレス圧延鋼板を製造することが可能であることを明らかにした。   In the present invention, an austenitic stainless rolled steel sheet with a thickness of 100 mm or more, which is excellent in strength and ductility, is manufactured by forging a steel ingot defining a component range effective for strength improvement in the first half of the process and rolling in the second half of the process. Clarified that it is possible.

しかしながら,表面から厚みの1/4〜3/4の部位にかけて粗大な凝固組織が残存することがあり,その部位の伸びが低いためにネックとなって断面全体の強度−延性バランスが制限されることがある。   However, a coarse solidified structure may remain from the surface to 1/4 to 3/4 of the thickness, and the elongation at the site is low, which becomes a neck and limits the strength-ductility balance of the entire cross section. Sometimes.

そのため,さらに延性を確保するには,Tiを添加することにより凝固組織を微細化することと,鍛造−圧延プロセスと組み合わせて製造し,製品の結晶組織を全断面で微細化することによって,強度−延性バランスの向上が図れる。   Therefore, in order to secure further ductility, the solidification structure is refined by adding Ti, and it is manufactured in combination with the forging-rolling process, and the crystal structure of the product is refined in the entire cross section. -The ductility balance can be improved.

次に、本発明の限定条件を示す。   Next, the limiting conditions of this invention are shown.

Cは、多量に添加すると極低温での強度は向上するが、製造工程でCr炭窒化物が多量に析出することとなり、極低温での靱性が劣化するために、0.08%を上限とした。   When C is added in a large amount, the strength at cryogenic temperature is improved, but Cr carbonitride is precipitated in a large amount in the production process, and the toughness at cryogenic temperature is deteriorated, so 0.08% is made the upper limit. did.

Nは、オーステナイト相を安定化し、極低温での強度を確保するために極めて有効な元素である。しかし、0.10%未満ではその効果が小さく、0.22%を超えると溶接性が著しく劣化して溶接割れやブローホールの発生が多発するためN含有量を0.1〜0.22%と限定した。   N is an extremely effective element for stabilizing the austenite phase and ensuring strength at an extremely low temperature. However, if the content is less than 0.10%, the effect is small. If the content exceeds 0.22%, the weldability is remarkably deteriorated, and welding cracks and blowholes are frequently generated. Therefore, the N content is 0.1 to 0.22%. And limited.

C+Nは,極低温強度は鋼中C+N量と相関があるといわれており,C+Nが多いほど強度は高くなる。C,Nは各々範囲を規定しているため,C+Nとして0.12%以上とした。   For C + N, it is said that the cryogenic strength is correlated with the amount of C + N in the steel, and the strength increases as the amount of C + N increases. Since C and N each define a range, C + N is set to 0.12% or more.

Siは、0.01%未満では鋼の清浄度が不良となり靱性が劣化し、2.0%を超えると熱間加工性が劣化し、厚板の製造が困難となるためSiの含有量を0.01〜2.0%と限定した。   If Si is less than 0.01%, the cleanliness of the steel becomes poor and the toughness deteriorates. If it exceeds 2.0%, the hot workability deteriorates and it becomes difficult to produce a thick plate. It was limited to 0.01 to 2.0%.

Mnも、0.1%未満では鋼の清浄度が不良となり、2.0%を超えると熱間加工性が劣化するため,Mn含有量を0.1〜2%と限定した。   If Mn is less than 0.1%, the cleanliness of the steel becomes poor. If it exceeds 2.0%, the hot workability deteriorates, so the Mn content is limited to 0.1 to 2%.

Crは、部材加工時の耐食性を確保するために15%以上が必要であるが、27%を超えると脆いσ相を生成して靱性を劣化させるためCr含有量を15〜27%と限定した。   Cr needs to be 15% or more in order to ensure corrosion resistance at the time of processing the member. However, if it exceeds 27%, a brittle σ phase is generated and the toughness is deteriorated, so the Cr content is limited to 15 to 27%. .

Niは、オーステナイト相を安定化し、極低温での強度靱性および延性を向上させる元素であるが、8%未満ではオーステナイト相の安定化効果が不十分であるので8%を下限とした。しかし、極めて高価な元素であるためコストの点からオーステナイト安定化効果が飽和する20%を上限とした。   Ni is an element that stabilizes the austenite phase and improves strength toughness and ductility at cryogenic temperatures. However, if less than 8%, the effect of stabilizing the austenite phase is insufficient, so 8% was made the lower limit. However, since it is an extremely expensive element, the upper limit is set to 20% at which the austenite stabilizing effect is saturated from the viewpoint of cost.

強度確保のために添加されるMoは、4%を超えるとσ相等の金属間化合物を生成して極低温での靱性を劣化させることや,多量の添加はコスト増大につながるためその添加量を4%以下と限定した。なお、0.5%未満では強度向上効果が小さくなるため、0.5%以上の添加が望ましい。   Mo added to ensure strength exceeds 4%, and intermetallic compounds such as sigma phase are produced to deteriorate toughness at extremely low temperatures. Limited to 4% or less. In addition, since the strength improvement effect will become small if it is less than 0.5%, addition of 0.5% or more is desirable.

Coは不純物元素として混入する場合,放射化して有害である。放射化を低減するため0.1%以下とした。   When Co is mixed as an impurity element, it is harmful when activated. In order to reduce activation, it was made 0.1% or less.

Cuは耐食性を増す元素であるため積極的に添加する。0.1%未満であると効果がなく,3%を超えると熱間加工性に支障をきたすため0.1%以上3%以下とした。   Since Cu is an element that increases corrosion resistance, it is positively added. If it is less than 0.1%, there is no effect, and if it exceeds 3%, the hot workability is hindered.

Alは、脱酸材として鋼の清浄度を改善する元素である。しかし、0.001%未満ではこの効果がなく、0.10%を超えると熱間加工性が劣化するためAl含有量を0.001〜0.10%と限定した。   Al is an element that improves the cleanliness of steel as a deoxidizer. However, when the content is less than 0.001%, this effect is not obtained. When the content exceeds 0.10%, the hot workability deteriorates, so the Al content is limited to 0.001 to 0.10%.

熱間圧延加工性向上を狙って添加されるCaは0.0005%未満では熱間加工性向上効果がなく、0.01%を超えると清浄度を不良とするためその添加量を0.0005〜0.01%と限定した。   Ca added for improving hot rolling processability is less than 0.0005%, and there is no effect of improving hot workability. If it exceeds 0.01%, the cleanliness is poor, so the amount added is 0.0005. Limited to -0.01%.

Tiは凝固組織を微細化し強度・伸びをより安定して向上させるために添加することが望ましい。0.010%未満であると効果がなく,0.030%を超えると粗大な窒化物が析出して靭性を劣化させる。そのため0.010%以上0.030%未満とした。   Ti is desirably added to refine the solidified structure and improve the strength and elongation more stably. If it is less than 0.010%, there is no effect, and if it exceeds 0.030%, coarse nitrides precipitate and deteriorate toughness. Therefore, it was made into 0.010% or more and less than 0.030%.

不可避不純物として含まれるSは,熱間加工性及び靭性を低下させる元素であり,0.003%以下に低減することが望ましい。   S contained as an inevitable impurity is an element that decreases hot workability and toughness, and is desirably reduced to 0.003% or less.

不可避不純物として含まれるPは,耐食性に有害な元素であり,0.040%以下に低減することが望ましい。   P contained as an inevitable impurity is an element harmful to corrosion resistance, and is desirably reduced to 0.040% or less.

次に、下記(I)式で定義するδフェライト量計算値(δcal;体積%)を−7%以上4%以下とする点について説明する。   Next, the point that the calculated amount of δ ferrite (δcal; volume%) defined by the following formula (I) is −7% or more and 4% or less will be described.

δcal(体積%)
=2.9×([Cr]+0.3[Si]+[Mo])−2.6×([Ni]+0.3×[Mn]+0.25×[Cu]+35×[C]+20×[N])−18 (I)
ただし、[元素記号]はそれぞれの元素の含有量(質量%)を意味する。
δcal (volume%)
= 2.9 × ([Cr] +0.3 [Si] + [Mo]) − 2.6 × ([Ni] + 0.3 × [Mn] + 0.25 × [Cu] + 35 × [C] + 20 × [N])-18 (I)
However, [element symbol] means the content (% by mass) of each element.

δcalは,D.J.KOTECKI & T.A.SIEWERTの推奨式(Weld.J., 71(1992),171s)及びT.A.SIEWERT, C.N.McCOWAN & D.L.OLSONの推奨式(Weld.J., 67(1988),289s)を組み合わせた計算方法であり,凝固組織中のδフェライト量の比率を表す。実際のスラブは非常に大きいのでδフェライト量の測定は困難であるため,小断面の鋼塊の実験により求められた計算式によりδフェライト析出量を推定した。本発明が対象とする大断面鋼塊のδフェライト量はこの計算式で予測されるδフェライト析出量よりも−0,+8%程度の値を示すことが一部の抜き取り調査で確認された。凝固時にδフェライトが現われると,オーステナイト凝固組織の微細化に効果があり,また鋼板中にδフェライトが微細分散していると加熱中における結晶粒粗大化を抑制する。δcalが,−7%より小さければ上記の効果は顕在化せず,4%を超えればこれらの効果が飽和するばかりか,磁性を帯び始め強度・伸びなどの機械的特性が劣化する。以上よりδcalを−7%以上4%以下とした。   δcal is the recommended formula of DJKOTECKI & TASIEWERT (Weld.J., 71 (1992), 171s) and the recommended formula of TASIEWERT, CNMcCOWAN & DLOLSON (Weld.J., 67 (1988), 289s) This is a combined calculation method and represents the ratio of δ ferrite content in the solidified structure. Since the actual slab is very large, it is difficult to measure the amount of δ-ferrite. Therefore, the amount of δ-ferrite precipitation was estimated using the formula obtained by experiments with small ingots. It was confirmed by some sampling surveys that the amount of δ ferrite of the large-section steel ingot targeted by the present invention shows a value of about −0, + 8% than the amount of δ ferrite precipitated predicted by this calculation formula. If δ ferrite appears during solidification, it is effective in refining the austenite solidification structure, and if δ ferrite is finely dispersed in the steel sheet, it suppresses crystal grain coarsening during heating. If δcal is less than −7%, the above effects do not become apparent, and if it exceeds 4%, these effects are saturated, and mechanical properties such as strength and elongation start to deteriorate. From the above, δcal was set to -7% or more and 4% or less.

鋼板の伸びの方向は幅,長さ,及び厚みの3方向あるが,実用性を考え,幅及び長さ方向の伸びについて規定した。伸びは常温以下4Kまでの温度で厚さ方向の任意の部位において30%以上あれば実用的には問題ないため,30%以上とした。より高加工が必要な部位への適用のためにはさらなる高延性が必要で,伸びは40%以上が望ましい。   There are three directions of elongation of the steel plate: width, length, and thickness. However, considering the practicality, the elongation in the width and length directions was specified. The elongation is set to 30% or more because there is no practical problem if it is 30% or more at an arbitrary portion in the thickness direction at a temperature of room temperature or lower and up to 4K. Higher ductility is required for application to parts that require higher processing, and the elongation is preferably 40% or more.

本発明の製造方法に関して,厚みが650mm以上の鋼塊を面積減少率0.5以上で鍛造し,圧減比1.5以上で熱間圧延後,固溶化熱処理を施すことに限定した理由を説明する。   Regarding the manufacturing method of the present invention, the reason why the steel ingot having a thickness of 650 mm or more is forged at an area reduction rate of 0.5 or more, hot-rolled at a reduction ratio of 1.5 or more, and then subjected to solution heat treatment. explain.

極厚材の断面組織を均一化するには、できるだけ厚みの大きい鋼塊を用いて圧減比を大きくすることが望ましい。製品の厚みを考え厚みが650mm以上の鋼塊に限定した。また粗大な凝固組織の破砕には局部的に大きな歪を加えることができる鍛造の面積減少率をできるだけ大きくするのが望ましく,また圧延機の厚みの制約及び全断面にわたり鋳造組織に十分に加工歪を導入することより面積減少率を0.5以上とした。   In order to make the cross-sectional structure of the extremely thick material uniform, it is desirable to increase the reduction ratio by using a steel ingot that is as thick as possible. Considering the thickness of the product, it was limited to steel ingots with a thickness of 650 mm or more. In addition, it is desirable to reduce as much as possible the area reduction rate of forging, which can apply large strain locally, to crush coarse solidified structure. The area reduction rate was made 0.5 or more by introducing.

熱間圧延は鍛造後のプロセスで製品厚まで施すが,できるだけ圧減比を大きくし,全断面にわたり歪を導入し固溶化熱処理後に均一な再結晶組織を得るため熱間圧延の圧減比を1.5以上とした。   Hot rolling is applied to the product thickness in the post-forging process, but the reduction ratio of hot rolling is increased in order to obtain a uniform recrystallized structure after solution treatment by increasing the reduction ratio as much as possible and introducing strain throughout the entire section. It was set to 1.5 or more.

固溶化熱処理は,成分元素を固溶化し,金属組織や結晶粒度を均一化することで,強度・伸びなどの機械的性質や耐食性について十分な特性値を得ることを目的として実施する。固溶化熱処理条件は、合金成分や製造プロセスに応じて920℃〜1200℃から急冷することができる。   The solution heat treatment is performed for the purpose of obtaining sufficient characteristic values for mechanical properties such as strength and elongation and corrosion resistance by solidifying the constituent elements and making the metal structure and crystal grain size uniform. The solution heat treatment conditions can be rapidly cooled from 920 ° C. to 1200 ° C. depending on the alloy components and the manufacturing process.

以上に規定した成分を含有し、厚みが650mm以上の鋼塊を用い、面積減少率0.5以上で鍛造し,圧減比1.5以上で熱間圧延後,固溶化熱処理を行うことにより、厚さ方向の任意の部位において幅及び長さ方向の伸びが30%以上であり、厚さが100mm以上のオーステナイト系ステンレス圧延鋼板を製造することができる。   By using a steel ingot having a thickness of 650 mm or more, forging at an area reduction rate of 0.5 or more, hot rolling at a reduction ratio of 1.5 or more, and performing a solution heat treatment An austenitic stainless rolled steel sheet having an elongation in the width and length directions of 30% or more at an arbitrary portion in the thickness direction and a thickness of 100 mm or more can be produced.

また,本発明の製造方法請求項4に関して,鋼塊の厚みが増す方向に面積減少率を0.15以上で鍛造する工程を加えることに限定した理由を説明する。   The reason why the manufacturing method according to claim 4 of the present invention is limited to adding a process of forging at an area reduction rate of 0.15 or more in the direction of increasing the thickness of the steel ingot will be described.

極厚材の断面組織を均一化するには、全断面にわたり加工歪を導入し固溶化熱処理で再結晶組織を得ることが重要である。そのためには,先に述べた厚みの大きい鋼塊を用いて、厚みが減少する方向に鍛造するのみではなく,鋼塊の厚みが増す方向に鍛造する工程を加え,その後に圧延することが有効であることを見出した。   In order to make the cross-sectional structure of the very thick material uniform, it is important to introduce a processing strain over the entire cross-section and obtain a recrystallized structure by solution heat treatment. For that purpose, it is effective not only to forge in the direction of decreasing thickness, but also to forge in the direction of increasing thickness of the steel ingot, and then rolling it using the thick steel ingot described above. I found out.

ここで,厚みが減少、または増す方向の鍛造の面積減少率(C)は以下のように定義する。
n回目の鍛造後の鋼塊断面積(厚み×幅):Cn
n−1回目の鍛造後の鋼塊断面積(厚み×幅):Cn-1
C=(Cn-1−Cn)/Cn-1
また,圧延の圧減比(R)を以下のように定義する。
圧延前のスラブ厚み:B0
圧延後のスラブ厚み:B1
R=B0/B1
厚みが増す方向の鍛造における1回当たりの面積減少率が0.15未満では効果が小さく,0.15以上で均一組織が得られたため,面積減少率は0.15以上に限定した。また、厚みが減少する方向の鍛造における1回当たりの面積減少率も0.3以上であれば足りる。厚みが減少する方向の鍛造と、厚みが増す方向の鍛造とは、どちらから開始しても構わない。そして、交互にそれぞれ1回以上鍛造を行えば足りる。例えば、「増す方向−減少する方向−増す方向」、「減少する方向−増す方向−減少する方向」などの鍛造パターンを採用することができる。
Here, the area reduction rate (C) of forging in the direction in which the thickness decreases or increases is defined as follows.
Steel ingot cross-sectional area after n-th forging (thickness x width): C n
Steel ingot cross-sectional area after n-1th forging (thickness × width): C n-1
C = (C n-1 −C n ) / C n-1
The rolling reduction ratio (R) is defined as follows.
Slab thickness before rolling: B 0
Slab thickness after rolling: B 1
R = B 0 / B 1
When the area reduction rate per time in the forging in the direction of increasing the thickness is less than 0.15, the effect is small, and since a uniform structure was obtained at 0.15 or more, the area reduction rate was limited to 0.15 or more. Moreover, the area reduction rate per time in the forging in the direction in which the thickness decreases is also 0.3 or more. The forging in the direction of decreasing the thickness and the forging in the direction of increasing the thickness may be started from either direction. And it is sufficient to forge one or more times alternately. For example, a forging pattern such as “increase direction−decrease direction−increase direction”, “decrease direction−increase direction−decrease direction”, or the like can be employed.

厚み方向と直交する方向から鍛造することによって,歪を2方向から加えてすべり面を増やし,全断面において加工歪を別な方向からくまなく導入することができるため,鋼塊の厚みが増す方向に鍛造する工程は,均一組織を形成させるのに顕著な効果があったと考えられる。この場合,初期の鋼塊厚みも500mm以上と緩和される。また、鍛造後圧減比1.5以上で熱間圧延を実施し,固溶化熱処理を施す点については前述の方法と同様である。   By forging from the direction perpendicular to the thickness direction, strain can be applied from two directions to increase the slip surface, and machining strain can be introduced in all directions from all directions, increasing the thickness of the steel ingot. It is considered that the forging process had a remarkable effect in forming a uniform structure. In this case, the initial steel ingot thickness is reduced to 500 mm or more. Moreover, it is the same as that of the above-mentioned method about implementing hot rolling by the reduction ratio 1.5 or more after forging, and performing solution heat treatment.

表1−1,表2に示した鋼をインゴット鋳造し,圧減比1.5,2.0,2.5の鍛造を実施し,その後圧減比1.4〜3.7の熱間圧延を実施して厚さ100mm〜250mmの厚板を製造した。また,表1−1の鋼の製造条件と製造結果を表1−2、表1−3に示す。さらに表2の本発明例No.1〜13、比較例No.1〜11(請求項1〜3)の製造条件と製造結果を表3に,表2の本発明例No.14〜18、比較例No.12〜13(請求項4)の製造条件と製造結果を表4に示す。   The steel shown in Table 1-1 and Table 2 is cast ingot, and forging is performed with a reduction ratio of 1.5, 2.0, 2.5, and then hot with a reduction ratio of 1.4 to 3.7. Rolling was performed to produce a thick plate having a thickness of 100 mm to 250 mm. Moreover, the manufacturing conditions and manufacturing results of the steels in Table 1-1 are shown in Tables 1-2 and 1-3. Further, in Table 2, Example No. 1-13, Comparative Example No. The production conditions and production results of Nos. 1 to 11 (Claims 1 to 3) are shown in Table 3; 14-18, Comparative Example No. Table 4 shows the production conditions and production results of 12-13 (Claim 4).

Figure 2008019479
Figure 2008019479

Figure 2008019479
Figure 2008019479

Figure 2008019479
Figure 2008019479

まず、表1−1〜表1−3に示す実施例について説明する。   First, examples shown in Tables 1-1 to 1-3 will be described.

表1−2に示す製造条件で鍛造と圧延を行った厚板を1100℃に加熱し水冷する方法で固溶化熱処理を行った。   Solid solution heat treatment was performed by a method in which a thick plate forged and rolled under the production conditions shown in Table 1-2 was heated to 1100 ° C. and cooled with water.

その後,4Kでの強度評価を行い、その結果を表1−2、表1−3に併せて示した。試験片は,JISZ2201 14A号試験片(径6mm,標点距離30mm,全長110mm)を用いた。試験片は,製品板の長手方向端部近傍(鋼塊の上部より100〜200mmに相当する部位)の,幅方向中央部(鋼塊の幅方向中心に相当する部位)より,製品表層(表面より10mm部位),表面から1/4厚みの部位,表面から1/2厚みの部位,3/4厚みの部位,裏の表層の5個所切り出した。なお、強度は引張試験で評価した。   Thereafter, the strength was evaluated at 4K, and the results are shown in Tables 1-2 and 1-3. As the test piece, a JISZ2201 14A test piece (diameter 6 mm, gauge distance 30 mm, total length 110 mm) was used. The test piece is the product surface layer (surface 10 mm part), a quarter thickness part from the surface, a half thickness part from the surface, a 3/4 thickness part, and a surface layer on the back. The strength was evaluated by a tensile test.

表1−2、表1−3には代表的な発明鋼について,0.2%耐力,引張強度,伸びは同断面における部位から厚板の幅と長さ方向それぞれの値を示した。いずれの発明鋼についても0.2%耐力,引張強度,伸びは,1/4厚み〜3/4厚みの部位で最も低くなり表層が最低となることはなかった。圧延鋼板での鋳造組織が残留しやすく組織が不均一になるのが1/4厚み〜3/4厚みの部位であり対応している。したがって,同一断面でのこれらの最低値は1/4厚み〜3/4厚みの範囲にある。   Tables 1-2 and 1-3 show the values of 0.2% proof stress, tensile strength, and elongation in the width and length direction of the thick plate from the site in the same cross section for representative invention steels. In all the inventive steels, the 0.2% proof stress, tensile strength, and elongation were the lowest in the region of 1/4 to 3/4 thickness, and the surface layer did not become the lowest. The cast structure in the rolled steel sheet tends to remain, and the structure becomes nonuniform, corresponding to the 1/4 to 3/4 thickness portions. Therefore, these minimum values in the same cross section are in the range of ¼ thickness to ¾ thickness.

以上の結果を踏まえ、表2に示す鋼は全実施例について,0.2%耐力,引張強度,伸びは同断面における1/4厚み〜3/4厚みの部位についての最低値を示した。   Based on the above results, the steels shown in Table 2 showed the lowest values of the 0.2% proof stress, tensile strength, and elongation of the ¼ thickness to ¾ thickness portions in the same cross section for all examples.

Figure 2008019479
Figure 2008019479

表2に示す鋼のうち、本発明鋼No.1〜13、比較鋼No.1〜11については、表2に示す製造条件によって製造した。   Among the steels shown in Table 2, the present invention steel No. 1-13, comparative steel No.1. About 1-11, it manufactured according to the manufacturing conditions shown in Table 2.

本発明鋼No.14は,圧延前の鍛造工程で鋼塊の幅方向に面積減少率0.25で鍛造して厚みを730mmから900mmまで増大させた後に厚み方向に面積減少率0.6で鍛造し,その後圧減比1.8で圧延して厚さ200mmの製品とした。   Invention Steel No. No. 14 is a forging process before rolling, forging at an area reduction rate of 0.25 in the width direction of the steel ingot, increasing the thickness from 730 mm to 900 mm, forging at an area reduction rate of 0.6 in the thickness direction, and then pressing The product was rolled at a reduction ratio of 1.8 to give a product with a thickness of 200 mm.

本発明鋼No.15は,圧延前の鍛造工程で鋼塊の長手方向に面積減少率0.15で鍛造して厚みを730mmから900mmまで増大させた後に厚み方向に面積減少率0.6で鍛造し,その後圧減比1.8で圧延して厚さ200mmの製品とした。   Invention Steel No. No. 15 is a forging process before rolling, forging at an area reduction rate of 0.15 in the longitudinal direction of the steel ingot, increasing the thickness from 730 mm to 900 mm, forging at an area reduction rate of 0.6 in the thickness direction, and then pressing The product was rolled at a reduction ratio of 1.8 to give a product with a thickness of 200 mm.

本発明鋼No.16は,圧延前の鍛造工程で鋼塊の幅方向に面積減少率0.25で鍛造して厚みを500mmから614mmまで増大させた後に厚み方向に面積減少率0.6で鍛造し,その後圧減比1.8で圧延して厚さ137mmの製品とした。   Invention Steel No. No. 16 is a forging process before rolling, forging at an area reduction rate of 0.25 in the width direction of the steel ingot and increasing the thickness from 500 mm to 614 mm, then forging at an area reduction rate of 0.6 in the thickness direction, and then pressing. The product was rolled at a reduction ratio of 1.8 to obtain a product with a thickness of 137 mm.

本発明鋼No.17は,圧延前の鍛造工程で鋼塊の厚み方向に面積減少率0.30で鍛造して厚みを730mmから510mmまで減少させた後に幅方向に面積減少率0.15で鍛造して厚みを600mmまで増大させ,厚み方向に面積減少率0.30で鍛造して厚みを358mmまで減少させた後にその後圧減比1.8で圧延して厚さ200mmの製品とした。   Invention Steel No. No. 17 is a forging process before rolling, forging at an area reduction rate of 0.30 in the thickness direction of the steel ingot, reducing the thickness from 730 mm to 510 mm, and then forging at an area reduction rate of 0.15 in the width direction. The thickness was increased to 600 mm, and the thickness was reduced to 358 mm by forging at an area reduction rate of 0.30 in the thickness direction, and then rolled at a reduction ratio of 1.8 to obtain a product having a thickness of 200 mm.

本発明鋼No.18は,圧延前の鍛造工程で鋼塊の幅方向に面積減少率0.25で鍛造して厚みを500mmから614mmまで増大させた後に厚み方向に面積減少率0.6で鍛造して厚みを430mmまで減少させ,次いで,幅方向に面積減少率0.25で鍛造して厚みを471mmまで増大させた後に厚み方向に面積減少率0.6で鍛造して厚みを330mmまで減少させ,その後圧減比1.8で圧延して厚さ184mmの製品とした。   Invention Steel No. No. 18 is forged at an area reduction rate of 0.25 in the width direction of the steel ingot in the forging process before rolling and increased in thickness from 500 mm to 614 mm, and then forged at an area reduction rate of 0.6 in the thickness direction. The thickness is reduced to 430 mm, then forged at an area reduction rate of 0.25 in the width direction to increase the thickness to 471 mm, and then forged at an area reduction rate of 0.6 in the thickness direction to reduce the thickness to 330 mm. The product was rolled at a reduction ratio of 1.8 to a thickness of 184 mm.

比較鋼No.12は,鍛造面積減少率の相違による強度の差をNo.14と比較するため,圧延前の鍛造工程で鋼塊の幅方向に面積減少率0.10で鍛造して厚みを730mmから832mmまで増大させた後に,厚み方向に面積減少率0.57で鍛造して厚みを358mmまで減少させ,その後圧減比1.8で圧延して厚さ200mmの製品とした。   Comparative steel No. No. 12 shows the difference in strength due to the difference in forging area reduction rate. In order to compare with No. 14, the forging process in the forging process before rolling was forged at an area reduction rate of 0.10 in the width direction of the steel ingot and increased in thickness from 730 mm to 832 mm, and then forged at an area reduction rate of 0.57 in the thickness direction. Then, the thickness was reduced to 358 mm, and then rolled at a reduction ratio of 1.8 to obtain a product having a thickness of 200 mm.

比較鋼No.13は,鍛造面積減少率の相違による強度の差をNo.18と比較するため,圧延前の鍛造工程で鋼塊の幅方向に面積減少率0.23で鍛造して厚みを500mmから631mmまで増大させた後に厚み方向に面積減少率0.29で鍛造して厚みを448mmまで減少させ,次いで,幅方向に面積減少率0.13で鍛造して厚みを502mmまで増大させた後に厚み方向に面積減少率0.29で鍛造して厚みを356mmまで減少させ,その後圧減比1.8で圧延して厚さ199mmの製品とした。   Comparative steel No. No. 13 shows the difference in strength due to the difference in the forging area reduction rate. In order to compare with No. 18, the forging process before rolling was forged at an area reduction rate of 0.23 in the width direction of the steel ingot to increase the thickness from 500 mm to 631 mm, and then forged at an area reduction rate of 0.29 in the thickness direction. The thickness is reduced to 448 mm, and then forged with an area reduction rate of 0.13 in the width direction to increase the thickness to 502 mm and then forged with an area reduction rate of 0.29 in the thickness direction to reduce the thickness to 356 mm. Then, it was rolled at a reduction ratio of 1.8 to obtain a product having a thickness of 199 mm.

以上の製造条件で鍛造と圧延を行った厚板を1100℃に加熱し水冷する方法で固溶化熱処理を行った。   The solution heat treatment was performed by heating the thick plate forged and rolled under the above production conditions to 1100 ° C. and cooling it with water.

製造結果をそれぞれ表3、表4に示す。評価方法は表1−2、表1−3で用いたと同じ方法で行った。   The production results are shown in Table 3 and Table 4, respectively. The evaluation method was the same as that used in Tables 1-2 and 1-3.

Figure 2008019479
Figure 2008019479

Figure 2008019479
Figure 2008019479

本発明鋼は,結晶粒が均一微細化していることから,4Kでの強度が高く,伸びも大きいことが認められた。一方、成分範囲を外れている鋼では、結晶粒が均一微細化する効果に乏しく一部粗大組織が残存したため,高い強度は得られても,高い伸びは得られなかった。 また,鋼塊厚み,鍛造における面積減少率,熱間圧延圧減比が請求範囲から外れる場合についても,一部粗大組織が残存したため,高い強度が得られても,高い伸びは得られなかった。   The steel of the present invention was confirmed to have high strength at 4K and large elongation because the crystal grains were uniformly refined. On the other hand, in the steel out of the component range, the effect of making the crystal grains uniform and fine was poor and a partially coarse structure remained. Therefore, even though high strength was obtained, high elongation was not obtained. In addition, even when the steel ingot thickness, the area reduction rate in forging, and the hot rolling reduction ratio were outside the claimed range, some coarse structures remained, so even if high strength was obtained, high elongation was not obtained. .

Claims (4)

質量%で、
C:0.08%以下、
N:0.10%以上0.22%以下、
C+N:0.12%以上、
Si:0.01%以上2.0%以下、
Mn:0.1%以上2.0%以下、
Cr:15%以上27%以下、
Ni:8%以上20%以下、
Mo:4%以下、
Co:0.1%以下、
Cu:0.1%以上3%以下、
Al:0.001%以上0.10%以下、
Ca:0.0005%以上0.01%以下
を含有し、残部鉄および不可避不純物からなり、
下記(I)式で定義するδフェライト量計算値(δcal;体積%)が−7%以上4%以下であり、
厚さ方向の任意の部位において幅及び長さ方向の伸びが30%以上を特徴とする,
厚さが100mm以上のオーステナイト系ステンレス圧延鋼板。
δcal(体積%)
=2.9×([Cr]+0.3[Si]+[Mo])−2.6×([Ni]+0.3×[Mn]+0.25×[Cu]+35×[C]+20×[N])−18 (I)
ただし、[元素記号]はそれぞれの元素の含有量(質量%)を意味する。
また、伸びは4Kで測定した値である。
% By mass
C: 0.08% or less,
N: 0.10% or more and 0.22% or less,
C + N: 0.12% or more,
Si: 0.01% or more and 2.0% or less,
Mn: 0.1% or more and 2.0% or less,
Cr: 15% or more and 27% or less,
Ni: 8% or more and 20% or less,
Mo: 4% or less,
Co: 0.1% or less,
Cu: 0.1% to 3%,
Al: 0.001% or more and 0.10% or less,
Ca: 0.0005% or more and 0.01% or less, comprising the balance iron and inevitable impurities,
The calculated amount of δ ferrite (δcal; volume%) defined by the following formula (I) is −7% or more and 4% or less,
It is characterized by an elongation of 30% or more in the width and length directions at any part in the thickness direction
An austenitic stainless rolled steel sheet having a thickness of 100 mm or more.
δcal (volume%)
= 2.9 × ([Cr] +0.3 [Si] + [Mo]) − 2.6 × ([Ni] + 0.3 × [Mn] + 0.25 × [Cu] + 35 × [C] + 20 × [N])-18 (I)
However, [element symbol] means the content (% by mass) of each element.
The elongation is a value measured at 4K.
質量%でさらに
Ti:0.010%以上0.030%以下を含有することを特徴とする請求項1に記載のステンレス圧延鋼板。
The stainless rolled steel sheet according to claim 1, further comprising Ti: 0.010% or more and 0.030% or less by mass%.
厚みが650mm以上の鋼塊を面積減少率0.5以上で鍛造し,圧減比1.5以上で熱間圧延後,固溶化熱処理を施すことを特徴とする請求項1または請求項2記載のステンレス圧延鋼板の製造方法。
ここで,鍛造の面積減少率(A)は以下のように定義する。
鍛造前の鋼塊断面積(厚み×幅):A0
鍛造後の鋼塊断面積(厚み×幅):A1
A=(A0−A1)/A0
また,圧延の圧減比(R)を以下のように定義する。
圧延前のスラブ厚み:B0
圧延後のスラブ厚み:B1
R=B0/B1
3. A steel ingot having a thickness of 650 mm or more is forged at an area reduction rate of 0.5 or more, and is subjected to a solution heat treatment after hot rolling at a reduction ratio of 1.5 or more. Manufacturing method for stainless steel sheet.
Here, the area reduction rate (A) of forging is defined as follows.
Steel ingot cross-sectional area before forging (thickness x width): A 0
Steel ingot cross-sectional area after forging (thickness x width): A 1
A = (A 0 −A 1 ) / A 0
The rolling reduction ratio (R) is defined as follows.
Slab thickness before rolling: B 0
Slab thickness after rolling: B 1
R = B 0 / B 1
厚みが500mm以上の鋼塊に対し,厚みが減少する方向に面積減少率0.3以上の鍛造と、厚みが増す方向に面積減少率0.15以上の鍛造とを、交互にそれぞれ1回以上行い,その後圧減比1.5以上で熱間圧延を実施し,固溶化熱処理を施すことを特徴とする,請求項1または請求項2記載のステンレス圧延鋼板の製造方法。
ここで,厚みが減少、または増す方向の鍛造の面積減少率(C)は以下のように定義する。
n回目の鍛造後の鋼塊断面積(厚み×幅):Cn
n−1回目の鍛造後の鋼塊断面積(厚み×幅):Cn-1
C=(Cn-1−Cn)/Cn-1
また,圧延の圧減比(R)を以下のように定義する。
圧延前のスラブ厚み:B0
圧延後のスラブ厚み:B1
R=B0/B1
For steel ingots with a thickness of 500 mm or more, forging with an area reduction rate of 0.3 or more in the direction of decreasing thickness and forging with an area reduction rate of 0.15 or more in the direction of increasing thickness alternately one or more times each. The method for producing a stainless rolled steel sheet according to claim 1 or 2, characterized in that, after that, hot rolling is performed at a reduction ratio of 1.5 or more, and solution heat treatment is performed.
Here, the area reduction rate (C) of forging in the direction in which the thickness decreases or increases is defined as follows.
Steel ingot cross-sectional area after n-th forging (thickness x width): C n
Steel ingot cross-sectional area after n-1th forging (thickness × width): C n-1
C = (C n-1 −C n ) / C n-1
The rolling reduction ratio (R) is defined as follows.
Slab thickness before rolling: B 0
Slab thickness after rolling: B 1
R = B 0 / B 1
JP2006192702A 2006-07-13 2006-07-13 Austenitic stainless rolled steel sheet excellent in strength and ductility and method for producing the same Active JP5116265B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006192702A JP5116265B2 (en) 2006-07-13 2006-07-13 Austenitic stainless rolled steel sheet excellent in strength and ductility and method for producing the same
KR1020087004097A KR100987176B1 (en) 2006-07-13 2007-06-25 Rolled austenite stainless steel plate having thickness of 100 ? or more and method for production thereof
EP07767966.0A EP2042616B1 (en) 2006-07-13 2007-06-25 ROLLED AUSTENITE STAINLESS STEEL PLATE HAVING THICHKESS OF 100 mm OR MORE AND METHOD FOR PRODUCTION THEREOF
CN200780000850XA CN101341271B (en) 2006-07-13 2007-06-25 Rolled austenite stainless steel plate having thichkess of 100 mm or more and method for production thereof
PCT/JP2007/063186 WO2008007572A1 (en) 2006-07-13 2007-06-25 ROLLED AUSTENITE STAINLESS STEEL PLATE HAVING THICHKESS OF 100 mm OR MORE AND METHOD FOR PRODUCTION THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006192702A JP5116265B2 (en) 2006-07-13 2006-07-13 Austenitic stainless rolled steel sheet excellent in strength and ductility and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008019479A true JP2008019479A (en) 2008-01-31
JP5116265B2 JP5116265B2 (en) 2013-01-09

Family

ID=38923134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006192702A Active JP5116265B2 (en) 2006-07-13 2006-07-13 Austenitic stainless rolled steel sheet excellent in strength and ductility and method for producing the same

Country Status (5)

Country Link
EP (1) EP2042616B1 (en)
JP (1) JP5116265B2 (en)
KR (1) KR100987176B1 (en)
CN (1) CN101341271B (en)
WO (1) WO2008007572A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176802A1 (en) * 2011-06-24 2012-12-27 住友金属工業株式会社 Method for producing austenitic stainless steel and austenitic stainless steel material
CN103725986A (en) * 2013-12-19 2014-04-16 江阴兴澄特种钢铁有限公司 High-ductility Class F extra thick rack steel plate used at low temperature and manufacturing method of steel plate
JP2016074946A (en) * 2014-10-06 2016-05-12 山陽特殊製鋼株式会社 Austenitic stainless steel excellent in wire drawing
CN105755369A (en) * 2016-04-28 2016-07-13 江阴兴澄特种钢铁有限公司 Easy-to-weld and low-temperature steel plate with excellent lamellar tearing resistance and manufacturing method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101745786B (en) * 2009-12-31 2012-03-14 上海新闵重型锻造有限公司 Forging method of water supply connecting tube and secondary side manhole
EP2623624B1 (en) * 2010-09-29 2016-08-17 Nippon Steel & Sumikin Stainless Steel Corporation Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
KR101511723B1 (en) * 2013-03-15 2015-04-13 주식회사 포스코 Casting apparatus and method using it
CN103438951A (en) * 2013-09-06 2013-12-11 高正 Alloy steel wear-resisting anti-blocking type air volume and air velocity transducer
JP6156455B2 (en) * 2014-08-25 2017-07-05 Jfeスチール株式会社 Slab forging method
CN105112608B (en) * 2015-09-23 2018-11-06 宝钢德盛不锈钢有限公司 A kind of method and products thereof promoting low-nickel austenitic stainless steel polishing performance
WO2018197701A1 (en) * 2017-04-28 2018-11-01 Sandvik Intellectual Property Ab Austenitic stainless steel tube material in an lng vaporiser
CA3078398A1 (en) * 2017-10-03 2019-04-11 Nippon Steel Corporation Austenitic stainless steel
KR102015510B1 (en) * 2017-12-06 2019-08-28 주식회사 포스코 Non-magnetic austenitic stainless steel with excellent corrosion resistance and manufacturing method thereof
CN111451292A (en) * 2020-03-31 2020-07-28 鞍钢股份有限公司 Method for controlling transverse thickness precision of 1000 MPa-grade cold-rolled dual-phase steel
CN111549276A (en) * 2020-05-06 2020-08-18 山西太钢不锈钢股份有限公司 Grain size control method for high-carbon austenitic stainless steel medium plate
KR102448741B1 (en) * 2020-08-31 2022-09-30 주식회사 포스코 Austenitic stainless steel with improved deep drawing
CN113560343B (en) * 2021-06-25 2023-01-17 鞍钢股份有限公司 Method for controlling grain size of low-carbon austenitic stainless steel extra-thick plate
CN113560344B (en) * 2021-06-29 2022-12-16 鞍钢股份有限公司 Production method of medium plate of austenitic stainless steel
CN115029528B (en) * 2022-05-17 2023-10-03 山西太钢不锈钢股份有限公司 Low ferrite hot rolled stainless steel middle plate for hydrogen storage and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270356A (en) * 1985-05-24 1986-11-29 Kobe Steel Ltd Austenitic stainless steels plate having high strength and high toughness at very low temperature
JPH07316653A (en) * 1994-05-19 1995-12-05 Nippon Steel Corp Production of thick stainless steel plate excellent in very low temperature characteristic
JPH08269564A (en) * 1995-03-29 1996-10-15 Nippon Steel Corp Production of nonmagnetic thick stainless steel plate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013063A (en) 1983-07-05 1985-01-23 Nippon Steel Corp Structural austenitic stainless steel for very low temperature use
JPS6152351A (en) 1984-08-20 1986-03-15 Nippon Steel Corp Structural austenitic stainless steel having superior yield strength and toughness at very low temperature
JPH0765143B2 (en) 1988-08-22 1995-07-12 株式会社神戸製鋼所 Cryogenic non-magnetic austenitic stainless steel with excellent reheat resistance
JPH07310120A (en) 1994-05-13 1995-11-28 Nippon Steel Corp Method for hot-rolling austenitic stainless steel thick plate
JPH08104920A (en) 1994-10-07 1996-04-23 Sumitomo Metal Ind Ltd Production of high-strength austenitic stainless steel sheet
JPH11131138A (en) 1997-10-31 1999-05-18 Nippon Steel Corp Production of stainless steel extra-thick steel plate
JP3736631B2 (en) * 2002-05-10 2006-01-18 新日鐵住金ステンレス株式会社 Chemical tank steel with excellent resistance to sulfuric acid corrosion and pitting corrosion
US20060243356A1 (en) * 2005-02-02 2006-11-02 Yuusuke Oikawa Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270356A (en) * 1985-05-24 1986-11-29 Kobe Steel Ltd Austenitic stainless steels plate having high strength and high toughness at very low temperature
JPH07316653A (en) * 1994-05-19 1995-12-05 Nippon Steel Corp Production of thick stainless steel plate excellent in very low temperature characteristic
JPH08269564A (en) * 1995-03-29 1996-10-15 Nippon Steel Corp Production of nonmagnetic thick stainless steel plate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176802A1 (en) * 2011-06-24 2012-12-27 住友金属工業株式会社 Method for producing austenitic stainless steel and austenitic stainless steel material
JP5201297B2 (en) * 2011-06-24 2013-06-05 新日鐵住金株式会社 Austenitic stainless steel and method for producing austenitic stainless steel
US9506126B2 (en) 2011-06-24 2016-11-29 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel and method for producing austenitic stainless steel material
RU2618021C1 (en) * 2011-06-24 2017-05-02 Ниппон Стил Энд Сумитомо Метал Корпорейшн Austenite stainless steel and method of producing material out of austenite stainless steel
CN103725986A (en) * 2013-12-19 2014-04-16 江阴兴澄特种钢铁有限公司 High-ductility Class F extra thick rack steel plate used at low temperature and manufacturing method of steel plate
CN103725986B (en) * 2013-12-19 2015-12-30 江阴兴澄特种钢铁有限公司 The special thick rack steel plate of the high tenacity F level used under low temperature and manufacture method thereof
JP2016074946A (en) * 2014-10-06 2016-05-12 山陽特殊製鋼株式会社 Austenitic stainless steel excellent in wire drawing
CN105755369A (en) * 2016-04-28 2016-07-13 江阴兴澄特种钢铁有限公司 Easy-to-weld and low-temperature steel plate with excellent lamellar tearing resistance and manufacturing method thereof

Also Published As

Publication number Publication date
EP2042616A4 (en) 2016-05-18
KR100987176B1 (en) 2010-10-11
EP2042616A1 (en) 2009-04-01
KR20080034951A (en) 2008-04-22
WO2008007572A1 (en) 2008-01-17
JP5116265B2 (en) 2013-01-09
CN101341271B (en) 2011-09-21
CN101341271A (en) 2009-01-07
EP2042616B1 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
JP5116265B2 (en) Austenitic stainless rolled steel sheet excellent in strength and ductility and method for producing the same
JP3758508B2 (en) Manufacturing method of duplex stainless steel pipe
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
WO2013133259A1 (en) Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same
CN109642286B (en) Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same
TWI460292B (en) Ferritic stainless steel
JP5005543B2 (en) High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same
EP2792761B1 (en) High-strength extra-thick steel h-beam
JP2009293063A (en) METHOD FOR MANUFACTURING HIGH-Cr HEAT-RESISTANT FERRITIC STEEL MATERIAL
CA3015441C (en) Ti-containing ferritic stainless steel sheet, manufacturing method, and flange
RU2581696C1 (en) Method for production of hot-rolled sheets from low-alloy steel
JP6811112B2 (en) Ferrite Duplex Stainless Steel Sheet and Its Manufacturing Method
KR20180033202A (en) A moldable lightweight steel having improved mechanical properties and a method for producing a semi-finished product from said steel
JP4367091B2 (en) High-strength hot-rolled steel sheet having excellent fatigue resistance and excellent strength-ductility balance and method for producing the same
US10144982B2 (en) Fe—Mn—C-based TWIP steel having remarkable mechanical performance at very low temperature, and preparation method thereof
JP2010229514A (en) Cold rolled steel sheet and method for producing the same
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
JP2007056283A (en) High-strength thick-wall electric resistance welded steel tube having excellent hardenability and decarburization resistance, and its manufacturing method
CN114040990A (en) Austenitic stainless steel having improved strength and method for manufacturing the same
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP5187151B2 (en) Thick steel plate excellent in bending workability by linear heating and its manufacturing method
JP2007246985A (en) Manufacturing method of high-toughness and high-tensile thick steel plate
JPWO2019203251A1 (en) Hot rolled steel sheet
JP6410543B2 (en) Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R150 Certificate of patent or registration of utility model

Ref document number: 5116265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250