JP3182995B2 - High Mn non-magnetic steel with excellent stress corrosion cracking resistance and mechanical properties - Google Patents

High Mn non-magnetic steel with excellent stress corrosion cracking resistance and mechanical properties

Info

Publication number
JP3182995B2
JP3182995B2 JP25852293A JP25852293A JP3182995B2 JP 3182995 B2 JP3182995 B2 JP 3182995B2 JP 25852293 A JP25852293 A JP 25852293A JP 25852293 A JP25852293 A JP 25852293A JP 3182995 B2 JP3182995 B2 JP 3182995B2
Authority
JP
Japan
Prior art keywords
corrosion cracking
stress corrosion
steel
magnetic permeability
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25852293A
Other languages
Japanese (ja)
Other versions
JPH07126809A (en
Inventor
光明 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25852293A priority Critical patent/JP3182995B2/en
Publication of JPH07126809A publication Critical patent/JPH07126809A/en
Application granted granted Critical
Publication of JP3182995B2 publication Critical patent/JP3182995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐応力腐食割れ性およ
び機械的性質の優れた高Mn非磁性鋼に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high Mn non-magnetic steel having excellent resistance to stress corrosion cracking and mechanical properties.

【0002】[0002]

【従来の技術】従来の代表的な高Mn非磁性鋼である 1%
C-13%Mn系鋼(ハッドフィールド鋼)および 0.4%C-18
%Mn-5%Cr系鋼(ASTM A289 classB鋼)などはオーステ
ナイト系ステンレス鋼に比べて安価で、耐力が高く、か
つ冷間加工に対して透磁率が安定しているため、オース
テナイト系ステンレス鋼に代わってリフティングマグネ
ット、発電機および電動機などの構造用部材に使用され
ている。しかしながら、かかる鋼材は工業用水あるいは
結露等により湿潤状態となった極めて弱い腐食環境にお
いても、低い引張応力の存在で、応力腐食割れを発生し
易いことが知られており、過去においても破損事例が報
告されている。
2. Description of the Related Art Conventional high-Mn non-magnetic steel, 1%
C-13% Mn-based steel (Hadfield steel) and 0.4% C-18
% Mn-5% Cr-based steel (ASTM A289 class B steel) is cheaper than austenitic stainless steel, has higher proof stress, and has stable magnetic permeability to cold working. Instead, they are used for structural members such as lifting magnets, generators and electric motors. However, it is known that such steel materials are susceptible to stress corrosion cracking due to the presence of low tensile stress even in extremely weak corrosive environments wetted by industrial water or dew condensation. It has been reported.

【0003】[0003]

【発明が解決しようとする課題】このような、応力腐食
割れの発生は表面塗装や陰極防食により防止できる。し
かしながら、表面塗装については、構造物によっては塗
装を完全に施すことのできない箇所があること、また使
用中に塗装が剥げることなどの問題がある。一方、陰極
防食については、用途や部所によっては適用できないこ
と、また多大な設備費が必要となることなどの問題があ
る。
The occurrence of such stress corrosion cracking can be prevented by surface coating or cathodic protection. However, there are problems with the surface coating, such as the fact that some structures cannot be completely coated, and that the coating peels off during use. On the other hand, cathodic protection has problems in that it cannot be applied depending on the use or place, and that a large facility cost is required.

【0004】本発明は、上記の問題点を解決するために
なされたもので、表面塗装や陰極防食にたよることな
く、化学成分を調整することによって、素材特性を改善
した耐応力腐食割れ性および機械的性質の優れた高Mn非
磁性鋼を提供することを目的とする。
[0004] The present invention has been made to solve the above-mentioned problems, and the stress corrosion cracking resistance is improved by adjusting the chemical composition without depending on the surface coating or cathodic protection, thereby improving the material properties. Another object of the present invention is to provide a high-Mn nonmagnetic steel having excellent mechanical properties.

【0005】[0005]

【課題を解決するための手段】C:0.40〜0.65%、 Mn:1
3.0〜20.0%、Si:0.1〜1.5 %、 Mo:0.01〜3.0 %、Al:
0.005〜1.0 %、 N:0.001〜0.10%を含有し、かつ、C
とMnの関係が25%≦20×C %+Mn%≦29%であり、残部
がFeおよび不可避的不純物からなる耐応力腐食割れ性お
よび機械的性質の優れた高Mn非磁性鋼である。
[Means for solving the problems] C: 0.40 to 0.65%, Mn: 1
3.0-20.0%, Si: 0.1-1.5%, Mo: 0.01-3.0%, Al:
0.005 to 1.0%, N: 0.001 to 0.10%, and C
Is a high Mn non-magnetic steel having a relationship of 25% ≦ 20 × C% + Mn% ≦ 29% with the balance being Fe and unavoidable impurities and having excellent stress corrosion cracking resistance and excellent mechanical properties.

【0006】Nb:0.01〜1.0 %、V:0.01〜1.0 %、Ti:0.
005〜0.2 %の内から選んだ1種以上を含有する請求項
1記載の耐応力腐食割れ性および機械的性質の優れた高
Mn非磁性鋼である。
Nb: 0.01-1.0%, V: 0.01-1.0%, Ti: 0.
2. The composition of claim 1, which contains at least one selected from 005 to 0.2%.
Mn nonmagnetic steel.

【0007】Ca:0.0005〜0.020 %、S:0.03〜0.15%、Z
r:0.005〜0.5 %の内から選んだ1種以上を含有する請
求項1または請求項2記載の耐応力腐食割れ性および機
械的性質の優れた高Mn非磁性鋼である。
[0007] Ca: 0.0005-0.020%, S: 0.03-0.15%, Z
The high Mn non-magnetic steel according to claim 1 or 2, which contains at least one element selected from the group consisting of 0.005 to 0.5% of r: stress corrosion cracking resistance and mechanical properties.

【0008】[0008]

【作用】従来の代表的な高Mn非磁性鋼である 1%C-13%
Mn系鋼および 0.4%C-18%Mn-5%Cr系鋼などは工業用水
あるいは結露等により湿潤状態となった極めて弱い腐食
環境においても、低い引張応力の存在で、応力腐食割れ
を発生し易く、かかる鋼材の応力腐食割れには、粒界割
れと粒内割れの二種類があることが知られている。した
がって。応力腐食割れの発生を防止するには、両者の割
れに対する対策が必要となる。
[Function] 1% C-13%, which is a typical high Mn non-magnetic steel
Mn-based steel and 0.4% C-18% Mn-5% Cr-based steel, etc., generate stress corrosion cracking due to low tensile stress even in extremely weak corrosive environments wetted by industrial water or condensation. It is known that there are two types of stress corrosion cracking of steel, namely, intergranular cracking and intragranular cracking. Therefore. In order to prevent the occurrence of stress corrosion cracking, it is necessary to take measures against both cracks.

【0009】粒界割れは、結晶粒界に析出するCr炭化物
の周囲に、Cr欠乏層が形成され、この部分が選択的に腐
食することにより発生すると考えられている。一方、粒
内割れは、オーステナイト形成元素である C、Mnおよび
Niがそれぞれ多く含有されていると発生し易くなる。そ
こで、本発明者は検討を重ねた結果、図1に示すよう
に、CrとNiを添加せず、かつ、C:0.40〜0.65%、 Mn:1
3.0〜20.0%の範囲で、Fe- C-Mn合金状態図中のオース
テナイト(γ)単相領域における境界線近傍、すなわ
ち、25%≦20×C %+Mn%≦29%なる領域に化学成分を
調整することにより、安定オーステナイト組織を維持し
つつ、粒界割れと粒内割れの発生を防止でき得ることを
知見した。
It is considered that grain boundary cracks occur when a Cr deficient layer is formed around Cr carbides precipitated at crystal grain boundaries, and this portion is selectively corroded. On the other hand, intragranular cracking is caused by the austenite forming elements C, Mn and
If a large amount of Ni is contained, it is likely to occur. Therefore, as a result of repeated studies, as shown in FIG. 1, the present inventor did not add Cr and Ni, C: 0.40 to 0.65%, Mn: 1
In the range of 3.0 to 20.0%, the chemical components are placed in the vicinity of the boundary line in the austenite (γ) single phase region in the Fe-C-Mn alloy phase diagram, that is, in the region of 25% ≦ 20 × C% + Mn% ≦ 29%. It has been found that the adjustment can prevent generation of intergranular cracks and intragranular cracks while maintaining a stable austenite structure.

【0010】すなわち、図1はC-Mn系鋼におけるC およ
びMn含有量と応力腐食割れとの関係を示し、図中の白印
は応力腐食割れが発生していないものを示し、黒印は応
力腐食割れが発生したものを示す。図1に見る通り、図
中の斜線領域内の鋼は安定オーステナイト組織を維持し
つつ、かつ応力腐食割れが発生していな。また、C ある
いはMn含有量が本領域から外れると安定オーステナイト
組織を有するものの、粒内割れが発生し易くなることが
わかる。なお、応力腐食割れ試験は厚さ1.5mm×幅15mm
×長さ65mmの試験片に、4点支持曲げ方式で245N/mm2
荷重を負荷し、海水および水道水浸漬、屋外大気暴露の
三種類の腐食条件で実施した。腐食期間は90日間であ
る。
That is, FIG. 1 shows the relationship between the C and Mn contents and stress corrosion cracking in a C-Mn series steel. In the figure, white marks indicate those in which stress corrosion cracking did not occur, and black marks indicate that. This indicates that stress corrosion cracking has occurred. As shown in FIG. 1, the steel in the hatched region in the figure maintains a stable austenite structure and has not generated stress corrosion cracking. In addition, when the content of C or Mn is out of this range, although it has a stable austenite structure, it can be seen that intragranular cracking easily occurs. The stress corrosion cracking test was 1.5 mm thick x 15 mm wide.
× A test piece having a length of 65 mm was loaded with a load of 245 N / mm 2 by a four-point support bending method, and the test was carried out under three kinds of corrosion conditions of immersion in seawater and tap water and exposure to the atmosphere outdoors. The corrosion period is 90 days.

【0011】しかしながら、上記の化学成分範囲で定ま
る鋼種は優れた耐応力腐食割れ性を有するものの、オー
ステナイト形成元素であるNiを含有せず、しかも適量の
添加でオーステナイトを安定させ、耐力を向上させるCr
も含有していないため、0.2%耐力および冷間加工に対
する透磁率の安定性が不十分である。また、応力除去焼
鈍処理のように、600 ℃付近の温度で長時間恒温保持さ
れると著しい靱性の劣化ならびに透磁率の上昇を招くと
いう問題点を有している。
[0011] However, although the steel type defined by the above chemical composition range has excellent stress corrosion cracking resistance, it does not contain Ni, which is an austenite forming element, and stabilizes austenite by adding an appropriate amount to improve the proof stress. Cr
, The stability of the magnetic permeability to 0.2% proof stress and cold working is insufficient. Further, there is a problem that when the temperature is maintained at a constant temperature of about 600 ° C. for a long time as in the stress relief annealing treatment, the toughness is remarkably deteriorated and the magnetic permeability is increased.

【0012】本発明者は、かかる問題点の解決策とし
て、図2に示すように、適量のMoおよびAlの添加が顕著
なる改善効果を発揮することを知見した。図2は 0.6%
C-15%Mn-0.5%Mo-0.03 %Al鋼、 0.6%C-15%Mn-0.5%
Mo鋼、 0.6%C-15%Mn鋼の熱間圧延まま材の冷間加工に
よる透磁率の変化を示す。図より適量のMoの添加は冷間
加工に対する透磁率の安定性を改善し、さらに適量のAl
を添加しても、透磁率の安定性に悪影響を及ぼさないこ
とがわかる。
As a solution to such a problem, the present inventor has found that as shown in FIG. 2, the addition of appropriate amounts of Mo and Al exerts a remarkable improvement effect. Figure 2 shows 0.6%
C-15% Mn-0.5% Mo-0.03% Al steel, 0.6% C-15% Mn-0.5%
This figure shows the change in magnetic permeability due to cold working of the as-hot-rolled Mo steel and 0.6% C-15% Mn steel. As shown in the figure, the addition of an appropriate amount of Mo improves the stability of the magnetic permeability for cold working,
It can be seen that the addition of does not adversely affect the stability of the magnetic permeability.

【0013】すなわち、適量のMoの添加は、0.2 %耐力
を上昇させるとともに、オーステナイトを安定化させる
ため、冷間加工に対する透磁率の安定性を改善する。ま
た、長時間の恒温保持の際、パーライト状析出物の発生
を著しく抑制するため、靱性の劣化ならびに透磁率の上
昇を大幅に軽減させる。しかしながら、圧延まま材の靱
性は、強度上昇に伴って劣化する傾向にあり、不十分と
なる。
That is, the addition of an appropriate amount of Mo increases the 0.2% proof stress and stabilizes austenite, thereby improving the stability of magnetic permeability to cold working. In addition, the generation of pearlite-like precipitates during long-time constant temperature maintenance is significantly suppressed, so that deterioration in toughness and increase in magnetic permeability are significantly reduced. However, the toughness of the as-rolled material tends to deteriorate with an increase in strength, and becomes insufficient.

【0014】そこで、Mo添加に加えて、適量なるAlを添
加すると、オーステナイト地を清浄化させる作用で靱性
を向上させ、Mo添加による強度上昇に伴って生じる靱性
の劣化を補償するとともに、Moと同様、長時間の恒温保
持の際のパーライト状析出物の発生を抑制するため、靱
性の劣化ならびに透磁率の上昇を一層軽減させることが
明らかになった。また、これらの元素の適量添加は、応
力腐食割れ感受性に悪影響を及ぼさないこともわかっ
た。
Therefore, when an appropriate amount of Al is added in addition to the addition of Mo, the toughness is improved by the action of cleaning the austenite ground, and the deterioration of the toughness caused by the increase in strength due to the addition of Mo is compensated. Similarly, in order to suppress the generation of pearlite-like precipitates during long-time constant temperature holding, it was revealed that deterioration in toughness and increase in magnetic permeability were further reduced. It was also found that the addition of an appropriate amount of these elements does not adversely affect stress corrosion cracking susceptibility.

【0015】したがって、上記の応力腐食割れ防止対策
の化学成分範囲で定まる成分系に、適量のMoおよびAlを
添加した鋼は、後述の実施例No.1〜4 に示すように、優
れた耐応力腐食割れ性を維持しつつ、かつ、0.2 %耐力
が300N/mm2以上で、0 ℃でのシャルピー衝撃値(vE0) が
180J以上という優れた機械的性質を有している。さら
に、50%程度の冷間加工が施されても、透磁率(μ)は
1.02以下であり、透磁率上昇の程度は小さい。また、60
0 ℃×4時間程度の応力除去焼鈍処理が施されても、vE
0 が140J以上の高い靱性およびμ=1.002という低い透磁
率を維持していることが判明した。
[0015] Therefore, as shown in Examples Nos. 1 to 4 below, a steel obtained by adding an appropriate amount of Mo and Al to the component system determined by the above-described chemical composition range for preventing stress corrosion cracking has excellent resistance. while maintaining the stress corrosion cracking resistance, and a 0.2% yield strength 300N / mm 2 or more, Charpy impact value at 0 ℃ (vE 0) is
It has excellent mechanical properties of 180J or more. Furthermore, even if cold work of about 50% is performed, the magnetic permeability (μ)
1.02 or less, and the degree of increase in magnetic permeability is small. Also, 60
Even if stress relief annealing treatment is performed at 0 ° C for about 4 hours, vE
It was found that 0 maintained a high toughness of 140 J or more and a low magnetic permeability of μ = 1.002.

【0016】つぎに、本発明における成分元素およびそ
の添加量の限定理由について説明する。
Next, the reasons for limiting the component elements and the amounts added in the present invention will be described.

【0017】C は強力なオーステナイト形成元素であ
り、オーステナイト地に固溶して非磁性を安定化させる
とともに、強度および靱性を高める効果を有するため、
0.40%以上の添加を必要とする。添加量が0.40%未満の
ときは強度が不十分になり、また、オーステナイトが不
安定となるため、冷間加工が施されると透磁率が上昇す
る。一方、0.65%を超えて添加すると、粒内割れが発生
し易くなり、また、600℃付近の温度に長時間恒温保持
された際、パーライト状析出物が発生し易くなるため、
靱性が劣化し、透磁率が上昇する傾向にある。したがっ
て、C 含有量は0.40〜0.65%とする。
C is a strong austenite-forming element and has the effect of forming a solid solution in austenite to stabilize non-magnetism and increasing strength and toughness.
Requires addition of 0.40% or more. When the addition amount is less than 0.40%, the strength becomes insufficient and the austenite becomes unstable, so that the cold permeability increases the magnetic permeability. On the other hand, if added in excess of 0.65%, intragranular cracking is likely to occur, and when held at a constant temperature of around 600 ° C. for a long time, pearlite-like precipitates are likely to occur,
The toughness tends to deteriorate and the magnetic permeability tends to increase. Therefore, the C content is set to 0.40 to 0.65%.

【0018】Mnは本発明鋼においてC とともに主要なオ
ーステナイト形成元素であり、オーステナイト地に固溶
して非磁性を安定化させる効果を有するため、13.0%以
上の添加を必要とする。13.0%未満の場合でも、オース
テナイト組織であるが、冷間加工が施されるとオーステ
ナイトが不安定となり、透磁率が上昇する。一方、20.0
%を超えて添加すると粒内応力腐食割れが発生し易くな
り、熱間加工性も劣化する傾向にある。したがって、Mn
含有量は13.0〜20.0%とする。
Mn is a main austenite forming element together with C in the steel of the present invention, and has the effect of forming a solid solution in austenite ground to stabilize non-magnetism. Therefore, Mn needs to be added at 13.0% or more. Even if it is less than 13.0%, it has an austenitic structure, but when cold worked, austenite becomes unstable and the magnetic permeability increases. On the other hand, 20.0
%, It tends to generate intragranular stress corrosion cracking, and the hot workability tends to deteriorate. Therefore, Mn
The content is 13.0 to 20.0%.

【0019】NiおよびCrを含有せず、C:0.40〜0.65%お
よび Mn:13.0〜20.0%からなるC-Mn系鋼は、 CおよびMn
量をFe- C-Mn合金状態図中のオーステナイト単相領域に
おける境界線近傍、すなわち、25%≦20×C %+Mn%≦
29%なる領域に化学成分を調整することにより、安定オ
ーステナイト組織を維持しつつ、かつ応力腐食割れを防
止することができる。すなわち、20×C %+Mn%が25%
に満たないとオーステナイト(γ)およびイプシロン
(ε)の2相組織となるため、安定オーステナイト組織
が確保できなくなり、一方、20×C %+Mn%が29%を超
えると、安定オーステナイト組織であるものの、応力腐
食割れが発生し易くなる。したがって、CとMnの関係は2
5%≦20×C %+Mn%≦29%で規制する。
A C-Mn steel not containing Ni and Cr and comprising 0.40 to 0.65% of C and 13.0 to 20.0% of Mn is composed of C and Mn.
The amount is near the boundary line in the austenite single phase region in the Fe-C-Mn alloy phase diagram, that is, 25% ≦ 20 × C% + Mn% ≦
By adjusting the chemical composition to a region of 29%, it is possible to maintain a stable austenite structure and prevent stress corrosion cracking. That is, 20 x C% + Mn% is 25%
If it is less than 2%, a two-phase structure of austenite (γ) and epsilon (ε) is obtained, so that a stable austenite structure cannot be ensured. On the other hand, if 20 × C% + Mn% exceeds 29%, a stable austenite structure , Stress corrosion cracking is likely to occur. Therefore, the relationship between C and Mn is 2
Regulate at 5% ≦ 20 × C% + Mn% ≦ 29%.

【0020】Siは鋼溶製時の脱酸作用を有し、かつ強度
の向上に有効な元素である。そのためには、0.1 %以上
の添加を必要とする。一方、1.5 %を超えて添加すると
応力腐食割れ感受性が増大し、熱間加工性も劣化する傾
向にある。したがって、Si含有量は 0.1〜1.5 %とす
る。
Si is an element that has a deoxidizing action during steel melting and is effective in improving strength. For that purpose, addition of 0.1% or more is required. On the other hand, if it exceeds 1.5%, the susceptibility to stress corrosion cracking increases and the hot workability tends to deteriorate. Therefore, the Si content is set to 0.1 to 1.5%.

【0021】Moはオーステナイト地に固溶して強度、特
に0.2 %耐力を上昇させるとともに、適量の添加でオー
ステナイトを安定化させるため、冷間加工に対する透磁
率の安定性を改善する。さらに600 ℃付近の温度に長時
間恒温保持された際、パーライト状析出物の発生を抑制
するため、靱性の劣化ならびに透磁率の上昇を軽減させ
る効果を有する。また、応力腐食割れ感受性に悪影響を
及ぼさないことより積極的に添加する。添加量が0.01%
未満では、上記の効果が十分発揮されない。一方、3.0
%を超えて添加すると、恒温保持時の上記効果が顕著で
なくなる上、コスト面でも不利となる。したがって、Mo
含有量は0.01〜3.0 %とする。
Mo forms a solid solution in the austenite ground to increase the strength, particularly the 0.2% proof stress, and stabilizes the austenite by adding an appropriate amount, so that the stability of the magnetic permeability to cold working is improved. Furthermore, when kept at a constant temperature of about 600 ° C. for a long period of time, the generation of pearlite-like precipitates is suppressed, which has the effect of reducing the deterioration of toughness and the increase in magnetic permeability. Further, it is added more positively because it does not adversely affect the susceptibility to stress corrosion cracking. Addition amount is 0.01%
If it is less than the above, the above effects cannot be sufficiently exhibited. Meanwhile, 3.0
%, The effect at the time of maintaining the temperature is not remarkable, and the cost is disadvantageous. Therefore, Mo
The content is 0.01 to 3.0%.

【0022】Alは鋼溶製時の脱酸作用を有し、オーステ
ナイト地を清浄化させることにより、靱性を向上させ、
Mo添加による強度上昇に伴って生じる靱性の劣化を補償
する。さらに600 ℃付近の温度に長時間恒温保持された
際、パーライト状析出物の発生を抑制し、靱性の劣化な
らびに透磁率の上昇を軽減させる効果を有する。また、
応力腐食割れ感受性に悪影響を及ぼさないことより積極
的に添加する。添加量が0.005 %未満では、上記の効果
が十分発揮されない。一方、1.0 %を超えて添加する
と、熱間加工性が劣化する傾向にある。したがって、Al
含有量は 0.005〜1.0 %とする。
Al has a deoxidizing effect at the time of steel melting and improves toughness by cleaning austenite ground.
Compensates for the deterioration of toughness caused by the increase in strength due to the addition of Mo. Further, when it is kept at a constant temperature of about 600 ° C. for a long time, it has the effect of suppressing the generation of pearlite-like precipitates and reducing the deterioration of toughness and the increase in magnetic permeability. Also,
It is added more positively because it does not adversely affect the susceptibility to stress corrosion cracking. If the added amount is less than 0.005%, the above effects cannot be sufficiently exhibited. On the other hand, if it exceeds 1.0%, hot workability tends to deteriorate. Therefore, Al
The content is 0.005 to 1.0%.

【0023】N は応力腐食割れ感受性に悪影響を及ぼさ
ない。本元素はオーステナイト形成元素であり、オース
テナイト地に固溶して強度を上昇させる。そのために
は、0.001 %以上の添加を必要とする。一方、0.1 %を
超えて添加すると、溶鋼中の窒素固溶限を超えてしまう
ため、鋼塊の健全性が損なわれる。したがって、N 含有
量は 0.001〜0.1 %とする。
N does not adversely affect stress corrosion cracking susceptibility. This element is an austenite-forming element, and forms a solid solution in austenite ground to increase the strength. For that purpose, it is necessary to add 0.001% or more. On the other hand, if added in excess of 0.1%, the solid solubility limit of nitrogen in molten steel is exceeded, and the soundness of the steel ingot is impaired. Therefore, the N content should be 0.001 to 0.1%.

【0024】本発明においては、上記の基本化学成分の
ほかに、下記の化学成分を添加することにより、上述の
特性を損なうことなく強度あるいは被削性を著しく向上
させることができる。
In the present invention, by adding the following chemical components in addition to the above basic chemical components, the strength or machinability can be significantly improved without impairing the above-mentioned properties.

【0025】NbおよびV は、本発明の含有範囲では応力
腐食割れ性に悪影響を及ぼさない。これら元素はオース
テナイト地を強化するとともに、その地中にNb系および
V 系の炭化物を析出させて強度、特に0.2 %耐力を顕著
に上昇させる。そのために、0.01%以上添加する。一
方、過度に添加すると、600 ℃付近の温度に長時間恒温
保持された際、炭化物の析出が顕著になり、靱性が劣化
する傾向にある。そのため、上限を1.0 %とする。した
がって、Nb、V 含有量は0.01〜1.0 %とする。
Nb and V do not adversely affect stress corrosion cracking in the content range of the present invention. These elements strengthen the austenitic ground and add Nb-based and
Precipitation of V-based carbides significantly increases strength, especially 0.2% proof stress. Therefore, 0.01% or more is added. On the other hand, when added excessively, when the temperature is kept constant at a temperature around 600 ° C. for a long time, precipitation of carbides becomes remarkable, and the toughness tends to deteriorate. Therefore, the upper limit is set to 1.0%. Therefore, the contents of Nb and V are set to 0.01 to 1.0%.

【0026】Tiは高温域まで粗粒化抑制作用があるた
め、靱性の向上に有効である。そのためには、0.005 %
以上の添加を必要とする。一方、過度に添加すると、Ti
酸化物の非金属介在物が増え、かえって靱性を害するた
め上限を0.2 %とする。したがって、Ti含有量は 0.005
〜0.2 %とする。
Since Ti has a coarsening suppression effect up to a high temperature range, it is effective in improving toughness. For that, 0.005%
The above addition is required. On the other hand, if added excessively, Ti
Since the amount of nonmetallic inclusions in the oxide increases and the toughness is impaired, the upper limit is made 0.2%. Therefore, the Ti content is 0.005
To 0.2%.

【0027】Caは応力腐食割れ感受性に悪影響を及ぼさ
ない。本元素は脱酸剤および脱硫剤として作用する。ま
た、Caを含む非金属介在物の形成により、機械的性質の
異方性を軽減するとともに、被削性、特に面切削性を著
しく改善する。そのために、0.0005%以上添加する。一
方、過度に添加すると、鋼の清浄度を害し、機械的性質
を悪くするため、上限を0.020 %とする。したがって、
Ca含有量は0.0005〜0.020 %とする。
[0027] Ca does not adversely affect stress corrosion cracking susceptibility. This element acts as a deoxidizer and desulfurizer. In addition, the formation of Ca-containing nonmetallic inclusions reduces the anisotropy of the mechanical properties and significantly improves the machinability, especially the surface machinability. Therefore, 0.0005% or more is added. On the other hand, if added excessively, the cleanliness of the steel is impaired and the mechanical properties are deteriorated, so the upper limit is made 0.020%. Therefore,
The Ca content is 0.0005 to 0.020%.

【0028】S は応力腐食割れ感受性に悪影響を及ぼさ
ない。本元素はMnと化合物をつくることにより、被削
性、特にドリル穿孔性の向上に有効である。そのため
に、0.03%以上添加する。一方、過度に添加すると、熱
間加工性および靱性を劣化させるため、上限を0.15%と
する。したがって、S 含有量は0.03〜0.15%とする。
S does not adversely affect stress corrosion cracking susceptibility. This element is effective in improving machinability, especially drilling, by forming a compound with Mn. For that purpose, 0.03% or more is added. On the other hand, if added excessively, hot workability and toughness are degraded, so the upper limit is made 0.15%. Therefore, the S content is set to 0.03 to 0.15%.

【0029】Zrは応力腐食割れ感受性に悪影響を及ぼさ
ない。本元素はS と化合物をつくることにより、ドリル
穿孔性、面切削性等の被削性の向上に有効である。その
ために、0.005 %以上添加する。一方、過度に添加する
と、靱性を劣化させるため、上限を0.5 %とする。した
がって、Zr含有量は 0.005〜0.5 %とする。
Zr does not adversely affect stress corrosion cracking susceptibility. This element is effective for improving the machinability such as drilling ability and surface machinability by forming a compound with S. Therefore, 0.005% or more is added. On the other hand, if added excessively, the toughness is degraded, so the upper limit is made 0.5%. Therefore, the Zr content is set to 0.005 to 0.5%.

【0030】[0030]

【実施例】以下に、本発明の実施例について説明する。
表1に示す化学成分を有する高Mn鋼を高周波炉で溶製
し、90キロインゴットに造塊した。このインゴットを鍛
造し、その後熱間圧延で板厚20mmの鋼板に仕上げた。供
試材は圧延まま材(履歴A)と 600℃×4時間、炉冷の
応力除去焼鈍処理を施したもの(履歴B)の二種類であ
る。各供試材について、応力腐食割れ試験および機械試
験を実施するとともに、透磁率を測定した。
Embodiments of the present invention will be described below.
High-Mn steel having the chemical components shown in Table 1 was melted in a high-frequency furnace and ingot into 90 kg ingots. The ingot was forged and then hot-rolled to a steel plate having a thickness of 20 mm. The test material was of two types: as-rolled material (history A) and a material subjected to stress-relieving annealing at 600 ° C. for 4 hours in furnace cooling (history B). For each test material, a stress corrosion cracking test and a mechanical test were performed, and the magnetic permeability was measured.

【0031】応力腐食割れ試験は各供試材から採取した
厚さ1.5mm ×幅15mm×長さ65mmの試験片に、4点支持曲
げ方式で245N/mm2の荷重を負荷し、海水および水道水浸
漬、屋外大気暴露の三種類の腐食条件で実施した。腐食
期間は90日間である。応力腐食割れ試験結果を表2に、
機械試験結果および透磁率を表3に示す。
The stress corrosion cracking test was carried out by applying a load of 245 N / mm 2 to a test piece having a thickness of 1.5 mm, a width of 15 mm, and a length of 65 mm collected from each test material by a four-point support bending method, using seawater and tap water. The test was performed under three types of corrosion conditions: water immersion and outdoor exposure to the atmosphere. The corrosion period is 90 days. Table 2 shows the results of the stress corrosion cracking test.
Table 3 shows the mechanical test results and the magnetic permeability.

【0032】表2から明らかなように、本発明例はいず
れの腐食条件においても応力腐食割れは発生していな
い。一方、比較例のNo.13 はCrを、比較例のNo.14 はNi
を含有しているため、それぞれ粒界割れと粒内割れが発
生し易くなり、海水浸漬で応力腐食割れが発生してい
る。
As is apparent from Table 2, stress corrosion cracking did not occur in any of the examples of the present invention under any of the corrosion conditions. On the other hand, No. 13 of the comparative example was Cr, and No. 14 of the comparative example was Ni.
, The grain boundary cracks and intragranular cracks easily occur, respectively, and stress corrosion cracking occurs in seawater immersion.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】さらに、比較例のNo.16 はCrを比較例のN
o.13 よりも多く含有しているため、いずれの腐食条件
においても応力腐食割れ(粒界割れ)が発生している。
また、比較例のNo.17 はC を限定範囲を超えて含有し、
25%≦20×C %+Mn%≦29%を満足していないため、い
ずれの腐食条件においても応力腐食割れ(粒内割れ)が
発生している。
Further, in Comparative Example No. 16, Cr was replaced by N in Comparative Example.
Since it contains more than o.13, stress corrosion cracking (grain boundary cracking) occurs under any of the corrosion conditions.
Also, No. 17 of Comparative Example contains C beyond the limited range,
Since 25% ≦ 20 × C% + Mn% ≦ 29% is not satisfied, stress corrosion cracking (intragranular cracking) occurs under any of the corrosion conditions.

【0037】表3から明らかなように、本発明例は圧延
まま材(履歴A)、応力除去焼鈍処理材(履歴B)とも
優れた機械的性質と透磁率を有している。特に、本発明
例のNo.5はTiを含有しているため高い靱性(vE0) を、N
o.6、7 、9 、10はNbまたはVを含有しているため高い0.
2 %耐力を有している。また、表には示していないが、
本発明例のNo.8、9 、10はCa、S 、Zrのいずれかを含有
しているため被削性が著しく良好であった。
As is clear from Table 3, the examples of the present invention have excellent mechanical properties and magnetic permeability both in the as-rolled material (history A) and in the stress-relieved annealing material (history B). In particular, No. 5 of the present invention has high toughness (vE 0 ) because it contains Ti,
o. 6, 7, 9, and 10 are high because they contain Nb or V.
Has 2% proof stress. Also, although not shown in the table,
Nos. 8, 9, and 10 of the present invention contained any of Ca, S, and Zr, and thus had excellent machinability.

【0038】一方、比較例のNo.11 はMoとAlを含有して
いないため、履歴Aでは0.2 %耐力が低く、履歴Bでは
0.2 %耐力とvE0 が低く、透磁率が上昇している。比較
例のNo.12 はAlを含有していないため、履歴BではvE0
が低い。比較例のNo.13 はMoとAlを含有していないた
め、履歴BではvE0 が低く、透磁率が上昇している。比
較例のNo.14 はMoとAlを含有していないため、履歴Bで
はvE0 が低い。比較例のNo.15 はC 含有量が低く、Moと
Alを含有していないため、履歴A、Bでは0.2 %耐力が
低く、履歴BではvE0 が低く、透磁率が上昇している。
比較例のNo.17 はC 含有量が高く、MoとAlを含有してい
ないため、履歴BではvE0 が低く、透磁率が上昇してい
る。
On the other hand, No. 11 of the comparative example does not contain Mo and Al, so that the history A has a low 0.2% proof stress and the history B has a low yield strength.
The 0.2% proof stress and vE 0 are low, and the magnetic permeability is increased. Since No. 12 of the comparative example does not contain Al, the history B shows that vE 0
Is low. In Comparative Example No. 13, which does not contain Mo and Al, the history B has a low vE 0 and an increased magnetic permeability. No. 14 of the comparative example does not contain Mo and Al, so that the history B has a low vE 0 . No. 15 of the comparative example has a low C content,
Since it does not contain Al, the histories A and B have a low 0.2% proof stress, and the histories B have a low vE 0 and an increased magnetic permeability.
No. 17 of the comparative example has a high C content and does not contain Mo and Al. Therefore, in the history B, vE 0 is low and the magnetic permeability is increased.

【0039】以上、述べたように、本発明例は圧延まま
材、応力除去焼鈍処理材とも優れた耐応力腐食割れ性、
機械的性質および透磁率を有しているが、比較例は耐応
力腐食割れ性、機械的性質および透磁率のすべての特性
を同時に満足するものはない。
As described above, according to the present invention, both the as-rolled material and the stress-relieved annealing material have excellent stress corrosion cracking resistance,
Although it has mechanical properties and magnetic permeability, none of the comparative examples simultaneously satisfies all the properties of stress corrosion cracking resistance, mechanical properties and magnetic permeability.

【0040】[0040]

【発明の効果】以上、述べたところから明らかなよう
に、本発明鋼は表面塗装や陰極防食を施さずとも、耐応
力腐食割れ性が優れているため、腐食環境下で使用して
も応力腐食割れが発生することはない。また、冷間加
工、応力除去焼鈍処理を行っても、機械的性質が優れて
いるため、0.2 %耐力が高く、靱性の低下が少なく、透
磁率の上昇も僅かである。
As is apparent from the above description, since the steel of the present invention has excellent stress corrosion cracking resistance even without surface coating or cathodic protection, even if used in a corrosive environment, the steel of the present invention has a high stress corrosion cracking resistance. No corrosion cracking occurs. Even when cold working and stress relieving annealing are performed, the mechanical properties are excellent, so the 0.2% proof stress is high, the decrease in toughness is small, and the increase in magnetic permeability is slight.

【図面の簡単な説明】[Brief description of the drawings]

【図1】C-Mn系鋼におけるC およびMn含有量と応力腐食
割れとの関係を示す図である。
FIG. 1 is a diagram showing the relationship between C and Mn contents and stress corrosion cracking in a C-Mn steel.

【図2】0.6%C-15%Mn-0.5%Mo-0.03 %Al鋼、 0.6%C
-15%Mn-0.5%Mo鋼、 0.6%C-15%Mn鋼の熱間圧延まま
材の冷間加工による透磁率の変化を示す図である。
[Figure 2] 0.6% C-15% Mn-0.5% Mo-0.03% Al steel, 0.6% C
It is a figure which shows the change of the magnetic permeability by cold working of the hot rolled material of -15% Mn-0.5% Mo steel, 0.6% C-15% Mn steel.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.40〜0.65%、 Mn:13.0〜20.0%、S
i:0.1〜1.5 %、 Mo:0.01〜3.0 %、Al:0.005〜1.0
%、 N:0.001〜0.10%を含有し、かつ、C とMnの関係が
25%≦20×C %+Mn%≦29%であり、残部がFeおよび不
可避的不純物からなることを特徴とする耐応力腐食割れ
性および機械的性質の優れた高Mn非磁性鋼。
[Claim 1] C: 0.40 to 0.65%, Mn: 13.0 to 20.0%, S
i: 0.1-1.5%, Mo: 0.01-3.0%, Al: 0.005-1.0
%, N: 0.001 to 0.10%, and the relationship between C and Mn
A high Mn non-magnetic steel excellent in stress corrosion cracking resistance and mechanical properties, wherein 25% ≦ 20 × C% + Mn% ≦ 29%, the balance being Fe and unavoidable impurities.
【請求項2】 Nb:0.01〜1.0 %、V:0.01〜1.0 %、T
i:0.005〜0.2 %の内から選んだ1種以上を含有する請
求項1記載の耐応力腐食割れ性および機械的性質の優れ
た高Mn非磁性鋼。
2. Nb: 0.01 to 1.0%, V: 0.01 to 1.0%, T
2. The high-Mn nonmagnetic steel according to claim 1, which comprises one or more selected from i: 0.005 to 0.2%.
【請求項3】 Ca:0.0005〜0.020 %、S:0.03〜0.15
%、Zr:0.005〜0.5 %の内から選んだ1種以上を含有す
る請求項1または請求項2記載の耐応力腐食割れ性およ
び機械的性質の優れた高Mn非磁性鋼。
3. Ca: 0.0005-0.020%, S: 0.03-0.15
3. The high-Mn non-magnetic steel according to claim 1 or 2, further comprising at least one selected from the group consisting of 0.005 to 0.5% and Zr: 0.005 to 0.5%.
JP25852293A 1993-10-15 1993-10-15 High Mn non-magnetic steel with excellent stress corrosion cracking resistance and mechanical properties Expired - Lifetime JP3182995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25852293A JP3182995B2 (en) 1993-10-15 1993-10-15 High Mn non-magnetic steel with excellent stress corrosion cracking resistance and mechanical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25852293A JP3182995B2 (en) 1993-10-15 1993-10-15 High Mn non-magnetic steel with excellent stress corrosion cracking resistance and mechanical properties

Publications (2)

Publication Number Publication Date
JPH07126809A JPH07126809A (en) 1995-05-16
JP3182995B2 true JP3182995B2 (en) 2001-07-03

Family

ID=17321384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25852293A Expired - Lifetime JP3182995B2 (en) 1993-10-15 1993-10-15 High Mn non-magnetic steel with excellent stress corrosion cracking resistance and mechanical properties

Country Status (1)

Country Link
JP (1) JP3182995B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126268A2 (en) * 2009-04-28 2010-11-04 연세대학교 산학협력단 High manganese nitrogen-containing steel sheet having high strength and high ductility, and method for manufacturing same
US20150211088A1 (en) * 2011-12-23 2015-07-30 Posco Non-magnetic high manganese steel sheet with high strength and manufacturing method thereof
MX2016001050A (en) * 2013-07-26 2016-04-25 Nippon Steel & Sumitomo Metal Corp High-strength steel material for oil well use, and oil well pipe.
CN104894471A (en) * 2014-03-04 2015-09-09 宝钢特钢有限公司 High-manganese high-aluminum vanadium-containing non-magnetic steel plate and manufacturing method thereof
CN104109800B (en) * 2014-07-03 2016-06-29 武汉钢铁(集团)公司 High intensity is containing vanadium height manganese nonmagnetic steel and production method thereof
CA3009437A1 (en) * 2015-12-24 2017-06-29 Rovalma, S.A. Long durability high performance steel for structural, machine and tooling applications
KR101747034B1 (en) * 2016-04-28 2017-06-14 주식회사 포스코 Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same
KR102119962B1 (en) * 2018-10-25 2020-06-05 주식회사 포스코 High-strength and high-ductility steel having excellent weldability and method for manufacturing thereof

Also Published As

Publication number Publication date
JPH07126809A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
EP2048255B1 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
US20060243356A1 (en) Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof
KR20130037230A (en) Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
JP3182995B2 (en) High Mn non-magnetic steel with excellent stress corrosion cracking resistance and mechanical properties
JP5369458B2 (en) High strength steel with excellent delayed fracture resistance
JP2005089828A (en) Ferritic stainless steel sheet improved in crevice corrosion resistance
JPH08269632A (en) High strength and high corrosion resistant nitrogen-containing austenitic stainless steel
JP5035831B2 (en) High nitrogen austenitic stainless steel
JPS61113749A (en) High corrosion resistance alloy for oil well
JPH0215148A (en) High mn nonmagnetic steel having excellent corrosion resistance
JP2003213379A (en) Stainless steel having excellent corrosion resistance
JP2019127613A (en) High hardness precipitation hardening stainless steel having excellent hot workability and requiring no sub-zero treatment
KR100413822B1 (en) ferritic stainless steel with improved dissimilar materials crevice corrosion resistance
JP3141646B2 (en) Austenitic stainless steel for nitric acid containing environment
JP4184860B2 (en) Stainless steel and structures
JPS62156258A (en) Nonmagnetic cold rolled steel sheet for sheath of superconductive wire having superior cold workability
JPH0765143B2 (en) Cryogenic non-magnetic austenitic stainless steel with excellent reheat resistance
JPH0475305B2 (en)
JPH02115350A (en) Stainless steel excellent in seawater corrosion resistance
JPS61207552A (en) Nonmagnetic austenitic stainless steel having superior working stability
WO2021201122A1 (en) Welded structure and storage tank
JP2587520B2 (en) High Mn nonmagnetic steel with excellent local deformability for gas circuit breakers
RU2002851C1 (en) Low-alloy steel
JP2002012955A (en) Ferritic stainless steel superior in workability and corrosion resistivity with little surface deffects

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 13

EXPY Cancellation because of completion of term