US20060243356A1 - Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof - Google Patents

Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof Download PDF

Info

Publication number
US20060243356A1
US20060243356A1 US11/343,516 US34351606A US2006243356A1 US 20060243356 A1 US20060243356 A1 US 20060243356A1 US 34351606 A US34351606 A US 34351606A US 2006243356 A1 US2006243356 A1 US 2006243356A1
Authority
US
United States
Prior art keywords
mass
temperature
steel material
content
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/343,516
Inventor
Yuusuke Oikawa
Shinji Tsuge
Shigeo Fukumoto
Kazuhiro Suetsugu
Ryo Matsuhashi
Hiroshige Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Stainless Steel Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005026176A external-priority patent/JP4494237B2/en
Priority claimed from JP2006012569A external-priority patent/JP4754362B2/en
Application filed by Individual filed Critical Individual
Assigned to NIPPON STEEL CORPORATION reassignment NIPPON STEEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUKUMOTO, SHIGEO, INOUE, HIROSHIGE, MATSUHASHI, RYO, OIKAWA, YUUSUKE, SUETSUGU, KAZUHIRO, TSUGE, SHINJI
Publication of US20060243356A1 publication Critical patent/US20060243356A1/en
Assigned to NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION reassignment NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION ASSIGNMENT PREVIOUSLY RECORDED AT REEL 018011 FRAME 0012 CONTAINED AN ERROR IN THE ASSIGNEE'S NAME, ASSIGNMENT IS BEING RE-RECORDED TO CORRECT ERROR IN STATED REEL Assignors: SUETSUGU, KAZUHIRO, MATSUHASHI, RYO, INOUE, HIROSHIGE, FUKUMOTO, SHIGEO, OIKAWA, YUUSUKE, TSUGE, SHINJI
Priority to US12/391,045 priority Critical patent/US8105447B2/en
Priority to US13/349,866 priority patent/US8506729B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the present invention relates to a structural steel material which excels in corrosion resistance and is used in a marine (chloride) environment, for example; an austenite-type stainless steel hot-rolling steel material, as a hull-structural material which excels in strength as well as seawater resistance, and low-temperature toughness, upon being used as a material for an outer shell, a bulkhead, an frame, a hydrofoil, etc.; and a production method thereof.
  • austenitic stainless steel is promising as a material which excels in sea water resistance
  • austenitic stainless steel is subjected to a solution annealing treatment after hot-rolling, thereby softening the resultant austenitic stainless steel so that the proof stress of the austenitic stainless steel is at most 400 MPa.
  • Patent document 1 Japanese Unexamined Patent Application, First Publication No. S. 60-208459
  • Patent document 2 Japanese Unexamined Patent Application, First Publication No. H. 2-97649
  • Patent document 3 Japanese Unexamined Patent Application, First Publication No. H. 4-6214
  • Patent document 2 discloses a production method of an austenitic stainless steel having a high proof stress while maintaining a low-temperature toughness
  • the sea water resistance is not taken into consideration in this austenitic stainless steel while maintaining low-temperature toughness
  • Patent document 3 discloses a production method of an austenitic stainless steel which has a high proof stress of not less than 500 MPa and excellent sea-water resistance, which includes performing a heat treatment on steel which contains 0.3% or more of N and 0.5 to 3.0% of Mo under a specific condition
  • Patent document 3 fails to make any disclosure regarding toughness.
  • Patent document 4 discloses a production technique of an austenitic stainless steel with little softening of a weld part by adding a Nb-type element.
  • Stainless steel is more susceptible to crevice corrosion when it is shaped into a crevice form than when it is not shaped i.e. flat. Therefore, in order to produce steel suitable for broad use in hull structures and which is low-maintenance, it is required to develop a highly corrosion-resistant steel material which is higher than the steel material disclosed in Patent document 3.
  • an object of the present invention to provide an austenitic stainless steel hot-rolled steel material which has sea-water resistance and strength superior to the conventional steel, while maintaining low-temperature toughness, which is required in a structural member of a high-speed ship, that is, to provide an austenitic stainless steel hot-rolled steel material which excels in the properties of corrosion resistance, proof stress, and low-temperature toughness.
  • the inventors of the present invention have investigated the strength, the toughness, and the corrosion resistance of a sheethot-rolled plate obtained by casting, heat-rolling processing, and heat treatment of an austenitic component system in which the N amount is not more than 0.35% in view of weldability and the PI value is not less than 35, in view of weldability.
  • the inventors of the present invention have found that the toughness cannot be determined by only the Ni content, but is determined by the content of intermetallic compounds, which are contained in a steel material, having high Cr and Mo contents. Formation of a metallographic structure as such starts from the solidification of steel, in addition, the formation may be generated at any steps in hot-rolling processing.
  • a first aspect of the present invention is as follows.
  • an austenitic stainless hot-rolled steel material having excellent corrosion resistance, proof stress, and low-temperature toughness, including: 0.001 to 0.03 mass % of C, 0.1 to 1.5 mass % of Si, 0.1 to 3.0 mass % of Mn, 0.005 to 0.05 mass % of P, 0.0001 to 0.003 mass % of S, 15.0 to 21.0 mass % of Ni, 22.0 to 28.0 mass % of Cr, 1.5 to 3.5 mass % of Mo, 0.15 to 0.35 mass % of N and 0.0005 to 0.007 mass % of o, in which the PI value expressed by the following formula (1) ranges from 35 to 40, ⁇ cal value expressed by the following formula (2) ranges from ⁇ 6 to +2, the remnant consists of Fe and inevitable impurities, the content of intermetallic compounds contained in the steel material is not more than 0.5 mass %, a 0.2% proof stress at room temperature is not less than 550 MPa, the Charpy impact value measured using a V-notch test piece at
  • a seventh aspect of the present invention is a process for producing an austenitic stainless hot-rolled steel material having excellent corrosion resistance, proof stress, and low-temperature toughness, including: performing homogenizing-heat treatment on a cast steel or a semi-finished product of the austenitic stainless as set forth in aspects 1 to 6 at a temperature of 1200 to 1300° C. for 1 hour or more, reheating it at a temperature of 1100 to 1300° C., rolling it by a draft of not less than 50% at a temperature of not lower than 1050° C. and a draft of not less than 10% at a temperature of 1050 to 850° C., while maintaining a temperature of not lower than 850° C. in the rolling step, allowing an average cooling rate at 800 to 500° C. after the rolling to be not less than 150° C./min, and performing no solution treatment.
  • the present invention can provide austenitic stainless steel having excellent sea water resistance, proof stress, and low-temperature toughness, by restricting the component and performing a specific heat treatment processing.
  • the present invention realizes an austenitic stainless steel suitable for hull structures having a high level of sea water resistance and proof stress and low-temperature toughness, which are required as components for structures of high-speed ships, and contributes to industry significantly.
  • an eighth aspect of the present invention is as follows.
  • a ninth aspect of the present invention is the austenitic stainless hot-rolled steel material having excellent corrosion resistance, and low-temperature toughness, as set forth in the eighth aspect of the present invention, further including one or more selected from the group consisting of 0.1 to 2.0 mass % of Cu, 0.003 to 0.03 mass % of Ti, 0.02 to 0.20 mass % of Nb, 0.05 to 0.5 mass % of V, 0.3 to 3.0 mass % of W, 0.0003 to 0.0060 mass % of B, 0.0005 to 0.0050 mass % of Ca, 0.0005 to 0.0050 mass % of Mg, and 0.005 to 0.10 of REM.
  • a tenth aspect of the present invention is a process for producing the austenitic stainless hot-rolled steel material having excellent corrosion resistance, and low-temperature toughness, as set forth in the eighth or ninth aspect of the present invention, including: performing homogenizing-heat treatment on a cast steel or a semi-finished product after a rough heat-rolling processing at a temperature of 1200 to 1300° C. for 1 hour or more, in order to reduce the content of the intermetallic compound in the steel material.
  • the present invention realizes an austenitic stainless steel suitable for hull structures having a high level of sea water resistance and proof stress, which are required as components for structures of high-speed ships, and low-temperature toughness, and contributes to industry significantly.
  • a Charpy impact value should be not less than 100 J/cm 2 at ⁇ 40° C., at which it is recognized in general that no problems occur in ships.
  • the present invention can provide a steel material having a high strength with a 0.2% proof stress of not less than 550 MPa at room temperature, provided that the above corrosion resistance and the impact strength are satisfied.
  • the content of C is restricted to not more than 0.03%, in order to maintain the corrosion resistance of stainless steel. If the content of C exceeds 0.03%, then Cr carbide will be generated and corrosion resistance and toughness will deteriorate. However, if the content of C is reduced extremely, then the cost for refining increases, and hence the lower limit is specified as 0.001%. Preferably, it is 0.01 to 0.03%.
  • Si is added at not less than 0.1% for deoxidation. However, if the content of Si exceeds 1.5%, then toughness will deteriorate. Therefore, the upper limit is specified as 1.5%. Preferably it ranges from 0.2 to 1.0%.
  • Mn is added at not less than 0.1% for deoxidation. However, if the content of Mn exceeds 3.0%, then corrosion resistance and toughness will deteriorate. Therefore, the lower limit is specified as 3.0%.
  • the preferable range is from 0.2 to 1.5%.
  • P is restricted to not more than 0.05%, because P deteriorates the hot-rolling processability and toughness. However, if the content of P is remarkably decreased, then refining cost increases, and hence the lower limit is specified as 0.005%. Preferably, it ranges from 0.01 to 0.03%.
  • S is restricted to not more than 0.003%, because S deteriorates the hot-rolling processability, toughness, and corrosion resistance. However, if the content of S is remarkably decreased, then refining cost increases, and hence the lower limit is specified as 0.0001%. Preferably, it ranges from 0.0005 to 0.001%.
  • Ni stabilizes an austenitic configuration, and improves the corrosion resistance against various acids and toughness further, Ni is added at not less than 15.0%. On the other hand, since Ni is an expensive metal, the content of Ni is restricted to not more than 21.0% from the viewpoint of cost.
  • Cr is contained at not less than 22.0% in order to secure basic corrosion resistance. On the other hand, if Cr is contained at over 28.0%, then an intermetallic compound is likely to be deposited to deteriorate toughness. For this reason, the content of Cr is specified within a range of not less than 28.0% to not more than 22.0%.
  • Mo is a very effective element which raises the corrosion resistance of stainless steel additionally, and is contained at not less than 1.5% in the present invention.
  • Mo is a very expensive element and Mo promotes deposition of an intermetallic compound with Cr, and hence the upper limit of Mo is specified as not more than 3.5%.
  • the content of Mo ranges from 2.0 to 3.0%.
  • N is an effective element which intercrystallizes into an austenite phase to increase hardness and corrosion resistance. For this reason, N is contained at not less than 0.15%. Although N can be intercrystallized into a base material by up to 0.4%, the upper limit of the content of N is specified as 0.35%, because N raises the sensitivity of generation of bubbling when performing welding. Preferably, the content of N is not more than 0.30%.
  • O is an important element which constitutes an oxide which represents a nonmetallic inclusion, and excessive content of O deteriorates toughness, on the other hand, if a coarse cluster-like oxide is generated, then it cause surface cracking. For this reason, the upper limit of the content of O is restricted to 0.007%. Moreover, if the content of O is decreased remarkably, then the cost for refining increases, and hence the lower limit is specified to 0.0005%. Preferably, the content of O ranges from 0.001 to 0.004%.
  • a pitting index is an index of corrosion resistance of stainless steel to a chloride environment, and it was possible to obtain required characteristics by restricting the PI value to not less than 35.
  • the upper limit of the PI value is specified as 40. It should be noted that, in the present invention which contains no W, the value of W in formula (1) is set to 0.
  • the ⁇ cal expressed by the above formula (2) is an index which indicates the quantity of the delta ferrite which appears in the solidified configuration of austenitic stainless steel, and in order to reduce solidification crack sensitivity or to make a configuration fine, generally it is controlled to approximately 0 to 7%.
  • delta ferrite in a solidified configuration changes into an intermetallic compound during the hot-rolling production step, and remains in a steel material as a by-product, thereby deteriorating toughness.
  • the upper limit of ⁇ cal is restricted to +2 so that delta ferrite might decrease. If ⁇ cal exceeds this value, then it becomes difficult to obtain high toughness even when devising in the hot-rolling production step.
  • ⁇ cal ranges from ⁇ 3 to +1. It should be noted that in the present invention without containing W and Cu, the value of W or Cu in formula (2) is set to 0.
  • intermetallic compound which is contained in steel materials is an important factor which dictates the toughness of the austenitic stainless steel material in the present invention.
  • An intermetallic compound is a compound which contains Cr, Mo, or W, as main ingredients and is known as ⁇ phase and ⁇ phase, The content of this compound can be measured by performing alkali electrolytic etching of the micro configuration and observing it with an approximately 400-power optical microscope. The inventors of the present invention have found that if this content as an average value of observation of the cross-section of a steel material exceeds 0.5%, then Charpy absorbed energy of the steel material becomes less than 100 J/cm 2 , and specified the upper limit thereof to be 0.5%.
  • W is an element which raises the corrosion resistance of stainless steel additionally as well as Mo, and W can be contained by an amount ranging from 0.3 to 3.0% in the present invention steel for this purpose.
  • Al is an important element for deoxidation of steel, and in order to reduce oxygen in steel, Al is contained by at amount of not less than 0.005%.
  • Al is an element having a relatively large affinity to N, and hence if an excess of Al is added, then AlN is generated to deteriorate the toughness of stainless steel.
  • the degree of deterioration of toughness depends on the N content, if the Al content exceeds 0.1%, then the toughness deteriorates significantly, and hence the upper limit of Al content is specified as 0.1%.
  • Cu is an element which raises the corrosion resistance of stainless steel against an acid additionally, and Cu can be contained for this purpose. It is preferable to add Cu in an amount of not less than 0.3%, whereas if Cu in an amount of more than 2.0% is added, the effect in line with the cost is saturated, and hence the upper limit is specified as 2.0%.
  • Sn also raises the corrosion resistance of steel, an excess of Sn causes hot-rolling processing cracking, and hence the upper limit is specified as 0.1%.
  • the lower limit of Sn content is specified as 0.005%.
  • Each of Ca, Mg, and REM(s) is an element which improves the hot-rolling processability of steel, and one or more of them are added for this purpose. Excessive addition of each of them deteriorates the hot-rolling processability adversely, and hence the upper limit and the lower limit thereof are specified as follows. That is, the content of each of Ca and Mg ranges from 0.0005 to 0.0050%, and the content of REM ranges from 0.005 to 0.10%.
  • REM represents the total content of a lanthanide series rare-earth element such as La, Ce, etc.
  • the PV value specified by the following formula (3) is set to be not more than 0.
  • This formula is one that clarifies the required amount Ca, Mg, and REM to be added based on the existing amount of S, and it is possible to add exactly by making the PV value to be not more than 0, thereby improving the hot-rolling processability further.
  • PV S+O ⁇ 0.8Ca ⁇ 0.3Mg ⁇ 0.3REM ⁇ 30 (3)
  • the upper limit of the B content is specified as 0.0060%.
  • Ti is an element which forms an oxide, a nitride, and sulfide with a very small amount thereof, and makes the crystal grain of steel fine
  • Ti is an element which can be advantageously used in the steel material of the present invention.
  • it is effective to restrict the upper limit value of ⁇ cal and perform homogenizing heat treatment of semi-finished products.
  • heat treatment at a high temperature of approximately 1250° C. will be performed for several hours, if a proper amount of Ti is contained therein, then growth of crystal grain during the heat treatment at a high temperature as such can be effectively suppressed.
  • Ti is an element which has a very high nitride-forming power, and hence if Ti in an amount of over 0.03% is contained in the steel material of the present invention which contains N, then coarse TiN will deteriorate the toughness of the steel. For this reason, Ti content is specified in the range of 0.003 to 0.03%. Preferably, the Ti content ranges from 0.005 to 0.02%, in the case in which Ti is contained.
  • Nb forms carbide to fix C, thereby suppressing formation of Cr carbide to increase corrosion resistance and toughness.
  • Nb forms nitride to suppress the growth of crystal grain, thereby converting steel material into fine grains to increase the strength.
  • Nb in an amount of not less than 0.02% can be contained. However, if Nb in an amount of over 0.2% is added, then a large amount of carbon nitride of Nb is deposited during the hot-rolling processing step to deteriorate the hot-rolling recrystallization and a coarse configuration will remain in a steel material as a product, and hence the upper limit of Nb content is specified as 0.2%.
  • Nb content ranges from 0.05% to 0.15%.
  • V is an element that forms a carbon nitride as well as Nb, and V can be added in order to maintain corrosion resistance and toughness.
  • V is contained in an amount of not less than 0.05% for this purpose, if V in an amount of over 0.5% is contained, then a coarse V series carbon nitride will be generated, and toughness will deteriorate conversely. Therefore, the upper limit of V is restricted to 0.5%.
  • V content ranges from 0.1 to 0.3%.
  • Zr and Ta can inhibit the negative influence on the corrosion resistance of C or S by addition, if Zr or Ta is added excessively, then deterioration of toughness will occur, and hence Zr content is restricted to 0.003 to 0.03% and Ta content is restricted to 0.01 to 0.1%.
  • the amount of intermetallic compound contained in the steel material is restricted to not more than 0.5%, however, solidifying heat treatment after the final heat-rolling step must be omitted in order to obtain high proof stress. Therefore, as for an intermetallic compound, it is necessary to reduce the intermetallic compound contained in a cast steel, and to prevent formation of the intermetallic compound during the hot-rolling step as far as possible.
  • the technique for reducing the intermetallic compound in the cast steel it is necessary to combine the controlling of ⁇ cal with the homogenizing heat treatment to the cast steel of steel described in this aspect.
  • the temperature at which an intermetallic compound is generated is approximately not higher than 1000° C.
  • the temperature and the time of this homogenizing heat treatment will change slightly, corresponding to chemical composition such as solidifying rate and cross-sectional area of the cast steel, the degree of hot-rolling processing when processing into a semi-finished product, and ⁇ cal, etc., the temperature required is not lower than 1200° C., because the rate is limited by diffusion of Cr, Mo, Ni, etc.
  • the temperature exceeds 1300° C., then oxidized scale will be generated more than usually As for the time, it is preferable that the time be as long as possible, and at least one hour is necessary.
  • this purpose can be attained by performing a soaking at 1200° C. for one hour or more during heating of the semi-finished product for rolling a product.
  • the rolling condition it consists of the rough rolling stage in which re-heating is performed at a temperature ranging from 1100 to 1300° C. and making the total compaction amount at a temperature of not lower than 1050° C. to be not less than 50%, and the successive finishing rolling stage in which the total compaction amount at a temperature ranging from 1050 to 850° C. is made to be not less than 10%.
  • the rough rolling stage is a stage in which the solidification structure is mainly destroyed, to obtain a uniform recrystallized solidification
  • the finishing rolling step is a step of introducing the processing strain by the rolling and for increasing the strength after the rolling processing.
  • all of the rolling processing is performed at a temperature of not lower than 850° C., thereby preventing re-deposition of the intermetallic compound.
  • a controlled cooling is performed at an average cooling rate of not less than 150° C./min from 800 to 500° C. after the rolling processing, thereby inhibiting the re-deposition of the intermetallic compound and the recovery of the processing strain which was introduced in the finishing rolling step.
  • the total compaction amount at a temperature of not lower than 1050° C. it is necessary to make the total compaction amount at a temperature of not lower than 1050° C. to be not less than 50%. If the rolling temperature is lower than 1050° C. or the total compaction amount is less than 50%, then it is not possible to obtain uniform recrystallized structure.
  • the finishing rolling stage in order to acquire the target proof stress of 550 MPa, it is necessary to perform a finishing rolling by which the total compaction amount at a temperature of 1050° C. to 850° C. in the component range which is restricted in the present invention should be not less than 10%.
  • a rolling processing is performed at a temperature over 1050° C., then recrystallization will occur, and as a result compressing strain cannot be accumulated, so that sufficient strength cannot be obtained, whereas if a rolling processing is performed at a temperature lower than 850° C., then deposition of the intermetallic compound will be promoted to deteriorate toughness remarkably. Therefore, it is necessary to perform the rolling processing during all of the rolling processing, while maintaining the temperature to be not lower than 850° C. Finally, high hardness can be maintained by omitting solution heat treatment.
  • Example 1 will be explained below.
  • the chemical constitution of a test piece of steel is shown in Table 1. It should be noted that, the content of inevitable impurity elements other than the components indicated in Table 1 is the same level as in standard stainless steel. Moreover, as to the portions where no contents are shown for the components shown in Table 1, this means that the content is the same level as in an impurity level. Moreover, REM in Tables represents lanthanoid series rare earth elements, and the content indicates the total of these elements. These steel samples were melted in a 50 kg-vacuum induction furnace in a laboratory and cast into a flat steel ingot having a thickness of approximately 100 mm. TABLE 1 STEEL No.
  • a steel sheet having a thickness ranging from 12 to 22 mm was produced by performing cogging, homogenizing heat treatment, and product rolling, using the above sample steel.
  • the sample steel was soaked at 1180° C. for two hours, and thereafter the sample steel was rolled to 65 mm thickness.
  • the resultant semi-finished products were subjected to homogenizing heat treatment under the conditions shown in Tables 2 and 3. Some of the steel chips were not subjected to the homogenizing heat treatment.
  • Each piece of steel was ground to 60 mm to obtain the material for use in product rolling, and thereafter the resultant material for use in product rolling was subjected to hot-rolling processing to obtain a hot-rolled steel material.
  • the steel plate produced under the above condition was cut into JIS. No.4 tension test pieces and JIS. No.4 V notch Charpy test pieces from a direction perpendicular to the direction of rolling processing.
  • 0.2% offset proof stress and impact strength at ⁇ 40° C. were measured, and further the surface of the test piece was ground with a #600 grinder and then pitting electrical potential (Vc'100) was measured in a deaerated 10% NaCl aqueous solution held at 50° C.
  • test pieces for micro structure observation were cut out, and each of the resultant test pieces was planished and thereafter was subjected to 10% KOH electrolytic etching to reveal intermetallic compound therefrom so as to be observed by an optical microscope, thereby measuring the content.
  • the content was measured by performing point counting in each of ten fields of view with 400 ⁇ magnification at a depth of each of 1 ⁇ 4, 1 ⁇ 2, and 3 ⁇ 4 of thick, and then calculating all average values, and the resultant value was determined as the content of the intermetallic compound of the steel material.
  • the obtained results are shown in Tables 2-4.
  • the hot-rolling processability was evaluated relatively by judging the generation of an ear crack during the product rolling. It was confirmed that the steel material corresponding to Example 5 or 6 (steel Nos. F to N) developed no ear cracks and exhibited excellent hot-rolling processability, with the exception of the case in which the reheating temperature was excessively high. On the other hand, it was confirmed that each of the steel materials corresponding to each Example other than Examples 5 and 6 developed ear cracks of approximately 5 to 10 mm per one side, so that the yield was decreased slightly. The lengths of ear cracks are shown in Tables 2 to 4.
  • the steel material of the present invention is an austenitic stainless steel material which excels in corrosion resistance, toughness, and strength.
  • the present invention realizes an austenitic stainless steel suitable for the hull structures of ships, having excellent performance required for structural members of high-speed ships, such as sea water resistance, proof stress, and low-temperature toughness at a high level, and hence the contributions of the present invention to industry are significant.
  • the content of C is restricted to not more than 0.03%, in order to secure the corrosion resistance of the stainless steel. If the content of C exceeds 0.03%, then Cr carbide will be generated and corrosion resistance and toughness will deteriorate.
  • the content of Si is not less than 0.1% for deoxidation. However, if the content of Si exceeds 1.5%, then toughness will deteriorate. Therefore, the upper limit thereof is restricted to 1.5%.
  • the content of Si preferably ranges from 0.2 to 1.0%.
  • the content of Mn is not less than 0. 1% for deoxidation. However, if the content of Mn exceeds 3.0%, then corrosion resistance and toughness will deteriorate. Therefore, the upper limit thereof is restricted to 3.0%.
  • the content of Mn preferably ranges from 0.2 to 1.5%.
  • the content of P is restricted to not more than 0.05% because P deteriorates hot-rolling processability and toughness.
  • the content of P is preferably not more than 0.03%.
  • the content of S is restricted to not more than 0.003% because S deteriorates hot-rolling processability, toughness, and corrosion resistance.
  • the content of S is preferably not more than 0.001%.
  • Ni is not less than 15.0% because Ni stabilizes an austenitic phase, and improves resistance to various acids and toughness.
  • Ni is an expensive metal, and hence the content of Ni is restricted to not more than 21.0% from the viewpoint of cost.
  • the content of Cr is not less than 22.0% for securing basic corrosion resistance. On the other hand, if the content of Cr exceeds 28.0%, then an intermetallic compound will likely be deposited to deteriorate toughness. For this reason, the content of Cr is restricted to not less than 22.0% and not more than 28.0%.
  • the content of Mo is not less than 1.5% in the present invention, because Mo is a very effective element which increases corrosion resistance of stainless steel additionally.
  • Mo is a very expensive element and which accelerates the deposition of intermetallic compounds, as well as Cr, and hence the upper limit of the content of Mo is restricted to not more than 3.5%.
  • the content of Mo preferably ranges from 2.0 to 3.0%.
  • N is an effective element which is intercrystallized into an austenitic phase to increase strength and corrosion resistance. For this reason, the content of N is not less than 0.15%. Although it is possible to make N be intercrystallized into the base material up to 0.4% in the steel material of the present invention, the upper limit of the content of N is determined as 0.35% in order to increase sensitivity to generation of bubbling during welding. The content of N is preferably not more than 0.30%.
  • Al is an important element for deoxidation of steel, and hence the content of Al is not less than 0.005% in order to reduce oxygen in steel.
  • Al is an element having a comparatively high chemical affinity with N, and if the content of Al is excessive, then AlN is generated to deteriorate toughness of the stainless steel. Although the degree thereof depends on the content of N, if the content of Al exceeds 0.1%, then toughness will deteriorate significantly, and hence the upper limit of the content of Al is determined to be 0. 1%.
  • O is an important element which constitutes an oxide which is a representative nonmetallic inclusion, and excessive addition of O deteriorates toughness, on the other hand if a coarse cluster-like oxide generates, then it causes surface cracking. For this reason, the upper limit of the content of O is determined as 0.007%.
  • the content of O is preferably not more than 0.004%.
  • a pitting index is an index of corrosion resistance of stainless steel to a chloride environment, and it is necessary to set the PI value to be not less than 35 at least, in order to acquire the corrosion resistance corresponding to the purpose.
  • a stainless steel of which the PI value exceeds 40 SUS836L etc.
  • SUS836L etc. is exemplary, however, such a stainless steel contains Ni in an amount of not less than 24% and hence is very expensive.
  • the upper limit of PI value is determined to be 40.
  • the value of W in formula (1) is set to 0 in the present invention which does not contain W.
  • the ⁇ cal expressed by the above formula (2) is an index indicating the quantity of the delta ferrite which appears in the solidified configuration of austenitic stainless steel, and the ⁇ cal is in general controlled to be approximately 0 to 7% in order to reduce solidification crack sensitivity or to make the configuration fine.
  • delta ferrite in the solidified configuration changes into an intermetallic compound during the hot-rolling production process and it remains in the steel material as a by-product, thereby deteriorating toughness.
  • the upper limit of the ⁇ cal is restricted to +4 so that delta ferrite will decrease.
  • the ⁇ cal exceeds this value, then it becomes impossible to acquire high toughness even if elaborating a plan in the hot-rolling production process.
  • the ⁇ cal is shifted to a smaller (minus) side, then it means that the delta ferrite content becomes substantially 0%, and as a result the above effect will be saturated, in addition, the content of Ni becomes excessive, and hence the lower limit of the ⁇ cal is determined to be ⁇ 6 from the viewpoint of cost.
  • the ⁇ cal value preferably ranges from ⁇ 3 to +3.
  • the value of W or the value of Cu in formula (2) is set to 0 in the present invention which does not contain W or Cu.
  • the content of intermetallic compounds contained in the steel material is an important factor which determines the toughness of the austenitic stainless steel material in the present invention.
  • An intermetallic compound is a compound which contains Cr, Mo, or W as a main ingredient and is called ⁇ phase and ⁇ phase.
  • the content of this compound can be measured by subjecting a micro configuration to an alkaline electrolytic etching and then observing the resultant micro configuration through an optical microscope of approximately 400 ⁇ power.
  • the inventors of the present invention have found that if this content as an average value of a stainless steel cross sectional observation exceeds 0.5%, then the Charpy absorbed energy of the steel material becomes less than 100 J/cm 2 , and as a result, they determined the upper limit of the content to be 0.5%.
  • Cu is an element which increases the corrosion resistance of stainless steel additionally against an acid, and the content of Cu may be not less than 0.1% for this purpose. Even if the content Cu exceeds 2.0%, the effect corresponding to cost will be saturated, and hence the upper limit of the content of Cu is set to be 2.0%.
  • Ti is an element which forms an oxide, a nitride, and sulfide with a very small amount thereof, thereby refining the crystal grain of the steel, and hence Ti is an element which may be positively utilized in the steel of the present invention.
  • it is effective to restrict the upper limit of the ⁇ cal value and to perform homogenizing heat treatment of the semi-finished products.
  • a heat treatment is performed for several hours at a high temperature of approximately 1250° C., if Ti of a proper amount is contained, then the growth of the crystal grain at such a high temperature can be suppressed.
  • Ti in an amount of not less than 0.003% needs to be contained.
  • Ti is an element which has a very high nitride producing ability, and if the content of Ti exceeds 0.03% in the steel of the present invention which contains N, then coarse TiN will deteriorate the toughness of the steel. For this reason, the content of Ti is determined to be within the range of 0.003 to 0.03%. The content of Ti preferably ranges from 0.005 to 0.02%.
  • Nb forms carbide to fix C, so that generation of Cr carbide is suppressed, thereby increasing corrosion resistance and toughness. Moreover, Nb forms nitride to suppress growth of crystal grain, thereby converting the steel material into fine particles to increase strength. In order to improve corrosion resistance and to increase strength, not less than 0.02% of Nb can be added. However, if more than 0.2% of Nb is added, then a large amount of carbo-nitride of Nb will be deposited during the hot-rolling processing to deteriorate hot-rolling recrystallization, thereby maintaining a coarse configuration in the steel material as a product, and hence the upper limit of the content of Nb is determined to be 2%.
  • the content of Nb preferably ranges from 0.05 to 0.15%.
  • V is an element which generates a carbo-nitride as well as Nb, and can be added in order to secure corrosion resistance and toughness.
  • the upper limit of the content of V is restricted to 0.5%.
  • the content of V ranges from 0.1 to 0.3%.
  • W is an element which raises the corrosion resistance of stainless steel additionally as well as Mo, and 0.3 to 3.0% of W can be contained in the stainless steel of the present invention for this purpose.
  • each of B, Ca, Mg, and REM(s) is an element which improves the hot-rolling processability, and one or more of these is added for this purpose. If any of these is added in excess, then it deteriorates the hot-rolling processability, and hence the upper limit and the lower limit of content thereof are determined as follows.
  • the content of B ranges from 0.0003 to 0.0060%
  • each of the content of Ca and Mg ranges from 0.0005 to 0.0050%
  • the content of REM ranges from 0.005 to 0.10%.
  • REM is defined to be the total of the content of lanthanide series rare-earth elements such as La, Ce, etc.
  • the amount of intermetallic compound which is contained in the steel material is restricted to be not more than 0.5%.
  • a chemical composition formula known as ⁇ cal which forecasts delta ferrite amount contained in a solidification structure configuration, and homogenizing heat treatment which is performed on a semi-finished product specified in this claim are exemplary.
  • the temperature at which an intermetallic compound is generated is approximately not higher than 1000° C.
  • reduction of the content of an intermetallic compound in the semi-finished product accompanied by component segregation by solidification necessitates a production step for diffusing segregation so as to be homogenized.
  • each of the temperature and the time for performing homogenizing heat treatment changes slightly, depending on chemical composition such as solidifying rate, cross-sectional area of a cast steel, degree of hot-rolling processing upon being shaped into a semi-finished product, ⁇ cal, etc.
  • each of the temperature and the time for performing homogenizing heat treatment is limited by diffusion of Cr, Mo, Ni, etc., and hence it necessitates a temperature of not lower than 1200° C.
  • the temperature exceeds 1300° C., then oxidized scales will be generated extraordinarily.
  • the time be as long as possible, at least 1 hour is needed. Moreover, this purpose can also be attained by performing soaking at 1200° C. for not less than 1 hour in heating of the semi-finished product for rolling the product. Because of the above reason, homogenizing heat treatment of not less than 1 hour at 1200-1300° C. is specified. In view of effect and economical efficiency, the soaking time preferably ranges from 2 to 20 hours.
  • Example 2 will be explained below.
  • the chemical composition of a sample steel is shown in Table 5.
  • the content of inevitable impurity elements other than the components indicated in Table 5 is the same grade as in standard stainless steel.
  • the portion which shows no content of the components shown in Table 5 indicates the same grade as in impurities.
  • REM in Table 5 means lanthanide series rare-earth elements, and the content thereof indicates the total content of each of those elements.
  • the sample steel was subjected to cogging, homogenizing heat treatment, and product rolling.
  • cogging the sample steel was soaked at 1180° C. for two hours, and thereafter the sample steel was rolled to 65 mm thickness.
  • the resultant steel chips were subjected to homogenizing heat treatment at a temperature ranging from 1220 to 1280° C. Some of the steel chips were not subjected to the homogenizing heat treatment.
  • Each piece of steel was ground to 60 mm to obtain the material for use in product rolling.
  • the product rolling the sample was soaked at 1220° C. for 1 to 2 hours, and thereafter was rolled under the condition of a finishing temperature of 850 to 950° C. to obtain a steel sheet having a thickness of 12 mm.
  • the steel material immediately after being hot-rolled which was in a temperature state of not less than 800° C. was cooled to a temperature of not higher than 300° C. by performing spray cooling.
  • the final solution heat treatment was performed under a condition of cooling with water after performing soaking at 1100° C. for 20 min. Moreover, some steel sheets were not subjected to the solution heat treatment.
  • the steel plate produced under the above condition was cut into JIS. No.4 tension test pieces and JIS. No.4 V notch Charpy test pieces from a direction perpendicular to the direction of rolling processing. Using the resultant test pieces, 0.2% offset proof stress and impact strength at ⁇ 40° C. were measured. Moreover, test pieces for micro configuration observation were cut out, and each of the resultant test pieces was planished and thereafter was subjected to 10% KOH electrolytic etching to reveal the intermetallic compound therefrom so as to be observed by an optical microscope, thereby measuring the content.
  • the hot-rolling processability was evaluated relatively by judging the generation of an ear crack during the product rolling. It was confirmed that the steel material corresponding to Example 9 (steel Nos. 3 to 15) developed no ear cracks and exhibited excellent hot-rolling processability, On the other hand, it was confirmed that each of the steel materials corresponding to each Example other than Examples 1 and 2 developed ear cracks of approximately 5 to 12 mm per one side, so that the yield was decreased slightly.
  • the lengths of ear cracks are shown in Table 6. That is, although there is a slight problem in the hot-rolling processability of steel Nos. 0 to 2, in the thick steel which was produced to have the content of an intermetallic compound of not more than 0.5%, each Charpy impact value at ⁇ 40° C.
  • each Charpy impact value at ⁇ 40° C. exceeds 100 J/cm 2 .
  • the content of Ti is less than 0.03%, the content of Nb is more than 0.2%, the content of V is more than 0.5%, the content of Al is more than 0. 1%, the content of O is more than 0.007%, the content of ⁇ Fe is more than 3%, and the content of Ni is more than 21% ( ⁇ Fe ⁇ 6%), i.e. each is out of the scope of the present invention, and the comparative examples other than No. 27 have poor impact property.
  • the comparative example of steel No.27 excels in impact property, it has a high content of Ni and hence deviates from the purpose of the present invention.
  • each of the steel materials which satisfy the steel composition and intermetallic compound content within the scope of the present invention has a PI value, which is an index of corrosion resistance, of not less than 35, and exhibits high strength and a Charpy impact value of not less than 100 J/cm 2 .
  • the steel material of the present invention is an austenitic stainless steel material which excels in corrosion resistance, toughness, and hot-rolling processability.
  • the present invention realizes an austenitic stainless steel suitable for the hull structures of ships, having excellent performance required for structural members of high-speed ships, such as sea water resistance, proof stress, and low-temperature toughness at a high level, and hence the contributions of the present invention to industry are significant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

An austenitic stainless steel hot-rolled steel material can be provided which has sea-water resistance and strength superior to conventional steel. Low-temperature toughness can be maintained, which is preferable in a structural member of speedy craft. The steel material can include an austenitic stainless steel hot-rolled steel material which excels in the properties of corrosion resistance, proof stress, and low-temperature toughness. In such austenitic stainless steel hot-rolling steel material, e.g., PI[=Cr+3.3(Mo+0.5W)+16N] ranges from 35 to 40, δ cal [=2.9 (Cr+0.3Si+Mo+0.5W)−2.6 (Ni+0.3Mn+0.25Cu+35C+20N)−18] ranges from −6 to +2, and a 0.2% proof stress at room temperature is not less than 550 MPa, Charpy impact value measured using a V-notch test piece at −40° C. is not less than 100 J/cm2, and the pitting potential measured in a deaerated aqueous solution of 10% NaCl at 50° C. (Vc′100) is not less than 500 mV (as it relates to saturated Ag/AgCl).

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a structural steel material which excels in corrosion resistance and is used in a marine (chloride) environment, for example; an austenite-type stainless steel hot-rolling steel material, as a hull-structural material which excels in strength as well as seawater resistance, and low-temperature toughness, upon being used as a material for an outer shell, a bulkhead, an frame, a hydrofoil, etc.; and a production method thereof.
  • Priority is claimed on Japanese Patent Application No. 2005-26177, filed Feb. 2, 2005, Japanese Patent Application No. 2005-26176, filed Feb. 2, 2005, and Japanese Patent Application No. 2006-012569, filed Jan. 20, 2006, the contents of which are incorporated herein by reference.
  • 2. Background Art
  • Hitherto, coated steel sheets to which a heavy corrosive protection was applied were used for hull structures. The demand for speedy craft equipped with hydrofoils etc. has increased, and since high-speed sea water flow comes into contact with the hydrofoils, etc., this use requires a material which excels in sea water resistance without requiring being coated. In order to reduce hull weight further, a material having a high strength is required.
  • Although austenitic stainless steel is promising as a material which excels in sea water resistance, in a common production method, austenitic stainless steel is subjected to a solution annealing treatment after hot-rolling, thereby softening the resultant austenitic stainless steel so that the proof stress of the austenitic stainless steel is at most 400 MPa.
  • The strength can be increased by performing a hot-rolling processing under a specific temperature condition while omitting the solution annealing treatment, which has been disclosed in many literatures in the past (Patent document 1 (Japanese Unexamined Patent Application, First Publication No. S. 60-208459), Patent document 2 (Japanese Unexamined Patent Application, First Publication No. H. 2-97649), and Patent document 3 (Japanese Unexamined Patent Application, First Publication No. H. 4-6214)).
  • Among these, although Patent document 2 discloses a production method of an austenitic stainless steel having a high proof stress while maintaining a low-temperature toughness, the sea water resistance is not taken into consideration in this austenitic stainless steel while maintaining low-temperature toughness. Although Patent document 3 discloses a production method of an austenitic stainless steel which has a high proof stress of not less than 500 MPa and excellent sea-water resistance, which includes performing a heat treatment on steel which contains 0.3% or more of N and 0.5 to 3.0% of Mo under a specific condition, Patent document 3 fails to make any disclosure regarding toughness.
  • Moreover, Patent document 4 (patent No. 2783895 official report) and Patent document 5 (patent No. 2783896 official report) disclose a production technique of an austenitic stainless steel with little softening of a weld part by adding a Nb-type element.
  • Cr, Mo, and N are known as elements which increase sea water resistance, and the corrosion resistance ranking in steel is determined by the formula: PI=Cr+3.3(Mo+0.5W)+16N as a pitting index. When the PI value of the component shown in examples of Patent document 3 is calculated, it is approximately 32 in the minimum case, but as a stainless steel which gives a higher PI value (not less than 35), SUS836L and 890L, which contain 23% or more of Ni, are known as austenitic types, whereas SUS329J4L, which contains 5.5 to 7.5% of Ni, is known as a two-phase type.
  • Since two-phase-type SUS329J4L contains a ferrite phase, SUS329J4L has high proof stress. A two-phase stainless steel known as a super two-phase, in which Mo and W contents are increased has also been developed in recent years, and application thereof as a material with high hardness and high corrosion resistance has started. On the other hand, a high strength steel material of an austenitic-type high corrosion resistance stainless steel having a PI value over 35 has not yet been put in practical use.
  • Stainless steel is more susceptible to crevice corrosion when it is shaped into a crevice form than when it is not shaped i.e. flat. Therefore, in order to produce steel suitable for broad use in hull structures and which is low-maintenance, it is required to develop a highly corrosion-resistant steel material which is higher than the steel material disclosed in Patent document 3.
  • On the other hand, the demand for a stainless steel material for ocean-going craft which is reliable when stranded or after a collision between shipping is increasing. Characteristics of bothe base material and weldability are required for reliability. Regarding the reliability of the mother base, high toughness is required in preparation for a collision. Among Cr, Mo and N, which increase corrosion resistance, as for Mo and Cr, it is not sufficient to simply add, because processability in hot-rolling will decrease remarkably due to the influence of delta ferrite contained in cast steel or semi-finished products; in addition, in the case of a high Cr and Mo steel, in general, the toughness of the steel deteriorates remarkably due to the influence of an intermetallic compound known as a a phase, and hence it is necessary to add a large amount of Ni in order to suppress the influence of both. However, considering the rising prices of raw materials of Ni and Mo these days, development of a low-cost, highly corrosion-resistant stainless steel is especially desired . It should be noted that, two-phase steel cannot be adopted because of its low-temperature toughness.
  • On the other hand, as for adding N as is disclosed in Patent document 3, it is indeed effective for maintaining the strength, however, excessive N causes the generation of bubbles at a welded part, thereby it may decrease the bonding strength and reliability of the welded part, to the contrary.
  • Thus, it is an object of the present invention to provide an austenitic stainless steel hot-rolled steel material which has sea-water resistance and strength superior to the conventional steel, while maintaining low-temperature toughness, which is required in a structural member of a high-speed ship, that is, to provide an austenitic stainless steel hot-rolled steel material which excels in the properties of corrosion resistance, proof stress, and low-temperature toughness.
  • The inventors of the present invention have investigated the strength, the toughness, and the corrosion resistance of a sheethot-rolled plate obtained by casting, heat-rolling processing, and heat treatment of an austenitic component system in which the N amount is not more than 0.35% in view of weldability and the PI value is not less than 35, in view of weldability. In particular, the inventors of the present invention have found that the toughness cannot be determined by only the Ni content, but is determined by the content of intermetallic compounds, which are contained in a steel material, having high Cr and Mo contents. Formation of a metallographic structure as such starts from the solidification of steel, in addition, the formation may be generated at any steps in hot-rolling processing. So, they first started to investigate the influence of a chemical composition on a solidified structure, and then investigated the influence of conditions on rough rolling of cast steel, homogenizing heat treatment, hot working, and heat treatment. As a result, they restricted the content of component elements the solidification structure and the metallographic structure of a steel material to obtain an austenitic stainless steel which can solve the problems of the conventional technique and excels in corrosion resistance, toughness, strength, and hot processability, the solidification structure, the metallographic structure of a steel material, thereby completing the austenitic stainless steel of the present invention and the production method thereof.
  • SUMMARY OF THE INVENTION
  • A first aspect of the present invention is as follows.
  • That is, an austenitic stainless hot-rolled steel material having excellent corrosion resistance, proof stress, and low-temperature toughness, including: 0.001 to 0.03 mass % of C, 0.1 to 1.5 mass % of Si, 0.1 to 3.0 mass % of Mn, 0.005 to 0.05 mass % of P, 0.0001 to 0.003 mass % of S, 15.0 to 21.0 mass % of Ni, 22.0 to 28.0 mass % of Cr, 1.5 to 3.5 mass % of Mo, 0.15 to 0.35 mass % of N and 0.0005 to 0.007 mass % of o, in which the PI value expressed by the following formula (1) ranges from 35 to 40, δ cal value expressed by the following formula (2) ranges from −6 to +2, the remnant consists of Fe and inevitable impurities, the content of intermetallic compounds contained in the steel material is not more than 0.5 mass %, a 0.2% proof stress at room temperature is not less than 550 MPa, the Charpy impact value measured using a V-notch test piece at −40° C. is not less than 100 J/cm2, and the pitting potential measured in a deaerated aqueous solution of 10% NaCl at 50° C. (Vc′100) is not less than 500 mV(vs saturated Ag/AgCl).
    PI=Cr+3.3(Mo+0.5W)+16N   (1)
    δcal=2.9(Cr+0.3Si+Mo+0.5W)−2.6(Ni+0.3Mn+0.25Cu+32C+20N)−18  (2)
  • In addition to this, as second to sixth aspect of the present invention, the following metallic elements can be contained:
  • 1) (The Second Aspect of the Present Invention)
  • One or two selected from the group consisting of 0.3 to 3.0 mass % of W and 0.005 to 0.1 mass % of Al.
  • 2) (The Third Aspect of the Present Invention)
  • One or more selected from the group consisting of 0.3 to 3.0 mass % of W, 0.005 to 0.1 mass % of Al, 0.3 to 2.0 mass % of Cu, and not more than 0.1 mass % of Sn.
  • 3) (The Fourth Aspect of the Present Invention)
  • One or more selected from the group consisting of 0.3 to 3.0 mass % of W, 0.005 to 0.1 mass % of Al, 0.0005 to 0.0050 mass % of Ca, 0.0005 to 0.0050 mass % of Mg, and 0.005 to 0.10 mass % of REM.
  • 4) (The Fifth Aspect of the Present Invention)
  • 0.3 to 3.0 mass % of W, 0.005 to 0.1 mass % of Al, 0.0005 to 0.0050 mass % of Ca, 0.0005 to 0.0050 mass % of Mg, 0.005 to 0.10 mass % of REM, and 0.0003 to 0.0060 mass % of B.
  • 5) (The Sixth Aspect of the Present Invention)
  • One or more selected from the group consisting of 0.3 to 3.0 mass % of W, 0.005 to 0.1 mass % of Al, 0.3 to 2.0 mass % of Cu, not more than 0.1 mass % of Sn, 0.0005 to 0.0050 mass % of Ca, 0.0005 to 0.0050 mass % of Mg, 0.005 to 0.10 mass % of REM, 0.0003 to 0.0060 mass % of B, 0.003 to 0.03 mass % of Ti, 0.02 to 0.20 mass % of Nb, 0.003 to 0.03 mass % of Zr, 0.05 to 0.5 mass % of V, and 0.01 to 0.1 mass % of Ta.
  • A seventh aspect of the present invention is a process for producing an austenitic stainless hot-rolled steel material having excellent corrosion resistance, proof stress, and low-temperature toughness, including: performing homogenizing-heat treatment on a cast steel or a semi-finished product of the austenitic stainless as set forth in aspects 1 to 6 at a temperature of 1200 to 1300° C. for 1 hour or more, reheating it at a temperature of 1100 to 1300° C., rolling it by a draft of not less than 50% at a temperature of not lower than 1050° C. and a draft of not less than 10% at a temperature of 1050 to 850° C., while maintaining a temperature of not lower than 850° C. in the rolling step, allowing an average cooling rate at 800 to 500° C. after the rolling to be not less than 150° C./min, and performing no solution treatment.
  • The present invention can provide austenitic stainless steel having excellent sea water resistance, proof stress, and low-temperature toughness, by restricting the component and performing a specific heat treatment processing.
  • The present invention realizes an austenitic stainless steel suitable for hull structures having a high level of sea water resistance and proof stress and low-temperature toughness, which are required as components for structures of high-speed ships, and contributes to industry significantly.
  • Moreover, an eighth aspect of the present invention is as follows.
  • An austenitic stainless hot-rolled steel material having excellent corrosion resistance, and low-temperature toughness, including: not more than 0.03 mass % of C, 0.1 to 1.5 mass % of Si, 0.1 to 3.0 mass % of Mn, not more than 0.05 mass % of P, not more than 0.003 mass % of S, 15.0 to 21.0 mass % of Ni, 22.0 to 28.0 mass % of Cr, 1.5 to 3.5 mass % of Mo, 0.15 to 0.35 mass % of N, 0.005 to 0.1 mass % of Al, and not more than 0.007 mass % of O, in which the PI value expressed by the following formula (1) ranges from 35 to 40, δ cal value expressed by the following formula (2) ranges from −6 to +4, the remnant consists of Fe and substantially inevitable impurities, and the content of intermetallic compounds contained in the steel material is not more than 0.5 mass %,
    PI=Cr+3.3(Mo+0.5W)+16N  (1)
    δcal=2.9(Cr+0.3Si+Mo+0.5W)−2.6(Ni+0.3Mn+0.25Cu+32C+20N)−18  (2)
    in which the value by each element represents the content of the element expressed in terms of mass %.
  • A ninth aspect of the present invention is the austenitic stainless hot-rolled steel material having excellent corrosion resistance, and low-temperature toughness, as set forth in the eighth aspect of the present invention, further including one or more selected from the group consisting of 0.1 to 2.0 mass % of Cu, 0.003 to 0.03 mass % of Ti, 0.02 to 0.20 mass % of Nb, 0.05 to 0.5 mass % of V, 0.3 to 3.0 mass % of W, 0.0003 to 0.0060 mass % of B, 0.0005 to 0.0050 mass % of Ca, 0.0005 to 0.0050 mass % of Mg, and 0.005 to 0.10 of REM.
  • A tenth aspect of the present invention is a process for producing the austenitic stainless hot-rolled steel material having excellent corrosion resistance, and low-temperature toughness, as set forth in the eighth or ninth aspect of the present invention, including: performing homogenizing-heat treatment on a cast steel or a semi-finished product after a rough heat-rolling processing at a temperature of 1200 to 1300° C. for 1 hour or more, in order to reduce the content of the intermetallic compound in the steel material.
  • The present invention realizes an austenitic stainless steel suitable for hull structures having a high level of sea water resistance and proof stress, which are required as components for structures of high-speed ships, and low-temperature toughness, and contributes to industry significantly.
  • DETAILED DESCRIPTION OF THE INVENTION
  • First, the reason for restricting the first aspect of the present invention will be explained below.
  • First, the characteristics required for structural shipping materials are specified.
  • As for corrosion resistance, it is necessary to withstand sea water even without a heavy duty corrosion-resistant coating being applied thereto, and those characteristics necessary for satisfying such corrosion resistance were investigated to obtain the following results.
  • That is, although a usual pitting electric potential is measured in 30° C.-3.5% NaCl, the water temperature often reaches 50° C., in consideration of sea water resistance in the tropics, and further, sea water is often condensed in a gappy structure so that the NaCl concentration may increase to be higher than the 3.5% of normal sea water, and it was revealed that if the pitting electrical potential (Vc′100) measured in a deaerated 50° C.-3.5% NaCl aqueous solution is not less than 500 mV, then there are no problems in terms of practical use. It should be noted that saturated Ag/AgCl was used as a reference electrode.
  • As for impact resistance, since it becomes a problem conversely in cold areas, it is specified that a Charpy impact value should be not less than 100 J/cm2 at −40° C., at which it is recognized in general that no problems occur in ships.
  • As for hardness, it is preferably as high as possible, for reducing weight. The present invention can provide a steel material having a high strength with a 0.2% proof stress of not less than 550 MPa at room temperature, provided that the above corrosion resistance and the impact strength are satisfied.
  • Next, the reason for restricting the components in the present invention will be explained.
  • The content of C is restricted to not more than 0.03%, in order to maintain the corrosion resistance of stainless steel. If the content of C exceeds 0.03%, then Cr carbide will be generated and corrosion resistance and toughness will deteriorate. However, if the content of C is reduced extremely, then the cost for refining increases, and hence the lower limit is specified as 0.001%. Preferably, it is 0.01 to 0.03%.
  • Si is added at not less than 0.1% for deoxidation. However, if the content of Si exceeds 1.5%, then toughness will deteriorate. Therefore, the upper limit is specified as 1.5%. Preferably it ranges from 0.2 to 1.0%.
  • Mn is added at not less than 0.1% for deoxidation. However, if the content of Mn exceeds 3.0%, then corrosion resistance and toughness will deteriorate. Therefore, the lower limit is specified as 3.0%. The preferable range is from 0.2 to 1.5%.
  • P is restricted to not more than 0.05%, because P deteriorates the hot-rolling processability and toughness. However, if the content of P is remarkably decreased, then refining cost increases, and hence the lower limit is specified as 0.005%. Preferably, it ranges from 0.01 to 0.03%.
  • S is restricted to not more than 0.003%, because S deteriorates the hot-rolling processability, toughness, and corrosion resistance. However, if the content of S is remarkably decreased, then refining cost increases, and hence the lower limit is specified as 0.0001%. Preferably, it ranges from 0.0005 to 0.001%.
  • Since Ni stabilizes an austenitic configuration, and improves the corrosion resistance against various acids and toughness further, Ni is added at not less than 15.0%. On the other hand, since Ni is an expensive metal, the content of Ni is restricted to not more than 21.0% from the viewpoint of cost.
  • Cr is contained at not less than 22.0% in order to secure basic corrosion resistance. On the other hand, if Cr is contained at over 28.0%, then an intermetallic compound is likely to be deposited to deteriorate toughness. For this reason, the content of Cr is specified within a range of not less than 28.0% to not more than 22.0%.
  • Mo is a very effective element which raises the corrosion resistance of stainless steel additionally, and is contained at not less than 1.5% in the present invention. On the other hand, Mo is a very expensive element and Mo promotes deposition of an intermetallic compound with Cr, and hence the upper limit of Mo is specified as not more than 3.5%. Preferably the content of Mo ranges from 2.0 to 3.0%.
  • N is an effective element which intercrystallizes into an austenite phase to increase hardness and corrosion resistance. For this reason, N is contained at not less than 0.15%. Although N can be intercrystallized into a base material by up to 0.4%, the upper limit of the content of N is specified as 0.35%, because N raises the sensitivity of generation of bubbling when performing welding. Preferably, the content of N is not more than 0.30%.
  • O is an important element which constitutes an oxide which represents a nonmetallic inclusion, and excessive content of O deteriorates toughness, on the other hand, if a coarse cluster-like oxide is generated, then it cause surface cracking. For this reason, the upper limit of the content of O is restricted to 0.007%. Moreover, if the content of O is decreased remarkably, then the cost for refining increases, and hence the lower limit is specified to 0.0005%. Preferably, the content of O ranges from 0.001 to 0.004%.
  • PI value expressed by the above formula (1): A pitting index is an index of corrosion resistance of stainless steel to a chloride environment, and it was possible to obtain required characteristics by restricting the PI value to not less than 35. As stainless steel having a PI value of more than 40, SUS836L etc. are exemplary, but the content of Ni thereof is not less than 24%, and it is very expensive. In the present invention, since the target is an austenitic stainless steel which has corrosion resistance corresponding to cost, the upper limit of the PI value is specified as 40. It should be noted that, in the present invention which contains no W, the value of W in formula (1) is set to 0.
  • The δ cal expressed by the above formula (2) is an index which indicates the quantity of the delta ferrite which appears in the solidified configuration of austenitic stainless steel, and in order to reduce solidification crack sensitivity or to make a configuration fine, generally it is controlled to approximately 0 to 7%. However, in steel having a high content of Cr as in the present invention, delta ferrite in a solidified configuration changes into an intermetallic compound during the hot-rolling production step, and remains in a steel material as a by-product, thereby deteriorating toughness. For this reason, the upper limit of δ cal is restricted to +2 so that delta ferrite might decrease. If δ cal exceeds this value, then it becomes difficult to obtain high toughness even when devising in the hot-rolling production step. On the other hand, the side in which δ cal is small (minus) means that the delta ferrite content becomes substantially 0%, as a result, the above effect is saturated and an excess of Ni content will be contained, and hence the lower limit is restricted to −6, in view of cost. Preferably, δ cal ranges from −3 to +1. It should be noted that in the present invention without containing W and Cu, the value of W or Cu in formula (2) is set to 0.
  • The content of intermetallic compound which is contained in steel materials is an important factor which dictates the toughness of the austenitic stainless steel material in the present invention. An intermetallic compound is a compound which contains Cr, Mo, or W, as main ingredients and is known as σ phase and χ phase, The content of this compound can be measured by performing alkali electrolytic etching of the micro configuration and observing it with an approximately 400-power optical microscope. The inventors of the present invention have found that if this content as an average value of observation of the cross-section of a steel material exceeds 0.5%, then Charpy absorbed energy of the steel material becomes less than 100 J/cm2, and specified the upper limit thereof to be 0.5%.
  • The reason for restricting the second aspect of the present invention will be explained.
  • W is an element which raises the corrosion resistance of stainless steel additionally as well as Mo, and W can be contained by an amount ranging from 0.3 to 3.0% in the present invention steel for this purpose.
  • Al is an important element for deoxidation of steel, and in order to reduce oxygen in steel, Al is contained by at amount of not less than 0.005%. On the other hand, Al is an element having a relatively large affinity to N, and hence if an excess of Al is added, then AlN is generated to deteriorate the toughness of stainless steel. Although the degree of deterioration of toughness depends on the N content, if the Al content exceeds 0.1%, then the toughness deteriorates significantly, and hence the upper limit of Al content is specified as 0.1%.
  • The reason for restricting the third aspect of the present invention will be explained.
  • Cu is an element which raises the corrosion resistance of stainless steel against an acid additionally, and Cu can be contained for this purpose. It is preferable to add Cu in an amount of not less than 0.3%, whereas if Cu in an amount of more than 2.0% is added, the effect in line with the cost is saturated, and hence the upper limit is specified as 2.0%.
  • Although Sn also raises the corrosion resistance of steel, an excess of Sn causes hot-rolling processing cracking, and hence the upper limit is specified as 0.1%. Preferably, the lower limit of Sn content is specified as 0.005%.
  • The reason for restricting the fourth aspect of the present invention will be explained.
  • Each of Ca, Mg, and REM(s) is an element which improves the hot-rolling processability of steel, and one or more of them are added for this purpose. Excessive addition of each of them deteriorates the hot-rolling processability adversely, and hence the upper limit and the lower limit thereof are specified as follows. That is, the content of each of Ca and Mg ranges from 0.0005 to 0.0050%, and the content of REM ranges from 0.005 to 0.10%. Here, REM represents the total content of a lanthanide series rare-earth element such as La, Ce, etc.
  • Furthermore, the PV value specified by the following formula (3) is set to be not more than 0. This formula is one that clarifies the required amount Ca, Mg, and REM to be added based on the existing amount of S, and it is possible to add exactly by making the PV value to be not more than 0, thereby improving the hot-rolling processability further.
    PV=S+O−0.8Ca−0.3Mg−0.3REM−30  (3)
  • The reason for restricting the fifth aspect of the present invention will be explained.
  • As for B, by adding it in an amount of not less than 0.0003%, it becomes possible to increase grain boundary strength and improve the hot-rolling processability. However, since excessive addition of B deteriorates the hot-rolling processability to the contrary due to an excessively deposited boride, the upper limit of the B content is specified as 0.0060%.
  • The reason for restricting the sixth aspect of the present invention will be explained.
  • Ti is an element which forms an oxide, a nitride, and sulfide with a very small amount thereof, and makes the crystal grain of steel fine, and Ti is an element which can be advantageously used in the steel material of the present invention. In order to reduce the intermetallic compound content in steel materials, it is effective to restrict the upper limit value of δ cal and perform homogenizing heat treatment of semi-finished products. Among these, in the latter method, heat treatment at a high temperature of approximately 1250° C. will be performed for several hours, if a proper amount of Ti is contained therein, then growth of crystal grain during the heat treatment at a high temperature as such can be effectively suppressed. For this purpose, it is necessary to add Ti in an amount of not less than 0.003%. On the other hand, Ti is an element which has a very high nitride-forming power, and hence if Ti in an amount of over 0.03% is contained in the steel material of the present invention which contains N, then coarse TiN will deteriorate the toughness of the steel. For this reason, Ti content is specified in the range of 0.003 to 0.03%. Preferably, the Ti content ranges from 0.005 to 0.02%, in the case in which Ti is contained.
  • Nb forms carbide to fix C, thereby suppressing formation of Cr carbide to increase corrosion resistance and toughness. In addition, Nb forms nitride to suppress the growth of crystal grain, thereby converting steel material into fine grains to increase the strength. For improving corrosion resistance and increasing strength, Nb in an amount of not less than 0.02% can be contained. However, if Nb in an amount of over 0.2% is added, then a large amount of carbon nitride of Nb is deposited during the hot-rolling processing step to deteriorate the hot-rolling recrystallization and a coarse configuration will remain in a steel material as a product, and hence the upper limit of Nb content is specified as 0.2%. Preferably Nb content ranges from 0.05% to 0.15%.
  • V is an element that forms a carbon nitride as well as Nb, and V can be added in order to maintain corrosion resistance and toughness. Although V is contained in an amount of not less than 0.05% for this purpose, if V in an amount of over 0.5% is contained, then a coarse V series carbon nitride will be generated, and toughness will deteriorate conversely. Therefore, the upper limit of V is restricted to 0.5%. Preferably, V content ranges from 0.1 to 0.3%.
  • Although Zr and Ta can inhibit the negative influence on the corrosion resistance of C or S by addition, if Zr or Ta is added excessively, then deterioration of toughness will occur, and hence Zr content is restricted to 0.003 to 0.03% and Ta content is restricted to 0.01 to 0.1%.
  • The reason for restricting the seventh aspect of the present invention will be explained.
  • In order to increase the toughness of steel materials in the present invention, the amount of intermetallic compound contained in the steel material is restricted to not more than 0.5%, however, solidifying heat treatment after the final heat-rolling step must be omitted in order to obtain high proof stress. Therefore, as for an intermetallic compound, it is necessary to reduce the intermetallic compound contained in a cast steel, and to prevent formation of the intermetallic compound during the hot-rolling step as far as possible.
  • First, as the technique for reducing the intermetallic compound in the cast steel, it is necessary to combine the controlling of δ cal with the homogenizing heat treatment to the cast steel of steel described in this aspect. In the case in which there is no solidification segregation in the target steel materials of the present invention, the temperature at which an intermetallic compound is generated is approximately not higher than 1000° C. However, in the semi-finished product which is accompanied with segregation of ingredients caused by solidification, it becomes necessary to perform a production step for diffusing the segregation and homogenizing it in order to reduce the content of an intermetallic compound in the semi-finished product. Although the temperature and the time of this homogenizing heat treatment will change slightly, corresponding to chemical composition such as solidifying rate and cross-sectional area of the cast steel, the degree of hot-rolling processing when processing into a semi-finished product, and δ cal, etc., the temperature required is not lower than 1200° C., because the rate is limited by diffusion of Cr, Mo, Ni, etc. On the other hand, if the temperature exceeds 1300° C., then oxidized scale will be generated more than usually As for the time, it is preferable that the time be as long as possible, and at least one hour is necessary. Moreover, this purpose can be attained by performing a soaking at 1200° C. for one hour or more during heating of the semi-finished product for rolling a product. As mentioned above, it is specified to perform homogenizing heat treatment for one hour or more at a temperature ranging from 1200 to 1300° C. Taking the effect and the economical efficiency into consideration, a preferable range of soaking time ranges from 2 to 20 hours.
  • As for the rolling condition, it consists of the rough rolling stage in which re-heating is performed at a temperature ranging from 1100 to 1300° C. and making the total compaction amount at a temperature of not lower than 1050° C. to be not less than 50%, and the successive finishing rolling stage in which the total compaction amount at a temperature ranging from 1050 to 850° C. is made to be not less than 10%. The rough rolling stage is a stage in which the solidification structure is mainly destroyed, to obtain a uniform recrystallized solidification, whereas the finishing rolling step is a step of introducing the processing strain by the rolling and for increasing the strength after the rolling processing. In addition, all of the rolling processing is performed at a temperature of not lower than 850° C., thereby preventing re-deposition of the intermetallic compound. And further, a controlled cooling is performed at an average cooling rate of not less than 150° C./min from 800 to 500° C. after the rolling processing, thereby inhibiting the re-deposition of the intermetallic compound and the recovery of the processing strain which was introduced in the finishing rolling step.
  • The reason for restricting the condition will be explained further in detail.
  • In order to make it possible to perform a rolling processing which makes the total compaction amount to be not less than 50% at a temperature of not lower than 1050° C., to reduce deformation resistance, and to make it easy to perform the rolling processing, it is necessary to heat the steel ingot to not lower than 1100° C. However, if it is heated over 1300° C., then the grain boundary will be fused to cause cracks during the hot-rolled processing, and hence the heating temperature is restricted to be within a range of 1100 to 1300° C.
  • In the rough rolling stage, in order to destroy the solidification structure and to obtain a uniform recrystallized structure, it is necessary to make the total compaction amount at a temperature of not lower than 1050° C. to be not less than 50%. If the rolling temperature is lower than 1050° C. or the total compaction amount is less than 50%, then it is not possible to obtain uniform recrystallized structure.
  • In the finishing rolling stage, in order to acquire the target proof stress of 550 MPa, it is necessary to perform a finishing rolling by which the total compaction amount at a temperature of 1050° C. to 850° C. in the component range which is restricted in the present invention should be not less than 10%. In addition, if a rolling processing is performed at a temperature over 1050° C., then recrystallization will occur, and as a result compressing strain cannot be accumulated, so that sufficient strength cannot be obtained, whereas if a rolling processing is performed at a temperature lower than 850° C., then deposition of the intermetallic compound will be promoted to deteriorate toughness remarkably. Therefore, it is necessary to perform the rolling processing during all of the rolling processing, while maintaining the temperature to be not lower than 850° C. Finally, high hardness can be maintained by omitting solution heat treatment.
  • EXAMPLE 1
  • Example 1 will be explained below. The chemical constitution of a test piece of steel is shown in Table 1. It should be noted that, the content of inevitable impurity elements other than the components indicated in Table 1 is the same level as in standard stainless steel. Moreover, as to the portions where no contents are shown for the components shown in Table 1, this means that the content is the same level as in an impurity level. Moreover, REM in Tables represents lanthanoid series rare earth elements, and the content indicates the total of these elements. These steel samples were melted in a 50 kg-vacuum induction furnace in a laboratory and cast into a flat steel ingot having a thickness of approximately 100 mm.
    TABLE 1
    STEEL No. C Si Mn P S Ni Cr Mo Cu
    A EXAMPLE1 0.021 0.49 0.48 0.020 0.0005 17.91 25.15 2.31 0.12
    B EXAMPLE1 0.019 0.46 0.32 0.023 0.0003 18.23 24.65 2.46 0.21
    C EXAMPLE2 0.018 0.52 0.52 0.014 0.0005 17.98 25.02 2.46 0.05
    D EXAMPLE3 0.022 0.49 0.52 0.022 0.0006 18.43 24.88 2.46 0.45
    E EXAMPLE3 0.015 0.71 1.71 0.026 0.0002 19.25 26.35 1.92 0.22
    F EXAMPLE4 0.021 0.48 0.52 0.022 0.0009 18.25 25.36 2.53 0.30
    G EXAMPLE4 0.022 0.46 0.52 0.021 0.0008 20.21 24.96 2.46 0.31
    H EXAMPLE4 0.022 0.48 0.49 0.022 0.0003 19.23 24.64 3.33 0.28
    I EXAMPLE5 0.021 0.47 0.52 0.022 0.0007 18.33 24.66 2.48 0.32
    J EXAMPLE6 0.019 0.45 0.53 0.023 0.0008 18.23 24.65 2.46 0.32
    K EXAMPLE6 0.019 0.49 0.49 0.022 0.0004 20.42 27.31 1.68 0.31
    L EXAMPLE6 0.024 0.49 0.49 0.021 0.0003 19.53 24.61 2.11 1.82
    M EXAMPLE6 0.019 0.49 0.85 0.019 0.0013 18.89 25.29 2.52 0.32
    N EXAMPLE6 0.021 0.50 0.84 0.019 0.0005 16.77 25.21 2.10 0.85
    a COMPARATIVE 0.035 0.35 0.25 0.008 0.0009 17.91 24.68 2.35 0.21
    EXAMPLE
    b COMPARATIVE 0.006 1.75 2.11 0.027 0.0006 18.93 24.67 2.64 0.06
    EXAMPLE
    c COMPARATIVE 0.025 0.44 3.31 0.018 0.0010 17.59 27.19 1.65 0.58
    EXAMPLE
    d COMPARATIVE 0.018 0.51 0.51 0.055 0.0003 18.21 23.77 2.33 0.91
    EXAMPLE
    e COMPARATIVE 0.017 0.40 0.55 0.012 0.0033 17.64 24.21 2.58 1.22
    EXAMPLE
    f COMPARATIVE 0.022 0.36 0.61 0.026 0.0008 14.55 22.91 2.53 0.46
    EXAMPLE
    g COMPARATIVE 0.008 0.33 1.21 0.013 0.0006 20.12 27.55 1.22 0.25
    EXAMPLE
    h COMPARATIVE 0.028 0.53 0.43 0.022 0.0006 18.88 22.84 3.68 0.66
    EXAMPLE
    i COMPARATIVE 0.033 0.15 0.35 0.026 0.0004 20.55 25.35 2.33 0.24
    EXAMPLE
    j COMPARATIVE 0.022 0.47 0.53 0.025 0.0008 18.21 24.96 2.46 0.33
    EXAMPLE
    k COMPARATIVE 0.021 0.26 1.85 0.022 0.0009 15.61 21.89 2.12 0.31
    EXAMPLE
    l COMPARATIVE 0.021 0.48 0.51 0.024 0.0007 18.55 28.22 2.01 0.31
    EXAMPLE
    m COMPARATIVE 0.022 0.49 0.52 0.023 0.0008 21.40 24.95 2.47 0.33
    EXAMPLE
    n COMPARATIVE 0.024 0.45 0.52 0.024 0.0006 18.22 24.94 2.47 0.31
    EXAMPLE
    o COMPARATIVE 0.022 0.51 0.18 0.037 0.0028 19.56 25.61 2.64 0.35
    EXAMPLE
    p COMPARATIVE 0.019 0.53 0.46 0.021 0.0003 18.36 24.91 2.28 0.36
    EXAMPLE
    q COMPARATIVE 0.018 0.56 0.53 0.021 0.0006 16.95 22.21 3.39 1.66
    EXAMPLE
    r COMPARATIVE 0.026 1.22 0.66 0.016 0.0003 17.91 23.96 2.31 0.33
    EXAMPLE
    s COMPARATIVE 0.021 0.48 0.53 0.023 0.0008 18.23 24.89 2.46 0.32
    EXAMPLE
    t COMPARATIVE 0.022 0.47 0.54 0.024 0.0007 18.33 23.33 2.45 0.35
    EXAMPLE
    u COMPARATIVE 0.023 0.46 0.55 0.023 0.0008 18.25 24.98 2.48 0.32
    EXAMPLE
    v COMPARATIVE 0.013 0.48 1.21 0.013 0.0005 16.36 22.64 2.93 0.28
    EXAMPLE
    w COMPARATIVE 0.024 0.55 0.78 0.019 0.0005 17.21 23.51 2.33 0.33
    EXAMPLE
    STEEL No. Cu Sn Nb Ti V Zr Ta W Al
    A EXAMPLE1 0.12
    B EXAMPLE1 0.21 1.05
    C EXAMPLE2 0.05 0.018
    D EXAMPLE3 0.45 0.032
    E EXAMPLE3 0.22 0.08 0.051
    F EXAMPLE4 0.30 0.026
    G EXAMPLE4 0.31 0.71 0.028
    H EXAMPLE4 0.28 0.034
    I EXAMPLE5 0.32 0.022
    J EXAMPLE6 0.32 0.012 0.023
    K EXAMPLE6 0.31 0.121 0.011
    L EXAMPLE6 1.82 0.28 2.10 0.023
    M EXAMPLE6 0.32 0.021 0.020
    N EXAMPLE6 0.85 0.035 0.018
    a COMPARATIVE 0.21
    EXAMPLE
    b COMPARATIVE 0.06 0.009
    EXAMPLE
    c COMPARATIVE 0.58
    EXAMPLE
    d COMPARATIVE 0.91 0.012
    EXAMPLE
    e COMPARATIVE 1.22 0.006 0.061
    EXAMPLE
    f COMPARATIVE 0.46 0.111
    EXAMPLE
    g COMPARATIVE 0.25
    EXAMPLE
    h COMPARATIVE 0.66 1.35
    EXAMPLE
    i COMPARATIVE 0.24 0.035
    EXAMPLE
    j COMPARATIVE 0.33 0.014 0.002
    EXAMPLE
    k COMPARATIVE 0.31 0.075 0.020
    EXAMPLE
    l COMPARATIVE 0.31
    EXAMPLE
    m COMPARATIVE 0.33 0.026
    EXAMPLE
    n COMPARATIVE 0.31 0.140
    EXAMPLE
    o COMPARATIVE 0.35 0.05 0.65
    EXAMPLE
    p COMPARATIVE 0.36 0.033
    EXAMPLE
    q COMPARATIVE 1.66 0.024
    EXAMPLE
    r COMPARATIVE 0.33
    EXAMPLE
    s COMPARATIVE 0.32 0.046 0.026
    EXAMPLE
    t COMPARATIVE 0.35 0.284 1.11 0.026
    EXAMPLE
    u COMPARATIVE 0.32 0.88 0.024
    EXAMPLE
    v COMPARATIVE 0.28 0.037
    EXAMPLE
    w COMPARATIVE 0.33 0.12 0.064
    EXAMPLE
    STEEL No. B Ca Mg REM 0 N δ cal PI PV
    A EXAMPLE1 0.0055 0.235   0.9 36.5 30.0
    B EXAMPLE1 0.0063 0.266 −0.8 38.8 36.0
    C EXAMPLE2 0.0041 0.266 −0.5 37.4 16.0
    D EXAMPLE3 0.0025 0.240 −1.4 36.8 1.0
    E EXAMPLE3 0.0030 0.281 −2.9 37.2 2.0
    F EXAMPLE4 0.0022 0.0035 0.238   1.0 37.5 −3.6
    G EXAMPLE4 0.0033 0.0025 0.242 −4.8 38.1 −6.9
    H EXAMPLE4 0.009 0.0019 0.257 −2.4 39.7 −35.0
    I EXAMPLE5 0.0033 0.0026 0.235 −1.3 36.6 3.0
    J EXAMPLE6 0.0008 0.0033 0.0035 0.247 −1.6 36.7 −3.3
    K EXAMPLE6 0.0023 0.0036 0.245 −1.6 36.8 −8.4
    L EXAMPLE6 0.0020 0.0025 0.173 −0.6 37.8 −18.0
    M EXAMPLE6 0.0008 0.021 0.0040 0.235 −0.9 37.4 −46.4
    N EXAMPLE6 0.0042 0.0020 0.315 −1.5 37.2 −38.6
    a COMPARATIVE 0.0022 0.193   0.6 35.5 1.0
    EXAMPLE
    b COMPARATIVE 0.0006 0.0034 0.264 −2.5 37.6 5.2
    EXAMPLE
    c COMPARATIVE 0.0009 0.0022 0.252   1.9 36.7 2.0
    EXAMPLE
    d COMPARATIVE 0.0008 0.0028 0.265 −5.6 35.7 −1.4
    EXAMPLE
    e COMPARATIVE 0.0012 0.0009 0.237 −0.9 36.5 2.4
    EXAMPLE
    f COMPARATIVE 0.0028 0.0022 0.0026 0.279   1.0 35.7 −2.6
    EXAMPLE
    g COMPARATIVE 0.0026 0.295 −3.8 36.3 2.0
    EXAMPLE
    h COMPARATIVE 0.0034 0.155   0.9 39.7 10.0
    EXAMPLE
    i COMPARATIVE 0.035 0.0052 0.121 −0.8 35.0 −79.0
    EXAMPLE
    j COMPARATIVE 0.0036 0.0081 0.242 −0.6 37.0 30.2
    EXAMPLE
    k COMPARATIVE 0.0019 0.0008 0.0032 0.184 −1.9 31.8 −6.6
    EXAMPLE
    l COMPARATIVE 0.0022 0.0029 0.271   5.3 39.2 −11.6
    EXAMPLE
    m COMPARATIVE 0.0023 0.0030 0.240 −8.8 36.9 −10.4
    EXAMPLE
    n COMPARATIVE 0.0024 0.0032 0.235 −0.5 36.9 −11.2
    EXAMPLE
    o COMPARATIVE 0.0067 0.0032 0.222   0.5 38.9 −23.6
    EXAMPLE
    p COMPARATIVE 0.0071 0.0032 0.262 −2.4 36.6 −16.3
    EXAMPLE
    q COMPARATIVE 0.0030 0.111 0.0032 0.212 −1.5 36.8 −349.0
    EXAMPLE
    r COMPARATIVE 0.0071 0.0032 0.222 −2.0 35.1 5.0
    EXAMPLE
    s COMPARATIVE 0.0025 0.0032 0.241 −0.7 36.9 −10.0
    EXAMPLE
    t COMPARATIVE 0.0026 0.015 0.0033 0.173 −0.5 36.0 −55.8
    EXAMPLE
    u COMPARATIVE 0.0025 0.0031 0.239 −0.6 37.0 −11.0
    EXAMPLE
    v COMPARATIVE 0.0025 0.0030 0.263 −2.0 36.5 −2.5
    EXAMPLE
    w COMPARATIVE 0.0025 0.245 −3.1 35.1 0.0
    EXAMPLE

       : VALUE WITHOUT THE RANGE OF THE PRESENT INVENTION
  • A steel sheet having a thickness ranging from 12 to 22 mm was produced by performing cogging, homogenizing heat treatment, and product rolling, using the above sample steel. In the cogging, the sample steel was soaked at 1180° C. for two hours, and thereafter the sample steel was rolled to 65 mm thickness. Then the resultant semi-finished products were subjected to homogenizing heat treatment under the conditions shown in Tables 2 and 3. Some of the steel chips were not subjected to the homogenizing heat treatment. Each piece of steel was ground to 60 mm to obtain the material for use in product rolling, and thereafter the resultant material for use in product rolling was subjected to hot-rolling processing to obtain a hot-rolled steel material. It should be noted that the steel material immediately after being hot-rolled which was in a temperature state of not less than 800° C. was cooled to a temperature of not higher than 500° C. by performing spray cooling. Some of the steel sheets were subjected to a solution heat treatment under the condition of 1100° C.×20 min with cooling by water, after soaking.
    TABLE 2
    REDUCTION
    REDUCTION AT A
    INTERMETALLIC HOMOGENIZING RE-HEATING AT 1050° C. TEMPERATURE
    STEEL COMPOUND HEAT TEMPERATURE OR MORE OF 1050 TO
    No. No. CONTENT (%) TREATMENT (° C.) (%) 850° C.(%)
     1 A EXAMPLE 0.35 1250° C. × 4 h 1200 60 20
     2 B EXAMPLE 0.05 1250° C. × 4 h 1200 60 20
     3 C EXAMPLE 0.10 1250° C. × 4 h 1200 60 20
     4 D EXAMPLE 0.20 1250° C. × 4 h 1200 60 20
     5 E EXAMPLE 0.05 1250° C. × 4 h 1200 60 20
     6 F EXAMPLE 0.30 1250° C. × 4 h 1200 60 20
     7 F EXAMPLE 0.35 1220° C. × 2 h 1200 60 20
     8 F EXAMPLE 0.25 1200° C. × 20 h 1200 60 20
     9 F EXAMPLE 0.40 1250° C. × 4 h 1250 60 20
    10 F EXAMPLE 0.30 1250° C. × 4 h 1200 75 15
    11 F EXAMPLE 0.30 1250° C. × 4 h 1200 60 12
    12 F COMPARATIVE 0.95 UNDONE 1200 60 20
    EXAMPLE
    13 F COMPARATIVE 0.75 1150° C. × 5 h 1200 60 20
    EXAMPLE
    14 F COMPARATIVE 0.80 1200° C. × 15 m 1200 60 20
    EXAMPLE
    15 F COMPARATIVE 0.45 1250° C. × 4 h 1050 0 68
    EXAMPLE
    16 F COMPARATIVE 0.35 1250° C. × 4 h 1200 60 7
    EXAMPLE
    17 F COMPARATIVE 0.60 1250° C. × 4 h 1200 60 20
    EXAMPLE
    18 F COMPARATIVE 0.85 1250° C. × 4 h 1200 60 20
    EXAMPLE
    19 F COMPARATIVE 0.00 1250° C. × 4 h 1200 60 20
    EXAMPLE
    20 G EXAMPLE 0.20 1250° C. × 4 h 1200 60  5
    21 H EXAMPLE 0.25 1250° C. × 4 h 1200 60 20
    22 I EXAMPLE 0.30 1250° C. × 4 h 1200 60 20
    23 J EXAMPLE 0.20 1250° C. × 4 h 1200 60 20
    COOLING
    RATE AT A
    ROLLING TEMPERATURE Vc′ 100
    FINISHING OF 800 SOLUTION EAR PROOF (mV vs
    STEEL TEMPERATURE TO 500° C. HEAT CRACK STRESS vE−40° C. Saturated
    No. No. (° C.) (° C./min) TREATMENT (mm) (MPa) (J/cm2) Ag/AgCl)
     1 A EXAMPLE 900 250 UNDONE 5 710 130 630
     2 B EXAMPLE 900 250 UNDONE 8 730 147 750
     3 C EXAMPLE 900 250 UNDONE 5 726 187 700
     4 D EXAMPLE 900 250 UNDONE 3 711 201 685
     5 E EXAMPLE 900 250 UNDONE 5 733 203 705
     6 F EXAMPLE 900 250 UNDONE 0 713 199 720
     7 F EXAMPLE 900 250 UNDONE 0 720 167 715
     8 F EXAMPLE 900 250 UNDONE 0 710 195 720
     9 F EXAMPLE 900 250 UNDONE 0 706 163 710
    10 F EXAMPLE 900 250 UNDONE 0 716 200 710
    11 F EXAMPLE 900 250 UNDONE 0 590 225 725
    12 F COMPARATIVE 900 250 UNDONE 0 729 63 625
    EXAMPLE
    13 F COMPARATIVE 900 250 UNDONE 0 724 74 645
    EXAMPLE
    14 F COMPARATIVE 900 250 UNDONE 0 725 66 630
    EXAMPLE
    15 F COMPARATIVE 900 250 UNDONE 0 735 70 685
    EXAMPLE
    16 F COMPARATIVE 900 250 UNDONE 0 538 281 730
    EXAMPLE
    17 F COMPARATIVE 800 250 UNDONE 0 730 55 550
    EXAMPLE
    18 F COMPARATIVE 900 75 UNDONE 0 716 57 535
    EXAMPLE
    19 F COMPARATIVE 900 250 DONE 0 345 350 780
    EXAMPLE
    20 G EXAMPLE 900 250 UNDONE 0 725 202 740
    21 H EXAMPLE 900 250 UNDONE 0 724 217 775
    22 I EXAMPLE 900 250 UNDONE 0 712 193 645
    23 J EXAMPLE 900 250 UNDONE 0 729 164 680

       : VALUE WITHOUT THE RANGE OF THE PRESENT INVENTION
  • TABLE 3
    REDUCTION
    REDUCTION AT A
    INTERMETALLIC HOMOGENIZING RE-HEATING AT 1050° C. TEMPERATURE
    COMPOUND HEAT TEMPERATURE OR MORE OF 1050 TO
    No. STEEL No. CONTENT (%) TREATMENT (° C.) (%) 850° C.(%)
    24 K EXAMPLE 0.15 1250° C. × 4 h 1200 60 20
    25 K EXAMPLE 0.20 1250° C. × 4 h 1200 60 35
    26 K EXAMPLE 0.30 1250° C. × 4 h 1200 60 20
    27 K EXAMPLE 0.05 1250° C. × 4 h 1200 60 20
    28 K EXAMPLE 0.05 1250° C. × 4 h 1200 60 20
    29 K COMPARATIVE 1.00 UNDONE 1200 60 20
    EXAMPLE
    30 K COMPARATIVE 0.70 1150° C. × 5 h 1200 60 20
    EXAMPLE
    31 K COMPARATIVE 0.70 1200° C. × 15 m 1200 60 20
    EXAMPLE
    32 K COMPARATIVE 0.45 1250° C. × 4 h 1350 60 20
    EXAMPLE
    33 K COMPARATIVE 0.40 1250° C. × 4 h 1050 0 68
    EXAMPLE
    34 K COMPARATIVE 0.30 1250° C. × 4 h 1200 60 7
    EXAMPLE
    35 K COMPARATIVE 0.75 1250° C. × 4 h 1200 60 20
    EXAMPLE
    36 K COMPARATIVE 0.75 1250° C. × 4 h 1200 60 20
    EXAMPLE
    37 K COMPARATIVE 0.00 1250° C. × 4 h 1200 60 20
    EXAMPLE
    38 L EXAMPLE 0.30 1250° C. × 4 h 1200 60 20
    39 M EXAMPLE 0.35 1250° C. × 4 h 1200 60 20
    40 N EXAMPLE 0.25 1250° C. × 4 h 1200 60 20
    COOLING
    RATE AT A
    ROLLING TEMPERATURE Vc′ 100
    FINISHING OF 800 SOLUTION EAR PROOF (mV vs
    STEEL TEMPERATURE TO 500° C. HEAT CRACK STRESS vE−40° C. Saturated
    No. No. (° C.) (° C./min) TREATMENT (mm) (MPa) (J/cm2) Ag/AgCl)
    24 K EXAMPLE 900 250 UNDONE 0 740 183 700
    25 K EXAMPLE 900 250 UNDONE 0 745 182 695
    26 K EXAMPLE 860 250 UNDONE 0 751 167 695
    27 K EXAMPLE 970 250 UNDONE 0 723 197 700
    28 K EXAMPLE 900 500 UNDONE 0 741 193 715
    29 K COMPARATIVE 900 250 UNDONE 0 743 53 645
    EXAMPLE
    30 K COMPARATIVE 900 250 UNDONE 0 741 60 655
    EXAMPLE
    31 K COMPARATIVE 900 250 UNDONE 0 740 63 655
    EXAMPLE
    32 K COMPARATIVE 900 250 UNDONE 70  720 95 605
    EXAMPLE
    33 K COMPARATIVE 900 250 UNDONE 0 755 66 705
    EXAMPLE
    34 K COMPARATIVE 900 250 UNDONE 0 545 270 715
    EXAMPLE
    35 K COMPARATIVE 800 250 UNDONE 0 752 52 585
    EXAMPLE
    36 K COMPARATIVE 900 75 UNDONE 0 743 47 570
    EXAMPLE
    37 K COMPARATIVE 900 250 DONE 0 358 304 815
    EXAMPLE
    38 L EXAMPLE 900 250 UNDONE 0 652 197 735
    39 M EXAMPLE 900 250 UNDONE 0 700 191 720
    40 N EXAMPLE 900 250 UNDONE 0 758 183 645

       : VALUE WITHOUT THE RANGE OF THE PRESENT INVENTION
  • TABLE 4
    REDUCTION
    REDUCTION AT A
    INTERMETALLIC HOMOGENIZING RE-HEATING AT 1050° C. TEMPERATURE
    STEEL COMPOUND HEAT TEMPERATURE OR MORE OF 1050 TO
    No. No. CONTENT (%) TREATMENT (° C.) (%) 850° C.(%)
    41 a COMPARATIVE 0.40 1250° C. × 4 h 1200 60 20
    EXAMPLE
    42 b COMPARATIVE 0.35 1250° C. × 4 h 1200 60 20
    EXAMPLE
    43 c COMPARATIVE 0.45 1250° C. × 4 h 1200 60 20
    EXAMPLE
    44 d COMPARATIVE 0.05 1250° C. × 4 h 1200 60 20
    EXAMPLE
    45 e COMPARATIVE 0.20 1250° C. × 4 h 1200 60 20
    EXAMPLE
    46 f COMPARATIVE 0.50 1250° C. × 4 h 1200 60 20
    EXAMPLE
    47 g COMPARATIVE 0.13 1250° C. × 4 h 1200 60 20
    EXAMPLE
    48 h COMPARATIVE 0.95 1250° C. × 4 h 1200 60 20
    EXAMPLE
    49 i COMPARATIVE 0.40 1250° C. × 4 h 1200 60 20
    EXAMPLE
    50 j COMPARATIVE 0.30 1250° C. × 4 h 1200 60 20
    EXAMPLE
    51 k COMPARATIVE 0.15 1250° C. × 4 h 1200 60 20
    EXAMPLE
    52 l COMPARATIVE 0.90 1250° C. × 4 h 1200 60 20
    EXAMPLE
    53 m COMPARATIVE 0.00 1250° C. × 4 h 1200 60 20
    EXAMPLE
    54 n COMPARATIVE 0.25 1250° C. × 4 h 1200 60 20
    EXAMPLE
    55 o COMPARATIVE 0.30 1250° C. × 4 h 1200 60 20
    EXAMPLE
    56 p COMPARATIVE 0.10 1250° C. × 4 h 1200 60 20
    EXAMPLE
    57 q COMPARATIVE 0.20 1250° C. × 4 h 1200 60 20
    EXAMPLE
    58 r COMPARATIVE 0.15 1250° C. × 4 h 1200 60 20
    EXAMPLE
    59 s COMPARATIVE 0.30 1250° C. × 4 h 1200 60 20
    EXAMPLE
    60 t COMPARATIVE 0.30 1250° C. × 4 h 1200 60 20
    EXAMPLE
    61 u COMPARATIVE 0.30 1250° C. × 4 h 1200 60 20
    EXAMPLE
    62 v COMPARATIVE 0.15 1250° C. × 4 h 1200 60 20
    EXAMPLE
    63 w COMPARATIVE 0.10 1250° C. × 4 h 1200 60 20
    EXAMPLE
    COOLING
    RATE AT A
    ROLLING TEMPERATURE Vc′ 100
    FINISHING OF 800 SOLUTION EAR PROOF (mV vs
    STEEL TEMPERATURE TO 500° C. HEAT CRACK STRESS vE−40° C. Saturated
    No. No. (° C.) (° C./min) TREATMENT (mm) (MPa) (J/cm2) Ag/AgCl)
    41 a COMPARATIVE 900 250 UNDONE 5 695 199 455
    EXAMPLE
    42 b COMPARATIVE 900 250 UNDONE 10 726 65 730
    EXAMPLE
    43 c COMPARATIVE 900 250 UNDONE 8 705 77 490
    EXAMPLE
    44 d COMPARATIVE 900 250 UNDONE 50 728 75 550
    EXAMPLE
    45 e COMPARATIVE 900 250 UNDONE 45 700 53 435
    EXAMPLE
    46 f COMPARATIVE 900 250 UNDONE 0 752 71 520
    EXAMPLE
    47 g COMPARATIVE 900 250 UNDONE 6 644 310 405
    EXAMPLE
    48 h COMPARATIVE 900 250 UNDONE 9 644 30 765
    EXAMPLE
    49 i COMPARATIVE 900 250 UNDONE 0 621 195 470
    EXAMPLE
    50 j COMPARATIVE 900 250 UNDONE 12 718 35 510
    EXAMPLE
    51 k COMPARATIVE 900 250 UNDONE 0 685 222 205
    EXAMPLE
    52 l COMPARATIVE 900 250 UNDONE 33 740 20 750
    EXAMPLE
    53 m COMPARATIVE 900 250 UNDONE 0 715 215 660
    EXAMPLE
    54 n COMPARATIVE 900 250 UNDONE 0 713 30 655
    EXAMPLE
    55 o COMPARATIVE 900 250 UNDONE 42 703 150 445
    EXAMPLE
    56 p COMPARATIVE 900 250 UNDONE 38 731 156 430
    EXAMPLE
    57 q COMPARATIVE 900 250 UNDONE 56 699 164 405
    EXAMPLE
    58 r COMPARATIVE 900 250 UNDONE 60 705 142 565
    EXAMPLE
    59 s COMPARATIVE 900 250 UNDONE 0 713 61 695
    EXAMPLE
    60 t COMPARATIVE 900 250 UNDONE 0 666 52 585
    EXAMPLE
    61 u COMPARATIVE 900 250 UNDONE 0 720 30 695
    EXAMPLE
    62 v COMPARATIVE 900 250 UNDONE 0 735 70 650
    EXAMPLE
    63 w COMPARATIVE 900 250 UNDONE 0 696 21 550
    EXAMPLE

       : VALUE WITHOUT THE RANGE OF THE PRESENT INVENTION
  • The steel plate produced under the above condition was cut into JIS. No.4 tension test pieces and JIS. No.4 V notch Charpy test pieces from a direction perpendicular to the direction of rolling processing. Using the resultant test pieces, 0.2% offset proof stress and impact strength at −40° C. were measured, and further the surface of the test piece was ground with a #600 grinder and then pitting electrical potential (Vc'100) was measured in a deaerated 10% NaCl aqueous solution held at 50° C. Moreover, test pieces for micro structure observation were cut out, and each of the resultant test pieces was planished and thereafter was subjected to 10% KOH electrolytic etching to reveal intermetallic compound therefrom so as to be observed by an optical microscope, thereby measuring the content. The content was measured by performing point counting in each of ten fields of view with 400× magnification at a depth of each of ¼, ½, and ¾ of thick, and then calculating all average values, and the resultant value was determined as the content of the intermetallic compound of the steel material. The obtained results are shown in Tables 2-4.
  • The hot-rolling processability was evaluated relatively by judging the generation of an ear crack during the product rolling. It was confirmed that the steel material corresponding to Example 5 or 6 (steel Nos. F to N) developed no ear cracks and exhibited excellent hot-rolling processability, with the exception of the case in which the reheating temperature was excessively high. On the other hand, it was confirmed that each of the steel materials corresponding to each Example other than Examples 5 and 6 developed ear cracks of approximately 5 to 10 mm per one side, so that the yield was decreased slightly. The lengths of ear cracks are shown in Tables 2 to 4.
  • As is clear from the results shown in Tables 1 and 2 to 4, as to the steel material which satisfies the steel composition which is within the scope of the present invention, the intermetallic compound content, production condition, all of the corrosion resistance, the proof stress, and Charpy impact value satisfy the specified conditions.
  • As can be seen from the above examples, it is clarified that the steel material of the present invention is an austenitic stainless steel material which excels in corrosion resistance, toughness, and strength.
  • The present invention realizes an austenitic stainless steel suitable for the hull structures of ships, having excellent performance required for structural members of high-speed ships, such as sea water resistance, proof stress, and low-temperature toughness at a high level, and hence the contributions of the present invention to industry are significant.
  • Next, the reason for limitation of the eighth aspect of the present invention will be explained.
  • The content of C is restricted to not more than 0.03%, in order to secure the corrosion resistance of the stainless steel. If the content of C exceeds 0.03%, then Cr carbide will be generated and corrosion resistance and toughness will deteriorate.
  • The content of Si is not less than 0.1% for deoxidation. However, if the content of Si exceeds 1.5%, then toughness will deteriorate. Therefore, the upper limit thereof is restricted to 1.5%. The content of Si preferably ranges from 0.2 to 1.0%.
  • The content of Mn is not less than 0. 1% for deoxidation. However, if the content of Mn exceeds 3.0%, then corrosion resistance and toughness will deteriorate. Therefore, the upper limit thereof is restricted to 3.0%. The content of Mn preferably ranges from 0.2 to 1.5%.
  • The content of P is restricted to not more than 0.05% because P deteriorates hot-rolling processability and toughness. The content of P is preferably not more than 0.03%.
  • The content of S is restricted to not more than 0.003% because S deteriorates hot-rolling processability, toughness, and corrosion resistance. The content of S is preferably not more than 0.001%.
  • The content of Ni is not less than 15.0% because Ni stabilizes an austenitic phase, and improves resistance to various acids and toughness. On the other hand, Ni is an expensive metal, and hence the content of Ni is restricted to not more than 21.0% from the viewpoint of cost.
  • The content of Cr is not less than 22.0% for securing basic corrosion resistance. On the other hand, if the content of Cr exceeds 28.0%, then an intermetallic compound will likely be deposited to deteriorate toughness. For this reason, the content of Cr is restricted to not less than 22.0% and not more than 28.0%.
  • The content of Mo is not less than 1.5% in the present invention, because Mo is a very effective element which increases corrosion resistance of stainless steel additionally. On the other hand, Mo is a very expensive element and which accelerates the deposition of intermetallic compounds, as well as Cr, and hence the upper limit of the content of Mo is restricted to not more than 3.5%. The content of Mo preferably ranges from 2.0 to 3.0%.
  • N is an effective element which is intercrystallized into an austenitic phase to increase strength and corrosion resistance. For this reason, the content of N is not less than 0.15%. Although it is possible to make N be intercrystallized into the base material up to 0.4% in the steel material of the present invention, the upper limit of the content of N is determined as 0.35% in order to increase sensitivity to generation of bubbling during welding. The content of N is preferably not more than 0.30%.
  • Al is an important element for deoxidation of steel, and hence the content of Al is not less than 0.005% in order to reduce oxygen in steel. On the other hand, Al is an element having a comparatively high chemical affinity with N, and if the content of Al is excessive, then AlN is generated to deteriorate toughness of the stainless steel. Although the degree thereof depends on the content of N, if the content of Al exceeds 0.1%, then toughness will deteriorate significantly, and hence the upper limit of the content of Al is determined to be 0. 1%.
  • O is an important element which constitutes an oxide which is a representative nonmetallic inclusion, and excessive addition of O deteriorates toughness, on the other hand if a coarse cluster-like oxide generates, then it causes surface cracking. For this reason, the upper limit of the content of O is determined as 0.007%. The content of O is preferably not more than 0.004%.
  • The PI value expressed by the above formula (1): A pitting index is an index of corrosion resistance of stainless steel to a chloride environment, and it is necessary to set the PI value to be not less than 35 at least, in order to acquire the corrosion resistance corresponding to the purpose. As a stainless steel of which the PI value exceeds 40, SUS836L etc., is exemplary, however, such a stainless steel contains Ni in an amount of not less than 24% and hence is very expensive. In the present invention, since the aim is to provide austenitic stainless steel which has corrosion resistance corresponding to cost, the upper limit of PI value is determined to be 40. Note, the value of W in formula (1) is set to 0 in the present invention which does not contain W.
  • The δ cal expressed by the above formula (2) is an index indicating the quantity of the delta ferrite which appears in the solidified configuration of austenitic stainless steel, and the δ cal is in general controlled to be approximately 0 to 7% in order to reduce solidification crack sensitivity or to make the configuration fine. However, as in the stainless steel of the present invention having a high content of Cr, delta ferrite in the solidified configuration changes into an intermetallic compound during the hot-rolling production process and it remains in the steel material as a by-product, thereby deteriorating toughness. For this reason, the upper limit of the δ cal is restricted to +4 so that delta ferrite will decrease. If the δ cal exceeds this value, then it becomes impossible to acquire high toughness even if elaborating a plan in the hot-rolling production process. On the other hand, if the δ cal is shifted to a smaller (minus) side, then it means that the delta ferrite content becomes substantially 0%, and as a result the above effect will be saturated, in addition, the content of Ni becomes excessive, and hence the lower limit of the δ cal is determined to be −6 from the viewpoint of cost. The δ cal value preferably ranges from −3 to +3. Note, the value of W or the value of Cu in formula (2) is set to 0 in the present invention which does not contain W or Cu.
  • The content of intermetallic compounds contained in the steel material is an important factor which determines the toughness of the austenitic stainless steel material in the present invention. An intermetallic compound is a compound which contains Cr, Mo, or W as a main ingredient and is called σ phase and ψ phase. The content of this compound can be measured by subjecting a micro configuration to an alkaline electrolytic etching and then observing the resultant micro configuration through an optical microscope of approximately 400× power. The inventors of the present invention have found that if this content as an average value of a stainless steel cross sectional observation exceeds 0.5%, then the Charpy absorbed energy of the steel material becomes less than 100 J/cm2, and as a result, they determined the upper limit of the content to be 0.5%.
  • The reason for restriction of the ninth aspect of the present invention will be explained.
  • Cu is an element which increases the corrosion resistance of stainless steel additionally against an acid, and the content of Cu may be not less than 0.1% for this purpose. Even if the content Cu exceeds 2.0%, the effect corresponding to cost will be saturated, and hence the upper limit of the content of Cu is set to be 2.0%.
  • Ti is an element which forms an oxide, a nitride, and sulfide with a very small amount thereof, thereby refining the crystal grain of the steel, and hence Ti is an element which may be positively utilized in the steel of the present invention. In order to reduce the intermetallic compound content in the steel material, it is effective to restrict the upper limit of the δ cal value and to perform homogenizing heat treatment of the semi-finished products. Among these, in the latter method, although a heat treatment is performed for several hours at a high temperature of approximately 1250° C., if Ti of a proper amount is contained, then the growth of the crystal grain at such a high temperature can be suppressed. For this purpose, Ti in an amount of not less than 0.003% needs to be contained. On the other hand, Ti is an element which has a very high nitride producing ability, and if the content of Ti exceeds 0.03% in the steel of the present invention which contains N, then coarse TiN will deteriorate the toughness of the steel. For this reason, the content of Ti is determined to be within the range of 0.003 to 0.03%. The content of Ti preferably ranges from 0.005 to 0.02%.
  • Nb forms carbide to fix C, so that generation of Cr carbide is suppressed, thereby increasing corrosion resistance and toughness. Moreover, Nb forms nitride to suppress growth of crystal grain, thereby converting the steel material into fine particles to increase strength. In order to improve corrosion resistance and to increase strength, not less than 0.02% of Nb can be added. However, if more than 0.2% of Nb is added, then a large amount of carbo-nitride of Nb will be deposited during the hot-rolling processing to deteriorate hot-rolling recrystallization, thereby maintaining a coarse configuration in the steel material as a product, and hence the upper limit of the content of Nb is determined to be 2%. The content of Nb preferably ranges from 0.05 to 0.15%.
  • V is an element which generates a carbo-nitride as well as Nb, and can be added in order to secure corrosion resistance and toughness. Although not less than 0.05% of V should be contained for this purpose, if more than 0.5% of V is contained, then coarse V series carbo-nitride will be generated, so that toughness will deteriorate conversely. Therefore, the upper limit of the content of V is restricted to 0.5%. Preferably, the content of V ranges from 0.1 to 0.3%.
  • W is an element which raises the corrosion resistance of stainless steel additionally as well as Mo, and 0.3 to 3.0% of W can be contained in the stainless steel of the present invention for this purpose.
  • Furthermore, each of B, Ca, Mg, and REM(s) is an element which improves the hot-rolling processability, and one or more of these is added for this purpose. If any of these is added in excess, then it deteriorates the hot-rolling processability, and hence the upper limit and the lower limit of content thereof are determined as follows. The content of B ranges from 0.0003 to 0.0060%, each of the content of Ca and Mg ranges from 0.0005 to 0.0050%, and the content of REM ranges from 0.005 to 0.10%. Here, REM is defined to be the total of the content of lanthanide series rare-earth elements such as La, Ce, etc.
  • The reason for restriction of the tenth aspect of the present invention will be explained.
  • In order to raise the toughness of steel materials in the present invention, the amount of intermetallic compound which is contained in the steel material is restricted to be not more than 0.5%. To achieve this, a chemical composition formula known as δ cal, which forecasts delta ferrite amount contained in a solidification structure configuration, and homogenizing heat treatment which is performed on a semi-finished product specified in this claim are exemplary. When there is no solidifying segregation in the target steel material of the present invention, the temperature at which an intermetallic compound is generated is approximately not higher than 1000° C. However, reduction of the content of an intermetallic compound in the semi-finished product accompanied by component segregation by solidification necessitates a production step for diffusing segregation so as to be homogenized. Although each of the temperature and the time for performing homogenizing heat treatment changes slightly, depending on chemical composition such as solidifying rate, cross-sectional area of a cast steel, degree of hot-rolling processing upon being shaped into a semi-finished product, δ cal, etc., each of the temperature and the time for performing homogenizing heat treatment is limited by diffusion of Cr, Mo, Ni, etc., and hence it necessitates a temperature of not lower than 1200° C. On the other hand, if the temperature exceeds 1300° C., then oxidized scales will be generated extraordinarily.
  • Moreover, although it is preferred that the time be as long as possible, at least 1 hour is needed. Moreover, this purpose can also be attained by performing soaking at 1200° C. for not less than 1 hour in heating of the semi-finished product for rolling the product. Because of the above reason, homogenizing heat treatment of not less than 1 hour at 1200-1300° C. is specified. In view of effect and economical efficiency, the soaking time preferably ranges from 2 to 20 hours.
  • EXAMPLE 2
  • Example 2 will be explained below. The chemical composition of a sample steel is shown in Table 5. Note, the content of inevitable impurity elements other than the components indicated in Table 5 is the same grade as in standard stainless steel. Moreover, the portion which shows no content of the components shown in Table 5 indicates the same grade as in impurities. In addition, REM in Table 5 means lanthanide series rare-earth elements, and the content thereof indicates the total content of each of those elements.
  • Each of these steels was melted in a 50 kg vacuum induction furnace of a laboratory, and each of them was cast into a flat steel ingot having a thickness of approximately 100 mm.
    TABLE 5
    CONTENT (mass %)
    STEEL No. KIND C Si Mn P S Ni Cr Mo Cu Nb Ti
     0 EXAMPLE7 0.019 0.51 0.45 0.023 0.0005 18.03 25.01 2.48
     1 EXAMPLE8 0.021 0.49 0.48 0.020 0.0007 17.91 25.24 2.50 0.15
     2 EXAMPLE8 0.018 0.52 0.52 0.014 0.0012 17.98 25.02 2.46 0.008
     3 EXAMPLE9 0.022 0.49 0.52 0.022 0.0008 18.43 24.88 2.46 0.29 0.096
     4 EXAMPLE9 0.021 0.48 0.52 0.022 0.0007 17.38 25.36 2.53 0.30 0.034 0.006
     5 EXAMPLE9 0.022 0.46 0.52 0.021 0.0008 20.21 24.96 2.46 0.31 0.103 0.015
     6 EXAMPLE9 0.022 0.48 0.49 0.022 0.0003 19.23 24.32 3.33 0.28
     7 EXAMPLE9 0.021 0.47 0.52 0.022 0.0007 18.33 24.66 2.48 0.32 0.005
     8 EXAMPLE9 0.019 0.45 0.53 0.023 0.0008 18.23 24.65 2.46 0.32 0.003
     9 EXAMPLE9 0.021 0.48 0.51 0.023 0.0008 18.52 24.03 2.46 0.32 0.006
    10 EXAMPLE9 0.019 0.49 0.49 0.022 0.0004 20.42 27.31 1.68 0.31 0.042 0.006
    11 EXAMPLE9 0.024 0.49 0.49 0.021 0.0003 19.53 25.61 2.11 1.82 0.012
    12 EXAMPLE9 0.019 0.49 0.85 0.019 0.0013 18.89 25.29 2.52 0.32 0.076 0.004
    13 EXAMPLE9 0.021 0.50 0.84 0.019 0.0005 16.77 24.66 2.10 0.85 0.006
    14 EXAMPLE9 0.021 0.26 1.85 0.022 0.0009 19.53 24.33 3.*45 0.31 0.152 0.022
    15 EXAMPLE9 0.018 0.56 0.53 0.021 0.0006 16.95 22.21 3.39 1.66 0.007
    21 COMPARATIVE 0.021 0.48 0.53 0.023 0.0008 18.23 24.89 2.46 0.32 0.046
    STEEL
    EXAMPLE
    22 COMPARATIVE 0.022 0.47 0.54 0.024 0.0007 18.33 25.00 2.45 0.35 0.284
    STEEL
    EXAMPLE
    23 COMPARATIVE 0.023 0.46 0.55 0.023 0.0008 18.25 24.98 2.48 0.32
    STEEL
    EXAMPLE
    24 COMPARATIVE 0.024 0.45 0.52 0.024 0.0006 18.22 24.94 2.47 0.31
    STEEL
    EXAMPLE
    25 COMPARATIVE 0.022 0.47 0.53 0.025 0.0008 18.21 24.96 2.46 0.33
    STEEL
    EXAMPLE
    26 COMPARATIVE 0.021 0.48 0.51 0.024 0.0007 17.01 25.11 2.88 0.31
    STEEL
    EXAMPLE
    27 COMPARATIVE 0.022 0.49 0.52 0.023 0.0008 21.40 24.95 2.47 0.33
    STEEL
    EXAMPLE
    CONTENT (mass %)
    STEEL No. KIND V W Al B Ca Mg REM O N δ cal PI
     0 EXAMPLE7 0.023 0.0027 0.275 −1.1 37.6
     1 EXAMPLE8 0.020 0.0046 0.235  1.7 37.3
     2 EXAMPLE8 0.018 0.0041 0.266 −0.5 37.4
     3 EXAMPLE9 0.06 0.032 0.0023 0.0018 0.240 −1.3 36.8
     4 EXAMPLE9 0.026 0.0022 0.0023 0.238   3.2 37.5
     5 EXAMPLE9 0.028 0.0025 0.0025 0.242 −5.8 37.0
     6 EXAMPLE9 0.15 0.034 0.0035 0.0019 0.257 −3.3 39.4
     7 EXAMPLE9 0.35 0.022 0.0025 0.0026 0.235 −0.8 37.2
     8 EXAMPLE9 1.05 0.023 0.0008 0.0033 0.0035 0.247 −0.1 38.5
     9 EXAMPLE9 2.10 0.024 0.0024 0.0029 0.241 −0.9 39.5
    10 EXAMPLE9 0.011 0.0023 0.0023 0.0036 0.245 −1.6 36.8
    11 EXAMPLE9 0.28 0.023 0.0020 0.0025 0.173 −0.7 35.3
    12 EXAMPLE9 0.020 0.0008 0.050 0.0040 0.235 −0.9 37.4
    13 EXAMPLE9 0.07 0.018 0.0042 0.0020 0.315 −3.1 36.6
    14 EXAMPLE9 0.020 0.0019 0.0008 0.0032 0.184 −1.1 38.7
    15 EXAMPLE9 0.12 0.024 0.0030 0.0032 0.188 −0.2 36.4
    21 COMPARATIVE 0.026 0.0025 0.0032 0.241 −0.7 36.9
    STEEL
    EXAMPLE
    22 COMPARATIVE 0.026 0.0026 0.0033 0.242 −0.9 37.0
    STEEL
    EXAMPLE
    23 COMPARATIVE 0.88 0.024 0.0025 0.0031 0.239 −0.6 37.0
    STEEL
    EXAMPLE
    24 COMPARATIVE 0.140 0.0024 0.0032 0.240 −0.8 36.9
    STEEL
    EXAMPLE
    25 COMPARATIVE 0.002 0.0036 0.0081 0.242 −0.6 37.0
    STEEL
    EXAMPLE
    26 COMPARATIVE 0.023 0.0022 0.0029 0.237 4.5 38.4
    STEEL
    EXAMPLE
    27 COMPARATIVE 0.026 0.0023 0.0030 0.240 −8.8 36.9
    STEEL
    EXAMPLE

       : VALUE WITHOUT THE RANGE OF THE PRESENT INVENTION
  • The sample steel was subjected to cogging, homogenizing heat treatment, and product rolling. In the cogging, the sample steel was soaked at 1180° C. for two hours, and thereafter the sample steel was rolled to 65 mm thickness. Then the resultant steel chips were subjected to homogenizing heat treatment at a temperature ranging from 1220 to 1280° C. Some of the steel chips were not subjected to the homogenizing heat treatment. Each piece of steel was ground to 60 mm to obtain the material for use in product rolling. In the product rolling, the sample was soaked at 1220° C. for 1 to 2 hours, and thereafter was rolled under the condition of a finishing temperature of 850 to 950° C. to obtain a steel sheet having a thickness of 12 mm. It should be noted that the steel material immediately after being hot-rolled which was in a temperature state of not less than 800° C. was cooled to a temperature of not higher than 300° C. by performing spray cooling. The final solution heat treatment was performed under a condition of cooling with water after performing soaking at 1100° C. for 20 min. Moreover, some steel sheets were not subjected to the solution heat treatment.
  • The steel plate produced under the above condition was cut into JIS. No.4 tension test pieces and JIS. No.4 V notch Charpy test pieces from a direction perpendicular to the direction of rolling processing. Using the resultant test pieces, 0.2% offset proof stress and impact strength at −40° C. were measured. Moreover, test pieces for micro configuration observation were cut out, and each of the resultant test pieces was planished and thereafter was subjected to 10% KOH electrolytic etching to reveal the intermetallic compound therefrom so as to be observed by an optical microscope, thereby measuring the content. The content was measured by performing point counting in each of ten fields of view with 400× magnification at a depth of each of ¼, ½, and ¾ of thickness, and then calculating all the average values, and the resultant value was determined as the content of the intermetallic compound of the steel material. The obtained results are shown in Table 6.
    TABLE 6
    ROLLING
    INTERMETALLIC HOMOGENIZING FINISHING SOLUTION EAR
    STEEL COMPOUND HEAT TEMPERATURE HEAT YS TS vE−40° C. CRACK
    NO. KIND CONTENT (%) TREATMENT (° C.) TREATMENT (MPa) (MPa) (J/cm2) (mm)
    0 EXAMPLE 0.02 1250° C. × 4 h 950 DONE 392 782 540 6
    0 EXAMPLE 0.05 1250° C. × 4 h 850 DONE 396 793 491 9
    0 EXAMPLE 0.17 1250° C. × 4 h 950 UNDONE 747 965 195 6
    0 COMPARATIVE 0.75 UNDONE 850 UNDONE 892 1054 68 12
    EXAMPLE
    1 EXAMPLE 0.05 1250° C. × 4 h 950 DONE 340 751 503 5
    1 EXAMPLE 0.10 1250° C. × 4 h 850 DONE 344 762 452 8
    1 EXAMPLE 0.20 1250° C. × 4 h 950 UNDONE 722 943 183 5
    1 COMPARATIVE 1.2 UNDONE 850 UNDONE 841 1020 35 10
    EXAMPLE
    2 EXAMPLE 0.03 1250° C. × 4 h 950 DONE 352 766 542 5
    2 EXAMPLE 0.06 1250° C. × 4 h 850 DONE 357 771 482 7
    2 EXAMPLE 0.18 1250° C. × 4 h 950 UNDONE 736 954 163 5
    2 COMPARATIVE 0.8 UNDONE 850 UNDONE 882 1065 62 10
    EXAMPLE
    3 EXAMPLE 0.02 1250° C. × 4 h 950 DONE 388 779 558 0
    3 EXAMPLE 0.05 1250° C. × 4 h 850 DONE 394 782 509 0
    3 EXAMPLE 0.15 1250° C. × 4 h 950 UNDONE 732 947 214 0
    3 COMPARATIVE 0.7 UNDONE 850 UNDONE 865 1033 70 0
    EXAMPLE
    3 COMPARATIVE 0.55 UNDONE 900 UNDONE 812 982 93 0
    EXAMPLE
    3 EXAMPLE 0.42 UNDONE 950 UNDONE 742 949 116 0
    4 EXAMPLE 0.45 1220° C. × 1 h 950 UNDONE 356 768 105 0
    4 EXAMPLE 0.36 1250° C. × 2 h 950 UNDONE 356 766 114 0
    4 EXAMPLE 0.23 1250° C. × 4 h 950 UNDONE 358 765 135 0
    4 EXAMPLE 0.15 1250° C. × 20 h 950 UNDONE 352 764 167 0
    4 EXAMPLE 0.22 1280° C. × 2 h 950 UNDONE 347 762 133 0
    5 EXAMPLE 0.02 1250° C. × 4 h 850 DONE 393 785 564 0
    5 EXAMPLE 0.08 1250° C. × 4 h 950 UNDONE 745 960 265 0
    6 EXAMPLE 0.05 1250° C. × 4 h 850 DONE 352 753 508 0
    6 EXAMPLE 0.12 1250° C. × 4 h 950 UNDONE 748 962 213 0
    7 EXAMPLE 0.04 1250° C. × 4 h 850 DONE 348 753 526 0
    7 EXAMPLE 0.16 1250° C. × 4 h 950 UNDONE 738 958 216 0
    8 EXAMPLE 0.06 1250° C. × 4 h 850 DONE 362 772 492 0
    8 EXAMPLE 0.19 1250° C. × 4 h 950 UNDONE 771 982 165 0
    9 EXAMPLE 0.08 1250° C. × 4 h 850 DONE 388 795 421 0
    9 EXAMPLE 0.32 1250° C. × 4 h 950 UNDONE 788 994 132 0
    10 EXAMPLE 0.03 1250° C. × 4 h 850 DONE 352 765 502 0
    10 EXAMPLE 0.10 1250° C. × 4 h 950 UNDONE 740 936 165 0
    11 EXAMPLE 0.05 1250° C. × 4 h 850 DONE 324 711 513 0
    11 EXAMPLE 0.17 1250° C. × 4 h 950 UNDONE 735 925 164 0
    12 EXAMPLE 0.05 1250° C. × 4 h 850 DONE 362 776 501 0
    12 EXAMPLE 0.18 1250° C. × 4 h 950 UNDONE 762 975 168 0
    13 EXAMPLE 0.05 1250° C. × 4 h 850 DONE 375 783 523 0
    13 EXAMPLE 0.17 1250° C. × 4 h 950 UNDONE 775 983 185 0
    14 EXAMPLE 0.11 1250° C. × 4 h 850 DONE 342 741 481 0
    14 EXAMPLE 0.32 1250° C. × 4 h 950 UNDONE 726 932 135 0
    15 EXAMPLE 0.09 1250° C. × 4 h 850 DONE 348 738 475 0
    15 EXAMPLE 0.28 1250° C. × 4 h 950 UNDONE 749 974 140 0
    21 COMPARATIVE 0.25 1250° C. × 4 h 950 UNDONE 721 926 85 0
    EXAMPLE
    22 COMPARATIVE 0.26 1250° C. × 4 h 950 UNDONE 765 904 76 0
    EXAMPLE
    23 COMPARATIVE 0.24 1250° C. × 4 h 950 UNDONE 754 967 83 0
    EXAMPLE
    24 COMPARATIVE 0.28 1250° C. × 4 h 950 UNDONE 735 954 92 0
    EXAMPLE
    25 COMPARATIVE 0.26 1250° C. × 4 h 950 UNDONE 713 941 78 0
    EXAMPLE
    26 COMPARATIVE 0.94 1250° C. × 4 h 950 UNDONE 735 943 45 0
    EXAMPLE
    27 COMPARATIVE 0.06 1250° C. × 4 h 950 UNDONE 742 926 198 0
    EXAMPLE

       : VALUE WITHOUT THE RANGE OF THE PRESENT INVENTION
  • The hot-rolling processability was evaluated relatively by judging the generation of an ear crack during the product rolling. It was confirmed that the steel material corresponding to Example 9 (steel Nos. 3 to 15) developed no ear cracks and exhibited excellent hot-rolling processability, On the other hand, it was confirmed that each of the steel materials corresponding to each Example other than Examples 1 and 2 developed ear cracks of approximately 5 to 12 mm per one side, so that the yield was decreased slightly. The lengths of ear cracks are shown in Table 6. That is, although there is a slight problem in the hot-rolling processability of steel Nos. 0 to 2, in the thick steel which was produced to have the content of an intermetallic compound of not more than 0.5%, each Charpy impact value at −40° C. exceeds 100 J/cm2. As to the steel Nos. 3 to 15, which are those in which Al, B, Ca, Mg, REM are contained in order to improve hot-rolling processability, no ear cracks occurred. Moreover, in Examples of the present invention produced so as to have the content of an intermetallic compound of not more than 0.5%, each Charpy impact value at −40° C. exceeds 100 J/cm2.
  • Next, in each of the comparative examples of steel Nos. 21 to 27, the content of Ti is less than 0.03%, the content of Nb is more than 0.2%, the content of V is more than 0.5%, the content of Al is more than 0. 1%, the content of O is more than 0.007%, the content of δFe is more than 3%, and the content of Ni is more than 21% (δFe<−6%), i.e. each is out of the scope of the present invention, and the comparative examples other than No. 27 have poor impact property. Although the comparative example of steel No.27 excels in impact property, it has a high content of Ni and hence deviates from the purpose of the present invention.
  • As is clear from the results shown in Tables 5 and 6, each of the steel materials which satisfy the steel composition and intermetallic compound content within the scope of the present invention has a PI value, which is an index of corrosion resistance, of not less than 35, and exhibits high strength and a Charpy impact value of not less than 100 J/cm2.
  • As can be seen from the above examples, it is clarified that the steel material of the present invention is an austenitic stainless steel material which excels in corrosion resistance, toughness, and hot-rolling processability.
  • As mentioned above, although preferred embodiments of the present invention are explained, the present invention is not limited thereto. Additions, abbreviations, substitutions, and other changes are possible, as long as do not deviate from the spirit of the present invention. The scope of the present invention is not limited by the above explanation and is limited by only the scope of attached claims.
  • The present invention realizes an austenitic stainless steel suitable for the hull structures of ships, having excellent performance required for structural members of high-speed ships, such as sea water resistance, proof stress, and low-temperature toughness at a high level, and hence the contributions of the present invention to industry are significant.

Claims (17)

1-10. (canceled)
11. An austenitic stainless hot-rolled steel material having a superior corrosion resistance, a proof stress, and a low-temperature toughness, comprising,
C: about 0.001 to 0.03 mass %,
Si: about 0.1 to 1.5 mass %,
Mn: about 0.1 to 3.0 mass %,
P: about 0.005 to 0.05 mass %,
S: about 0.0001 to 0.003 mass %,
Ni: about 15.0 to 21.0 mass %;
Cr: about 22.0 to 28.0 mass %,
Mo: about 1.5 to 3.5 mass %,
N: about 0.15 to 0.35 mass %, and
O: about 0.0005 to 0.007 mass %,
wherein:
a Pi value expressed by the following formula ranges from about 35 to 40:

PI=Cr+3.3(Mo+0.5W)+16N, and
a δ cal value expressed by the following formula ranges from about −6 to +2:

δcal=2.9(Cr+0.3Si+Mo+0.5W)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18
a remnant of the steel material comprising Fe and inevitable impurities,
a content of intermetallic compounds contained in the steel material is at most about 0.5 mass %,
about 0.2% proof stress at a room temperature is at least about 550MPa,
a Charpy impact value measured using a V-notch test piece at about −40° C. is at least about 100 J/cm2, and
a pitting potential measured in a deaerated aqueous solution of about 10% NaCl at about 50° C. (Vc′100) is at least about 500 mV as compared to a saturated solution of Ag/AgCl.
12. The steel material according to claim 11, further comprising at least one of:
W: about 0.3 to 3.0 mass %, or
Al: about 0.005 to 0.1 mass %.
13. The steel material according to claim 11, further comprising at least one of:
W: about 0.3 to 3.0 mass %,
Al: about 0.005 to 0.1 mass %,
Cu: about 0.3 to 2.0 mass %, or
Sn: at most about 0.1 mass %.
14. The steel material according to claim 11, further comprising at least one of:
W: about 0.3 to 3.0 mass %,
Al: about 0.005 to 0.1 mass %,
Cu: about 0.3 to 2.0 mass %,
Sn: about at most about 0.1 mass %,
Ca: about 0.0005 to 0.0050 mass %,
Mg: about 0.0005 to 0.0050 mass %, or
REM: about 0.005 to 0.10 mass %.
15. The steel material according to claim 11, further comprising at least one of:
W: about 0.3 to 3.0 mass %,
Al: about 0.005 to 0.1 mass %,
Cu: about 0.3 to 2.0 mass %,
Sn: about at most about 0.1 mass %,
Ca: about 0.0005 to 0.0050 mass %,
Mg: about 0.0005 to 0.0050 mass %,
REM: about 0.005 to 0.10 mass %, or
B: about 0.0003 to 0.0060 mass %.
16. The steel material according to claim 11, further comprising at least one of:
W: about 0.3 to 3.0 mass %,
Al: about 0.005 to 0.1 mass %,
Cu: about 0.3 to 2.0 mass %,
Sn: at most about 0.1 mass %,
Ca: about 0.0005 to 0.0050 mass %,
Mg: about 0.0005 to 0.0050 mass %,
REM: about 0.005 to 0.10 mass %,
B: about 0.0003 to 0.0060 mass %,
Ti: about 0.003 to 0.03 mass %,
Nb: about 0.02 to 0.20 mass %,
Zr: about 0.003 to 0.03 mass %,
V: about 0.05 to 0.5 mass %, or
Ta: about 0.01 to 0.1 mass %.
17. A process for producing an austenitic stainless hot-rolled steel material having a superior corrosion resistance, a proof stress, and a low-temperature toughness, wherein a content of intermetallic compounds contained in the steel material is at most about 0.5 mass %, about 0.2% proof stress at a room temperature is at least about 550 MPa, a Charpy impact value measured using a V-notch test piece at about −40° C. is at least about 100 J/cm2, and a pitting potential measured in a deaerated aqueous solution of about 10% NaCl at about 50° C. (Vc′100) is at least about 500 mV as compared to a saturated solution of Ag/AgCl, the process comprising:
performing, at a temperature of about 1200 to 1300° C. for at least about one hour, a homogenizing-heat treatment on a particular material which is at least one of a cast steel or a semi-finished product of the steel material which comprises:
C: about 0.001 to 0.03 mass %,
Si: about 0.1 to 1.5 mass %,
Mn: about 0.1 to 3.0 mass %,
P: about 0.005 to 0.05 mass %,
S: about 0.0001 to 0.003 mass %,
Ni: about 15.0 to 21.0 mass %;
Cr: about 22.0 to 28.0 mass %,
Mo: about 1.5 to 3.5 mass %,
N: about 0.15 to 0.35 mass %, and
O: about 0.0005 to 0.007 mass %,
wherein a PI value expressed by the following formula ranges from about 35 to 40: PI=Cr+3.3(Mo+0.5W)+16N, and
a δ cal value expressed by the following formula ranges from about −6 to +2:

δcal=2.9(Cr+0.3Si+Mo+0.5W)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18
a remnant of the steel material comprising Fe and inevitable impurities,
reheating the particular treated material at a temperature of about 1100 to 1300° C.;
while rolling the particular reheated material, maintaining a temperature of at least about 850° C., and by a first draft of at least about 50% at a temperature of at least about 1050° C. and a second draft of at least about 10% at a temperature of about 1050 to 850° C.; and
cooling the rolled particular material at an average cooling rate of about 800 to 500° C. after the rolling procedure is performed for at least about 150° C./min, without a solution treatment.
18. An austenitic stainless hot-rolled steel material having a superior corrosion resistance and a low-temperature toughness, comprising,
C: at most about 0.03 mass %,
Si: about 0.1 to 1.5 mass %,
Mn: about 0.1 to 3.0 mass %,
P: at most about 0.05 mass %,
S: at most about 0.003 mass %,
Ni: about 15.0 to 21.0 mass %,
Cr: about 22.0 to 28.0 mass %,
Mo: about 1.5 to 3.5 mass %,
N: about 0.15 to 0.35 mass %,
Al: about 0.005 to 0.1 mass %, and
O: at most about 0.007 mass %,
wherein
a PI value expressed by the following formula ranges from about 35 to 40:

PI=Cr+3.3(Mo+0.5W)+16N, and
a δ cal value expressed by the following formula ranges from about −6 to +4:

δcal=2.9(Cr+0.3Si+Mo+0.5W)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18
a remnant of the steel material comprising of Fe and substantially inevitable impurities, and a content of intermetallic compounds contained in the steel material is at most about 0.5 mass %, and
a value by each element represents the content of the element expressed in terms of mass %.
19. The steel material according to claim 18, further comprising at least one of:
Cu: about 0.1 to 2.0 mass %,
Ti: about 0.003 to 0.03 mass %,
Nb: about 0.02 to 0.20 mass %,
V: about 0.05 to 0.5 mass %,
W: about 0.3 to 3.0 mass %,
B: about 0.0003 to 0.0060 mass %,
Ca: about 0.0005 to 0.0050 mass %,
Mg: about 0.0005 to 0.0050 mass %, or
REM: about 0.005 to 0.10.
20. A process for producing an austenitic stainless hot-rolled steel material having a superior corrosion resistance and a low-temperature toughness, wherein a content of intermetallic compounds contained in the steel material is at most about 0.5 mass %, the process comprising:
performing, at a temperature of about 1200 to 1300° C. for at least about one hour, a homogenizing-heat treatment on a particular material which is at least one of a cast steel or a semi-finished product of the steel material which comprises:
C: at most about 0.03 mass %,
Si: about 0.1 to 1.5 mass %,
Mn: about 0.1 to 3.0 mass %,
P: at most about 0.05 mass %,
S: at most about 0.003 mass %,
Ni: about 15.0 to 21.0 mass %,
Cr: about 22.0 to 28.0 mass %,
Mo: about 1.5 to 3.5 mass %,
N: about 0.15 to 0.35 mass %,
Al: about 0.005 to 0.1 mass %, and
O: at most about 0.007 mass %,
wherein
a PI value expressed by the following formula ranges from about 35 to 40:

PI=Cr+3.3(Mo+0.5W)+16N, and
a δ cal value expressed by the following formula ranges from about −6 to +4:

δcal=2.9(Cr+0.3Si+Mo+0.5W)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18
a remnant of the steel material comprising of Fe and substantially inevitable impurities,
a value by each element represents the content of the element expressed in terms of mass %, and
the heat treatment is performed so as to reduce the content of the intermetallic compound in the steel material.
21. A process for producing an austenitic stainless hot-rolled steel material having a superior corrosion resistance, a proof stress, and a low-temperature toughness, wherein a content of intermetallic compounds contained in the steel material is at most about 0.5 mass %, about 0.2% proof stress at a room temperature is at least about 550 MPa, a Charpy impact value measured using a V-notch test piece at about −40° C. is at least about 100 J/cm2, and a pitting potential measured in a deaerated aqueous solution of about 10% NaCl at about 50° C. (Vc′100) is at least about 500 mV as compared to a saturated solution of Ag/AgCl, the process comprising:
performing, at a temperature of about 1200 to 1300° C. for at least about one hour, a homogenizing-heat treatment on a particular material which is at least one of a cast steel or a semi-finished product of the steel material which comprises:
C: about 0.001 to 0.03 mass %,
Si: about 0.1 to 1.5 mass %,
Mn: about 0.1 to 3.0 mass %,
P: about 0.005 to 0.05 mass %,
S: about 0.0001 to 0.003 mass %,
Ni: about 15.0 to 21.0 mass %;
Cr: about 22.0 to 28.0 mass %,
Mo: about 1.5 to 3.5 mass %,
N: about 0.15 to 0.35 mass %,
O: about 0.0005 to 0.007 mass %, and
at least one of:
W: about 0.3 to 3.0 mass %, or
Al: about 0.005 to 0.1 mass %.
wherein a PI value expressed by the following formula ranges from about 35 to 40: PI=Cr+3.3(Mo+0.5W)+16N,
a δ cal value expressed by the following formula ranges from about −6 to +2:

δcal=2.9(Cr+0.3Si+Mo+0.5W)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18, and
a remnant of the steel material comprising Fe and inevitable impurities;
reheating the particular treated material at a temperature of about 1100 to 1300° C.;
while rolling the particular reheated material at a temperature of at least about 850° C., and by a first draft of at least about 1050% at a temperature of at least about 1 050° C. and a second draft of at least about 10% at a temperature of about 1050 to 850° C.; and
cooling the rolled particular material at an average cooling rate of about 800 to 500° C. after the rolling procedure is performed for at least about 150° C./min, without a solution treatment.
22. A process for producing an austenitic stainless hot-rolled steel material having a superior corrosion resistance, a proof stress, and a low-temperature toughness, wherein a content of intermetallic compounds contained in the steel material is at most about 0.5 mass %, about 0.2% proof stress at a room temperature is at least about 550 MPa, a Charpy impact value measured using a V-notch test piece at about −40° C. is at least about 100 J/cm2, and a pitting potential measured in a deaerated aqueous solution of about 10% NaCl at about 50° C. (Vc′100) is at least about 500 mV as compared to a saturated solution of Ag/AgCl, the process comprising:
performing, at a temperature of about 1200 to 1300° C. for at least about one hour, a homogenizing-heat treatment on a particular material which is at least one of a cast steel or a semi-finished product of the steel material which comprises:
C: about 0.001 to 0.03 mass %,
Si: about 0.1 to 1.5 mass %,
Mn: about 0.1 to 3.0 mass %,
P: about 0.005 to 0.05 mass %,
S: about 0.0001 to 0.003 mass %,
Ni: about 15.0 to 21.0 mass %;
Cr: about 22.0 to 28.0 mass %,
Mo: about 1.5 to 3.5 mass %,
N: about 0.15 to 0.35 mass %,
O: about 0.0005 to 0.007 mass %, and
at least one of:
W: about 0.3 to 3.0 mass %,
Al: about 0.005 to 0.1 mass %,
Cu: about 0.3 to 2.0 mass %, or
Sn: at most about 0.1 mass %,
wherein a PI value expressed by the following formula ranges from about 35 to 40: PI=Cr+3.3(Mo+0.5W)+16N,
a δ cal value expressed by the following formula ranges from about −6 to +2:

δcal=2.9(Cr+0.3Si+Mo+0.5W)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18, and
a remnant of the steel material comprising Fe and inevitable impurities,
reheating the particular treated material at a temperature of about 1100 to 1300° C.;
while rolling the particular reheated material maintaining a temperature of at least about 850° C., and by a first draft of at least about 50% at a temperature of at least about 1050° C. and a second draft of at least about 10% at a temperature of about 1050 to 850° C.; and
cooling the rolled particular material at an average cooling rate of about 800 to 500° C. after the rolling procedure is performed for at least about 150° C./min, without a solution treatment.
23. A process for producing an austenitic stainless hot-rolled steel material having a superior corrosion resistance, a proof stress, and a low-temperature toughness, wherein a content of intermetallic compounds contained in the steel material is at most about 0.5 mass %, about 0.2% proof stress at a room temperature is at least about 550 MPa, a Charpy impact value measured using a V-notch test piece at about −40° C. is at least about 100 J/cm2, and a pitting potential measured in a deaerated aqueous solution of about 10% NaCl at about 50° C. (Vc′100) is at least about 500 mV as compared to a saturated solution of Ag/AgCl, the process comprising:
performing, at a temperature of about 1200 to 1300° C. for at least about one hour, a homogenizing-heat treatment on a particular material which is at least one of a cast steel or a semi-finished product of the steel material which comprises:
C: about 0.001 to 0.03 mass %,
Si: about 0.1 to 1.5 mass %,
Mn: about 0.1 to 3.0 mass %,
P: about 0.005 to 0.05 mass %,
S: about 0.0001 to 0.003 mass %,
Ni: about 15.0 to 21.0 mass %;
Cr: about 22.0 to 28.0 mass %,
Mo: about 1.5 to 3.5 mass %,
N: about 0.15 to 0.35 mass %,
O: about 0.0005 to 0.007 mass %, and at least one of:
W: about 0.3 to 3.0 mass %,
Al: about 0.005 to 0.1 mass %,
Cu: about 0.3 to 2.0 mass %,
Sn: about at most about 0.1 mass %,
Ca: about 0.0005 to 0.0050 mass %,
Mg: about 0.0005 to 0.0050 mass %, or
REM: about 0.005 to 0.10 mass %,
wherein a PI value expressed by the following formula ranges from about 35 to 40: PI=Cr+3.3(Mo+0.5W)+16N,
a δ cal value expressed by the following formula ranges from about −6 to +2:

δcal=2.9(Cr+0.3Si+Mo+0.5W)−2.6 (Ni+0.3Mn+0.25Cu+35C+20N)−18, and
a remnant of the steel material comprising Fe and inevitable impurities, reheating the particular treated material at a temperature of about 1100 to 1300° C.;
while rolling the particular reheated material maintaining a temperature of at least about 850° C., and by a first draft of at least about 50% at a temperature of at least about 1050° C. and a second draft of at least about 10% at a temperature of about 1050 to 850° C.; and
cooling the rolled particular material at an average cooling rate of about 800 to 500° C. after the rolling procedure is performed for at least about 150° C./min, without a solution treatment.
24. A process for producing an austenitic stainless hot-rolled steel material having a superior corrosion resistance, a proof stress, and a low-temperature toughness, wherein a content of intermetallic compounds contained in the steel material is at most about 0.5 mass %, about 0.2% proof stress at a room temperature is at least about 550 MPa, a Charpy impact value measured using a V-notch test piece at about −40° C. is at least about 100 J/cm2, and a pitting potential measured in a deaerated aqueous solution of about 10% NaCl at about 50° C. (Vc′100) is at least about 500 mV as compared to a saturated solution of Ag/AgCl, the process comprising:
performing, at a temperature of about 1200 to 1300° C. for at least about one hour, a homogenizing-heat treatment on a particular material which is at least one of a cast steel or a semi-finished product of the steel material which comprises:
C: about 0.001 to 0.03 mass %,
Si: about 0.1 to 1.5 mass %,
Mn: about 0.1 to 3.0 mass %,
P: about 0.005 to 0.05 mass %,
S: about 0.0001 to 0.003 mass %,
Ni: about 15.0 to 21.0 mass %;
Cr: about 22.0 to 28.0 mass %,
Mo: about 1.5 to 3.5 mass %,
N: about 0.15 to 0.35 mass %, p2 O: about 0.0005 to 0.007 mass %, and at least one of:
W: about 0.3 to 3.0 mass %,
Al: about 0.005 to 0.1 mass %,
Cu: about 0.3 to 2.0 mass %,
Sn: at most about 0.1 mass %,
Ca: about 0.0005 to 0.0050 mass %,
Mg: about 0.0005 to 0.0050 mass %,
REM: about 0.005 to 0.10 mass %, or
B: about 0.0003 to 0.0060 mass %,
wherein a PI value expressed by the following formula ranges from about 35 to 40: PI=Cr+3.3(Mo+0.5W)+16N,
a δ cal value expressed by the following formula ranges from about −6 to +2:

δcal=2.9(Cr+0.3Si+Mo+0.5W)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18, and
a remnant of the steel material comprising Fe and inevitable impurities,
reheating the particular treated material at a temperature of about 1100 to 1300° C.;
while rolling the particular reheated material maintaining a temperature of at least about 850° C., and by a first draft of at least about 50% at a temperature of at least about 1050° C. and a second draft of at least about 10% at a temperature of about 1050 to 850° C.; and
cooling the rolled particular material at an average cooling rate of about 800 to 500° C. after the rolling procedure is performed for at least about 150° C./min, without a solution treatment.
25. A process for producing an austenitic stainless hot-rolled steel material having a superior corrosion resistance, a proof stress, and a low-temperature toughness, wherein a content of intermetallic compounds contained in the steel material is at most about 0.5 mass %, about 0.2% proof stress at a room temperature is at least about 550 MPa, a Charpy impact value measured using a V-notch test piece at about −40° C. is at least about 100 J/cm2, and a pitting potential measured in a deaerated aqueous solution of about 10% NaCl at about 50° C. (Vc′100) is at least about 500 mV as compared to a saturated solution of Ag/AgCl, the process comprising:
performing, at a temperature of about 1200 to 1300° C. for at least about one hour, a homogenizing-heat treatment on a particular material which is at least one of a cast steel or a semi-finished product of the steel material which comprises:
C: about 0.001 to 0.03 mass %,
Si: about 0.1 to 1.5 mass %,
Mn: about 0.1 to 3.0 mass %,
P: about 0.005 to 0.05 mass %,
S: about 0.0001 to 0.003 mass %,
Ni: about 15.0 to 21.0 mass %;
Cr: about 22.0 to 28.0 mass %,
Mo: about 1.5 to 3.5 mass %,
N: about 0.15 to 0.35 mass %,
O: about 0.0005 to 0.007 mass %, and
at least one of:
W: about 0.3 to 3.0 mass %,
Al: about 0.005 to 0.1 mass %,
Cu: about 0.3 to 2.0 mass %,
Sn: at most about 0.1 mass %,
Ca: about 0.0005 to 0.0050 mass %,
Mg: about 0.0005 to 0.0050 mass %,
REM: about 0.005 to 0.10 mass %,
B: about 0.0003 to 0.0060 mass %,
Ti: about 0.003 to 0.03 mass %,
Nb: about 0.02 to 0.20 mass %,
Zr: about 0.003 to 0.03 mass %,
V: about 0.05 to 0.5 mass %, or
Ta: about 0.01 to 0.1 mass %,
wherein a PI value expressed by the following formula ranges from about 35 to 40: PI=Cr+3.3(Mo+0.5W)+16N,
a δ cal value expressed by the following formula ranges from about −6 to +2:

δcal=2.9(Cr+0.3Si+Mo+0.5W)−2.6(Ni+0.3Mn+0.25Cu+35C+20N)−18, and
a remnant of the steel material comprising Fe and inevitable impurities,
reheating the particular treated material at a temperature of about 1100 to 1300° C.;
while rolling the particular reheated material maintaining a temperature of at least about 850° C., and by a first draft of at least about 50% at a temperature of at least about 1050° C. and a second draft of at least about 10% at a temperature of about 1050 to 850° C.; and
cooling the rolled particular material at an average cooling rate of about 800 to 500° C. after the rolling procedure is performed for at least about 150° C./min, without a solution treatment.
26. A process for producing an austenitic stainless hot-rolled steel material having a superior corrosion resistance and a low-temperature toughness, wherein a content of intermetallic compounds contained in the steel material is at most about 0.5 mass %, the process comprising:
performing, at a temperature of about 1200 to 1300° C. for at least about one hour, a homogenizing-heat treatment on a particular material which is at least one of a cast steel or a semi-finished product of the steel material which comprises:
C: at most about 0.03 mass %,
Si: about 0.1 to 1.5 mass %,
Mn: about 0.1 to 3.0 mass %,
P: at most about 0.05 mass %,
S: at most about 0.003 mass %,
Ni: about 15.0 to 21.0 mass %,
Cr: about 22.0 to 28.0 mass %,
Mo: about 1.5 to 3.5 mass %,
N: about 0.15 to 0.35 mass %,
Al: about 0.005 to 0.1 mass %, and
O: at most about 0.007 mass %, and
at least one of:
Cu: about 0.1 to 2.0 mass %,
Ti: about 0.003 to 0.03 mass %,
Nb: about 0.02 to 0.20 mass %,
V: about 0.05 to 0.5 mass %,
W: about 0.3 to 3.0 mass %,
B: about 0.0003 to 0.0060 mass %,
Ca: about 0.0005 to 0.0050 mass %,
Mg: about 0.0005 to 0.0050 mass %, or
REM: about 0.005 to 0.10,
wherein
a PI value expressed by the following formula ranges from about 35 to 40:

PI=Cr+3.3(Mo+0.5W)+16N, and
a δ cal value expressed by the following formula ranges from about 6 to +4:

δcal=2.9(Cr+0.3Si+Mo+0.5W)−2.6(Ni +0.3Mn+0.25Cu+35C+20N)−18
a remnant of the steel material comprising of Fe and substantially inevitable impurities,
a value by each element represents the content of the element expressed in terms of mass %, and
the heat treatment is performed so as to reduce the content of the intermetallic compound in the steel material.
US11/343,516 2005-02-02 2006-01-30 Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof Abandoned US20060243356A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/391,045 US8105447B2 (en) 2005-02-02 2009-02-23 Austenitic stainless hot-rolled steel material with excellent corrosion resistance, proof stress, and low-temperature toughness
US13/349,866 US8506729B2 (en) 2005-02-02 2012-01-13 Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005026177 2005-02-02
JPP2005-026177 2005-02-02
JPP2005-026176 2005-02-02
JP2005026176A JP4494237B2 (en) 2005-02-02 2005-02-02 Austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, and method for producing the same
JP2006012569A JP4754362B2 (en) 2005-02-02 2006-01-20 Austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness, and method for producing the same
JPP2006-012569 2006-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/391,045 Continuation US8105447B2 (en) 2005-02-02 2009-02-23 Austenitic stainless hot-rolled steel material with excellent corrosion resistance, proof stress, and low-temperature toughness

Publications (1)

Publication Number Publication Date
US20060243356A1 true US20060243356A1 (en) 2006-11-02

Family

ID=37233273

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/343,516 Abandoned US20060243356A1 (en) 2005-02-02 2006-01-30 Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof
US12/391,045 Active 2026-11-05 US8105447B2 (en) 2005-02-02 2009-02-23 Austenitic stainless hot-rolled steel material with excellent corrosion resistance, proof stress, and low-temperature toughness
US13/349,866 Active US8506729B2 (en) 2005-02-02 2012-01-13 Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/391,045 Active 2026-11-05 US8105447B2 (en) 2005-02-02 2009-02-23 Austenitic stainless hot-rolled steel material with excellent corrosion resistance, proof stress, and low-temperature toughness
US13/349,866 Active US8506729B2 (en) 2005-02-02 2012-01-13 Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof

Country Status (1)

Country Link
US (3) US20060243356A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010206A3 (en) * 2009-07-22 2011-05-19 Arcelormittal Investigación Y Desarrollo Sl Heat-resistant austenitic steel having high resistance to stress relaxation cracking
EP2725113A1 (en) * 2011-06-24 2014-04-30 Nippon Steel & Sumitomo Metal Corporation Method for producing austenitic stainless steel and austenitic stainless steel material
WO2014133718A1 (en) * 2013-02-26 2014-09-04 Ati Properties, Inc. Methods for processing alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
EP2042616A4 (en) * 2006-07-13 2016-05-18 Nippon Steel & Sumikin Sst ROLLED AUSTENITE STAINLESS STEEL PLATE HAVING THICHKESS OF 100 mm OR MORE AND METHOD FOR PRODUCTION THEREOF
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
CN109219670A (en) * 2016-08-09 2019-01-15 杰富意钢铁株式会社 High-strength steel plate and its manufacturing method
EP3441496A4 (en) * 2016-04-06 2019-02-13 Nippon Steel & Sumitomo Metal Corporation Austenite stainless steel and production method therefor
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US10669601B2 (en) 2015-12-14 2020-06-02 Swagelok Company Highly alloyed stainless steel forgings made without solution anneal
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060243356A1 (en) * 2005-02-02 2006-11-02 Yuusuke Oikawa Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof
CN112609126A (en) * 2020-11-13 2021-04-06 宁波宝新不锈钢有限公司 Austenitic stainless steel for nuclear power equipment and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302247A (en) * 1979-01-23 1981-11-24 Kobe Steel, Ltd. High strength austenitic stainless steel having good corrosion resistance
US4341555A (en) * 1980-03-31 1982-07-27 Armco Inc. High strength austenitic stainless steel exhibiting freedom from embrittlement
US4675156A (en) * 1984-08-20 1987-06-23 Nippon Steel Corporation Structural austenitic stainless steel with superior proof stress and toughness at cryogenic temperatures
US6918968B2 (en) * 2003-04-25 2005-07-19 Sumitomo Metal Industries, Ltd. Austenitic stainless steel

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596359A (en) 1982-07-05 1984-01-13 Sanyo Tokushu Seikou Kk Austenite stainless steel for seamless steel pipe used in heat exchanger
JPS60208459A (en) 1984-03-30 1985-10-21 Aichi Steel Works Ltd High strength stainless steel and its manufacture
JPH0694057B2 (en) 1987-12-12 1994-11-24 新日本製鐵株式會社 Method for producing austenitic stainless steel with excellent seawater resistance
JPH0297649A (en) 1988-09-30 1990-04-10 Aichi Steel Works Ltd Austenitic stainless steel excellent in strength and toughness at very low temperature and its production
JPH0713252B2 (en) 1990-04-23 1995-02-15 新日本製鐵株式会社 Method for producing high strength austenitic stainless steel with excellent seawater resistance
JP2783895B2 (en) 1990-04-23 1998-08-06 新日本製鐵株式会社 Manufacturing method of high strength austenitic stainless steel with low welding softening
JP2783896B2 (en) 1990-04-23 1998-08-06 新日本製鐵株式会社 Method for producing high-strength austenitic stainless steel with excellent seawater resistance and low weld softening
JP2546549B2 (en) 1991-02-28 1996-10-23 新日本製鐵株式会社 Method for producing B-containing austenitic stainless steel
JPH05320756A (en) 1992-05-21 1993-12-03 Nippon Steel Corp Production of high strength austenitic stainless steel excellent in seawater corrosion rest stance
JP3358678B2 (en) 1994-03-23 2002-12-24 新日本製鐵株式会社 Austenitic stainless steel for building materials
US6576068B2 (en) * 2001-04-24 2003-06-10 Ati Properties, Inc. Method of producing stainless steels having improved corrosion resistance
JP4849731B2 (en) 2001-04-25 2012-01-11 日新製鋼株式会社 Mo-containing high Cr high Ni austenitic stainless steel sheet excellent in ductility and manufacturing method
JP3736631B2 (en) 2002-05-10 2006-01-18 新日鐵住金ステンレス株式会社 Chemical tank steel with excellent resistance to sulfuric acid corrosion and pitting corrosion
US20060243356A1 (en) * 2005-02-02 2006-11-02 Yuusuke Oikawa Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302247A (en) * 1979-01-23 1981-11-24 Kobe Steel, Ltd. High strength austenitic stainless steel having good corrosion resistance
US4341555A (en) * 1980-03-31 1982-07-27 Armco Inc. High strength austenitic stainless steel exhibiting freedom from embrittlement
US4675156A (en) * 1984-08-20 1987-06-23 Nippon Steel Corporation Structural austenitic stainless steel with superior proof stress and toughness at cryogenic temperatures
US6918968B2 (en) * 2003-04-25 2005-07-19 Sumitomo Metal Industries, Ltd. Austenitic stainless steel

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
EP2042616A4 (en) * 2006-07-13 2016-05-18 Nippon Steel & Sumikin Sst ROLLED AUSTENITE STAINLESS STEEL PLATE HAVING THICHKESS OF 100 mm OR MORE AND METHOD FOR PRODUCTION THEREOF
US11884997B2 (en) 2009-07-22 2024-01-30 Arcelormittal Hot rolled plate or forging of an austenitic steel
RU2528606C2 (en) * 2009-07-22 2014-09-20 Арселормитталь Инвестигасьон И Десарролло Сл Heat-resistant austenite steel with resistance to cracking at stress relief
WO2011010206A3 (en) * 2009-07-22 2011-05-19 Arcelormittal Investigación Y Desarrollo Sl Heat-resistant austenitic steel having high resistance to stress relaxation cracking
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
EP2725113A4 (en) * 2011-06-24 2014-11-26 Nippon Steel & Sumitomo Metal Corp Method for producing austenitic stainless steel and austenitic stainless steel material
EP2725113A1 (en) * 2011-06-24 2014-04-30 Nippon Steel & Sumitomo Metal Corporation Method for producing austenitic stainless steel and austenitic stainless steel material
US9506126B2 (en) 2011-06-24 2016-11-29 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel and method for producing austenitic stainless steel material
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
WO2014133718A1 (en) * 2013-02-26 2014-09-04 Ati Properties, Inc. Methods for processing alloys
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
CN104838020A (en) * 2013-02-26 2015-08-12 Ati资产公司 Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10669601B2 (en) 2015-12-14 2020-06-02 Swagelok Company Highly alloyed stainless steel forgings made without solution anneal
US11041232B2 (en) 2016-04-06 2021-06-22 Nippon Steel Corporation Austenitic stainless steel and production method therefor
EP3441496A4 (en) * 2016-04-06 2019-02-13 Nippon Steel & Sumitomo Metal Corporation Austenite stainless steel and production method therefor
CN109219670A (en) * 2016-08-09 2019-01-15 杰富意钢铁株式会社 High-strength steel plate and its manufacturing method

Also Published As

Publication number Publication date
US8105447B2 (en) 2012-01-31
US20120111457A1 (en) 2012-05-10
US20100230011A1 (en) 2010-09-16
US8506729B2 (en) 2013-08-13

Similar Documents

Publication Publication Date Title
US8105447B2 (en) Austenitic stainless hot-rolled steel material with excellent corrosion resistance, proof stress, and low-temperature toughness
EP2557189B1 (en) Ferrite stainless steel sheet having high thermal resistance and processability, and method for manufacturing the same
US9885099B2 (en) Ferritic stainless steel sheet
KR20130107371A (en) Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
JP6652225B1 (en) Duplex stainless clad steel sheet and method for producing the same
CN111989417A (en) Duplex stainless steel clad steel sheet and method for manufacturing same
EP3556880A1 (en) Ferrite stainless hot-rolled steel sheet and production method therefor
US11891675B2 (en) Duplex stainless clad steel plate and method of producing same
JP4754362B2 (en) Austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness, and method for producing the same
KR20150080628A (en) Ferritic stainless steel
EP3040427B1 (en) High-strength hot-rolled plated steel sheet and method for manufacturing same
JP3269799B2 (en) Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength
US20220010451A1 (en) Ferritic stainless steel having improved corrosion resistance, and manufacturing method therefor
JP4494237B2 (en) Austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, and method for producing the same
JP2002194507A (en) Ferritic stainless steel superior in workability with less planar anisotropy and production method for the same
CN112513309B (en) Steel sheet and method for producing same
JPH05320756A (en) Production of high strength austenitic stainless steel excellent in seawater corrosion rest stance
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
EP0570985B1 (en) Iron-chromium alloy with high corrosion resistance
WO2020203939A1 (en) Stainless steel sheet
JP3363628B2 (en) Stainless steel excellent in corrosion resistance to molten salt and method for producing the same
CN117488199A (en) Preparation method of corrosion-resistant alloy steel
CN113166877A (en) Acid-resistant steel plate and preparation method thereof
JPS61273277A (en) Production of high tension steel with excellent stress corrosion cracking resistance having 90kgf/mm2 or more tensile strength
JPH06287642A (en) Production of low-strength cold rolled steel sheet for deep drawing excellent in corrosion resistance

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIPPON STEEL CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OIKAWA, YUUSUKE;TSUGE, SHINJI;FUKUMOTO, SHIGEO;AND OTHERS;REEL/FRAME:018011/0012

Effective date: 20060508

AS Assignment

Owner name: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION

Free format text: ASSIGNMENT PREVIOUSLY RECORDED AT REEL 018011 FRAME 0012 CONTAINED AN ERROR IN THE ASSIGNEE'S NAME, ASSIGNMENT IS BEING RE-RECORDED TO CORRECT ERROR IN STATED REEL;ASSIGNORS:OIKAWA, YUUSUKE;TSUGE, SHINJI;FUKUMOTO, SHIGEO;AND OTHERS;REEL/FRAME:018630/0583;SIGNING DATES FROM 20061013 TO 20061027

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION