JPH0765143B2 - Cryogenic non-magnetic austenitic stainless steel with excellent reheat resistance - Google Patents

Cryogenic non-magnetic austenitic stainless steel with excellent reheat resistance

Info

Publication number
JPH0765143B2
JPH0765143B2 JP20859988A JP20859988A JPH0765143B2 JP H0765143 B2 JPH0765143 B2 JP H0765143B2 JP 20859988 A JP20859988 A JP 20859988A JP 20859988 A JP20859988 A JP 20859988A JP H0765143 B2 JPH0765143 B2 JP H0765143B2
Authority
JP
Japan
Prior art keywords
stainless steel
austenitic stainless
less
reheating
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20859988A
Other languages
Japanese (ja)
Other versions
JPH0257668A (en
Inventor
雅生 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20859988A priority Critical patent/JPH0765143B2/en
Publication of JPH0257668A publication Critical patent/JPH0257668A/en
Publication of JPH0765143B2 publication Critical patent/JPH0765143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、溶体化状態で使用される極低温用非磁性オー
ステナイト系ステンレス鋼に関し、詳細には溶体化処理
後に再加熱を受けても強度や靭性等が低下しない極低温
用非磁性オーステナイト系ステンレス鋼に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a nonmagnetic austenitic stainless steel for cryogenic use which is used in a solution state, and more specifically, has a strength even when subjected to reheating after solution treatment. The present invention relates to a cryogenic non-magnetic austenitic stainless steel that does not deteriorate in toughness and the like.

[従来の技術] 溶体化熱処理は極低温用オーステナイト系ステンレス鋼
の基本的熱処理であり、Cr炭化物あるいはσ相などのぜ
い化相を固溶させることによって機械的性質殊に靭性を
高めるという重要な役割を果たしている。しかるに溶体
化熱処理を施したオーステナイト系ステンレス鋼を用い
て極低温容器等を製作する再には溶接手段等を採用する
ことになるので、その結果溶接部近傍の熱影響部の様な
再加熱を受ける箇所においては溶体化状態からの炭化物
の粒界析出が起こり、耐食性及び低温靭性が劣化する。
従って溶接等の再加熱を受けても特性殊に低温靭性や耐
食性の劣化を起こさない極低温用オーステナイト系ステ
ンレス鋼が要望されている。
[Prior Art] Solution heat treatment is a basic heat treatment of austenitic stainless steel for cryogenic use, and it is important to enhance mechanical properties, especially toughness, by solid solution of Cr carbide or embrittlement phase such as σ phase. Plays a role. However, welding means etc. will be adopted to remanufacture cryogenic containers etc. using solution heat treated austenitic stainless steel, and as a result, reheating such as heat affected zone near the welded part will be performed. Grain boundary precipitation of carbides from the solution state occurs at the receiving site, and corrosion resistance and low temperature toughness deteriorate.
Therefore, there is a demand for an ultra-low temperature austenitic stainless steel that does not cause deterioration in properties, especially low temperature toughness and corrosion resistance, even when subjected to reheating such as welding.

一方、最近超電導マグネットを収納する為の構造材料に
対する需要から、非磁性であると共に極低温環境下で高
強度及び高靭性を示すオーステナイト系ステンレス鋼へ
の期待が高まっている。しかるに例えばNb3Snを超電導
体とする高磁場超電導マグネットの製作に当たっては、
Cu−Snマトリックス中にNb芯を埋込んだ複合体を加工後
熱処理して、マトリックス中のSnとNbを反応させてNb3S
nの超電導体を形成する訳であるが、こうした熱処理は
複合体を構成材料内に組込んだ後に行なわれることが多
い。しかるにこのときの熱処理温度は通常650〜750℃で
あるので、上記構造材料として極低温用オーステナイト
系ステンレス鋼を使用した場合には炭化物の粒界析出が
非常に発生し易く、極低温条件下では到底使用に耐えな
い。そこで超電導マグネットの構造材料としては、SUS6
60の様な時効硬化型の耐熱ステンレス鋼やNi基耐熱合金
等の所謂超合金を使用するか、あるいはNbやTiを含有す
るSUS321やSUS347に、予め炭素固定の為の安定化処理を
施した後、前記熱処理に付すといった対策が採られてい
る。
On the other hand, recently, due to the demand for a structural material for housing a superconducting magnet, expectations for an austenitic stainless steel that is non-magnetic and that exhibits high strength and high toughness in a cryogenic environment are increasing. However, for example, in manufacturing a high magnetic field superconducting magnet using Nb 3 Sn as a superconductor,
Cu-Sn in the matrix by heat treatment after processing the complex is embedded, the Nb core, by reacting Sn and Nb in the matrix Nb 3 S
Such a heat treatment is often performed after the composite is incorporated into the constituent materials, although it forms n superconductors. However, since the heat treatment temperature at this time is usually 650 to 750 ° C., when the cryogenic austenitic stainless steel is used as the structural material, grain boundary precipitation of carbide is very likely to occur, and under cryogenic conditions It cannot be used at all. Therefore, as a structural material for superconducting magnets, SUS6
A so-called superalloy such as age-hardening heat-resistant stainless steel or Ni-based heat-resistant alloy such as 60 is used, or SUS321 or SUS347 containing Nb or Ti is preliminarily subjected to stabilization treatment for carbon fixation. After that, measures such as applying the heat treatment are taken.

しかるに上記超合金の場合は、非常に高価な元素を含む
と共に、特殊な熱処理を必要とするので超合金の価格が
非常に高くなるという問題がある。又鋳造技術の困難さ
から製造可能なインゴットの重量が制限されるという問
題があり、さらに難削材であって加工性に欠けると共に
溶接が容易ではない等、種々の問題がある。一方SUS321
やSUS347に安定化処理を施して使用する場合には、熱処
理コストが加わるのでやはり材料が高くなるという点が
問題になると共に、加工履歴や溶接履歴の異なる材料に
常に最適の安定化処理を施すことは極めて困難であり、
熱処理によって期待する様な特性(低温靭性等)を得る
ことは難しく、さらに強度が一般に低いという問題があ
る。
However, in the case of the above superalloy, there is a problem that the cost of the superalloy becomes very high because it contains a very expensive element and requires special heat treatment. In addition, there is a problem that the weight of an ingot that can be manufactured is limited due to the difficulty of the casting technique, and there are various problems that it is a difficult-to-cut material and lacks workability and that welding is not easy. On the other hand, SUS321
When using SUS347 or SUS347 with stabilizing treatment, the heat treatment cost is added, so that the material is also expensive, and the material with different working history and welding history is always subjected to optimal stabilizing treatment. Is extremely difficult,
It is difficult to obtain the expected characteristics (low temperature toughness, etc.) by heat treatment, and there is a problem that strength is generally low.

[発明が解決しようとする課題] 本発明はこうした事情に着目してなされたものであっ
て、高価な特殊成分の添加や事前の特別な熱処理を必要
とせず、しかも600〜800℃程度の再加熱があっても極低
温特性の殆んど劣化しない即ち通常のオーステナイト系
ステンレス鋼と同等以上の耐力・破壊靭性値バランスを
備えた、非磁性の極低温用オーステナイト系ステンレス
鋼を提供することを目的とするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of such circumstances, and does not require addition of expensive special components or special heat treatment in advance, and can be reheated at about 600 to 800 ° C. To provide a non-magnetic cryogenic austenitic stainless steel that has almost no deterioration in cryogenic properties even when heated, that is, has a balance of yield strength and fracture toughness value equal to or higher than that of a normal austenitic stainless steel. It is intended.

[課題を解決するための手段] しかして上記目的を達成した本発明の極低温用非磁性オ
ーステナイト系ステンレス鋼は、 C:0.05%(重量%の意味、以下同じ)以下 Mn:1〜10% Si:0.5%以下 P:0.03%以下 S:0.01%以下 Cr:13〜20% Ni:10〜15% Nb:0.02〜0.10% N:0.1〜0.25% Mo:1.5〜4.5% B:0.002〜0.006% 残部:Fe及び不可避不純物 からなる点に第1の要旨が存在し、さらに上記構成に加
えて Ca,Mg,Zr,Ceから選択される1種以上:総和で0.001〜0.
01% を含有する点に第2の要旨を有するものである。
[Means for Solving the Problem] However, the nonmagnetic austenitic stainless steel for cryogenic use of the present invention which has achieved the above-mentioned object is C: 0.05% (meaning weight%, the same applies hereinafter) or less Mn: 1 to 10% Si: 0.5% or less P: 0.03% or less S: 0.01% or less Cr: 13 to 20% Ni: 10 to 15% Nb: 0.02 to 0.10% N: 0.1 to 0.25% Mo: 1.5 to 4.5% B: 0.002 to 0.006 % Remainder: The first point is that it consists of Fe and inevitable impurities, and one or more selected from Ca, Mg, Zr, and Ce in addition to the above structure: 0.001 to 0 in total.
It has a second gist in that it contains 01%.

[作用] 本発明に係る極低温用オーステナイト系ステンレス鋼の
化学成分とその限定理由について説明する。
[Operation] The chemical components of the cryogenic austenitic stainless steel according to the present invention and the reasons for limitation thereof will be described.

Cはオーステナイト安定化及び極低温における耐力向上
に有効な元素であるが、再加熱によって粒界炭化物を析
出し極低温下での靭性劣化の原因となるので0.05%以
下、好ましくは0.03%以下に抑えなければならない。尚
再加熱による粒界炭化物の析出は再加熱温度が高くなる
ほど起こり易くなる傾向にあり、再加熱温度が650℃程
度まであるならばC量を0.05%以下に抑えれば十分であ
るが、再加熱温度が700℃程度あるいはそれ以上になる
と考えられるときは、C量は0.03%以下に制限すること
が望ましい。
C is an element effective for stabilizing austenite and improving yield strength at extremely low temperatures, but since it causes precipitation of grain boundary carbides by reheating and causes deterioration of toughness at extremely low temperatures, it is 0.05% or less, preferably 0.03% or less. I have to hold back. Precipitation of grain boundary carbides due to reheating tends to occur more easily as the reheating temperature increases. If the reheating temperature is up to about 650 ° C, it is sufficient to suppress the C content to 0.05% or less. When the heating temperature is considered to be about 700 ° C. or higher, it is desirable to limit the C content to 0.03% or less.

Mnはオーステナイトを安定化すると共に窒素の固溶限を
増大させる効果があり、また熱間加工性を改善する効果
もあるが、必要以上に添加してもそれ以上効果は上がら
ないので添加量を1〜10%に規定した。
Mn has the effect of stabilizing austenite and increasing the solid solubility limit of nitrogen, and also has the effect of improving hot workability, but even if added more than necessary, the effect does not rise any further, so the amount added It is specified to 1 to 10%.

CrはNiと共にオーステナイト系ステンレス鋼を形成する
上で不可欠な成分であるが、本発明の目的と関係では再
加熱時における高温粒界腐食を抑制する効果があり、且
つ常温以下の温度域における耐錆性を高める作用も有し
ている。しかしながら必要以上に添加すると再加熱時に
σ相の析出を招き、靭性劣化を引き起こすので、本発明
ではCr量を13〜20%と規定している。
Cr is an essential component in forming austenitic stainless steel together with Ni, but has the effect of suppressing high temperature intergranular corrosion at the time of reheating, and withstands the temperature range below room temperature in relation to the object of the present invention. It also has the function of increasing rust. However, if added more than necessary, it causes precipitation of σ phase during reheating and causes deterioration of toughness. Therefore, in the present invention, the Cr amount is defined as 13 to 20%.

Niは極低温における延性及び靭性を向上させる効果を有
するが、必要以上に添加しても効果は上がらないので本
発明ではNi量を10〜20%とした。又Niはオーステナイト
を安定化させる上で不可欠な成分であり、その効果はNi
当量として次式で表わすことができる。尚本発明鋼にお
いては再加熱による固溶要素の減少は殆ど無視できる
が、固溶炭素は再加熱によって減少してしまうので、実
質的には下記(1)式の炭素の項が省略されたNi当量の
式が有効となる。
Ni has the effect of improving ductility and toughness at extremely low temperatures, but even if added more than necessary, the effect does not increase, so in the present invention, the Ni content was made 10 to 20%. Ni is an essential component for stabilizing austenite, and its effect is
The equivalent can be expressed by the following formula. In the steel of the present invention, the reduction of the solid solution element due to reheating can be almost ignored, but the solid solution carbon is reduced by the reheating, so that the term of carbon in the formula (1) below is substantially omitted. The Ni equivalent formula is valid.

Ni当量=Ni+0.5 Mn+30C+30N ……(1) 一方冷間における切削や曲げ等の加工によってα′相を
発生させると強磁性体への変化が見られるので超電導マ
グネットの構造材等として使用する場合にはα′相を生
じない様な安定オーステナイトを得る為の条件が必要と
なり、該条件としてNi当量が下記(2)式を満足する様
に成分組成を調整することが望まれる。
Ni equivalent = Ni + 0.5 Mn + 30C + 30N (1) On the other hand, when the α'phase is generated by processing such as cold cutting or bending, it changes to a ferromagnetic material, so it is used as a structural material for superconducting magnets. Requires a condition for obtaining stable austenite that does not generate an α'phase, and it is desirable to adjust the component composition so that the Ni equivalent satisfies the following formula (2).

Ni当量≧18+|Cr−18| ……(2) Nbは再加熱時に炭素をNbCの微細析出物として固定し、
またCrをNbCrNの微細析出物として固定する効果があ
り、この結果、粒界脆化の原因となっているCr23C6の粒
界析出を抑制することができる。しかしながら過剰に添
加すると、析出物の大きさが粗大となり靭性は却って劣
化する。上記理由からNb量は0.02〜0.1%とする必要が
ある。尚本発明におけるNb量限定の理由は、SUS347のよ
うにNb/Cを10以上として炭素を完全固定するというので
はなく、微細に且つ均一にNbCとNbCrNを析出させること
によって、CrとNbを固定しCr23C6の粒界析出量を抑える
と共に、多少のCr23C6が存在していても(Nb/Cが10以下
でも)これをNbCやNbCrNの微細析出がカバーし、機械的
特性の低下を招くことがないという知見に基づいてい
る。
Ni equivalent ≧ 18 + | Cr-18 | (2) Nb fixes carbon as NbC fine precipitates during reheating,
Further, it has an effect of fixing Cr as fine precipitates of NbCrN, and as a result, it is possible to suppress grain boundary precipitation of Cr 23 C 6 , which is a cause of grain boundary embrittlement. However, if added excessively, the size of the precipitate becomes coarse and the toughness deteriorates rather. For the above reason, the Nb content needs to be 0.02 to 0.1%. The reason for limiting the amount of Nb in the present invention is not to completely fix carbon with Nb / C of 10 or more like SUS347, but to finely and uniformly precipitate NbC and NbCrN to produce Cr and Nb. fixed suppresses grain boundary precipitation of Cr 23 C 6, even if there is some Cr 23 C 6 (Nb / C is at 10 or less) which covers the NbC and NbCrN of fine precipitation, mechanical It is based on the finding that the characteristics will not be degraded.

Nはオーステナイトを安定化させて、極低温における耐
力を著しく向上させる効果があるので本発明においては
高強度を確保する上で重要な成分である。又、再加熱時
には炭素が粒界に拡散してCr23C6を析出し易いが、窒素
は炭素と同じ侵入型元素であるので炭素と競合してその
拡散を抑制し、Cr23C6の析出を防止する効果がある。し
かしながら固溶限からいって0.25%以上の添加は困難で
あるのでN量は0.1〜0.25%とした。
N has the effect of stabilizing austenite and significantly improving the proof stress at extremely low temperatures, and is an important component in the present invention for ensuring high strength. Also, during reheating, carbon easily diffuses into the grain boundaries and precipitates Cr 23 C 6 , but since nitrogen is the same interstitial element as carbon, it competes with carbon to suppress its diffusion, and Cr 23 C 6 It has the effect of preventing precipitation. However, since it is difficult to add 0.25% or more due to the solid solubility limit, the N content was set to 0.1 to 0.25%.

Moは再加熱時の粒界への不純物の拡散を抑制して粒界脆
化を抑える効果があるが、過剰に添加すると逆にMo化合
物が析出して粒界脆化をひきおこすのでその添加量を1.
5〜4.5%と規定した。尚Mo添加による粒界脆化抑制効果
は再加熱温度が高くなるほど大きくなる傾向にあり、再
加熱温度が700℃程度あるいはそれ以上であればMo添加
量は1.5%以上で十分であるが、再加熱温度が650℃程度
までの場合にはMo添加量を2.5%以上に増加させること
が望ましい。一方Mo化合物の析出は再加熱温度が高くな
るほど起こり易くなるので再加熱温度が700℃程度ある
いはそれ以上になればMo添加量を2.5%以下にとどめて
おくことが望ましく、他方再加熱温度が650℃程度まで
の場合であっても4.5%以下にはとどめる必要がある。
Mo has the effect of suppressing the diffusion of impurities to the grain boundaries during reheating and suppressing the grain boundary embrittlement, but if added excessively, Mo compounds will precipitate and cause grain boundary embrittlement. To 1.
Specified as 5 to 4.5%. The effect of suppressing the grain boundary embrittlement due to the addition of Mo tends to increase as the reheating temperature increases. If the reheating temperature is about 700 ° C or higher, the Mo addition amount of 1.5% or more is sufficient. When the heating temperature is up to about 650 ° C, it is desirable to increase the amount of added Mo to 2.5% or more. On the other hand, since the precipitation of Mo compounds is more likely to occur as the reheating temperature becomes higher, it is desirable to keep the Mo addition amount at 2.5% or less when the reheating temperature is about 700 ° C or higher, while the reheating temperature is 650 Even if the temperature is up to about ℃, it must be kept below 4.5%.

Bは粒界に優先的に偏析し易い元素であり、溶体化状態
においてはBの偏析によって極低温靭性が劣化するが、
長時間の再加熱に対しては炭化物の粒界への析出を防止
する効果を発揮する。上記効果が得るには0.002%以上
の添加が必要であるが、過剰の添加は溶体化状態におけ
る極低温靭性の低下という悪影響が大きくなると共に熱
間加工性も劣化するので0.006%以下に制限する必要が
ある。
B is an element that tends to segregate preferentially at grain boundaries, and in the solution state, segregation of B deteriorates the cryogenic toughness.
It has the effect of preventing the precipitation of carbides at the grain boundaries when it is reheated for a long time. In order to obtain the above effect, 0.002% or more must be added, but excessive addition has the adverse effect of lowering the cryogenic toughness in the solution state and worsens hot workability, so it is limited to 0.006% or less. There is a need.

Siは製鋼時の脱酸成分として必要であるが、再加熱時に
は靭性劣化を促進させる成分となるので添加量は必要最
小限にとどめる必要がある。こうした理由からSi量は0.
5%以下に抑えなければならない。PはSiと同じく再加
熱時の靭性劣化を促進するので少なければ少ない方がよ
い成分であり、本発明では0.03%以下に制限することと
した。
Si is required as a deoxidizing component during steel making, but it is a component that promotes deterioration of toughness during reheating, so the addition amount must be kept to the minimum necessary. For this reason, the Si content is 0.
Must be kept below 5%. Since P promotes deterioration of toughness during reheating similarly to Si, P is a better component if it is small, so in the present invention, it is limited to 0.03% or less.

Sは硫化物を形成して極低温靭性を低下させると共に再
加熱時の靭性劣化を促進させる成分であり、且つ熱間加
工性も劣化させるので含有量をできるだけ制限すること
が望ましく、こうした理由からS量は0.01%以下に抑え
なければならない。
S is a component that forms a sulfide to lower the cryogenic toughness and accelerates the deterioration of the toughness during reheating, and also deteriorates the hot workability, so it is desirable to limit the content as much as possible. The amount of S must be kept below 0.01%.

以上の成分組成に加えて、必要によりCa,Mg,Zr,Ceのう
ちから選択される一種以上の元素を総和0.001%以上添
加すると、靭性を一層改善することができる。即ちこれ
らの元素は脱酸作用及び脱硫作用を有し製鋼時に介在物
を除去する効果があるので、清浄化の結果として靭性を
改善する。添加量が0.001%未満では効果がないが、過
剰に添加すると熱間加工性を劣化させるので総量で0.01
%以下にとどめておく必要がある。
In addition to the above component composition, if necessary, one or more elements selected from Ca, Mg, Zr, and Ce are added in a total amount of 0.001% or more, so that the toughness can be further improved. That is, since these elements have a deoxidizing action and a desulfurizing action and have an effect of removing inclusions during steelmaking, they improve toughness as a result of cleaning. If the addition amount is less than 0.001%, there is no effect, but if added in excess, the hot workability deteriorates.
It is necessary to keep it below%.

[実施例] 実施例1 第1表に示す成分組成の鋼を、熱間圧延によって厚さ28
mmの鋼板に加工した後、、1050〜1100℃で溶体化処理を
施した。次いで700℃で75時間再加熱処理した後、−269
℃の温度下で引張試験及び破壊靭性試験を実施して特性
を評価したところ第2表に示す結果が得られた。又破壊
靭性試験片の破面についてその形態を走査型電子顕微鏡
で観察した結果及び透磁率測定結果を第2表に併せて示
した。
[Example] Example 1 A steel having the composition shown in Table 1 was hot-rolled to a thickness of 28
After processing into a steel plate of mm, the solution treatment was performed at 1050-1100 ° C. Then, after reheating at 700 ° C for 75 hours, -269
When the tensile test and the fracture toughness test were performed at a temperature of ° C to evaluate the properties, the results shown in Table 2 were obtained. Table 2 also shows the results of observing the morphology of the fracture surface of the fracture toughness test piece with a scanning electron microscope and the results of magnetic permeability measurement.

第1,2表に示した様に、実施例鋼A〜Fは再加熱後も−2
69℃における耐力が1100MPa以上、破壊靭性値が 以上と高い値を示すことが確認された。また破面の透磁
率も良好で加工後にも安定して非磁性を示すことが認め
られた。
As shown in Tables 1 and 2, the example steels A to F had a temperature of −2 even after reheating.
The yield strength at 69 ℃ is 1100MPa or more, and the fracture toughness value is It was confirmed that the above values were high. It was also confirmed that the fracture surface had a good magnetic permeability and that it showed stable non-magnetism even after processing.

これに対し比較例鋼Gは、Mo,Bの含まれない例であり引
張特性は良好であるが破壊靭性値は 以下で粒界破壊を示した。比較例鋼HはSUS304に近い鋼
であり、比較例鋼IはSUS316Lに近い鋼であるが、耐力
が低く且つ破壊靭性値も低い値を示した。比較例鋼Jは
SUS347に相当する鋼で耐力は低いが、Nb添加効果が発揮
されて部分的に粒内破面を示しており、破壊靭性値も比
較例鋼H,Iに比べると高い値を示している。しかしなが
らMo,Bを含まず、C,Nbが過剰である等、成分組成が適正
でないので実施例に比べると耐力及び破壊靭性値が劣っ
ており、しかも安定した非磁性状態を示していない。
On the other hand, Comparative Steel G is an example containing no Mo and B and has good tensile properties but a fracture toughness value. The intergranular fracture was shown below. Comparative Example Steel H is a steel close to SUS304, and Comparative Example Steel I is a steel close to SUS316L, but it has low yield strength and low fracture toughness. Comparative Example Steel J
Steel equivalent to SUS347 has low yield strength, but partially exhibits intragranular fracture surface due to the effect of Nb addition, and the fracture toughness value is also higher than those of comparative steels H and I. However, since the composition of the components is not proper such as not containing Mo and B and C and Nb being excessive, the yield strength and fracture toughness value are inferior to those of the examples, and a stable non-magnetic state is not shown.

実施例2 第3表に示す成分組成の鋼を、実施例1と同様に処理し
て諸特性を測定したところ第4表に示す結果が得られ
た。尚溶体且処理は1100℃で1時間とし、再加熱処理は
650℃で75時間実施した。
Example 2 A steel having the chemical composition shown in Table 3 was treated in the same manner as in Example 1 and its properties were measured. The results shown in Table 4 were obtained. The solution treatment is 1100 ° C for 1 hour, and the reheat treatment is
It was carried out at 650 ° C for 75 hours.

第3,4表に示す様に、実施例鋼K〜Pは再加熱後も−269
℃における耐力が1100MPa以上、破壊靭性値が 以上と高い値を示した。650℃で再加熱した鋼は溶体化
だけの鋼(試料k*3)よりも高い破壊靭性値を示し
た。
As shown in Tables 3 and 4, the example steels K to P were -269 even after reheating.
Yield strength at 1100MPa or more, fracture toughness value The above values were high. The steel reheated at 650 ° C showed higher fracture toughness values than the solution-annealed steel (Sample k * 3).

[発明の効果] 本発明は以上の様に構成されており、溶体化処理後に再
加熱されることがあっても極低温環境において優れた延
性及び破壊靭性を示すオーステナイト系ステンレス鋼を
得ることができた。しかも高価な成分の添加や再加熱前
に特別な熱処理を施す必要がないので目的とするステン
レス鋼を経済的に得ることができる。かくしてNb3Sn等
の超電導体生成熱処理にも耐える極低温用非磁性オース
テナイト系ステンレス鋼を経済的に提供することができ
た。
EFFECTS OF THE INVENTION The present invention is configured as described above, and is capable of obtaining an austenitic stainless steel exhibiting excellent ductility and fracture toughness in a cryogenic environment even if it is reheated after solution treatment. did it. Moreover, since it is not necessary to add an expensive component or to perform a special heat treatment before reheating, the desired stainless steel can be economically obtained. Thus, it was possible to economically provide a cryogenic non-magnetic austenitic stainless steel that can withstand the heat treatment of superconductors such as Nb 3 Sn.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C:0.05%(重量%の意味、以下同じ)以下 Mn:1〜10% Si:0.5%以下 P:0.03%以下 S:0.01%以下 Cr:13〜20% Ni:10〜15% Nb:0.02〜0.10% N:0.1〜0.25% Mo:1.5〜4.5% B:0.002〜0.006% 残部:Fe及び不可避不純物 からなることを特徴とする耐再加熱特性に優れた極低温
用非磁性オーステナイト系ステンレス鋼。
1. C: 0.05% or less (meaning weight%; the same applies hereinafter) Mn: 1-10% Si: 0.5% or less P: 0.03% or less S: 0.01% or less Cr: 13-20% Ni: 10- 15% Nb: 0.02 to 0.10% N: 0.1 to 0.25% Mo: 1.5 to 4.5% B: 0.002 to 0.006% Balance: Fe and unavoidable impurities Magnetic austenitic stainless steel.
【請求項2】C:0.05% Mn:1〜10% Si:0.5%以下 P:0.03以下 S:0.01%以下 Cr:13〜20% Ni:10〜15% Nb:0.02〜0.10% N:0.1〜0.25% Mo:1.5〜4.5% B:0.002〜0.006% Ca,Mg,Zr,Ceから選択される1種以上:総和で0.001〜0.
01% 残部:Fe及び不可避不純物 からなることを特徴とする耐再加熱特性に優れた極低温
用非磁性オーステナイト系ステンレス鋼。
2. C: 0.05% Mn: 1-10% Si: 0.5% or less P: 0.03 or less S: 0.01% or less Cr: 13-20% Ni: 10-15% Nb: 0.02-0.10% N: 0.1 〜0.25% Mo: 1.5〜4.5% B: 0.002〜0.006% One or more selected from Ca, Mg, Zr, Ce: 0.001〜0 in total.
01% balance: Fe and unavoidable impurities. Non-magnetic austenitic stainless steel for cryogenic use with excellent reheat resistance.
JP20859988A 1988-08-22 1988-08-22 Cryogenic non-magnetic austenitic stainless steel with excellent reheat resistance Expired - Lifetime JPH0765143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20859988A JPH0765143B2 (en) 1988-08-22 1988-08-22 Cryogenic non-magnetic austenitic stainless steel with excellent reheat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20859988A JPH0765143B2 (en) 1988-08-22 1988-08-22 Cryogenic non-magnetic austenitic stainless steel with excellent reheat resistance

Publications (2)

Publication Number Publication Date
JPH0257668A JPH0257668A (en) 1990-02-27
JPH0765143B2 true JPH0765143B2 (en) 1995-07-12

Family

ID=16558874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20859988A Expired - Lifetime JPH0765143B2 (en) 1988-08-22 1988-08-22 Cryogenic non-magnetic austenitic stainless steel with excellent reheat resistance

Country Status (1)

Country Link
JP (1) JPH0765143B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT404027B (en) * 1996-06-14 1998-07-27 Boehler Edelstahl AUSTENITIC, CORROSION-RESISTANT ALLOY, USE OF THIS ALLOY AND AMAGNETICALLY WELDED COMPONENT
JP5116265B2 (en) 2006-07-13 2013-01-09 新日鐵住金ステンレス株式会社 Austenitic stainless rolled steel sheet excellent in strength and ductility and method for producing the same
JP5135923B2 (en) * 2007-07-13 2013-02-06 Jfeスチール株式会社 SUS301 spring austenitic stainless steel
JP2023166911A (en) * 2022-05-10 2023-11-22 大同特殊鋼株式会社 Non-magnetic austenitic stainless steel material and production method therefor
WO2024009897A1 (en) * 2022-07-04 2024-01-11 日鉄ステンレス株式会社 Hot-rolled steel material for tanks and method for producing same

Also Published As

Publication number Publication date
JPH0257668A (en) 1990-02-27

Similar Documents

Publication Publication Date Title
KR900006870B1 (en) Ferrite-austenitic stainless steel
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
KR970008165B1 (en) Duplex stainless steel with high manganese
US7785426B2 (en) Welded joint of tempered martensite based heat-resistant steel
CN111168275B (en) Submerged arc welding wire for austenitic stainless steel
GB2220675A (en) Low cobalt-containing margaging steel with improved toughness
JP5729827B2 (en) High strength non-magnetic steel
JPH0765143B2 (en) Cryogenic non-magnetic austenitic stainless steel with excellent reheat resistance
JP3169977B2 (en) ▲ high ▼ strength non-magnetic stainless steel
JP3182995B2 (en) High Mn non-magnetic steel with excellent stress corrosion cracking resistance and mechanical properties
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH0215148A (en) High mn nonmagnetic steel having excellent corrosion resistance
KR102277730B1 (en) Stainless steel including boron with excellent hot ductility and tensile property and method of manufacturing the same
JP3429133B2 (en) High magnetic flux density corrosion-resistant soft magnetic material
JPS5864362A (en) High hardness nonmagnetic alloy
JP2587520B2 (en) High Mn nonmagnetic steel with excellent local deformability for gas circuit breakers
JPH09308989A (en) Welding material for high cr ferritic heat resistant steel
JPH06336659A (en) High alloy austenitic stainless steel excellent in hot workability
JPH05302151A (en) Duplex stainless steel having high corrosion resistance, high strength and high toughness
JP2672430B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPS6123750A (en) Nonmagnetic steel
JP3525014B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance
JPH06256911A (en) Austenitic stainless steel excellent in nitric acid corrosion resistance after cold working or deformation
JPH07109549A (en) Austenitic stainless steel for seawater resistance
JP2004315870A (en) Stainless steel and structure