JP2004315870A - Stainless steel and structure - Google Patents
Stainless steel and structure Download PDFInfo
- Publication number
- JP2004315870A JP2004315870A JP2003109737A JP2003109737A JP2004315870A JP 2004315870 A JP2004315870 A JP 2004315870A JP 2003109737 A JP2003109737 A JP 2003109737A JP 2003109737 A JP2003109737 A JP 2003109737A JP 2004315870 A JP2004315870 A JP 2004315870A
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- heat treatment
- less
- precipitation hardening
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、原子力プラント等の高温高圧水環境下において高耐食高強度を要求される部材に用いられる耐熱時効劣化特性に優れたステンレス鋼および当該ステンレス鋼によって構成された構造物に関する。
【0002】
【従来の技術】
従来の原子力プラントにおいては、各種弁、弁棒、ボルトおよび制御棒駆動系機器等の高耐食及び、高強度を要求される部分に析出硬化型ステンレス鋼あるいはマルテンサイト系ステンレス鋼が使用されている(特許文献1参照)。
【0003】
【特許文献1】
特開平6−346198号公報
【0004】
【発明が解決しようとする課題】
しかしながら、析出硬化型ステンレス鋼およびマルテンサイト系ステンレス鋼は、高温に長時間加熱されるとスピノーダル分解を起こして靱性及び延性の低下を生じることが研究結果からわかった。スピノーダル分解は、組織の中のマルテンサイト相およびフェライト相が長時間加熱されることによりFe原子とCr原子が周期的に分離する相分離、つまり、Feリッチ相とCrリッチ相に分離する現象である。
【0005】
本発明の目的は、高温高圧水環境で長期間使用した場合においても靱性及び延性の低下の少ないステンレス鋼および当該ステンレス鋼によって構成された構造物を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明のステンレス鋼は、重量%でCrを12%〜26%、Niを4%〜16%、Cを0.10%以下、Sを0.01%以下、Moを0.1〜4%含有し、残部がFeおよび不可避的不純物からなる構成とする。
【0007】
Crが12%以上になると表面に安定した酸化被膜が形成され、耐食性が非常に良好になる。従って、Cr12%以上と限定する。また、ステンレス鋼の組織を成分により分類したシェフラー線図上でCr12%以上、かつマルテンサイト組織となる範囲を読み取り、Crの上限は26%とする。また、Niの場合、シェフラー線図からマルテンサイト組織を示すのは16%以下である。よって、Niの上限は16%とする。
【0008】
請求項2の発明は、請求項1のステンレス鋼がさらにCuを2〜5重量%含み、450〜650℃の熱処理によりCuが析出されている構成とする。
Cuは析出硬化に寄与する元素であり、2%以下では析出硬化の寄与が小さく、5%以上では析出物が粗大化し、脆化を促進させるので2〜5重量%とする。そして、熱処理が450℃以下では析出元素であるCuが充分析出しないことと合金の靭性を得るための焼戻しが充分されない。また650℃以上ではCu以外の析出物、例えばCr炭化物が析出し、合金の耐食性に悪影響を与える可能性がある。
【0009】
請求項3の発明は、請求項1のステンレス鋼がさらにAlを0.5〜1.5重量%含み、621℃〜843℃の熱処理により金属間化合物Ni3Alが析出されている構成とする。
【0010】
Alは析出硬化に寄与する元素であり、0.5%以下では析出硬化の寄与が小さく、1.5%以上では析出物が粗大化し、脆化を促進させるので0.5〜1.5%とする。また、γ’相であるNi3Alを析出させるために、金属間化合物の時間−温度−析出物の関係図より、熱処理温度の下限を621℃、上限を843℃とする。
【0011】
請求項4の発明は、請求項1のステンレス鋼がさらにNbを0.5〜1.5重量%含み、593℃〜927℃の熱処理により金属間化合物Ni3Nbが析出されている構成とする。
【0012】
Nbは析出硬化に寄与する元素であり、0.5%以下では析出硬化の寄与が小さく、1.5%以上では析出物が粗大化し、脆化を促進させるので0.5〜1.5%とする。また、γ’’相であるNi3Nbを析出させるために、金属間化合物の時間−温度−析出物の関係図より、熱処理温度の下限を593℃、上限を927℃とする。
【0013】
請求項5の発明は、請求項1のステンレス鋼がさらにTiを0.5〜1.5重量%含み、621℃〜843℃の熱処理により金属間化合物Ni3Tiが析出されている構成とする。
【0014】
Tiは析出硬化に寄与する元素であり、0.5%以下では析出硬化の寄与が小さく、1.5%以上では析出物が粗大化し、脆化を促進させるので0.5〜1.5%とする。また、γ’相であるNi3Tiを析出させるために、金属間化合物の時間−温度−析出物の関係図より、熱処理温度の下限を621℃、上限を843℃とする。
【0015】
請求項6の発明は構造物であり、請求項1〜請求項5のいずれかに記載のステンレス鋼によって構成され高温高圧水環境で使用される構成とする。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。なお、本実施の形態において成分元素の含有量を示すパーセンテージは全て重量基準のパーセンテージ(wt%)を示す。
【0017】
本発明の第1の実施の形態に係る合金は、Crを12〜26%含有するステンレス鋼を基本とする。そして、原子炉水環境に長期間使用した場合における靭性及び延性の低下を抑制するためにMoを0.1〜4%添加する。
【0018】
MoはCrと共存することにより導電性水中における耐孔食性の向上に寄与する元素である。その効果を発揮させるには0.1%以上の添加が必要である。しかし、その添加量が4%を超えると、材料の脆化の問題が生じるため、添加量の上限を4%とする。
【0019】
Cは強度を向上させる元素であるが、耐食性に悪影響を与える元素でもある。Cは熱処理あるいは溶接熱の影響により粒界にCr炭化物を形成し、それに伴い粒界近傍にCr欠乏層を形成し耐食性を低下させる。そのため、Cは0.10%以下にすることが望ましい。
【0020】
Sは溶解時の脱酸剤として不可避的に混入するMnとともに非金属介在物MnSを生成する元素であり、その含有量の増加に伴い耐食性に悪影響を与える。そのため、S含有量は0.01%以下とする。
【0021】
CやSを多く含むと、MnS等の非金属介在物やCの偏析部が生じる。これにより、合金が高温水中に曝されたとき、これらの部位とその周囲の組織の間に電位差が生じ非金属介在物およびC偏析部の存在する部位が選択的に腐食する。本実施の形態の合金は、このような現象を防止するためにCおよびS含有量を調整する。
【0022】
Niは4〜16%含有することが好ましい。Ni添加により靭性および耐食性が向上する。以上述べた元素以外の成分元素(不純物元素)、例えばSi、Mn、P等は通常のJIS規格(JIS G3214)に規定しているレベルに設定して問題ない。
【0023】
つぎに、本発明の第2の実施の形態を説明する。
この実施の形態に係る合金は、Crを12〜26%、Niを4〜16%、Cを0.10%以下、Sを0.01%以下含み、熱時効に伴うCrリッチ相形成を抑制するためにMoを0.1〜4%添加し、残部がFeおよび不可避的不純物からなる。更に強度を向上させるために、Cuを2〜5%あるいはAlを0.5〜1.5%添加する。あるいはNbを0.5〜1.5%あるいはTiを0.5〜1.5%添加する。
【0024】
以下に、強度向上のため添加する元素の含有量の限定理由について説明する。
Cuは、450〜650℃で熱処理を行うと母材中に析出し、いわゆる析出硬化により強度が上昇する。2%未満では析出硬化の寄与が小さく、5%を越えると脆化が促進するため2〜5%の添加が望ましい。
【0025】
Alは、621〜843℃で熱処理を行うと母材中に金属間化合物Ni3Alとして析出し、いわゆる析出硬化により強度が上昇する。0.5%未満では析出硬化の寄与が小さく、1.5%を越えると脆化が促進するため0.5〜1.5%の添加が望ましい。
【0026】
Nbは、593〜927℃で熱処理を行うと母材中に金属間化合物Ni3Nbとして析出し、いわゆる析出硬化により強度が上昇する。0.5%未満では析出硬化の寄与が小さく、1.5%を越えると脆化が促進するため0.5〜1.5%の添加が望ましい。
【0027】
Tiは、621〜843℃で熱処理を行うと母材中に金属間化合物Ni3Tiとして析出し、いわゆる析出硬化により強度が上昇する。0.5%未満では析出硬化の寄与が小さく、1.5%を越えると脆化が促進するため0.5〜1.5%の添加が望ましい。
【0028】
つぎに、本発明の第3の実施の形態に係る合金は、Crを12〜14%、Niを6〜10%、Cを0.10%以下、Sを0.01%以下含み、残部がFeおよび不可避的不純物からなる。
【0029】
以下、各成分元素の含有量の限定理由について説明する。
本実施の形態においてCrを12〜14%、Niを6〜10%としたのは、金属組織をフェライト相のないマルテンサイト組織単相にするために決定したものである。フェライト相は、マルテンサイト相に比べCr含有量が高く、スピノーダル分解が生じ易く経年劣化を促進するCrリッチ相を形成しやすいためである。
【0030】
つぎに、本発明の第4の実施の形態に係る合金は、Crを12〜18%、Niを8〜10%、Cを0.10%以下、Sを0.01%以下含み、残部がFeおよび不可避的不純物からなる。
【0031】
以下、各成分元素の含有量の限定理由について説明する。
Crを12〜18%、Niを8〜10%としたのは、金属組織をフェライト相とオーステナイトとの混相組織にするために決定したものである。フェライト相は、マルテンサイト相に比べCr含有量が高く、スピノーダル分解が生じ易く経年劣化を促進するCrリッチ相を形成しやすいためである。
【0032】
次に、図1,図2を参照して本発明の実施の形態の合金についてのデータを比較例と比較しつつ説明する。図1は合金の組成を示し、図2は400℃における時効に伴う衝撃値変化率を示す。
【0033】
これらの図において、開発材Aは上記第1の実施の形態の合金であり、開発材Bは上記第2の実施の形態の合金であり、開発材Cは上記第3の実施の形態および上記第4の実施の形態に対応する組成の合金である。また、従来材DはSUS431ステンレス鋼であり、従来材EはSUS630ステンレス鋼である。
【0034】
開発材Aに対して1020℃×1時間+640℃×1時間の熱処理を施し、従来材Dに対して1050℃×1時間+700℃×8時間の熱処理を施したのち400℃で時効を行ない、シャルピー衝撃試験を実施した。その結果、開発材Aは、衝撃値変化率の低下が従来材Dに比べ長時間側となっており、経年劣化が抑制されているといえる。
【0035】
開発材Bと従来材EはともにCuを含有しているが、開発材Bに対して1038℃×1時間+593℃×4時間の熱処理を、従来材Eに対して1050℃×1時間+580℃×4時間の熱処理を施したのち400℃で時効を行ない、シャルピー衝撃試験を実施した。その結果を比較すると、開発材Bは衝撃値変化率の低下が従来材Eに比べ長時間側となっており、経年劣化が抑制されているといえる。
【0036】
次に、開発材Cと従来材D及び従来材Eはともにフェライト相を有するが、開発材Cに927℃×1時間+593℃×4時間の熱処理を施したのち400℃で時効を行ない、シャルピー衝撃試験を実施した結果で比較すると、開発材Cは、衝撃値変化率の低下が従来材D及び従来材Eに比べ長時間側となっており、経年劣化が抑制されているといえる。
【0037】
【発明の効果】
本発明によれば、高温高圧水環境で長期間使用した場合においても靱性及び延性の低下の少ないステンレス鋼および当該ステンレス鋼によって構成された構造物を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態による開発材と従来材の組成を示す表。
【図2】図1の表に示した開発材及び従来材の400℃時効による衝撃値の変化を示すグラフ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stainless steel having excellent heat aging deterioration characteristics used for members requiring high corrosion resistance and high strength in a high-temperature high-pressure water environment such as a nuclear power plant, and a structure constituted by the stainless steel.
[0002]
[Prior art]
In conventional nuclear power plants, precipitation hardening stainless steel or martensitic stainless steel is used for parts requiring high corrosion resistance and high strength, such as various valves, valve stems, bolts and control rod drive system equipment. (See Patent Document 1).
[0003]
[Patent Document 1]
JP-A-6-346198
[Problems to be solved by the invention]
However, research results have shown that precipitation-hardened stainless steel and martensitic stainless steel undergo spinodal decomposition when heated to a high temperature for a long time, resulting in a decrease in toughness and ductility. Spinodal decomposition is a phase separation in which Fe and Cr atoms are periodically separated by heating the martensite phase and ferrite phase in the structure for a long time, that is, a phenomenon in which Fe and Cr rich phases are separated. is there.
[0005]
An object of the present invention is to provide a stainless steel and a structure made of the stainless steel, which have a small decrease in toughness and ductility even when used in a high-temperature and high-pressure water environment for a long time.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the stainless steel according to the first aspect of the present invention has a Cr content of 12% to 26%, a Ni content of 4% to 16%, a C content of 0.10% or less, and a S content of 0.01%. Hereinafter, Mo is contained in an amount of 0.1 to 4%, and the balance is made of Fe and inevitable impurities.
[0007]
When the Cr content is 12% or more, a stable oxide film is formed on the surface, and the corrosion resistance becomes very good. Therefore, it is limited to Cr 12% or more. In addition, a range in which Cr is 12% or more and a martensite structure is read on a Schaeffler diagram in which the structure of stainless steel is classified according to components, and the upper limit of Cr is set to 26%. In the case of Ni, the percentage of the martensite structure shown in the Schaeffler diagram is 16% or less. Therefore, the upper limit of Ni is set to 16%.
[0008]
The invention according to claim 2 is configured such that the stainless steel according to claim 1 further contains 2 to 5% by weight of Cu, and Cu is precipitated by heat treatment at 450 to 650 ° C.
Cu is an element that contributes to precipitation hardening. If it is 2% or less, the contribution of precipitation hardening is small, and if it is 5% or more, the precipitates become coarse and promote embrittlement. If the heat treatment is performed at 450 ° C. or lower, Cu, which is a precipitation element, is not sufficiently precipitated, and tempering for obtaining the toughness of the alloy is not sufficient. If the temperature is 650 ° C. or higher, precipitates other than Cu, for example, Cr carbides may precipitate, which may adversely affect the corrosion resistance of the alloy.
[0009]
The invention according to claim 3 is configured such that the stainless steel according to claim 1 further contains 0.5 to 1.5% by weight of Al, and the intermetallic compound Ni 3 Al is precipitated by heat treatment at 621 ° C to 843 ° C. .
[0010]
Al is an element that contributes to precipitation hardening. When it is 0.5% or less, the contribution of precipitation hardening is small, and when it is 1.5% or more, the precipitate becomes coarse and promotes embrittlement. And In addition, in order to precipitate Ni 3 Al, which is the γ ′ phase, the lower limit of the heat treatment temperature is set to 621 ° C. and the upper limit is set to 843 ° C. based on the time-temperature-precipitate relation diagram of the intermetallic compound.
[0011]
The invention of claim 4 includes 0.5 to 1.5 wt% stainless steel further Nb of claim 1, the intermetallic compound Ni 3 Nb is configured to be deposited by thermal treatment of 593 ℃ ~927 ℃ .
[0012]
Nb is an element that contributes to precipitation hardening. When it is 0.5% or less, the contribution of precipitation hardening is small, and when it is 1.5% or more, precipitates become coarse and promote embrittlement. And Further, in order to precipitate Ni 3 Nb as a γ ″ phase, the lower limit of the heat treatment temperature is set to 593 ° C. and the upper limit is set to 927 ° C. according to the time-temperature-precipitate relation diagram of the intermetallic compound.
[0013]
The invention of claim 5 is configured such that the stainless steel of claim 1 further contains 0.5 to 1.5% by weight of Ti, and the intermetallic compound Ni 3 Ti is precipitated by a heat treatment at 621 ° C to 843 ° C. .
[0014]
Ti is an element that contributes to precipitation hardening. When it is 0.5% or less, the contribution of precipitation hardening is small, and when it is 1.5% or more, the precipitates become coarse and promote embrittlement. And Further, in order to precipitate Ni 3 Ti which is a γ ′ phase, the lower limit of the heat treatment temperature is set to 621 ° C. and the upper limit is set to 843 ° C. based on the time-temperature-precipitate relation diagram of the intermetallic compound.
[0015]
According to a sixth aspect of the present invention, there is provided a structure which is made of the stainless steel according to any one of the first to fifth aspects and is used in a high-temperature and high-pressure water environment.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. In the present embodiment, all the percentages indicating the contents of the component elements indicate percentages by weight (wt%).
[0017]
The alloy according to the first embodiment of the present invention is based on stainless steel containing 12 to 26% of Cr. Mo is added in an amount of 0.1 to 4% in order to suppress a decrease in toughness and ductility when used for a long time in a reactor water environment.
[0018]
Mo is an element that contributes to improvement of pitting corrosion resistance in conductive water by coexisting with Cr. In order to exert its effect, it is necessary to add 0.1% or more. However, if the added amount exceeds 4%, a problem of embrittlement of the material occurs, so the upper limit of the added amount is 4%.
[0019]
C is an element that improves the strength, but is also an element that adversely affects the corrosion resistance. C forms Cr carbides at the grain boundaries under the influence of heat treatment or welding heat, and accordingly forms a Cr deficient layer near the grain boundaries to lower the corrosion resistance. Therefore, C is desirably 0.10% or less.
[0020]
S is an element that forms non-metallic inclusions MnS together with Mn inevitably mixed as a deoxidizing agent at the time of dissolution, and has an adverse effect on corrosion resistance as its content increases. Therefore, the S content is set to 0.01% or less.
[0021]
When a large amount of C and S is contained, nonmetallic inclusions such as MnS and segregated portions of C are generated. As a result, when the alloy is exposed to high-temperature water, a potential difference is generated between these portions and the surrounding structure, and the portions where the nonmetallic inclusions and the C segregated portions are present are selectively corroded. In the alloy of the present embodiment, the contents of C and S are adjusted to prevent such a phenomenon.
[0022]
It is preferable to contain 4 to 16% of Ni. Ni addition improves toughness and corrosion resistance. Constituent elements (impurity elements) other than the elements described above, for example, Si, Mn, P, etc., can be set to the levels specified in the normal JIS standard (JIS G3214) without any problem.
[0023]
Next, a second embodiment of the present invention will be described.
The alloy according to this embodiment contains 12 to 26% of Cr, 4 to 16% of Ni, 0.10% or less of C, and 0.01% or less of S, and suppresses formation of a Cr-rich phase due to thermal aging. For this purpose, Mo is added in an amount of 0.1 to 4%, and the balance consists of Fe and inevitable impurities. In order to further improve the strength, 2 to 5% of Cu or 0.5 to 1.5% of Al is added. Alternatively, 0.5 to 1.5% of Nb or 0.5 to 1.5% of Ti is added.
[0024]
Hereinafter, the reason for limiting the content of the element added for improving the strength will be described.
When Cu is heat-treated at 450 to 650 ° C., it precipitates in the base material, and its strength increases due to so-called precipitation hardening. If it is less than 2%, the contribution of precipitation hardening is small, and if it exceeds 5%, embrittlement is promoted, so addition of 2 to 5% is desirable.
[0025]
When Al is heat-treated at 621 to 843 ° C., it precipitates as an intermetallic compound Ni 3 Al in the base material, and the strength increases due to so-called precipitation hardening. If it is less than 0.5%, the contribution of precipitation hardening is small, and if it exceeds 1.5%, embrittlement is promoted, so addition of 0.5 to 1.5% is desirable.
[0026]
Nb is precipitated as an intermetallic compound Ni 3 Nb in the base material during the heat treatment is performed at 593-927 ° C., the strength is increased by so-called precipitation hardening. If it is less than 0.5%, the contribution of precipitation hardening is small, and if it exceeds 1.5%, embrittlement is promoted, so addition of 0.5 to 1.5% is desirable.
[0027]
When Ti is heat-treated at 621 to 843 ° C., it precipitates in the base material as an intermetallic compound Ni 3 Ti, and its strength is increased by so-called precipitation hardening. If it is less than 0.5%, the contribution of precipitation hardening is small, and if it exceeds 1.5%, embrittlement is promoted, so addition of 0.5 to 1.5% is desirable.
[0028]
Next, the alloy according to the third embodiment of the present invention contains 12 to 14% of Cr, 6 to 10% of Ni, 0.10% or less of C, and 0.01% or less of S, with the balance being the balance. It consists of Fe and inevitable impurities.
[0029]
Hereinafter, the reasons for limiting the content of each component element will be described.
The reason why the content of Cr is set to 12 to 14% and the content of Ni is set to 6 to 10% in the present embodiment is determined in order to make the metal structure have a single phase of a martensite structure without a ferrite phase. This is because the ferrite phase has a higher Cr content than the martensite phase, easily forms spinodal decomposition, and easily forms a Cr-rich phase that promotes aging.
[0030]
Next, the alloy according to the fourth embodiment of the present invention contains 12 to 18% of Cr, 8 to 10% of Ni, 0.10% or less of C, and 0.01% or less of S, with the balance being the balance. It consists of Fe and inevitable impurities.
[0031]
Hereinafter, the reasons for limiting the content of each component element will be described.
The reason why the content of Cr is set to 12 to 18% and the content of Ni is set to 8 to 10% is determined in order to make the metal structure a mixed phase structure of a ferrite phase and austenite. This is because the ferrite phase has a higher Cr content than the martensite phase, easily forms spinodal decomposition, and easily forms a Cr-rich phase that promotes aging.
[0032]
Next, data on the alloy according to the embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows the composition of the alloy, and FIG. 2 shows the impact value change rate with aging at 400 ° C.
[0033]
In these figures, the developed material A is the alloy according to the first embodiment, the developed material B is the alloy according to the second embodiment, and the developed material C is the alloy according to the third embodiment. This is an alloy having a composition corresponding to the fourth embodiment. The conventional material D is SUS431 stainless steel, and the conventional material E is SUS630 stainless steel.
[0034]
A heat treatment of 1020 ° C. × 1 hour + 640 ° C. × 1 hour is performed on the developed material A, and a heat treatment of 1050 ° C. × 1 hour + 700 ° C. × 8 hours is performed on the conventional material D, followed by aging at 400 ° C. A Charpy impact test was performed. As a result, in the developed material A, the decrease in the impact value change rate is on the longer side as compared with the conventional material D, and it can be said that the deterioration over time is suppressed.
[0035]
Although both the developed material B and the conventional material E contain Cu, the heat treatment of 1038 ° C. × 1 hour + 593 ° C. × 4 hours is performed on the developed material B, and 1050 ° C. × 1 hour + 580 ° C. on the conventional material E. After heat treatment for 4 hours, aging was performed at 400 ° C., and a Charpy impact test was performed. Comparing the results, it can be said that the developed material B has a lower rate of change in impact value on a longer time side than the conventional material E, and it can be said that aging deterioration is suppressed.
[0036]
Next, the developed material C, the conventional material D, and the conventional material E all have a ferrite phase. However, the developed material C is subjected to a heat treatment at 927 ° C. × 1 hour + 593 ° C. × 4 hours, and then is aged at 400 ° C. Comparing the results of the impact test, it can be said that the developed material C has a lower impact value change rate on the longer time side than the conventional material D and the conventional material E, and it can be said that the deterioration over time is suppressed.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, even if it uses for a long period of time in a high-temperature high-pressure water environment, the toughness and ductility can be provided with little stainless steel and the structure comprised by the said stainless steel.
[Brief description of the drawings]
FIG. 1 is a table showing compositions of a developed material and a conventional material according to an embodiment of the present invention.
FIG. 2 is a graph showing a change in impact value of a developed material and a conventional material shown in the table of FIG.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003109737A JP4184860B2 (en) | 2003-04-15 | 2003-04-15 | Stainless steel and structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003109737A JP4184860B2 (en) | 2003-04-15 | 2003-04-15 | Stainless steel and structures |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004315870A true JP2004315870A (en) | 2004-11-11 |
JP4184860B2 JP4184860B2 (en) | 2008-11-19 |
Family
ID=33470782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003109737A Expired - Fee Related JP4184860B2 (en) | 2003-04-15 | 2003-04-15 | Stainless steel and structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4184860B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006317289A (en) * | 2005-05-12 | 2006-11-24 | Toshiba Corp | Control rod drive mechanism |
JP2017078195A (en) * | 2015-10-20 | 2017-04-27 | 山陽特殊製鋼株式会社 | High hardness stainless steel excellent in corrosion resistance and productivity |
WO2018131412A1 (en) * | 2017-01-10 | 2018-07-19 | Jfeスチール株式会社 | Duplex stainless steel and method for producing same |
-
2003
- 2003-04-15 JP JP2003109737A patent/JP4184860B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006317289A (en) * | 2005-05-12 | 2006-11-24 | Toshiba Corp | Control rod drive mechanism |
JP2017078195A (en) * | 2015-10-20 | 2017-04-27 | 山陽特殊製鋼株式会社 | High hardness stainless steel excellent in corrosion resistance and productivity |
WO2018131412A1 (en) * | 2017-01-10 | 2018-07-19 | Jfeスチール株式会社 | Duplex stainless steel and method for producing same |
JP6369662B1 (en) * | 2017-01-10 | 2018-08-08 | Jfeスチール株式会社 | Duplex stainless steel and manufacturing method thereof |
US11655526B2 (en) | 2017-01-10 | 2023-05-23 | Jfe Steel Corporation | Duplex stainless steel and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP4184860B2 (en) | 2008-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7780908B2 (en) | Low nickel containing chromium-nickel-manganese- copper austenitic stainless steel | |
EP2684973B1 (en) | Two-phase stainless steel exhibiting excellent corrosion resistance in weld | |
KR101370205B1 (en) | Ferrite stainless steel with low black spot generation | |
EP2770076B1 (en) | Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material | |
EP1873270A1 (en) | Low alloy steel | |
JP2005023353A (en) | Austenitic stainless steel for high temperature water environment | |
US20100084121A1 (en) | Plate | |
WO2007138815A1 (en) | Austenitic stainless steel | |
JP4190993B2 (en) | Ferritic stainless steel sheet with improved crevice corrosion resistance | |
CA2890857C (en) | Ferritic stainless steel | |
JP2010159438A (en) | High corrosion-resistant alloy excellent in grain-boundary corrosion resistance | |
JP2004162120A (en) | Wear resistant steel having superior weldability and excellent wear resistance and corrosion resistance in weld zone | |
EP0708184A1 (en) | High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance | |
JPH11293405A (en) | High hardness high corrosion resistance stainless steel | |
JP4184860B2 (en) | Stainless steel and structures | |
JP6583885B2 (en) | High hardness stainless steel with excellent corrosion resistance and manufacturability | |
JP3814836B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance | |
US20090214376A1 (en) | Creep-resistant steel | |
JP6987651B2 (en) | High hardness precipitation hardening stainless steel with excellent hot workability and no sub-zero treatment required | |
JP2005325387A (en) | Low specific gravity iron alloy | |
JP2014040669A (en) | High corrosion-resistant alloy excellent in intergranular corrosion resistance | |
JPS6032710B2 (en) | Non-magnetic stainless steel for cold forging | |
JPH04147946A (en) | Stainless steel excellent in strength and ductility and its manufacture | |
JP2022513747A (en) | Low Cr ferrite stainless steel with excellent formability and high temperature characteristics and its manufacturing method | |
JP3446394B2 (en) | Precipitation hardening stainless steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060112 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060830 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080610 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080902 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080904 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120912 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120912 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130912 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |