JPH0120222B2 - - Google Patents

Info

Publication number
JPH0120222B2
JPH0120222B2 JP56049142A JP4914281A JPH0120222B2 JP H0120222 B2 JPH0120222 B2 JP H0120222B2 JP 56049142 A JP56049142 A JP 56049142A JP 4914281 A JP4914281 A JP 4914281A JP H0120222 B2 JPH0120222 B2 JP H0120222B2
Authority
JP
Japan
Prior art keywords
steel
temperature strength
less
amount
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56049142A
Other languages
Japanese (ja)
Other versions
JPS57164971A (en
Inventor
Yoshiatsu Sawaragi
Kunihiko Yoshikawa
Hiroshi Teranishi
Yasutaka Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4914281A priority Critical patent/JPS57164971A/en
Publication of JPS57164971A publication Critical patent/JPS57164971A/en
Publication of JPH0120222B2 publication Critical patent/JPH0120222B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高温強度と耐食性がともに優れた
オーステナイトステンレス鋼に関する。 高温環境下で使用されるボイラや化学プラント
機器等の装置用材料には、高温強度と耐食性が必
要とされ、従来よりこの種の用途には、主として
18―8系のオーステナイトステンレス鋼が用いら
れてきた。ところが、近年かかる用途では、使用
条件の苛酷化が著しく、この種の装置用材料に必
要とされる性能が高度化し、その結果現用の上記
18―8系では高温強度、耐食性ともに不十分とな
つてきた。 しかるに、耐食性、高温強度の何れの点でも18
―8系材料を上廻るものということになると、従
来既存の鋼種の中に適当なものは見当たらなかつ
た。 本発明に目的は、耐食性、高温強度がともに18
―8系オーステナイトステンレス鋼を凌ぐ耐熱鋼
の提供を目的とするものである。 一般に、耐食性の改善はCrの増量によつて達
成される。ところが、Cr量を増すと、オーステ
ナイト相を維持するためにNi量の増量をも余儀
なくされる結果となり、このような高合金化によ
り耐食性の改善は得られるものの高温強度に関し
ては、18―8系ステンレス鋼と同等か、むしろ低
下してしまうことさえ少なくない。 本発明者らは、耐食性の改善に必要なCrの増
量の下に、高温強度を高める方法について、種々
実験、研究の結果、Cr増量の場合のオーステナ
イト相維持にNiの代わりにNを使用するととも
に、AlとMgを複合添加することにより、オース
テナイト鋼の耐食性のみならず高温強度の大巾改
善を達成できるとの知見を得た。Nは、Niと同
様オーステナイト相生成に有用で、この使用によ
り、従来Cr増量に伴うNi量の増加を可及的に回
避することができるのである。高価なNiの使用
量の低減は、経済的な有利性をももたらすもので
ある。 本発明は上記知見に基づくものであつて、
C0.01〜0.20%、Si0.50%以下、Mn10%以下、
Cr20〜35%、Ni10〜45%、N0.04〜0.25%に、
Al0.01〜0.5%、Mg0.001〜0.05%を含み、必要に
応じTi0.01〜0.5%、Nb0.01〜1.0%、V0.01〜1.0
%の1種または2種以上を合計で0.01〜1.0%と、
B0.001〜0.03%、Zr0.005〜0.3%の1種または2
種の一方または双方を含有し、残部はFeおよび
不可避的不純物からなることを特徴とするオース
テナイト鋼を要旨とする。この本発明鋼は、現用
の18―8系材料、つまりSUS304、321、347、
316鋼や高Cr―Ni系のSUS310鋼を上廻る高温強
度を有し、耐食性はSUS310鋼と同等以上を示す
ものである。 以下、本発明における成分限定の理由について
述べる。 C:耐熱鋼として必要な引張強さおよびクリー
プ破断強度を確保するのに有用な成分で、0.01%
以上必要であるが、0.20%を超えても固溶化処理
状態で未固溶の炭化物が残存することとなるばか
りで高温強度に対する効果は向上せず、むしろ時
効後の靭性への悪影響が出るので、0.01〜0.20%
とした。なお、熱間加工性や靭性重視の点からは
0.01〜0.08%が好ましい。 N:NはCと同様オーステナイト生成元素であ
るとともに高温強度改善に有効な元素であり、そ
の効果を得るには0.04%以上必要である。しかし
0.25%を上廻ると多量の窒化物が生成し時効後の
靭性の低下を来すので、0.04〜0.25%とした。 Si:脱酸材として、また耐酸化性を高めるにも
有効な元素であるが、0.50%を超えると溶接性が
劣化するのに加え、窒化物析出量が増加して組織
や強度が不安定になるので、0.50%以下とした。 Mn:脱酸および加工性改善に効果があり、同
時にオーステナイト生成にも有用であつてNiの
一部をMnで置換えることができる。さらに高温
強度改善にも有効であるが、過剰添加では耐熱特
性の劣化を来すので、10%以下が適当である。 Cr:高温強度、耐酸化性、耐食性の改善に優
れた効果を示すが、20%未満では十分な耐食性が
得られず、また35%を超えると加工性が不足する
とともに安定した完全オーステナイト用を得難く
なるので、本発明では20〜35%に限定した。 Ni:安定なオーステナイト組織を得るために
必須の元素であり、N量およびCr量との関係で
決められるが、本発明では10〜45%が適当であ
る。 Al:脱酸成分であるが、高温強度、延性、靭
性に対しても有効で、その効果を得るために0.01
%以上必要であるが、0.5%を上廻ると効果が飽
和する。したがつて0.01〜0.5%とした。 Mg:脱酸、および加工性改善に必要な元素で
あるとともに延性、靭性改善にも寄与するが、過
剰な添加はかえつて加工性を損なう結果となるか
ら、0.001〜0.05%とした。 Ti、Nb、V:これらの元素は炭窒化物を微細
に分散析出することにより高温強度の改善に大き
く寄与するが、N含有量が多い場合には溶体化処
理状態で未固溶のTi、Nb、Vの炭窒化物の量が
増加し、高温強度改善の効果が減殺されるので、
N量に応じて添加量を調整する必要がある。また
過剰に添加すると、溶接性を損ない、高温強度も
かえつて低下させることにもなるので、Ti0.01〜
0.5%、Nb0.01〜1.0%、V0.001〜1.0%とし、合
計量も0.01〜1.0%に限定した。 B、Zr:粒界を強化し高温強度特性を改善す
るのに有効な元素であるが、それぞれ0.001%未
満、0.005%未満では効果が得られず、また過剰
量では溶接性を劣化させるので、それぞれ0.001
〜0.03%、0.005〜0.30%とした。 次に本発明の効果を実施例によつて説明する。 第1表に掲げる成分の鋼(1)〜(43)および(A)〜
(H)を大気中で25Kg溶製し、鍛造、冷間圧延を経た
後、溶体化処理を行つた。溶体化処理温度は、銅
(1)(2)(5)(SUS304、SUS316、SUS310)は1100
℃、鋼(3)(4)(SUS321、SUS347)および鋼(6)〜
(43(本発明鋼)並びに鋼(A)〜(H)(比較鋼)のうち
Ti、Nb、V添加鋼以外は1150℃、Ti、Nb、V
添加鋼については1200℃とした。 これらの供試材について、700℃でのクリープ
破断試験を実施し、700℃、3000hでのクリープ
破断強度を測定した。その結果は第2表の如くで
あつた。
The present invention relates to an austenitic stainless steel that has excellent high-temperature strength and corrosion resistance. Materials for equipment such as boilers and chemical plant equipment used in high-temperature environments require high-temperature strength and corrosion resistance.
18-8 series austenitic stainless steel has been used. However, in recent years, the usage conditions for such applications have become significantly more severe, and the performance required of materials for this type of equipment has become more sophisticated, resulting in the current use of the above-mentioned
The 18-8 series has become insufficient in both high temperature strength and corrosion resistance. However, in terms of both corrosion resistance and high temperature strength,
- When it comes to materials that are superior to 8-series materials, it has not been possible to find any suitable steel types among existing steel types. The purpose of the present invention is to achieve both corrosion resistance and high temperature strength of 18
The objective is to provide a heat-resistant steel that surpasses 8-series austenitic stainless steel. Generally, improvement in corrosion resistance is achieved by increasing the amount of Cr. However, when the amount of Cr is increased, it becomes necessary to increase the amount of Ni in order to maintain the austenite phase, and although corrosion resistance is improved by such high alloying, the high temperature strength is lower than that of the 18-8 series. It is often the same as stainless steel, or even worse. The present inventors conducted various experiments and research on a method of increasing high-temperature strength while increasing the amount of Cr necessary to improve corrosion resistance, and found that N is used instead of Ni to maintain the austenite phase when increasing the amount of Cr. At the same time, we obtained the knowledge that by adding Al and Mg in combination, it is possible to significantly improve not only the corrosion resistance but also the high-temperature strength of austenitic steel. Like Ni, N is useful for austenite phase formation, and by using it, it is possible to avoid as much as possible the increase in the amount of Ni that conventionally accompanies an increase in the amount of Cr. Reducing the amount of expensive Ni used also brings economic advantages. The present invention is based on the above findings, and
C0.01~0.20%, Si0.50% or less, Mn10% or less,
Cr20~35%, Ni10~45%, N0.04~0.25%,
Contains Al0.01~0.5%, Mg0.001~0.05%, Ti0.01~0.5%, Nb0.01~1.0%, V0.01~1.0 as required
% of one or more types with a total of 0.01 to 1.0%,
B0.001~0.03%, Zr0.005~0.3% 1 or 2
The gist of the invention is an austenitic steel characterized by containing one or both of the following: Fe and unavoidable impurities. This invention steel is made from currently used 18-8 series materials, namely SUS304, 321, 347,
It has high-temperature strength that exceeds 316 steel and high Cr-Ni SUS310 steel, and its corrosion resistance is equivalent to or better than SUS310 steel. The reasons for limiting the ingredients in the present invention will be described below. C: A component useful for ensuring the tensile strength and creep rupture strength necessary for heat-resistant steel, 0.01%
Although the above is necessary, even if it exceeds 0.20%, undissolved carbides will remain in the solution treatment state, and the effect on high temperature strength will not be improved, but rather it will have a negative effect on the toughness after aging. ,0.01~0.20%
And so. In addition, from the point of view of hot workability and toughness,
0.01-0.08% is preferred. N: Like C, N is an austenite-forming element and an element effective in improving high-temperature strength, and 0.04% or more is required to obtain this effect. but
If it exceeds 0.25%, a large amount of nitrides will be generated, resulting in a decrease in toughness after aging, so it is set at 0.04 to 0.25%. Si: An effective element as a deoxidizer and to increase oxidation resistance, but if it exceeds 0.50%, weldability deteriorates and the amount of nitride precipitation increases, making the structure and strength unstable. Therefore, it was set to 0.50% or less. Mn: Effective in deoxidizing and improving workability, and at the same time useful in austenite formation, and can partially replace Ni with Mn. Further, it is effective in improving high temperature strength, but excessive addition causes deterioration of heat resistance properties, so 10% or less is appropriate. Cr: Shows excellent effects in improving high-temperature strength, oxidation resistance, and corrosion resistance, but if it is less than 20%, sufficient corrosion resistance cannot be obtained, and if it exceeds 35%, workability is insufficient and stable complete austenite is not obtained. Therefore, in the present invention, it is limited to 20 to 35%. Ni: An essential element for obtaining a stable austenite structure, and is determined in relation to the amount of N and the amount of Cr, but in the present invention, 10 to 45% is appropriate. Al: Although it is a deoxidizing component, it is also effective for high temperature strength, ductility, and toughness.
% or more is necessary, but the effect will be saturated if it exceeds 0.5%. Therefore, it was set at 0.01 to 0.5%. Mg: Mg is an element necessary for deoxidation and improving workability, and also contributes to improving ductility and toughness, but excessive addition will actually impair workability, so Mg was set at 0.001 to 0.05%. Ti, Nb, V: These elements greatly contribute to improving high-temperature strength by finely dispersing and precipitating carbonitrides, but when the N content is high, undissolved Ti, The amount of carbonitrides of Nb and V increases, and the effect of improving high temperature strength is reduced.
It is necessary to adjust the amount added depending on the amount of N. Also, if added in excess, it will impair weldability and even reduce high-temperature strength, so Ti0.01~
0.5%, Nb 0.01-1.0%, V 0.001-1.0%, and the total amount was also limited to 0.01-1.0%. B, Zr: These are elements that are effective in strengthening grain boundaries and improving high-temperature strength properties, but if they are less than 0.001% and less than 0.005%, respectively, no effect will be obtained, and excessive amounts will deteriorate weldability. 0.001 each
~0.03%, 0.005~0.30%. Next, the effects of the present invention will be explained using examples. Steels (1) to (43) and (A) with the components listed in Table 1
25Kg of (H) was melted in the air, forged, cold rolled, and then subjected to solution treatment. The solution treatment temperature is copper
(1)(2)(5) (SUS304, SUS316, SUS310) is 1100
°C, steel (3) (4) (SUS321, SUS347) and steel (6) ~
(Of 43 (invention steel) and steels (A) to (H) (comparative steel)
1150℃ for steels other than Ti, Nb, and V added steels, Ti, Nb, and V
For additive steel, the temperature was 1200℃. A creep rupture test was conducted on these test materials at 700°C, and the creep rupture strength was measured at 700°C for 3000 hours. The results were as shown in Table 2.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 18―8系の材料、(1)〜(4)では、SUS316鋼が破
断強度:9.2Kg/mm2と最も良好な値を示し、
SUS304鋼のそれは7.3Kg/mm2で最低であるが、高
CrのSUS310鋼は上記最低の値より更に低い7.0
Kg/mm2の破断強度しかないのが分かる。しかるに、
本発明鋼(6)〜(43)の破断強度は全て、上記
SUS316鋼より高い値を示している。なかでも特
にTi、Nb、Vの1種または2種以上を含むとと
もに、B、Zrの1種または2種を含有する本発
明鋼(31)〜(43)(第2表―)は、比較例の
中で最も高強度のSUS316鋼に比較しても40%前
後の改善が認められ、既存の高クロム鋼であると
ころのSUS310鋼と比べれば、それが90%にも達
しているのが明らかである。 一方、時効後の靭性については第3表に示すよ
うに本発明鋼ではNを含有しているため18―8系
の従来鋼と比較するとやや低目となつているもの
が大部分であるが、σ相等の脆化相析出は認めら
れず実用上全く問題ない靭性を有している。 ところで本発明の特徴の一つであるAl、Mg添
加による強度、延性、靭性改善の効果を明らかに
するために、700℃、14Kg/mm2応力下でのクリープ
破断試験結果および700℃での1000h時効後のシ
ヤルピー衝撃試験結果を第1図および第2図に比
較鋼のデータとあわせて示した。クリープ破断特
性については第1図から明らかなように、いずれ
の成分系においても、AlおよびMg添加により破
断寿命および破断延性が改善されており、特に破
断延性が大巾に改善されている。また時効後の靭
性については第2図からわかるように比較鋼の
A、B、C、D、E、F、G、H鋼に対してAl
≧0.01%、Mg≧0.001%を含有する本発明鋼では
衝撃値が上昇している。
[Table] Among the 18-8 series materials (1) to (4), SUS316 steel showed the best breaking strength of 9.2Kg/ mm2 ,
That of SUS304 steel is the lowest at 7.3Kg/ mm2 , but high
Cr SUS310 steel has a lower value of 7.0 than the above minimum value.
It can be seen that the breaking strength is only Kg/mm 2 . However,
All of the breaking strengths of the invention steels (6) to (43) are as above.
It shows a higher value than SUS316 steel. In particular, the invention steels (31) to (43) (Table 2) containing one or more of Ti, Nb, and V as well as one or two of B and Zr are comparative Even compared to SUS316 steel, which has the highest strength among the examples, an improvement of around 40% was observed, and compared to SUS310 steel, which is the existing high chromium steel, the improvement reached 90%. it is obvious. On the other hand, as shown in Table 3, most of the steels of the present invention have slightly lower toughness after aging than conventional 18-8 steels because they contain N. No precipitation of embrittling phases such as , σ phase is observed, and it has a toughness that poses no problem in practical use. By the way, in order to clarify the effect of improving strength, ductility, and toughness by adding Al and Mg, which is one of the features of the present invention, the results of creep rupture test at 700℃ and 14Kg/mm 2 stress and the results of the creep rupture test at 700℃ The results of the Charpy impact test after aging for 1000 hours are shown in Figures 1 and 2 together with the data for the comparative steel. As for the creep rupture properties, as is clear from FIG. 1, the addition of Al and Mg improves the fracture life and fracture ductility in all component systems, and in particular, the fracture ductility is greatly improved. In addition, regarding the toughness after aging, as shown in Figure 2, Al
In the steel of the present invention containing Mg≧0.01% and Mg≧0.001%, the impact value is increased.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 以上の通り、本発明鋼は、既存の高Cr鋼はも
とより、18―8系材料に較べこれらを遥かに凌ぐ
高温強度を備えており延性および靭性も良好で、
しかも高Crであるから耐食性の点でも18―8系
材料を大巾に上廻るものであり、ボイラや化学プ
ラント機器等、高温機器に適用して耐久性向上に
大きな効を奏するものである。
[Table] As shown above, the steel of the present invention has high-temperature strength that far exceeds that of existing high Cr steels as well as 18-8 series materials, and has good ductility and toughness.
In addition, since it has a high Cr content, it far exceeds 18-8 type materials in terms of corrosion resistance, and is highly effective in improving durability when applied to high-temperature equipment such as boilers and chemical plant equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋼と比較鋼についてクリープ破
断試験(700℃、σ=14.0Kg/mm2)の結果を示すグ
ラフ、第2図は本発明鋼と比較鋼について700℃
×1000時間時効材のシヤルピー衝撃試験の結果を
示すグラフである。
Figure 1 is a graph showing the results of the creep rupture test (700℃, σ = 14.0Kg/mm 2 ) for the invention steel and comparative steel, and Figure 2 is a graph showing the results of the creep rupture test (700℃, σ = 14.0Kg/mm 2 ) for the invention steel and comparison steel at 700℃.
It is a graph showing the results of a Charpy impact test of ×1000 hour aged material.

Claims (1)

【特許請求の範囲】 1 C0.01〜0.20%、Si0.50%以下、Mn10%以下、
Cr20〜35%、Ni10〜45%、N0.04〜0.25%に、
Al0.01〜0.5%およびMg0.001〜0.05%を含有し、
残部はFeおよび不可避的不純物からなることを
特徴とする高温強度にすぐれたオーステナイト
鋼。 2 C0.01〜0.20%、Si0.50%以下、Mn10%以下、
Cr20〜35%、Ni10〜45%、N0.04〜0.25%に、
Al0.01〜0.5%およびMg0.001〜0.005%を含有し、
更にTi0.01〜0.5%、Nb0.01〜1.0%、V0.01〜1.0
%の1種または2種以上を合計で0.01〜1.0%含
有し、残部はFeおよび不可避的不純物からなる
ことを特徴とする高温強度にすぐれたオーステナ
イト鋼。 3 C0.01〜0.20%、Si0.50%以下、Mn10%以下、
Cr20〜35%、Ni10〜45%、N0.04〜0.25%に、
Al0.01〜0.5%およびMg0.001〜0.05%を含有し、
更にB0.001〜0.03%、Zr0.005〜0.30%の1種また
は2種を含み、残部はFeおよび不可避的不純物
からなることを特徴とする高温強度にすぐれたオ
ーステナイト鋼。 4 C0.01〜0.20%、Si0.50%以下、Mn10%以下、
Cr20〜35%、Ni10〜45%、N0.04〜0.25%に、
Al0.01〜0.5%およびMg0.001〜0.05%を含有し、
更にTi0.01〜0.5%、Nb0.01〜1.0%、V0.01〜1.0
%の1種または2種以上を合計で0.01〜1.0%と、
B0.001〜0.03%、Zr0.005〜0.3%の1種または2
種を含み、残部はFeおよび不可避的不純物から
なることを特徴とする高温強度にすぐれたオース
テナイト鋼。
[Claims] 1 C 0.01 to 0.20%, Si 0.50% or less, Mn 10% or less,
Cr20~35%, Ni10~45%, N0.04~0.25%,
Contains Al0.01~0.5% and Mg0.001~0.05%,
An austenitic steel with excellent high-temperature strength, with the remainder consisting of Fe and unavoidable impurities. 2 C0.01~0.20%, Si0.50% or less, Mn10% or less,
Cr20~35%, Ni10~45%, N0.04~0.25%,
Contains Al0.01~0.5% and Mg0.001~0.005%,
Furthermore, Ti0.01~0.5%, Nb0.01~1.0%, V0.01~1.0
% or more in a total of 0.01 to 1.0%, with the remainder consisting of Fe and unavoidable impurities. 3 C0.01~0.20%, Si0.50% or less, Mn10% or less,
Cr20~35%, Ni10~45%, N0.04~0.25%,
Contains Al0.01~0.5% and Mg0.001~0.05%,
An austenitic steel with excellent high-temperature strength, which further contains one or both of 0.001 to 0.03% of B and 0.005 to 0.30% of Zr, with the remainder consisting of Fe and inevitable impurities. 4 C0.01~0.20%, Si0.50% or less, Mn10% or less,
Cr20~35%, Ni10~45%, N0.04~0.25%,
Contains Al0.01~0.5% and Mg0.001~0.05%,
Furthermore, Ti0.01~0.5%, Nb0.01~1.0%, V0.01~1.0
% of one or more types with a total of 0.01 to 1.0%,
B0.001~0.03%, Zr0.005~0.3% 1 or 2
An austenitic steel with excellent high-temperature strength that contains seeds and the remainder consists of Fe and unavoidable impurities.
JP4914281A 1981-03-31 1981-03-31 Austenite steel with superior strength at high temperature Granted JPS57164971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4914281A JPS57164971A (en) 1981-03-31 1981-03-31 Austenite steel with superior strength at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4914281A JPS57164971A (en) 1981-03-31 1981-03-31 Austenite steel with superior strength at high temperature

Publications (2)

Publication Number Publication Date
JPS57164971A JPS57164971A (en) 1982-10-09
JPH0120222B2 true JPH0120222B2 (en) 1989-04-14

Family

ID=12822827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4914281A Granted JPS57164971A (en) 1981-03-31 1981-03-31 Austenite steel with superior strength at high temperature

Country Status (1)

Country Link
JP (1) JPS57164971A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980757A (en) * 1982-11-01 1984-05-10 Hitachi Ltd High strength austenitic steel
JPS60230964A (en) * 1984-05-01 1985-11-16 Hitachi Ltd High toughness martensitic steel
JPS6141746A (en) * 1984-08-01 1986-02-28 Nippon Steel Corp High strength and high corrosion resistance heat resisting steel superior in hot workability
JPS63247341A (en) * 1987-04-02 1988-10-14 Nkk Corp Austenitic heat resistant alloy
JPH0229158U (en) * 1988-08-16 1990-02-26
JP4424471B2 (en) 2003-01-29 2010-03-03 住友金属工業株式会社 Austenitic stainless steel and method for producing the same
JP4946758B2 (en) * 2007-09-28 2012-06-06 住友金属工業株式会社 High temperature austenitic stainless steel with excellent workability after long-term use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109420A (en) * 1976-03-10 1977-09-13 Nippon Steel Corp Heat resisting austenite stainless steel
JPS5521547A (en) * 1978-08-01 1980-02-15 Hitachi Metals Ltd Austenite stainless steel having high strength and pitting corrosion resistance
JPS56158853A (en) * 1980-05-14 1981-12-07 Aichi Steel Works Ltd High-strength austenite stainless steel
JPS56158851A (en) * 1980-05-14 1981-12-07 Aichi Steel Works Ltd High-strength austenite stainless steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109420A (en) * 1976-03-10 1977-09-13 Nippon Steel Corp Heat resisting austenite stainless steel
JPS5521547A (en) * 1978-08-01 1980-02-15 Hitachi Metals Ltd Austenite stainless steel having high strength and pitting corrosion resistance
JPS56158853A (en) * 1980-05-14 1981-12-07 Aichi Steel Works Ltd High-strength austenite stainless steel
JPS56158851A (en) * 1980-05-14 1981-12-07 Aichi Steel Works Ltd High-strength austenite stainless steel

Also Published As

Publication number Publication date
JPS57164971A (en) 1982-10-09

Similar Documents

Publication Publication Date Title
SE501321C2 (en) Ferrite-austenitic stainless steel and use of the steel
JPH07216511A (en) High chromium austenitic heat resistant alloy excellent in strength at high temperature
EP1873270A1 (en) Low alloy steel
JP3543366B2 (en) Austenitic heat-resistant steel with good high-temperature strength
JPH0120222B2 (en)
JP3424599B2 (en) Austenitic stainless steel with excellent hot workability
JPH07331390A (en) High chromium austenitic heat resistant alloy
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JPS61113749A (en) High corrosion resistance alloy for oil well
JP2561592B2 (en) Welding material for high Cr ferritic heat resistant steel
JPH0830247B2 (en) Austenitic steel with excellent high temperature strength
JPH1161342A (en) High chromium ferritic steel
JPH0770681A (en) High chromium austenitic heat resistant alloy
JPH0121864B2 (en)
JPS63183155A (en) High-strength austenitic heat-resisting alloy
JPH06145906A (en) Ferritic stainless steel excellent in resistance to corrosion by water condensation
JPS59211556A (en) Ferritic-austenitic two-phase stainless steel
JPH09308989A (en) Welding material for high cr ferritic heat resistant steel
JPS6214630B2 (en)
JP2551511B2 (en) Welding material for high Cr ferritic heat resistant steel
JPS6214629B2 (en)
JP2551512B2 (en) Welding material for high Cr ferritic heat resistant steel
JPH0774414B2 (en) Austenitic steel with excellent high temperature strength
JPH06142981A (en) Welding material for high-cr ferritic heat resisting steel
JPS61147837A (en) Austenitic steel having high corrosion resistance and satisfactory strength at high temperature