JP3363628B2 - Stainless steel excellent in corrosion resistance to molten salt and method for producing the same - Google Patents

Stainless steel excellent in corrosion resistance to molten salt and method for producing the same

Info

Publication number
JP3363628B2
JP3363628B2 JP29804094A JP29804094A JP3363628B2 JP 3363628 B2 JP3363628 B2 JP 3363628B2 JP 29804094 A JP29804094 A JP 29804094A JP 29804094 A JP29804094 A JP 29804094A JP 3363628 B2 JP3363628 B2 JP 3363628B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
steel
corrosion resistance
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29804094A
Other languages
Japanese (ja)
Other versions
JPH07188870A (en
Inventor
延和 藤本
直人 平松
美博 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP29804094A priority Critical patent/JP3363628B2/en
Publication of JPH07188870A publication Critical patent/JPH07188870A/en
Application granted granted Critical
Publication of JP3363628B2 publication Critical patent/JP3363628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,溶融塩に対する耐食性
に優れたステンレス鋼,より詳しくは,溶融炭酸塩型燃
料電池のセパレータ用材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to stainless steel having excellent corrosion resistance against molten salt, and more particularly to a material for a separator of a molten carbonate fuel cell.

【0002】[0002]

【従来の技術】溶融炭酸塩型の燃料電池のセパレータ材
料には,電解質である溶融炭酸塩によって溶融塩腐食を
起こさないような耐食性が要求される。従来より,かよ
うな溶融炭酸塩型燃料電池のセパレータ材料としては,
SUS316LやSUS310Sなどの高級ステンレス
鋼が使用されてきた。
2. Description of the Related Art A molten carbonate type fuel cell separator material is required to have corrosion resistance so that molten carbonate as an electrolyte does not cause molten salt corrosion. Conventionally, as a separator material for such a molten carbonate fuel cell,
High grade stainless steels such as SUS316L and SUS310S have been used.

【0003】溶融炭酸塩に対する耐腐食性は,一般にス
テンレス鋼中のCr量に比例すると言われており,この
ため,SUS310SのようなCr含有量の多いものが
使用される場合が多い。そして,Cr含有量を多くした
ステンレス鋼ではオーステナイト相を安定させるために
Niの含有量も多くなっている。
It is said that the corrosion resistance to molten carbonate is generally proportional to the amount of Cr in stainless steel, and therefore, a substance having a large amount of Cr such as SUS310S is often used. In addition, in the stainless steel having a high Cr content, the Ni content is also high in order to stabilize the austenite phase.

【0004】他方,これらステンレス鋼の表面にアルミ
ナをコーティングすることによって高耐食性を付与し,
これを該セパレータ材料に使用する例もある。
On the other hand, by coating the surface of these stainless steels with alumina, high corrosion resistance is imparted,
There is also an example in which this is used as the separator material.

【0005】溶融炭酸塩に対するステンレス鋼の耐腐食
性の改善に関し,特開昭62−294153号公報の
「燃料電池用セパレータ材」や特開平1−252757
号公報の「耐溶融炭酸塩腐食性に優れたFe基合金」が
知られている。前者の特開昭62−294153号公報
は,溶融炭酸塩に対する耐腐食性は鋼中にAlを添加す
ることによって向上すると教示している。
Regarding the improvement of corrosion resistance of stainless steel against molten carbonate, JP-A-62-294153, "Separator material for fuel cell" and JP-A-1-252757.
The "Fe-based alloy excellent in molten carbonate corrosion resistance" of Japanese Patent Publication is known. The former JP-A-62-294153 teaches that the corrosion resistance to molten carbonate is improved by adding Al to the steel.

【0006】しかし,溶融塩に対する耐食性を向上させ
るためにステンレス鋼中にAlを多量に添加すると,鋼
の熱間加工性が著しく低下し,鋼板製造のための熱間圧
延時に大きな割れを生じるようになる。そのため,製造
できる鋼板サイズが制約される上,製品歩留が低くなっ
て製造コストが高くならざるを得ない。かようなAl含
有オーステナイト系ステンレス鋼の熱間加工性の問題に
対して,凝固時にδフエライト量を少量析出させたり,
あるいはLaやCe等の希土類元素を添加する等してス
テンレス鋼の熱間加工性を向上させる処法が特公昭55
−43498号公報に示され,また特開昭60−262
945号公報には1000〜1200℃の範囲の温度で
熱間圧延を行なうことによって割れを防止する方法が提
唱されている。
However, if a large amount of Al is added to the stainless steel in order to improve the corrosion resistance against molten salt, the hot workability of the steel is significantly deteriorated, and large cracks are likely to occur during hot rolling for steel sheet production. become. Therefore, the size of steel sheet that can be manufactured is limited, and the product yield is low and the manufacturing cost must be high. For such a problem of hot workability of Al-containing austenitic stainless steel, a small amount of δ-ferrite is precipitated during solidification,
Alternatively, a method for improving the hot workability of stainless steel by adding a rare earth element such as La or Ce is disclosed in JP-B-55.
No. 4,43498, and JP-A-60-262.
Japanese Patent No. 945 proposes a method of preventing cracking by hot rolling at a temperature in the range of 1000 to 1200 ° C.

【0007】[0007]

【発明が解決しようとする課題】燃料電池の溶融炭酸塩
は腐食作用が極めて強いので,そのセパレータ材として
SUS316LやSUS310Sなどの高級ステンレス
鋼を使用した場合でも,十分な耐食性を具備するとは言
えないのが現状である。特に,SUS310SではCr
とNiの含有量が多いので原料費が高価になり,加工性
も悪くなるという難点もある。製品価格の観点からは,
CrやNiの含有量,とりわけNiの含有量をできるだ
け下げることが課題となる。この点,特開昭62−29
4153号公報の「燃料電池用セパレータ材」は25%
Cr−20%Ni鋼を基本組成としており,原料費が高
価となり,さらには加工性もあまり良くない。
Since the molten carbonate of a fuel cell has an extremely strong corrosive action, it cannot be said that even if a high-grade stainless steel such as SUS316L or SUS310S is used as the separator material, it has sufficient corrosion resistance. is the current situation. Especially in SUS310S, Cr
Since the Ni content is high, the raw material cost becomes high and the workability also deteriorates. From a product price perspective,
The challenge is to reduce the content of Cr and Ni, especially the content of Ni as much as possible. In this respect, JP-A-62-29
"Fuel cell separator material" of 4153 publication is 25%
Cr-20% Ni steel is used as the basic composition, the raw material cost is high, and the workability is not so good.

【0008】ステンレス鋼の表面にアルミナをコーティ
ングして該セパレータ材の耐食性を向上させる処法の場
合は,コーティングや熱処理等が必要になり,製造工程
全体が複雑になるという難点がある。
[0008] In the case of a method of coating the surface of stainless steel with alumina to improve the corrosion resistance of the separator material, there is a problem that coating and heat treatment are required and the whole manufacturing process becomes complicated.

【0009】特開平1−252757号公報に記載され
た耐溶融炭酸塩腐食性に優れたFe基合金はSiの含有
率をとくに低くしなければならない。このため鋼の製造
に特別の配慮が必要となり,やはり製造コストが上昇す
るといった難点がある。
The Fe-based alloy described in JP-A-1-252757, which has excellent resistance to molten carbonate corrosion, must have a particularly low Si content. For this reason, special consideration must be given to the production of steel, which also raises the production cost.

【0010】特公昭55−43498号公報や特開昭6
0−262945号公報は耐熱性・耐酸化性に優れまた
熱間加工性が良好なAl含有ステンレス鋼を開示する
が,高熱でかつ腐食性も非常に強く腐食機構的にも複雑
な溶融塩環境における耐食性向上についての有益な教示
はない。
JP-B-55-43498 and JP-A-6-
Japanese Patent Laid-Open No. 0-262945 discloses an Al-containing stainless steel having excellent heat resistance and oxidation resistance and good hot workability. However, it is a molten salt environment with high heat and very strong corrosiveness and complicated corrosion mechanism. There is no useful teaching for improving corrosion resistance in.

【0011】したがって,本発明は,CrとNiの含有
量を極力抑えながらも,優れた耐溶融炭酸塩腐食性を示
し,且つ加工性あるいは熱間加工性にも優れた燃料電池
用の安価なステンレス鋼製セパレータ材料の開発を目的
としたものである。
Therefore, the present invention is an inexpensive fuel cell for a fuel cell which has excellent resistance to molten carbonate corrosion and excellent workability or hot workability while suppressing the contents of Cr and Ni as much as possible. The purpose is to develop a stainless steel separator material.

【0012】[0012]

【課題を解決するための手段】本発明によれば,重量%
で,C:0.1%以下,Mn:2.0%以下,Ni:7.
5%以上15.0%未満,Cr:14.0〜20.0%,
Si:0.2%を超え4.0%以下,Al:1.0〜4.0
%を含有し,場合によってはさらに3.0%以下のC
u,3.0%以下のMo,1.0%以下のTi,1.0%
以下のZr,0.5%以下のYまたは0.5%以下好まし
くは0.05%以下のREM(希土類元素)の1種また
は2種以上を含有し,且つ Si%/Al%≦1.0,好ましくはSi%/Al%≦
0.4 の関係を満足し,残部がFeおよび不可避的不純物から
なる溶融塩に対する耐食性に優れたステンレス鋼を提供
する。
According to the present invention, the weight percent is
C: 0.1% or less, Mn: 2.0% or less, Ni: 7.
5% or more and less than 15.0%, Cr: 14.0 to 20.0%,
Si: more than 0.2% and 4.0% or less, Al: 1.0 to 4.0
%, And in some cases further 3.0% or less C
u, Mo less than 3.0%, Ti less than 1.0%, 1.0%
Zr, 0.5% or less of Y or 0.5% or less, preferably 0.05% or less of one or more kinds of REM (rare earth element), and Si% / Al% ≤ 1. 0, preferably Si% / Al% ≦
Provided is a stainless steel which satisfies the relationship of 0.4 and has excellent corrosion resistance to a molten salt, the balance of which is Fe and inevitable impurities.

【0013】本発明のステンレス鋼は,好ましくは,さ
らに次の関係を満足するように成分量が調整されてい
る。 (Si%+Al%)/Ni%≦0.47
The stainless steel of the present invention is preferably adjusted in the content of components so as to further satisfy the following relationship. (Si% + Al%) / Ni% ≦ 0.47

【0014】本発明のステンレス鋼は,さらに好ましく
は,下式で表されるδ(%)の値が0.5〜4.0の範囲
となるように各成分量が調整されており,このδ(%)
をもつ鋼は,熱間圧延時に1000℃以上の温度で熱間
圧延を終了する(仕上圧延機出側の材料温度を1000
℃以上とする)という熱延条件を採用することにより熱
延鋼板を有利に製造できる。 δ(%)=1.57・Cr+0.7・Si+3.89・A
l−1.57・Ni−0.16・Mn−38.5・C−7.
65。 そのさい,REMを含有する場合にはその含有量を0.
05%以下とする。
More preferably, in the stainless steel of the present invention, the amount of each component is adjusted so that the value of δ (%) represented by the following formula is in the range of 0.5 to 4.0. δ (%)
For steels with, the hot rolling is terminated at a temperature of 1000 ° C or higher during hot rolling (the material temperature on the delivery side of the finishing mill is 1000
The hot-rolled steel sheet can be advantageously manufactured by adopting the hot-rolling condition that the temperature is not less than 0 ° C. δ (%) = 1.57 ・ Cr + 0.7 ・ Si + 3.89 ・ A
1-1.57, Ni-0.16, Mn-38.5, C-7.
65. In that case, if REM is contained, its content should be 0.
It should be less than 05%.

【0015】[0015]

【作用】本発明者らは,溶融炭酸塩型燃料電池の環境下
でのステンレス鋼の腐食挙動の研究を重ねてきたが,鋼
中のSi量とAl量をある一定の範囲で複合添加する
と,CrとNiの含有量を大きく増やすことなく溶融炭
酸塩に対して優れた耐腐食性を持ったステンレス鋼が得
られるという知見を得た。すなわち,その詳細は後記の
実施例(図1,2および4)に示すが,0.2%を超え
る量のSiと1.0%以上のAlを, Si%/Al%≦1.0,好ましくはSi%/Al%≦
0.4 の関係を満足するように複合添加すると,溶融炭酸塩に
対して優れた耐腐食性を示すステンレス鋼が得られる。
これは,ステンレス鋼表面にAl酸化物層とSi酸化物
層が形成されることによる作用であると考えてよい。
The present inventors have conducted extensive research on the corrosion behavior of stainless steel in the environment of molten carbonate fuel cells. However, when the amounts of Si and Al in steel are added together within a certain range, , It has been found that a stainless steel having excellent corrosion resistance to molten carbonate can be obtained without significantly increasing the contents of Cr and Ni. That is, details thereof will be shown in Examples (FIGS. 1, 2 and 4) described later. Preferably Si% / Al% ≦
Addition so as to satisfy the relationship of 0.4 gives a stainless steel showing excellent corrosion resistance to molten carbonate.
It can be considered that this is an action due to the formation of the Al oxide layer and the Si oxide layer on the surface of the stainless steel.

【0016】また,かようなSiとAlを複合添加する
と鋼の加工性が劣るようになるが,この点は,後記の実
施例(図3)に示すが, (Si%+Al%)/Ni%≦0.47 の関係が満たされるようにNiを含有させれば,解決で
きることが判った。
Further, when such Si and Al are added in combination, the workability of the steel becomes inferior. This point is shown in the example (FIG. 3) described later, where (Si% + Al%) / Ni It has been found that the problem can be solved if Ni is contained so that the relationship of% ≦ 0.47 is satisfied.

【0017】さらに,本発明鋼のようにAlを含有する
鋼では一般に熱間加工性が悪く,通常の熱延設備で熱延
鋼板を製造しようとすると破断のおそれがあるが,この
問題は,後記の実施例(図5,図7)に示すように,前
記のδ(%)の値が0.5〜4.0の範囲となるように各
成分量を調整したうえ,1000℃以上で熱間圧延を終
了すれば,解決できることがわかった。そのさい,RE
Mを添加する場合には0.05%以下とするのがよい
(図6)。
Further, a steel containing Al such as the steel according to the present invention generally has poor hot workability, and there is a risk of breakage when a hot rolled steel sheet is produced by ordinary hot rolling equipment. As shown in Examples (FIGS. 5 and 7) described later, the amount of each component was adjusted so that the value of δ (%) was in the range of 0.5 to 4.0, and at 1000 ° C. or higher. It was found that this could be solved by finishing hot rolling. At that time, RE
When M is added, it is preferably 0.05% or less (Fig. 6).

【0018】〔発明の詳述〕本発明鋼における各成分の
作用並びに含有量規制理由について個別に説明すると次
のとおりである。
[Detailed Description of the Invention] The action of each component in the steel of the present invention and the reason for controlling the content are individually explained as follows.

【0019】C:C含有量があまり多くなると鋼の熱間
加工性が阻害されるようになるのでCの含有量は0.1
%以下とした。なお,鋼の高温強度を向上させるには
0.03%を超えるC量を含有するのがよい。
C: If the C content is too high, the hot workability of the steel is impaired, so the C content is 0.1.
% Or less. In addition, in order to improve the high temperature strength of steel, it is preferable to contain a C content exceeding 0.03%.

【0020】Mn:Mnはオーステナイト形成元素であ
り,また溶製時の脱酸剤および脱硫剤として使用される
ことから,通常のオーステナイト系ステンレス鋼では1
%程度までのMnを含有している。しかし,過度に添加
すると溶融塩に対する耐食性を劣化させるので,本発明
鋼でのMnの含有量は2.0%以下とする。
Mn: Mn is an austenite forming element and is used as a deoxidizing agent and a desulfurizing agent during melting.
% Of Mn. However, excessive addition deteriorates the corrosion resistance to molten salt, so the Mn content in the steel of the present invention is set to 2.0% or less.

【0021】Ni:Niはオーステナイト形成元素であ
り,オーステナイト相を維持するために7.5%以上の
量で含有する必要がある。しかし,あまり多量に含有す
ると製品価格の上昇につながるのでその上限は15.0
%未満とした。
Ni: Ni is an austenite-forming element and must be contained in an amount of 7.5% or more in order to maintain the austenite phase. However, if contained too much, the product price will rise, so the upper limit is 15.0.
It was less than%.

【0022】Cr:Crは溶融炭酸塩に対する鋼の耐腐
食性を向上させるうえで重要な作用を果たす。このため
には14.0%以上のCrの含有が必要である。しか
し,あまり多量にCrを含有するとオーステナイト相が
不安定になり,熱間加工性が劣化するようになるのでC
r量は20.0%以下とする。
Cr: Cr plays an important role in improving the corrosion resistance of steel against molten carbonate. For this purpose, it is necessary to contain 14.0% or more of Cr. However, if Cr is contained too much, the austenite phase becomes unstable and the hot workability deteriorates.
The amount of r should be 20.0% or less.

【0023】Si:Siは鋼の高温強度と耐酸化性を改
善する作用がある。Siは酸素親和力が大きく,このた
めに,本発明鋼が燃料電池のセパレート材に使用された
ときに,溶融炭酸塩腐食によって鋼表面に形成された酸
化物層とステンレス鋼母材との界面近傍の粒界付近にS
i酸化物が形成される。このSi酸化物層が粒界を通ろ
うとする原子の拡散を妨げ,ステンレス鋼の腐食を抑え
る作用を果たす。この作用は,後述のようにAlの含有
によって助成される。溶融炭酸塩に対する耐腐食性を向
上させるにはSiは0.2%を超える含有量が必要であ
る。しかし,多量に添加すると製造性や熱間加工性を阻
害するのでSiの含有量は4.0%以下とする。
Si: Si acts to improve the high temperature strength and oxidation resistance of steel. Since Si has a large oxygen affinity, when the steel of the present invention is used as a separate material for a fuel cell, the vicinity of the interface between the oxide layer formed on the steel surface by molten carbonate corrosion and the stainless steel base material is used. Near the grain boundary of
An i-oxide is formed. This Si oxide layer prevents the diffusion of atoms that try to pass through the grain boundaries and serves to suppress the corrosion of stainless steel. This action is promoted by the inclusion of Al as described later. In order to improve the corrosion resistance to molten carbonate, the Si content is required to exceed 0.2%. However, if added in a large amount, the manufacturability and hot workability are impaired, so the Si content should be 4.0% or less.

【0024】Al:Alは脱酸作用および溶融炭酸塩に
対する耐腐食性を向上させる作用がある。溶融炭酸塩に
対する十分な耐腐食性を得るには,Alは1.0%以上
添加する必要があるが,あまり多量に含有させると製造
性や熱間加工性が劣化するので,Alの含有量は1.0
〜4.0%とした。
Al: Al has a deoxidizing action and an action of improving the corrosion resistance to molten carbonate. To obtain sufficient corrosion resistance to molten carbonate, it is necessary to add Al in an amount of 1.0% or more, but if too much is added, manufacturability and hot workability will deteriorate. Is 1.0
It was set to ˜4.0%.

【0025】本発明鋼は,SiとAlの複合添加によっ
て耐溶融炭酸塩腐食性の向上が図れた点に一つの特徴が
ある。この事実は後記の実施例(図1,図2,図4)に
も示すが,この複合添加の作用効果については次のよう
に考えることができる。
The steel of the present invention is characterized in that the molten carbonate corrosion resistance is improved by the combined addition of Si and Al. This fact is also shown in Examples described later (FIGS. 1, 2, and 4), and the action and effect of this composite addition can be considered as follows.

【0026】適量のSiの含有によって,前述のように
最外表面の酸化物層とステンレス鋼母材の界面に形成さ
れるSi酸化物層は,ステンレス鋼の内外からの原子の
拡散を阻止して一種のバリヤーとしての作用を発揮して
ステンレス鋼の耐食性を高める効果がある。しかし,本
発明者らの実験によれば,このSi酸化物は溶融炭酸塩
に対する安定度が低い(すなわち溶解度が大きい)こと
が判明し,したがって,溶融炭酸塩が鋼の最外表面の酸
化物層を浸透してこのSi酸化物層にまで侵入してきた
場合には,このSi酸化物が溶解して,十分な耐食効果
を発揮できなくなる。
As described above, the Si oxide layer formed at the interface between the oxide layer on the outermost surface and the stainless steel base material by containing a proper amount of Si prevents diffusion of atoms from inside and outside the stainless steel. Acts as a kind of barrier and has the effect of increasing the corrosion resistance of stainless steel. However, according to the experiments by the present inventors, it was found that this Si oxide has low stability (that is, high solubility) with respect to the molten carbonate, and therefore the molten carbonate has an oxide on the outermost surface of the steel. When the layer penetrates and penetrates into the Si oxide layer, the Si oxide is dissolved and it becomes impossible to exhibit a sufficient corrosion resistance effect.

【0027】ところが,適量のAlが鋼中に含有する
と,Al酸化物層がSi酸化物層の外側に形成し,この
外側のAl酸化物層がSi酸化物を溶融炭酸塩から保護
するとと共に,いずれも原子拡散係数の小さいSi酸化
物層とAl酸化物層の共存によってステンレス鋼自体の
腐食を一層抑制することができる。
However, when an appropriate amount of Al is contained in the steel, an Al oxide layer is formed outside the Si oxide layer, and this outer Al oxide layer protects the Si oxide from the molten carbonate, and In either case, the coexistence of the Si oxide layer and the Al oxide layer having a small atomic diffusion coefficient can further suppress the corrosion of the stainless steel itself.

【0028】このような作用効果は,SiとAlの含有
量が前記の範囲において, Si%/Al%≦1.0 の関係を満足するときに達成でき,さらに好ましくは, Si%/Al%≦0.4 のときに,溶融炭酸塩に対して耐腐食性が非常に良好と
なることがわかった。
Such action and effect can be achieved when the contents of Si and Al satisfy the relationship of Si% / Al% ≦ 1.0 in the above range, and more preferably Si% / Al%. It was found that when ≦ 0.4, the corrosion resistance to molten carbonate was very good.

【0029】また,以上の基本組成に加えて,Cu,M
o,Ti,Zr,YまたはREMの1種以上を適量添加
すると,溶融炭酸塩に対する耐腐食性をよりいっそう向
上させることができる。これらの元素の好ましい含有量
は次のとおりである。
In addition to the above basic composition, Cu, M
If one or more of o, Ti, Zr, Y or REM is added in an appropriate amount, the corrosion resistance to molten carbonate can be further improved. The preferred contents of these elements are as follows.

【0030】Cu:Cuは溶融炭酸塩に対する耐腐食性
を向上させる効果がある。しかし,あまり多量に添加す
ると熱間加工性が劣化するので,Cuの含有量は3.0
%以下とする。
Cu: Cu has the effect of improving the corrosion resistance to molten carbonate. However, if too much is added, the hot workability deteriorates, so the Cu content is 3.0.
% Or less.

【0031】Mo:Moは溶融炭酸塩に対する耐腐食性
を向上させる効果がある。しかし,あまり多量に添加す
ると溶接性および熱間加工性が劣化するので,Moの含
有量は3.0%以下とする。
Mo: Mo has the effect of improving the corrosion resistance to molten carbonate. However, if too much is added, the weldability and hot workability deteriorate, so the Mo content should be 3.0% or less.

【0032】Ti:Tiは鋼の高温強度を向上させる効
果があると共に,溶融炭酸塩に対する耐腐食性も向上さ
せる効果がある。しかし,多量に添加すると靱性が劣化
するので,Tiの含有量は1.0%以下とする。
Ti: Ti has the effect of improving the high temperature strength of steel and also the effect of improving corrosion resistance to molten carbonate. However, if a large amount is added, the toughness deteriorates, so the Ti content is made 1.0% or less.

【0033】Zr:Zrは鋼の高温強度を向上させる効
果があると共に,溶融炭酸塩に対する耐腐食性を向上さ
せる効果がある。しかし,多量に添加すると溶接性なら
びに鋼の清浄度を害するので,Zrの含有量は1.0%
以下とする。
Zr: Zr has the effect of improving the high temperature strength of steel and the effect of improving the corrosion resistance to molten carbonate. However, if a large amount is added, the weldability and the cleanliness of the steel are impaired, so the content of Zr is 1.0%.
Below.

【0034】Y:Yは溶融炭酸塩に対する耐腐食性を向
上させる効果がある。しかし,多量に添加すると熱間加
工性が劣化するので,Yの含有量は重量%で0.5%以
下とする。
Y: Y has the effect of improving the corrosion resistance to molten carbonate. However, if a large amount is added, the hot workability deteriorates, so the Y content is 0.5% or less by weight.

【0035】REM:REM(希土類元素)は溶融炭酸
塩に対する耐腐食性を向上させる効果があるとともに,
少量の添加により熱間加工性を改善する。しかし,多量
に添加すると熱間加工性が劣化するので,REMの含有
量は重量%で0.5%以下とする。特に熱間加工を向上
させるためにはREMを0.05重量%以下の範囲で含
有させることが望ましい。
REM: REM (rare earth element) has the effect of improving the corrosion resistance to molten carbonate, and
Improves hot workability by adding a small amount. However, if added in a large amount, the hot workability deteriorates, so the content of REM is set to 0.5% or less by weight. Particularly, in order to improve hot working, it is desirable to contain REM in an amount of 0.05% by weight or less.

【0036】次に,本発明鋼のようにSiやAlを多く
含有したステンレス鋼は,一般に鋼の硬度が上昇し加工
性が劣化する傾向があるが, (Si%+Al%)/Ni%≦0.47 の関係を満足するようにNiを含有させると,鋼の硬度
を低くでき,加工性を良好にできる(後記実施例の図
3)。
Next, the stainless steel containing a large amount of Si or Al, like the steel of the present invention, generally has a tendency that the hardness of the steel increases and the workability deteriorates, but (Si% + Al%) / Ni% ≦ If Ni is contained so as to satisfy the relationship of 0.47, the hardness of the steel can be lowered and the workability can be improved (Fig. 3 in the example described later).

【0037】また,Alが多量に含有したステンレス鋼
では熱間加工性が著しく低下し,熱間圧延時に熱延板に
大きな割れを生じるという問題があり,特に2%以上A
lを含有した鋼においては割れが著しく,通常の方法で
は熱延鋼帯を製造することが困難である。この問題を解
決すべく実験を重ねた結果,δフエライト量および熱間
圧延時の熱延板の温度を規制することによって,溶融塩
に対する耐食性を保持するに必要なAlを含有した場合
でも,熱間圧延によって良好に熱延鋼帯が製造できるこ
とがわかった。
Further, stainless steel containing a large amount of Al has a problem that the hot workability is remarkably deteriorated and a large crack is generated in the hot rolled sheet during hot rolling.
The steel containing 1 has severe cracking, and it is difficult to manufacture a hot-rolled steel strip by a usual method. As a result of repeated experiments to solve this problem, by controlling the amount of δ-ferrite and the temperature of the hot-rolled sheet during hot rolling, even if Al, which is necessary to maintain the corrosion resistance to molten salt, is contained, It was found that hot rolling can be satisfactorily produced by hot rolling.

【0038】すなわち,本発明鋼の鋳塊または鋳片に現
れるδフエライト量を各成分の含有量から予測する式と
して, δ(%)=1.57・Cr+0.7・Si+3.89・A
l−1.57・Ni−0.16・Mn−38.5・C−7.
65 を得た。ただし,この式が適用できるのはδ(%)が0
〜6の範囲であり,6を超えると的中率は低くなる。そ
して,この式で示されるδ(%)が0.5〜4.0の範囲
となるように各成分量が調整されている場合には,後記
実施例(図5および図7)に示すように,この鋼は熱間
加工性に優れることが明らかとなった。したがって,こ
の場合に通常の熱間圧延設備によって熱延鋼帯を製造す
ることが可能となる。
That is, as an expression for predicting the amount of δ-ferrite appearing in the ingot or slab of the steel of the present invention from the content of each component, δ (%) = 1.57 · Cr + 0.7 · Si + 3.89 · A
1-1.57, Ni-0.16, Mn-38.5, C-7.
65 was obtained. However, this formula is applicable only when δ (%) is 0
The range is up to 6, and if it exceeds 6, the hit rate becomes low. When the amounts of the respective components are adjusted so that δ (%) represented by this equation is in the range of 0.5 to 4.0, as shown in Examples (FIGS. 5 and 7) described later. It was also revealed that this steel has excellent hot workability. Therefore, in this case, it becomes possible to manufacture the hot-rolled steel strip by the normal hot rolling equipment.

【0039】しかし,このδ(%)が0.5〜4.0の範
囲の鋼でも900〜1000℃の間に急激な延性の変化
を生じることが明らかとなり,このため,熱間圧延を行
なう場合にはその最終パスを出るときの材料温度が10
00℃以上とするのがよいことがわかった。すなわち,
1000℃以上の温度で熱間圧延を終了すれば,耳割れ
等の発生もなく,良品質の熱延板を安定して製造でき
る。
However, it became clear that even in the steel in which this δ (%) is in the range of 0.5 to 4.0, a drastic change in ductility occurs between 900 and 1000 ° C. Therefore, hot rolling is performed. In some cases, the material temperature when exiting the final pass is 10
It was found that the temperature should be 00 ° C or higher. That is,
If the hot rolling is completed at a temperature of 1000 ° C. or higher, a cracked edge or the like does not occur and a hot rolled sheet of good quality can be stably manufactured.

【0040】[0040]

【実施例】【Example】

〔実施例1〕試験に供した試料a〜qおよび試料r〜z
の化学成分値(重量%)をそれぞれ表1および表2に示
した。表1の試料a〜qは本発明鋼であり,表2の試料
r〜zは比較鋼である。
[Example 1] Samples a to q and samples r to z used in the test
The chemical component values (% by weight) of are shown in Table 1 and Table 2, respectively. Samples a to q in Table 1 are steels of the present invention, and samples r to z in Table 2 are comparative steels.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】試料a〜q(本発明鋼)および試料r〜z
(比較鋼)は,何れも30kg真空溶解炉にて溶解鋳造
後,その鋳片を熱間圧延し焼鈍して熱延板とした。その
後,焼鈍,冷間圧延,焼鈍したあと腐食試験に供する試
片を採取した。なお表2の試料yは市販のSUS316
L,試料zは市販のSUS310Sであるが,これら市
販鋼の鋼板も同様の腐食試験に供した。
Samples aq (inventive steels) and samples rz
(Comparative steels) were all melt-cast in a 30 kg vacuum melting furnace, and the cast pieces were hot-rolled and annealed to obtain hot-rolled sheets. Then, after annealing, cold rolling, and annealing, specimens for corrosion tests were taken. Sample y in Table 2 is a commercially available SUS316
L and sample z are commercially available SUS310S, and steel plates of these commercially available steels were also subjected to the same corrosion test.

【0044】腐食試験は,62モル%Li2CO3−38
モル%K2CO3の溶融炭酸塩中に各試料a〜zを浸漬
し,650℃の温度で,70容量%空気−30容量%の
CO2ガスの雰囲気下に70時間保持するものである。
この試験後の試料表面に生成した腐食生成物を除去して
試験前後の試料重量の差を測定し,これを腐食量(mg
/cm2)として耐溶融炭酸塩腐食性を評価した。その結
果を図1に示した。図1の結果から次のことがわかる。
The corrosion test was carried out using 62 mol% Li 2 CO 3 -38
Each of the samples a to z is immersed in a molten carbonate containing mol% K 2 CO 3 and kept at a temperature of 650 ° C. for 70 hours in an atmosphere of 70 vol% air-30 vol% CO 2 gas. .
The corrosion product generated on the surface of the sample after this test is removed and the difference in the sample weight before and after the test is measured.
/ Cm 2 ) to evaluate molten carbonate corrosion resistance. The results are shown in Fig. 1. The following can be seen from the results of FIG.

【0045】先ず,Cu,Mo,Ti,Zr,Y,RE
Mの何れも添加しなかった試料a〜i(本発明鋼)にお
いては,Alの含有量が1%に近い試料a,b,fに比
べてAlの含有量がほぼ2%である試料c,g,iの方
が腐食量が少ない。またこれら試料c,g,iに比べ
て,Alの含有量がほぼ3%である試料d,h,pの方
が腐食量がより少ない。そして,これら試料d,h,p
に比べて,Alの含有量がほぼ4%である試料eおよび
qと,Cu,Mo,Ti,Zr,Y,REMの何れかを
含有している試料j,k,l,m,n,oは更に腐食量
が少ない。
First, Cu, Mo, Ti, Zr, Y, RE
In samples a to i (inventive steels) to which none of M was added, sample c in which the Al content was approximately 2% compared to samples a, b, and f in which the Al content was close to 1% , G and i have less corrosion. Further, as compared with these samples c, g and i, the samples d, h and p having an Al content of about 3% have a smaller amount of corrosion. And these samples d, h, p
In comparison with Samples e and q whose Al content is approximately 4%, and Samples j, k, l, m, n, which contain any of Cu, Mo, Ti, Zr, Y and REM. o has a smaller amount of corrosion.

【0046】また,Si量が0.2%未満である試料
r,s(比較鋼)に比べて,Si量が0.2%以上であ
る試料a〜q(本発明鋼)は,何れも腐食量が少ない。
しかし試料t,u,v,w(比較鋼)は,Siの添加量
が何れも0.2%以上でありながら,しかも或る程度の
Alを含有しながらも,試料a〜q(本発明鋼)に比べ
て,腐食量が多いという結果となった。
Further, as compared with the samples r and s (comparative steels) in which the Si content is less than 0.2%, all of the samples a to q (inventive steels) in which the Si content is 0.2% or more. Small amount of corrosion.
However, in the samples t, u, v, and w (comparative steels), although the addition amounts of Si were all 0.2% or more, and while containing a certain amount of Al, the samples a to q (the present invention) were used. The result is that the amount of corrosion is greater than that of steel.

【0047】そこで,Si%/Al%の比で腐食量との
関係を整理したところ,図2の結果を得た。図2によれ
ば,SiとAlの含有量比が Si%/Al%≦1.0 を満足する場合にのみ溶融炭酸塩に対する耐腐食性が改
善されることがわかる。より好ましくは, Si%/Al%≦0.4 の関係を満足するときに,溶融炭酸塩に対する耐腐食性
が更に良好となる。
Then, the relationship between the amount of corrosion and the ratio of Si% / Al% was arranged, and the results shown in FIG. 2 were obtained. It can be seen from FIG. 2 that the corrosion resistance to molten carbonate is improved only when the content ratio of Si and Al satisfies Si% / Al% ≦ 1.0. More preferably, when the relationship of Si% / Al% ≦ 0.4 is satisfied, the corrosion resistance to molten carbonate is further improved.

【0048】次に,腐食試験の時と同様にして得た板か
ら試験片を切り出して,ビッカース硬さ試験を行った。
試験の結果を,試験に供した鋼の(Si%+Al%)/
Ni%を横軸,ビッカース硬さ(Hv)を縦軸にとって
図3に示した。
Then, a test piece was cut out from the plate obtained in the same manner as in the corrosion test, and a Vickers hardness test was conducted.
The result of the test is (Si% + Al%) / of the steel used for the test.
FIG. 3 shows the Ni% as the horizontal axis and the Vickers hardness (Hv) as the vertical axis.

【0049】図3の結果から,(Si%+Al%)/N
i%が約0.47の辺りを境にしてビッカーズ硬さが急
激に変化することがわかる。そして,(Si%+Al
%)/Ni%≦0.47の範囲にある鋼はビッカーズ硬
さ(Hv)が約180以下となり,硬度が低いことから
加工性が良好であることがわかる。
From the result of FIG. 3, (Si% + Al%) / N
It can be seen that the Vickers hardness changes abruptly when i% is around 0.47. And (Si% + Al
%) / Ni% ≦ 0.47, the Vickers hardness (Hv) is about 180 or less, and it is understood that the workability is good because the hardness is low.

【0050】〔実施例2〕表3に示す化学成分値(重量
%)の鋼の冷延焼鈍板を,実施例1と同様にして作製
し,その試験片を実施例1と同じ腐食試験に供した。そ
の結果を,前記の図2の場合と同様に,Si%/Al%
の比で整理して図4に示した。
Example 2 A cold-rolled annealed steel plate having the chemical composition values (% by weight) shown in Table 3 was prepared in the same manner as in Example 1, and the test piece thereof was subjected to the same corrosion test as in Example 1. I served. The result is the same as in the case of FIG. 2 above, Si% / Al%
The results are shown in FIG.

【0051】[0051]

【表3】 [Table 3]

【0052】図4の結果から,実施例1と同様,合金中
のSi%/Al%≦1.0の場合に耐溶融炭酸塩腐食性
が良好となることがわかる。図4において,試料1q,
1rおよび1sの腐食量が特に大きいが,これはSi%
/Al%>1.0であることによる。また試料1pはS
i%/Al%は0.12と小さいが,Si含有量0.2%
未満であるため腐食量は大きくなっている。
From the results shown in FIG. 4, it can be seen that the molten carbonate corrosion resistance is good when Si% / Al% ≦ 1.0 in the alloy, as in Example 1. In FIG. 4, sample 1q,
Corrosion amount of 1r and 1s is especially large, but this is due to Si%
/Al%>1.0. Sample 1p is S
i% / Al% is as small as 0.12, but Si content is 0.2%
Since it is less than the above, the amount of corrosion is large.

【0053】〔実施例3〕表3の試料1dの化学成分値
を有する2%Al含有鋼を,30kg真空溶解炉で溶解
して鋳造し,その鋼塊から切削加工により35mmの板
厚のスラブを作製した。このスラブを1230℃で1時
間均熱した後,1パスあたり30〜35%の圧下率で,
最終仕上圧延ロールを通過時の材料温度(最終パス温
度)が700〜1050℃となるように熱間圧延を行
い,5mm厚の熱延板を製造した。最終パス温度と熱延
板の耳割れの程度を調べたところ,表4の結果を得た。
Example 3 A 2% Al-containing steel having the chemical composition value of sample 1d in Table 3 was melted and cast in a 30 kg vacuum melting furnace, and a slab having a thickness of 35 mm was cut from the steel ingot by cutting. Was produced. This slab was soaked at 1230 ° C for 1 hour, then at a reduction rate of 30-35% per pass,
Hot rolling was performed so that the material temperature (final pass temperature) when passing through the final finish rolling roll was 700 to 1050 ° C., and a hot rolled sheet having a thickness of 5 mm was manufactured. When the final pass temperature and the degree of edge cracking of the hot rolled sheet were examined, the results shown in Table 4 were obtained.

【0054】[0054]

【表4】 [Table 4]

【0055】表4の結果から,最終パス温度が1000
℃以上であれば耳割れの発生なく熱延板の製造が可能で
あることがわかる。なお,試料1dのδ(%)は1.6
である。なお,1000℃での熱間引張試験を行って引
張破断させたときの断面減少率を求め,この断面減少率
と熱間圧延時の耳割れとの関係を調べたところ,100
0℃での断面減少率が55%以上あれば,最終パス温度
1000℃の圧延時にほぼ耳割れを生じないことが明ら
かとなった。したがって,熱間圧延時に耳割れを生じさ
せないためには1000℃での断面減少率が55%以上
あることが望ましい。
From the results of Table 4, the final pass temperature is 1000
It can be seen that if the temperature is at least ℃, hot-rolled sheets can be produced without causing ear cracks. The δ (%) of sample 1d is 1.6
Is. A hot tensile test at 1000 ° C. was performed to obtain the cross-section reduction rate at the time of tensile fracture, and the relationship between this cross-section reduction rate and the edge crack during hot rolling was investigated.
It was revealed that if the cross-section reduction rate at 0 ° C is 55% or more, almost no edge crack occurs during rolling at the final pass temperature of 1000 ° C. Therefore, in order to prevent the occurrence of edge cracks during hot rolling, it is desirable that the cross-section reduction rate at 1000 ° C is 55% or more.

【0056】〔実施例4〕表3の各試料を30kg真空
溶解炉にて溶解して鋳塊とし,この鋳塊から切削加工に
よって熱間引張試験用の丸棒試験片を作製して1000
℃での熱間引張試験に供し,引張破断させたときの断面
減少率を測定した。そして,各試験片のδ(%)を本文
に記載した式によって求め,このδ(%)を横軸に,測
定された断面減少率を縦軸として,これらの試験結果を
図5に示した。
[Example 4] Each sample in Table 3 was melted in a 30 kg vacuum melting furnace to form an ingot, and a round bar test piece for a hot tensile test was prepared from the ingot by cutting to 1000
It was subjected to a hot tensile test at ℃, and the cross-section reduction rate when tensile rupture was measured. Then, δ (%) of each test piece was obtained by the formula described in the text, and the test results are shown in Fig. 5 with the δ (%) as the horizontal axis and the measured cross-section reduction rate as the vertical axis. .

【0057】図5から明らかなように,δ(%)が多い
と断面減少率は低下し,熱間加工性が悪くなる。逆にδ
(%)が少なすぎても断面減少率は低下する。図5によ
れば断面減少率が55%以上となるのはδ(%)が0.
5〜4.0%の範囲であるときであり,この場合には熱
間加工性が良好となることがわかる。なお,試料1pは
熱間加工性は良好であるが,図4に示したように耐溶融
炭酸塩腐食性が劣る。
As is apparent from FIG. 5, when δ (%) is large, the cross-section reduction rate decreases and the hot workability deteriorates. Conversely, δ
If the (%) is too small, the area reduction rate will decrease. According to Fig. 5, the area reduction rate is 55% or more when δ (%) is 0.
It is in the range of 5 to 4.0%, and it can be seen that in this case the hot workability becomes good. Sample 1p has good hot workability, but as shown in FIG. 4, it has poor molten carbonate corrosion resistance.

【0058】次に,表2の試料のうち,2%Al含有鋼
においてREMを添加した鋼と熱間引張試験(1000
℃)における断面減少率との関係を調べた。その結果を
図6に示した。この図から,REMの添加よって断面減
少率(熱間延性)は向上するが,或る量を超えて添加す
ると逆に低下することがわかる。これは過剰のREMが
鋼中に存在すると酸化物等の介在物が増大し,これが熱
間加工性に悪影響を及ぼすためと考えられる。いずれに
してもREM量が0.05%以下のとき,より具体的に
は約0.02%付近で最も熱間加工性が良好となること
がわかる。
Next, among the samples shown in Table 2, 2% Al-containing steel and REM-added steel and a hot tensile test (1000
The relationship with the cross-sectional reduction rate at (° C) was investigated. The results are shown in Fig. 6. From this figure, it is understood that the cross-section reduction rate (hot ductility) is improved by the addition of REM, but it is decreased when the content exceeds a certain amount. It is considered that when excessive REM exists in the steel, inclusions such as oxides increase, which adversely affects the hot workability. In any case, it can be seen that when the REM content is 0.05% or less, more specifically, the hot workability becomes the best at around 0.02%.

【0059】〔実施例5〕表5に示す化学成分値(重量
%)の試料を実施例1と同様に作製し,実施例1と同じ
耐溶融炭酸塩腐食性試験に供した。また,実施例4と同
様に試料を作製して実施例4と同様に1000℃での熱
間引張試験を行って断面減少率を求めた。それらの結果
を図7に総括して示した。
Example 5 A sample having the chemical component values (% by weight) shown in Table 5 was prepared in the same manner as in Example 1 and subjected to the same molten carbonate corrosion resistance test as in Example 1. Further, a sample was prepared in the same manner as in Example 4, and a hot tensile test was performed at 1000 ° C. in the same manner as in Example 4 to obtain the cross-section reduction rate. The results are summarized in Fig. 7.

【0060】[0060]

【表5】 [Table 5]

【0061】図7の結果から,本発明で規定する組成範
囲の試料2a〜2fの鋼は溶融炭酸塩中における腐食量
はいずれもSUS310S(2j)の約1/2以下であ
り,良好な耐溶融炭酸塩腐食性を示すことがわかる。ま
た,本発明鋼(2a〜2f)のδ(%)は表5に示した
ようにいずれも0.5〜4.0の範囲にあるが,これらの
鋼の1000℃における断面減少率はいずれも55%以
上であり,熱間加工も良好である。
From the results shown in FIG. 7, the steels of Samples 2a to 2f having the composition ranges specified in the present invention each had a corrosion amount in molten carbonate of about 1/2 or less of that of SUS310S (2j), indicating good corrosion resistance. It can be seen that the molten carbonate exhibits corrosiveness. Further, the δ (%) of the steels of the present invention (2a to 2f) are all in the range of 0.5 to 4.0 as shown in Table 5, but the cross-sectional reduction rate at 1000 ° C of these steels is Is 55% or more, and hot working is also good.

【0062】これに対し,試料2hはSi%<0.2で
あるため,また試料2iはSi%/Al%>1.0であ
るため,それぞれ耐食性が悪い。また試料2gはδ
(%)が0.5〜4.0の範囲外であるため,熱間加工性
が悪くなっている。
On the other hand, since the sample 2h has Si% <0.2 and the sample 2i has Si% / Al%> 1.0, the corrosion resistance is poor. In addition, sample 2g is δ
(%) Is out of the range of 0.5 to 4.0, the hot workability is poor.

【0063】[0063]

【発明の効果】以上説明したように,本発明によれば,
CrおよびNiの含有量が比較的低いステンレス鋼にお
いても,溶融炭酸塩に対する耐腐食性が向上したステン
レス鋼が得られた。このステンレス鋼は比較的多量のA
lを含有するにも拘わらず高歩留りで熱間圧延が可能で
ある。したがって,従来の燃料電池のセパレータ材に代
わる安価で耐久性に優れた燃料電池のセパレータ材を提
供できる。
As described above, according to the present invention,
Even for stainless steels having relatively low Cr and Ni contents, stainless steels having improved corrosion resistance to molten carbonate were obtained. This stainless steel has a relatively large amount of A
Despite containing l, hot rolling is possible with high yield. Accordingly, it is possible to provide a fuel cell separator material that is inexpensive and has excellent durability, which is an alternative to the conventional fuel cell separator material.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼中のSi含有量と溶融炭酸塩中での鋼の腐食
量との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the Si content in steel and the amount of corrosion of steel in molten carbonate.

【図2】鋼中のSi%/Al%の比と溶融炭酸塩中での
鋼の腐食量との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the ratio of Si% / Al% in steel and the amount of corrosion of steel in molten carbonate.

【図3】鋼中の(Si%+Al%)/Ni%と鋼のビッ
カース硬度との関係を示す図である。
FIG. 3 is a diagram showing a relationship between (Si% + Al%) / Ni% in steel and Vickers hardness of steel.

【図4】鋼中のSi%/Al%の比と溶融炭酸塩中での
鋼の腐食量との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the ratio of Si% / Al% in steel and the amount of corrosion of steel in molten carbonate.

【図5】鋼中のδ(%)の値と鋼を熱間引張試験(10
00℃)したときの断面減少率との関係を示す図であ
る。
FIG. 5 shows the value of δ (%) in steel and the hot tensile test (10
It is a figure which shows the relationship with the cross-section reduction rate at the time of (00 degreeC).

【図6】鋼中のREM含有量と鋼を熱間引張試験(10
00℃)したときの断面減少率との関係を示す図であ
る。
FIG. 6: REM content in steel and hot tensile test of steel (10
It is a figure which shows the relationship with the cross-section reduction rate at the time of (00 degreeC).

【図7】本発明鋼と比較鋼を熱間引張試験(1000
℃)に供したときの断面減少率と溶融炭酸塩腐食試験に
供したときの腐食量を示す図である。
FIG. 7: Hot tensile test (1000
It is a figure which shows the cross-section reduction rate at the time of using (), and the amount of corrosion when using for a molten carbonate corrosion test.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−247852(JP,A) 特開 平1−252757(JP,A) 特開 昭62−294153(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/06 C21D 8/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-4-247852 (JP, A) JP-A-1-252757 (JP, A) JP-A-62-294153 (JP, A) (58) Field (Int.Cl. 7 , DB name) C22C 38/00-38/06 C21D 8/02

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で,C:0.1%以下,Mn:2.
0%以下,Ni:7.5%以上15.0%未満,Cr:1
4.0〜20.0%,Si:0.2%を超え4.0%以下,
Al:1.0〜4.0%を含有し,かつ Si%/Al%≦1.0 の関係を満足し,残部がFeおよび不可避的不純物から
なる溶融塩に対する耐食性に優れたステンレス鋼。
1. By weight%, C: 0.1% or less, Mn: 2.
0% or less, Ni: 7.5% or more and less than 15.0%, Cr: 1
4.0 to 20.0%, Si: more than 0.2% and 4.0% or less,
A stainless steel containing Al: 1.0 to 4.0%, satisfying the relationship of Si% / Al% ≤ 1.0, and the balance being Fe and inevitable impurities, which is excellent in corrosion resistance against a molten salt.
【請求項2】 重量%で,C:0.1%以下,Mn:2.
0%以下,Ni:7.5%以上15.0%未満,Cr:1
4.0〜20.0%,Si:0.2%を超え4.0%以下,
Al:1.0〜4.0%を含有し,さらに,3.0%以下
のCu,3.0%以下のMo,1.0%以下のTi,1.
0%以下のZr,0.5%以下のYまたは0.5%以下の
REM(希土類元素)の1種または2種以上を含有し,
且つ Si%/Al%≦1.0 の関係を満足し,残部がFeおよび不可避的不純物から
なる溶融塩に対する耐食性に優れたステンレス鋼。
2. By weight%, C: 0.1% or less, Mn: 2.
0% or less, Ni: 7.5% or more and less than 15.0%, Cr: 1
4.0 to 20.0%, Si: more than 0.2% and 4.0% or less,
Al: 1.0 to 4.0%, further, 3.0% or less Cu, 3.0% or less Mo, 1.0% or less Ti, 1.0.
One or more of Zr of 0% or less, Y of 0.5% or less or REM (rare earth element) of 0.5% or less,
A stainless steel that satisfies the relationship of Si% / Al% ≦ 1.0, and has excellent corrosion resistance to molten salts with the balance being Fe and inevitable impurities.
【請求項3】 Si%/Al%≦0.4の関係を満足し
ている請求項1または2に記載のステンレス鋼。
3. The stainless steel according to claim 1, which satisfies the relationship of Si% / Al% ≦ 0.4.
【請求項4】 (Si%+Al%)/Ni%≦0.47
の関係を満足している請求項1,2または3に記載のス
テンレス鋼。
4. (Si% + Al%) / Ni% ≦ 0.47
The stainless steel according to claim 1, 2 or 3, which satisfies the relationship of.
【請求項5】 下式で表されるδ(%)の値が0.5〜
4.0の範囲となるように各成分量が調整されている請
求項1,2,3または4に記載のステンレス鋼, δ(%)=1.57・Cr+0.7・Si+3.89・A
l−1.57・Ni−0.16・Mn−38.5・C−7.
65。
5. The value of δ (%) represented by the following formula is 0.5 to 0.5.
The stainless steel according to claim 1, 2, 3 or 4, wherein the amount of each component is adjusted to fall within the range of 4.0, δ (%) = 1.57 · Cr + 0.7 · Si + 3.89 · A.
1-1.57, Ni-0.16, Mn-38.5, C-7.
65.
【請求項6】 REM含有量は0.05%以下である請
求項5に記載のステンレス鋼。
6. The stainless steel according to claim 5, wherein the REM content is 0.05% or less.
【請求項7】 重量%で,C:0.1%以下,Mn:2.
0%以下,Ni:7.5%以上15.0%未満,Cr:1
4.0〜20.0%,Si:0.2%を超え4.0%以下,
Al:1.0〜4.0%を含有し,且つ Si%/Al%≦1.0 の関係を満足すると共に, δ(%)=1.57・Cr+0.7・Si+3.89・A
l−1.57・Ni−0.16・Mn−38.5・C−7.
65。 で表されるδ(%)の値が0.5〜4.0の範囲となるよ
うに各成分量が調整され,残部がFeおよび不可避的不
純物からなるオーステナイト系ステンレス鋼を熱間圧延
して鋼帯とするさいに,1000℃以上の温度で熱間圧
延を終了することを特徴とする溶融塩に対する耐食性に
優れたステンレス鋼の製造方法。
7. By weight%, C: 0.1% or less, Mn: 2.
0% or less, Ni: 7.5% or more and less than 15.0%, Cr: 1
4.0 to 20.0%, Si: more than 0.2% and 4.0% or less,
Al: 1.0 to 4.0% is contained, and the relationship of Si% / Al% ≦ 1.0 is satisfied, and δ (%) = 1.57 · Cr + 0.7 · Si + 3.89 · A
1-1.57, Ni-0.16, Mn-38.5, C-7.
65. The amount of each component is adjusted so that the value of δ (%) represented by is within the range of 0.5 to 4.0, and the rest is austenitic stainless steel containing Fe and unavoidable impurities and hot-rolled. A method for producing stainless steel having excellent corrosion resistance to molten salt, which comprises terminating hot rolling at a temperature of 1000 ° C. or higher when forming a steel strip.
【請求項8】 当該ステンレス鋼は,3.0%以下のC
u,3.0%以下のMo,1.0%以下のTi,1.0%
以下のZr,0.5%以下のYまたは0.05%以下のR
EM(希土類元素)の1種または2種以上を含有する請
求項7に記載の製造方法。
8. The stainless steel has a C content of 3.0% or less.
u, Mo less than 3.0%, Ti less than 1.0%, 1.0%
Zr below, Y below 0.5% or R below 0.05%
The manufacturing method according to claim 7, which contains one kind or two or more kinds of EM (rare earth elements).
JP29804094A 1993-11-09 1994-11-08 Stainless steel excellent in corrosion resistance to molten salt and method for producing the same Expired - Fee Related JP3363628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29804094A JP3363628B2 (en) 1993-11-09 1994-11-08 Stainless steel excellent in corrosion resistance to molten salt and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30470093 1993-11-09
JP5-304700 1993-11-09
JP29804094A JP3363628B2 (en) 1993-11-09 1994-11-08 Stainless steel excellent in corrosion resistance to molten salt and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07188870A JPH07188870A (en) 1995-07-25
JP3363628B2 true JP3363628B2 (en) 2003-01-08

Family

ID=26561351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29804094A Expired - Fee Related JP3363628B2 (en) 1993-11-09 1994-11-08 Stainless steel excellent in corrosion resistance to molten salt and method for producing the same

Country Status (1)

Country Link
JP (1) JP3363628B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2352443C (en) 2000-07-07 2005-12-27 Nippon Steel Corporation Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells

Also Published As

Publication number Publication date
JPH07188870A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
EP2412837B1 (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
EP2058413B1 (en) Ferritic stainless steel sheet having excellent heat resistance
EP2557189B1 (en) Ferrite stainless steel sheet having high thermal resistance and processability, and method for manufacturing the same
EP3722448B1 (en) High-mn steel and method for manufacturing same
JP5846950B2 (en) Ferritic stainless steel hot-rolled steel sheet and method for producing the same, and method for producing ferritic stainless steel sheet
US5565167A (en) Stainless steel excellent in fused-salt corrosion resistance and method of producing the same
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JP2012172161A (en) High-purity ferritic stainless steel sheet with excellent oxidation resistance and high-temperature strength, and method for manufacturing the same
US9816163B2 (en) Cost-effective ferritic stainless steel
EP2341160B1 (en) Ferritic stainless steel and method for producing the same
JPH08193240A (en) Steel material excellent in temper embrittlement resistance and its production
WO1990004658A1 (en) Heat-resistant high-al austenitic steel having excellent hot working properties
EP4166680A1 (en) Precipitation-hardening type martensitic stainless steel sheet having excellent fatigue resistance
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JP3363628B2 (en) Stainless steel excellent in corrosion resistance to molten salt and method for producing the same
JP5709570B2 (en) High purity ferritic stainless steel sheet excellent in oxidation resistance and high temperature strength and method for producing the same
JP2019218613A (en) Ferrite austenite two-phase stainless steel sheet and weldment structure, and manufacturing method therefor
CN116529396A (en) High Ni alloy excellent in weld high temperature cracking resistance
JP3094807B2 (en) Hot-rolled steel sheet excellent in hot-dip galvanizing property and method for producing the same
EP3674426A1 (en) Method for production of ni-containing steel sheet
JP2002173721A (en) Ni BASED ALLOY FOR MACHINE STRUCTURAL USE
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same
EP4269627A1 (en) Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
JP3687315B2 (en) B-containing stainless steel and method for producing hot rolled sheet thereof
JP2002173720A (en) Ni BASED ALLOY EXCELLENT IN HOT WORKABILITY

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees