JP4184860B2 - Stainless steel and structures - Google Patents

Stainless steel and structures Download PDF

Info

Publication number
JP4184860B2
JP4184860B2 JP2003109737A JP2003109737A JP4184860B2 JP 4184860 B2 JP4184860 B2 JP 4184860B2 JP 2003109737 A JP2003109737 A JP 2003109737A JP 2003109737 A JP2003109737 A JP 2003109737A JP 4184860 B2 JP4184860 B2 JP 4184860B2
Authority
JP
Japan
Prior art keywords
stainless steel
less
heat treatment
alloy
precipitation hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003109737A
Other languages
Japanese (ja)
Other versions
JP2004315870A (en
Inventor
義紀 片山
基司 坪田
憲行 中城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003109737A priority Critical patent/JP4184860B2/en
Publication of JP2004315870A publication Critical patent/JP2004315870A/en
Application granted granted Critical
Publication of JP4184860B2 publication Critical patent/JP4184860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力プラント等の高温高圧水環境下において高耐食高強度を要求される部材に用いられる耐熱時効劣化特性に優れたステンレス鋼および当該ステンレス鋼によって構成された構造物に関する。
【0002】
【従来の技術】
従来の原子力プラントにおいては、各種弁、弁棒、ボルトおよび制御棒駆動系機器等の高耐食及び、高強度を要求される部分に析出硬化型ステンレス鋼あるいはマルテンサイト系ステンレス鋼が使用されている(特許文献1参照)。
【0003】
【特許文献1】
特開平6−346198号公報
【0004】
【発明が解決しようとする課題】
しかしながら、析出硬化型ステンレス鋼およびマルテンサイト系ステンレス鋼は、高温に長時間加熱されるとスピノーダル分解を起こして靱性及び延性の低下を生じることが研究結果からわかった。スピノーダル分解は、組織の中のマルテンサイト相およびフェライト相が長時間加熱されることによりFe原子とCr原子が周期的に分離する相分離、つまり、Feリッチ相とCrリッチ相に分離する現象である。
【0005】
本発明の目的は、高温高圧水環境で長期間使用した場合においても靱性及び延性の低下の少ないステンレス鋼および当該ステンレス鋼によって構成された構造物を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明のステンレス鋼は、重量%でCrを12%〜26%、Niを4%〜16%、Cを0.10%以下、Sを0.01%以下、Siを1.00%以下、Mnを2.00%以下、Moを0.1〜4%、Cuを2〜5%、Nbを0.5〜1.5%含有し、残部がFeおよび不可避的不純物からなり、450〜650℃の熱処理によりCuが析出され、593℃〜927℃の熱処理により金属間化合物Ni Nbが析出されている構成とする。
【0007】
Crが12%以上になると表面に安定した酸化被膜が形成され、耐食性が非常に良好になる。従って、Cr12%以上と限定する。また、ステンレス鋼の組織を成分により分類したシェフラー線図上でCr12%以上、かつマルテンサイト組織となる範囲を読み取り、Crの上限は26%とする。また、Niの場合、シェフラー線図からマルテンサイト組織を示すのは16%以下である。よって、Niの上限は16%とする。
さらに、Cuを2〜5%、Nbを0.5〜1.5%含有する
Cuは析出硬化に寄与する元素であり、2%以下では析出硬化の寄与が小さく、5%以上では析出物が粗大化し、脆化を促進させるので2〜5重量%とする。そして、熱処理が450℃以下では析出元素であるCuが充分析出しないことと合金の靭性を得るための焼戻しが充分されない。また650℃以上ではCu以外の析出物、例えばCr炭化物が析出し、合金の耐食性に悪影響を与える可能性がある。
Nbは析出硬化に寄与する元素であり、0.5%以下では析出硬化の寄与が小さく、1.5%以上では析出物が粗大化し、脆化を促進させるので0.5〜1.5%とする。また、γ '' 相であるNi Nbを析出させるために、金属間化合物の時間−温度−析出物の関係図より、熱処理温度の下限を593℃、上限を927℃とする。
【0015】
請求項の発明は構造物であり、請求項1に記載のステンレス鋼によって構成され高温高圧水環境で使用される構成とする。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。なお、本実施の形態において成分元素の含有量を示すパーセンテージは全て重量基準のパーセンテージ(wt%)を示す。
【0017】
本発明の第1の実施の形態に係る合金は、Crを12〜26%含有するステンレス鋼を基本とする。そして、原子炉水環境に長期間使用した場合における靭性及び延性の低下を抑制するためにMoを0.1〜4%添加する。
【0018】
MoはCrと共存することにより導電性水中における耐孔食性の向上に寄与する元素である。その効果を発揮させるには0.1%以上の添加が必要である。しかし、その添加量が4%を超えると、材料の脆化の問題が生じるため、添加量の上限を4%とする。
【0019】
Cは強度を向上させる元素であるが、耐食性に悪影響を与える元素でもある。Cは熱処理あるいは溶接熱の影響により粒界にCr炭化物を形成し、それに伴い粒界近傍にCr欠乏層を形成し耐食性を低下させる。そのため、Cは0.10%以下にすることが望ましい。
【0020】
Sは溶解時の脱酸剤として不可避的に混入するMnとともに非金属介在物MnSを生成する元素であり、その含有量の増加に伴い耐食性に悪影響を与える。そのため、S含有量は0.01%以下とする。
【0021】
CやSを多く含むと、MnS等の非金属介在物やCの偏析部が生じる。これにより、合金が高温水中に曝されたとき、これらの部位とその周囲の組織の間に電位差が生じ非金属介在物およびC偏析部の存在する部位が選択的に腐食する。本実施の形態の合金は、このような現象を防止するためにCおよびS含有量を調整する。
【0022】
Niは4〜16%含有することが好ましい。Ni添加により靭性および耐食性が向上する。以上述べた元素以外の成分元素(不純物元素)、例えばSi、Mn、P等は通常のJIS規格(JIS G3214)に規定しているレベルに設定して問題ない。
【0023】
つぎに、本発明の第2の実施の形態を説明する。
この実施の形態に係る合金は、Crを12〜26%、Niを4〜16%、Cを0.10%以下、Sを0.01%以下含み、熱時効に伴うCrリッチ相形成を抑制するためにMoを0.1〜4%添加し、残部がFeおよび不可避的不純物からなる。更に強度を向上させるために、Cuを2〜5%あるいはAlを0.5〜1.5%添加する。あるいはNbを0.5〜1.5%あるいはTiを0.5〜1.5%添加する。
【0024】
以下に、強度向上のため添加する元素の含有量の限定理由について説明する。Cuは、450〜650℃で熱処理を行うと母材中に析出し、いわゆる析出硬化により強度が上昇する。2%未満では析出硬化の寄与が小さく、5%を越えると脆化が促進するため2〜5%の添加が望ましい。
【0025】
Alは、621〜843℃で熱処理を行うと母材中に金属間化合物NiAlとして析出し、いわゆる析出硬化により強度が上昇する。0.5%未満では析出硬化の寄与が小さく、1.5%を越えると脆化が促進するため0.5〜1.5%の添加が望ましい。
【0026】
Nbは、593〜927℃で熱処理を行うと母材中に金属間化合物NiNbとして析出し、いわゆる析出硬化により強度が上昇する。0.5%未満では析出硬化の寄与が小さく、1.5%を越えると脆化が促進するため0.5〜1.5%の添加が望ましい。
【0027】
Tiは、621〜843℃で熱処理を行うと母材中に金属間化合物NiTiとして析出し、いわゆる析出硬化により強度が上昇する。0.5%未満では析出硬化の寄与が小さく、1.5%を越えると脆化が促進するため0.5〜1.5%の添加が望ましい。
【0028】
つぎに、本発明の第3の実施の形態に係る合金は、Crを12〜14%、Niを6〜10%、Cを0.10%以下、Sを0.01%以下含み、残部がFeおよび不可避的不純物からなる。
【0029】
以下、各成分元素の含有量の限定理由について説明する。
本実施の形態においてCrを12〜14%、Niを6〜10%としたのは、金属組織をフェライト相のないマルテンサイト組織単相にするために決定したものである。フェライト相は、マルテンサイト相に比べCr含有量が高く、スピノーダル分解が生じ易く経年劣化を促進するCrリッチ相を形成しやすいためである。
【0030】
つぎに、本発明の第4の実施の形態に係る合金は、Crを12〜18%、Niを8〜10%、Cを0.10%以下、Sを0.01%以下含み、残部がFeおよび不可避的不純物からなる。
【0031】
以下、各成分元素の含有量の限定理由について説明する。
Crを12〜18%、Niを8〜10%としたのは、金属組織をフェライト相とオーステナイトとの混相組織にするために決定したものである。フェライト相は、マルテンサイト相に比べCr含有量が高く、スピノーダル分解が生じ易く経年劣化を促進するCrリッチ相を形成しやすいためである。
【0032】
次に、図1,図2を参照して本発明の実施の形態の合金についてのデータを比較例と比較しつつ説明する。図1は合金の組成を示し、図2は400℃における時効に伴う衝撃値変化率を示す。
【0033】
これらの図において、開発材Aは上記第1の実施の形態の合金であり、開発材Bは上記第2の実施の形態の合金であり、開発材Cは上記第3の実施の形態および上記第4の実施の形態に対応する組成の合金である。また、従来材DはSUS431ステンレス鋼であり、従来材EはSUS630ステンレス鋼である。
【0034】
開発材Aに対して1020℃×1時間+640℃×1時間の熱処理を施し、従来材Dに対して1050℃×1時間+700℃×8時間の熱処理を施したのち400℃で時効を行ない、シャルピー衝撃試験を実施した。その結果、開発材Aは、衝撃値変化率の低下が従来材Dに比べ長時間側となっており、経年劣化が抑制されているといえる。
【0035】
開発材Bと従来材EはともにCuを含有しているが、開発材Bに対して1038℃×1時間+593℃×4時間の熱処理を、従来材Eに対して1050℃×1時間+580℃×4時間の熱処理を施したのち400℃で時効を行ない、シャルピー衝撃試験を実施した。その結果を比較すると、開発材Bは衝撃値変化率の低下が従来材Eに比べ長時間側となっており、経年劣化が抑制されているといえる。
【0036】
次に、開発材Cと従来材D及び従来材Eはともにフェライト相を有するが、開発材Cに927℃×1時間+593℃×4時間の熱処理を施したのち400℃で時効を行ない、シャルピー衝撃試験を実施した結果で比較すると、開発材Cは、衝撃値変化率の低下が従来材D及び従来材Eに比べ長時間側となっており、経年劣化が抑制されているといえる。
【0037】
【発明の効果】
本発明によれば、高温高圧水環境で長期間使用した場合においても靱性及び延性の低下の少ないステンレス鋼および当該ステンレス鋼によって構成された構造物を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態による開発材と従来材の組成を示す表。
【図2】図1の表に示した開発材及び従来材の400℃時効による衝撃値の変化を示すグラフ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stainless steel excellent in heat aging deterioration characteristics used for a member that requires high corrosion resistance and high strength in a high-temperature and high-pressure water environment such as a nuclear power plant, and a structure constituted by the stainless steel.
[0002]
[Prior art]
In conventional nuclear power plants, precipitation hardened stainless steel or martensitic stainless steel is used in parts that require high corrosion resistance and high strength, such as various valves, valve rods, bolts and control rod drive system equipment. (See Patent Document 1).
[0003]
[Patent Document 1]
JP-A-6-346198 [0004]
[Problems to be solved by the invention]
However, it has been found from the research results that precipitation hardening type stainless steel and martensitic stainless steel cause spinodal decomposition when heated to a high temperature for a long time, resulting in a decrease in toughness and ductility. Spinodal decomposition is a phase separation in which Fe and Cr atoms are periodically separated when the martensite phase and ferrite phase in the structure are heated for a long time, that is, a phenomenon in which the Fe rich phase and the Cr rich phase are separated. is there.
[0005]
An object of the present invention is to provide a stainless steel and a structure constituted by the stainless steel, which are less deteriorated in toughness and ductility even when used in a high temperature and high pressure water environment for a long period of time.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the stainless steel according to the first aspect of the present invention is 12% to 26% Cr, 4% to 16% Ni, 4% to 16% C, 0.10% or less C, 0.01% S Hereinafter, Si is 1.00% or less, Mn is 2.00% or less, Mo is 0.1 to 4% , Cu is 2 to 5%, Nb is 0.5 to 1.5%, and the balance is Fe. and Ri Do unavoidable impurities, Cu is deposited by thermal treatment of 450 to 650 ° C., 593 ° C. intermetallic compound Ni 3 Nb by heat treatment ~927 ° C. is configured that has been deposited.
[0007]
When Cr is 12% or more, a stable oxide film is formed on the surface, and the corrosion resistance becomes very good. Therefore, it is limited to Cr 12% or more. Further, on the Schaeffler diagram in which the structure of stainless steel is classified by component, the range of Cr 12% or more and the martensite structure is read, and the upper limit of Cr is 26%. In the case of Ni, the martensitic structure is 16% or less from the Schaeffler diagram. Therefore, the upper limit of Ni is 16%.
Furthermore, 2 to 5% of Cu and 0.5 to 1.5% of Nb are contained .
Cu is an element that contributes to precipitation hardening. If it is 2% or less, the contribution of precipitation hardening is small, and if it is 5% or more, the precipitate becomes coarse and promotes embrittlement. When the heat treatment is 450 ° C. or less, Cu as a precipitation element is not sufficiently precipitated and tempering for obtaining the toughness of the alloy is not sufficient. Further, at 650 ° C. or higher, precipitates other than Cu, such as Cr carbide, may be deposited, which may adversely affect the corrosion resistance of the alloy.
Nb is an element that contributes to precipitation hardening. If it is 0.5% or less, the contribution of precipitation hardening is small, and if it is 1.5% or more, the precipitate becomes coarse and promotes embrittlement. And Further, in order to precipitate Ni 3 Nb which is a γ phase, the lower limit of the heat treatment temperature is set to 593 ° C. and the upper limit is set to 927 ° C. from the relationship diagram of time-temperature-precipitate of the intermetallic compound.
[0015]
The invention of claim 2 is a structure, and is constituted by the stainless steel of claim 1 and used in a high temperature and high pressure water environment.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. In the present embodiment, all percentages indicating the content of component elements are percentages (wt%) based on weight.
[0017]
The alloy according to the first embodiment of the present invention is based on stainless steel containing 12 to 26% of Cr. And 0.1-4% of Mo is added in order to suppress the fall of toughness and ductility when it is used for a long time in the reactor water environment.
[0018]
Mo is an element that contributes to the improvement of pitting corrosion resistance in conductive water by coexisting with Cr. In order to exert the effect, addition of 0.1% or more is necessary. However, if the addition amount exceeds 4%, the problem of material embrittlement occurs, so the upper limit of the addition amount is set to 4%.
[0019]
C is an element that improves strength, but is also an element that adversely affects corrosion resistance. C forms Cr carbide at the grain boundary due to the influence of heat treatment or welding heat, and accordingly, forms a Cr-deficient layer near the grain boundary to lower the corrosion resistance. Therefore, C is desirably 0.10% or less.
[0020]
S is an element that forms non-metallic inclusions MnS together with Mn which is inevitably mixed as a deoxidizing agent at the time of dissolution, and adversely affects corrosion resistance as the content increases. Therefore, the S content is 0.01% or less.
[0021]
When a large amount of C or S is contained, nonmetallic inclusions such as MnS or segregated portions of C are generated. As a result, when the alloy is exposed to high temperature water, a potential difference is generated between these sites and the surrounding structure, and the sites where nonmetallic inclusions and C segregated portions exist are selectively corroded. In the alloy of the present embodiment, the C and S contents are adjusted in order to prevent such a phenomenon.
[0022]
It is preferable to contain 4 to 16% of Ni. Addition of Ni improves toughness and corrosion resistance. Component elements (impurity elements) other than the elements described above, such as Si, Mn, P, etc., can be set to the levels defined in the normal JIS standard (JIS G3214) without any problem.
[0023]
Next, a second embodiment of the present invention will be described.
The alloy according to this embodiment includes Cr of 12 to 26%, Ni of 4 to 16%, C of 0.10% or less, and S of 0.01% or less, and suppresses the formation of a Cr rich phase due to thermal aging. For this purpose, Mo is added in an amount of 0.1 to 4%, and the balance is composed of Fe and inevitable impurities. In order to further improve the strength, 2 to 5% of Cu or 0.5 to 1.5% of Al is added. Alternatively, 0.5 to 1.5% of Nb or 0.5 to 1.5% of Ti is added.
[0024]
The reason for limiting the content of elements to be added for improving the strength will be described below. Cu is precipitated in the base material when heat-treated at 450 to 650 ° C., and the strength is increased by so-called precipitation hardening. If it is less than 2%, the contribution of precipitation hardening is small, and if it exceeds 5%, embrittlement is promoted, so addition of 2 to 5% is desirable.
[0025]
When Al is heat-treated at 621 to 843 ° C., it precipitates as an intermetallic compound Ni 3 Al in the base material, and the strength increases by so-called precipitation hardening. If it is less than 0.5%, the contribution of precipitation hardening is small, and if it exceeds 1.5%, embrittlement is promoted, so addition of 0.5 to 1.5% is desirable.
[0026]
When heat treatment is performed at 593 to 927 ° C., Nb precipitates as an intermetallic compound Ni 3 Nb in the base material, and the strength increases by so-called precipitation hardening. If it is less than 0.5%, the contribution of precipitation hardening is small, and if it exceeds 1.5%, embrittlement is promoted, so addition of 0.5 to 1.5% is desirable.
[0027]
When Ti is heat-treated at 621 to 843 ° C., it precipitates as an intermetallic compound Ni 3 Ti in the base material, and the strength increases by so-called precipitation hardening. If it is less than 0.5%, the contribution of precipitation hardening is small, and if it exceeds 1.5%, embrittlement is promoted, so addition of 0.5 to 1.5% is desirable.
[0028]
Next, the alloy according to the third embodiment of the present invention includes 12 to 14% of Cr, 6 to 10% of Ni, 0.10% or less of C, 0.01% or less of S, and the balance being It consists of Fe and inevitable impurities.
[0029]
Hereinafter, the reason for limiting the content of each component element will be described.
In this embodiment, the reason why Cr is set to 12 to 14% and Ni is set to 6 to 10% is determined in order to make the metal structure a single martensite structure having no ferrite phase. This is because the ferrite phase has a higher Cr content than the martensite phase and is likely to cause spinodal decomposition, and easily forms a Cr-rich phase that promotes deterioration over time.
[0030]
Next, the alloy according to the fourth embodiment of the present invention includes 12 to 18% of Cr, 8 to 10% of Ni, 0.10% or less of C, 0.01% or less of S, and the balance being It consists of Fe and inevitable impurities.
[0031]
Hereinafter, the reason for limiting the content of each component element will be described.
The reason why Cr is 12 to 18% and Ni is 8 to 10% is determined in order to make the metal structure a mixed phase structure of a ferrite phase and austenite. This is because the ferrite phase has a higher Cr content than the martensite phase and is likely to cause spinodal decomposition, and easily forms a Cr-rich phase that promotes deterioration over time.
[0032]
Next, referring to FIG. 1 and FIG. 2, data on the alloy of the embodiment of the present invention will be described in comparison with a comparative example. FIG. 1 shows the composition of the alloy, and FIG. 2 shows the rate of change in impact value with aging at 400 ° C.
[0033]
In these drawings, the developed material A is the alloy of the first embodiment, the developed material B is the alloy of the second embodiment, and the developed material C is the above-described third embodiment and the above-described embodiment. It is an alloy having a composition corresponding to the fourth embodiment. Further, the conventional material D is SUS431 stainless steel, and the conventional material E is SUS630 stainless steel.
[0034]
The developed material A is subjected to a heat treatment of 1020 ° C. × 1 hour + 640 ° C. × 1 hour, the conventional material D is subjected to a heat treatment of 1050 ° C. × 1 hour + 700 ° C. × 8 hours, and then subjected to aging at 400 ° C., A Charpy impact test was performed. As a result, in the developed material A, the decrease in the impact value change rate is longer than that of the conventional material D, and it can be said that the aged deterioration is suppressed.
[0035]
Both the developed material B and the conventional material E contain Cu, but the developed material B is subjected to a heat treatment of 1038 ° C. × 1 hour + 593 ° C. × 4 hours, and the conventional material E is 1050 ° C. × 1 hour + 580 ° C. After heat treatment for 4 hours, aging was performed at 400 ° C., and a Charpy impact test was performed. Comparing the results, it can be said that the developed material B has a lower rate of change in impact value on the longer time side than the conventional material E, and the deterioration over time is suppressed.
[0036]
Next, the developed material C, the conventional material D, and the conventional material E both have a ferrite phase. The developed material C is heat treated at 927 ° C. × 1 hour + 593 ° C. × 4 hours, and then subjected to aging at 400 ° C. Comparing the results of the impact test, it can be said that the developed material C has a lower impact value change rate for a longer time than the conventional material D and the conventional material E, and the deterioration over time is suppressed.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, even when it uses it for a long period of time in a high temperature / high pressure water environment, the structure comprised with the stainless steel with few toughness and a ductile fall and the said stainless steel can be provided.
[Brief description of the drawings]
FIG. 1 is a table showing compositions of a developed material and a conventional material according to an embodiment of the present invention.
FIG. 2 is a graph showing changes in impact value due to 400 ° C. aging of the developed material and the conventional material shown in the table of FIG.

Claims (2)

重量%でCrを12%〜26%、Niを4%〜16%、Cを0.10%以下、Sを0.01%以下、Siを1.00%以下、Mnを2.00%以下、Moを0.1〜4%、Cuを2〜5%、Nbを0.5〜1.5%含有し、残部がFeおよび不可避的不純物からなり、450〜650℃の熱処理によりCuが析出され、593℃〜927℃の熱処理により金属間化合物NiNbが析出されていることを特徴とするステンレス鋼。Cr 12% to 26%, Ni 4% to 16%, C 0.10% or less, S 0.01% or less, Si 1.00% or less, Mn 2.00% or less by weight% 0.1 to 4% of Mo, 2 to 5% of Cu, 0.5 to 1.5% of Nb, the balance is made of Fe and inevitable impurities, and Cu is precipitated by heat treatment at 450 to 650 ° C. Stainless steel in which an intermetallic compound Ni 3 Nb is precipitated by heat treatment at 593 ° C. to 927 ° C. 請求項1に記載のステンレス鋼によって構成され高温高圧水環境で使用されることを特徴とする構造物。A structure comprising the stainless steel according to claim 1 and used in a high temperature and high pressure water environment.
JP2003109737A 2003-04-15 2003-04-15 Stainless steel and structures Expired - Fee Related JP4184860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003109737A JP4184860B2 (en) 2003-04-15 2003-04-15 Stainless steel and structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003109737A JP4184860B2 (en) 2003-04-15 2003-04-15 Stainless steel and structures

Publications (2)

Publication Number Publication Date
JP2004315870A JP2004315870A (en) 2004-11-11
JP4184860B2 true JP4184860B2 (en) 2008-11-19

Family

ID=33470782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003109737A Expired - Fee Related JP4184860B2 (en) 2003-04-15 2003-04-15 Stainless steel and structures

Country Status (1)

Country Link
JP (1) JP4184860B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317289A (en) * 2005-05-12 2006-11-24 Toshiba Corp Control rod drive mechanism
JP6583885B2 (en) * 2015-10-20 2019-10-02 山陽特殊製鋼株式会社 High hardness stainless steel with excellent corrosion resistance and manufacturability
EP3569725B1 (en) * 2017-01-10 2021-03-17 JFE Steel Corporation Duplex stainless steel and method for producing same

Also Published As

Publication number Publication date
JP2004315870A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
US7780908B2 (en) Low nickel containing chromium-nickel-manganese- copper austenitic stainless steel
JP5794945B2 (en) Heat resistant austenitic stainless steel sheet
EP2770076B1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
US20080050265A1 (en) Low alloy steel
JP5071384B2 (en) Austenitic stainless steel
WO2007097939A2 (en) Stainless steel weld overlays with enhanced wear resistance
JP4489928B2 (en) High strength austenitic stainless steel wire
JP5137934B2 (en) Ferritic heat resistant steel
JP4190993B2 (en) Ferritic stainless steel sheet with improved crevice corrosion resistance
JP2010159438A (en) High corrosion-resistant alloy excellent in grain-boundary corrosion resistance
US8663549B2 (en) Heat-resisting steel for engine valves excellent in high-temperature strength
JP4184860B2 (en) Stainless steel and structures
JPH11293405A (en) High hardness high corrosion resistance stainless steel
JP3182995B2 (en) High Mn non-magnetic steel with excellent stress corrosion cracking resistance and mechanical properties
KR20200082362A (en) Duplex stainless steel for highly corrosive environment and method of manufacturing the same
JP6583885B2 (en) High hardness stainless steel with excellent corrosion resistance and manufacturability
JP3388998B2 (en) High strength austenitic heat-resistant steel with excellent weldability
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JP6987651B2 (en) High hardness precipitation hardening stainless steel with excellent hot workability and no sub-zero treatment required
US20090214376A1 (en) Creep-resistant steel
EP3670692B1 (en) Ferritic stainless steel
JP4615196B2 (en) High Cr ferritic heat resistant steel
JPH0120222B2 (en)
JP2005325387A (en) Low specific gravity iron alloy
JP3384887B2 (en) Precipitation hardened stainless steel for springs with excellent strength and torsion characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees