JP2019218613A - Ferrite austenite two-phase stainless steel sheet and weldment structure, and manufacturing method therefor - Google Patents

Ferrite austenite two-phase stainless steel sheet and weldment structure, and manufacturing method therefor Download PDF

Info

Publication number
JP2019218613A
JP2019218613A JP2018117593A JP2018117593A JP2019218613A JP 2019218613 A JP2019218613 A JP 2019218613A JP 2018117593 A JP2018117593 A JP 2018117593A JP 2018117593 A JP2018117593 A JP 2018117593A JP 2019218613 A JP2019218613 A JP 2019218613A
Authority
JP
Japan
Prior art keywords
less
stainless steel
steel sheet
value
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018117593A
Other languages
Japanese (ja)
Other versions
JP7285050B2 (en
Inventor
真知 川
Machi Kawa
真知 川
柘植 信二
Shinji Tsuge
信二 柘植
石丸 詠一朗
Eiichiro Ishimaru
詠一朗 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2018117593A priority Critical patent/JP7285050B2/en
Publication of JP2019218613A publication Critical patent/JP2019218613A/en
Application granted granted Critical
Publication of JP7285050B2 publication Critical patent/JP7285050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide a two-phase stainless steel sheet excellent in corrosion resistance of a weldment part, and a weldment structure using the same.SOLUTION: There is provided a ferrite austenite two-phase stainless steel sheet having a chemical composition containing, by mass%, C≤0.050%, Si≤2.00%, Mn:0.50 to 6.00%, P≤0.050%, S≤0.050%, N:0.08 to 0.25%, Cr:17.0 to 30.0%, Ni:0.10 to 8.00%, Cu:0.10 to 1.50%, Nb:0 to 0.10%, Mo:0 to 3.50%, Sn:0 to 1.00%, W:0 to 1.00%, V:0 to 1.00%, Ti:0 to 0.05%, B:0 to 0.0050%, Ca:0 to 0.0050%, Mg:0 to 0.0050%, Al:0 to 0.05%, REM:0 to 0.50%, and the balance Fe with impurities, and having a PREN_Mn value of less than 40.0, a DF value of 40.0 to 65.0, corrosion potential reduction amount estimated value of the weldment part of less than 100 mV, and ferrite grain size of less than 12.0 μm.SELECTED DRAWING: Figure 2

Description

本発明は、フェライト・オーステナイト二相ステンレス鋼板およびそれからなる溶接構造物、ならびにそれらの製造方法に関する。   The present invention relates to a ferritic-austenite duplex stainless steel sheet, a welded structure composed of the same, and a method for producing the same.

二相ステンレス鋼は、鋼の組織にオーステナイト相とフェライト相の両相を有するステンレス鋼である。二相ステンレス鋼は、一般に同等の耐食性を有するオーステナイト系ステンレス鋼に対して、低Niの成分系かつ高強度であることから、合金コストが低くかつ薄肉化が可能な材料として注目を浴びている。以前から高耐食性を活かして石油化学装置材料、ポンプ材料、ケミカルタンク用材料などに厚板として使用されているが、さらに近年では、高強度を活かして構造部材用材料などへの薄板の適用も進んでいる。   A duplex stainless steel is a stainless steel having both an austenite phase and a ferrite phase in the structure of the steel. Duplex stainless steel has attracted attention as a material that has a low alloy cost and can be made thinner than austenitic stainless steel, which generally has the same corrosion resistance, because of its low Ni composition and high strength. . It has long been used as a thick plate for petrochemical equipment materials, pump materials, and materials for chemical tanks, etc., taking advantage of its high corrosion resistance.However, in recent years, thin plates have also been applied to materials for structural members, etc., taking advantage of its high strength. I'm advancing.

二相ステンレス鋼には多くの鋼種がある。例えば、SUS821L1またはASTM S32101などに代表される、Cr、Ni、Moの含有量が少なくN含有量が多い経済性に優れるフェライト・オーステナイト系ステンレス鋼は、省合金二相ステンレス鋼と呼ばれている。省合金二相ステンレス鋼は、汎用オーステナイト系ステンレス鋼であるSUS304と同等以上の耐食性を有することから、その代替として用いられる場合がある。   There are many types of duplex stainless steel. For example, a ferritic austenitic stainless steel, such as SUS821L1 or ASTM S32101, which has a low Cr, Ni, and Mo content and a high N content and is economically excellent, is called an alloy-saving duplex stainless steel. . Since the alloy-saving duplex stainless steel has corrosion resistance equal to or higher than that of SUS304, which is a general-purpose austenitic stainless steel, it may be used as an alternative.

これらの二相ステンレス鋼を溶接が必要な用途に使用する際に課題となるのが、溶接金属部および溶接熱影響部でσ相またはクロム窒化物が析出することによる耐食性低下である。そのため、二相ステンレス鋼を使用する際は、耐食性があまり問題にならない用途において限定的に使用されるか、溶接方法を制限したり溶接後の再熱処理を実施したりするなど溶接作業性を犠牲にする場合が多い。   A problem when using these duplex stainless steels in applications requiring welding is a decrease in corrosion resistance due to precipitation of a σ phase or chromium nitride in a weld metal portion and a heat affected zone. Therefore, when duplex stainless steel is used, it is limitedly used in applications where corrosion resistance is not a major issue, or welding workability is sacrificed by restricting welding methods or performing reheat treatment after welding. In many cases.

特に、省合金二相ステンレス鋼では、クロム窒化物の生成による耐食性低下が問題になる場合が多い。その耐食性低下は、以下の機構で生じる。   In particular, in low-alloy duplex stainless steels, the reduction of corrosion resistance due to the formation of chromium nitride often becomes a problem. The decrease in corrosion resistance is caused by the following mechanism.

二相ステンレス鋼は、加熱温度によりフェライト相とオーステナイト相との相比が変動する。二相ステンレス鋼を溶接すると、母材を溶融するための加熱によって、溶接金属部および溶接熱影響部となる部分のフェライト相の割合が増加し、オーステナイト相の割合が減少する。一方、溶接金属部および溶接熱影響部が形成される冷却時には、オーステナイト相が増加する。しかし一般に、溶接金属部および溶接熱影響部が形成されるときの冷却速度は速いため、溶接金属部および溶接熱影響部のオーステナイト相の割合は母材よりも少なくなる。   In the duplex stainless steel, the phase ratio between the ferrite phase and the austenite phase varies depending on the heating temperature. When the duplex stainless steel is welded, the ratio of the ferrite phase in the weld metal portion and the portion serving as the welding heat affected zone increases, and the ratio of the austenite phase decreases, due to heating for melting the base metal. On the other hand, at the time of cooling in which the weld metal portion and the heat affected zone are formed, the austenite phase increases. However, in general, since the cooling rate when the weld metal part and the weld heat affected zone are formed is high, the ratio of the austenite phase in the weld metal part and the weld heat affected zone is smaller than that of the base metal.

二相ステンレス鋼中のNは、その殆どがオーステナイト相中に固溶している。しかし、溶接金属部および溶接熱影響部では、母材と比較してオーステナイト相の割合が少ないため、フェライト相中のN含有量が高くなっている。フェライト相中のNの固溶限界は、オーステナイト相に比べて非常に小さいため、溶接時の冷却中に溶接金属部および溶接熱影響部のフェライト相中またはフェライト/フェライト粒界には、フェライト相に固溶しきれないNがクロム窒化物として析出する。   Most of N in the duplex stainless steel is dissolved in the austenite phase. However, in the weld metal portion and the weld heat affected zone, the N content in the ferrite phase is high because the ratio of the austenite phase is smaller than that of the base metal. Since the solid solution limit of N in the ferrite phase is much smaller than that of the austenite phase, the ferrite phase in the weld metal and the weld heat affected zone or at the ferrite / ferrite grain boundary during cooling during welding is reduced to the ferrite phase. N, which cannot be completely dissolved in chromium, precipitates as chromium nitride.

このとき、クロム窒化物としてCrが消費されることにより、いわゆるクロム欠乏層が形成され、耐食性が低下する。したがって、溶接金属部および溶接熱影響部に析出するクロム窒化物量を低減することが溶接部の耐食性向上のために重要である。   At this time, when Cr is consumed as the chromium nitride, a so-called chromium-deficient layer is formed, and the corrosion resistance is reduced. Therefore, it is important to reduce the amount of chromium nitride deposited on the weld metal part and the weld heat affected zone for improving the corrosion resistance of the weld part.

省合金二相ステンレス鋼の溶接部材の耐食性低下を抑制または改善する方法として、特許文献1では、固溶レベルの微量V添加に加え、オーステナイト量推定式であるNi−bal.に応じてN含有量の上限を規定することにより、サブマージアーク溶接を想定した1300〜900℃区間が約26℃/sの冷却速度で溶接模擬加熱を実施しても溶接熱影響部の耐食性が良好な省合金二相ステンレス鋼を製造できるとされている。   As a method of suppressing or improving the deterioration of corrosion resistance of a welded member of an alloy-saving duplex stainless steel, Patent Document 1 discloses a method of estimating the amount of austenite, Ni-bal. By defining the upper limit of the N content in accordance with the above, the corrosion resistance of the heat affected zone of the welded heat-affected zone is maintained even when the simulated heating is performed at a cooling rate of about 26 ° C./s in the 1300 to 900 ° C. section assuming submerged arc welding. It is said that a good alloy saving duplex stainless steel can be manufactured.

また、特許文献2ではクロム窒化物析出開始温度の計算値を適切な範囲とすることにより、レーザー溶接を施した際の、溶接熱影響部の耐食性と靭性が良好な省合金二相ステンレス鋼およびレーザー溶接部材を製造できるとされている。なお、この特許文献2では、溶接金属部の1000℃における冷却速度推定値は400℃/s以上とされている。   Further, in Patent Document 2, by setting the calculated value of the chromium nitride precipitation onset temperature to an appropriate range, when laser welding is performed, the corrosion-resistant and toughness of the weld heat-affected zone and the reduced-alloy duplex stainless steel with good toughness and It is said that laser welding members can be manufactured. In Patent Document 2, the estimated cooling rate of the weld metal at 1000 ° C. is 400 ° C./s or more.

さらに、一般の二相ステンレス鋼の溶接方法として、特許文献3では溶接最終パスの溶接方法を制御することでクロム窒化物の析出を抑制する技術が開示されている。   Further, as a general method for welding duplex stainless steel, Patent Literature 3 discloses a technique for suppressing precipitation of chromium nitride by controlling a welding method in a final welding pass.

そして、特許文献4では溶接後に溶接熱影響部を700℃〜1000℃で熱処理を施すことでオーステナイト相を再析出させ、溶接熱影響部の耐食性を回復させる技術が開示されている。   Patent Literature 4 discloses a technique for recovering the corrosion resistance of a weld heat affected zone by subjecting a heat affected zone to heat treatment at 700 ° C. to 1000 ° C. after welding to reprecipitate an austenite phase.

特許第5345070号Patent No.53445070 特開2016−191094号公報JP-A-2006-191094 特開昭62−199272号公報JP-A-62-199272 特開2015−217434号公報JP 2015-217434 A

一般的に、析出物は、析出温度域で保持される時間が長い方が多く析出する。この析出温度域は析出物に応じて異なるが、一般の二相ステンレス鋼においては、オーステナイト相の析出温度域は1200℃〜900℃であり、クロム窒化物の析出温度域は950℃〜550℃程度である。   In general, the more precipitates are kept in the precipitation temperature range, the more precipitates are deposited. Although the precipitation temperature range varies depending on the precipitate, in a general duplex stainless steel, the precipitation temperature range of the austenite phase is 1200 ° C to 900 ° C, and the precipitation temperature range of chromium nitride is 950 ° C to 550 ° C. It is about.

レーザー溶接またはスポット溶接などのように、溶接入熱が小さく冷却速度が速い場合には、オーステナイト相の析出温度域に保持される時間が短いため、オーステナイト相の析出が少なくなる。しかし、クロム窒化物の析出温度域に保持される時間も短いため、クロム窒化物の析出も少なくなり、結果として耐食性の低下は小さい。   When the welding heat input is small and the cooling rate is high, such as in laser welding or spot welding, the time during which the austenite phase is kept in the precipitation temperature range is short, and the precipitation of the austenite phase is reduced. However, since the time for keeping the chromium nitride in the precipitation temperature range is also short, the precipitation of chromium nitride is reduced, and as a result, the decrease in corrosion resistance is small.

一方、サブマージアーク溶接のように溶接入熱が大きく冷却速度が遅い場合には、オーステナイト相の析出温度域に保持される時間が長くなるため、Nが十分固溶できるだけのオーステナイト相の析出があり、クロム窒化物の析出温度域に保持される時間が長くなってもクロム窒化物は析出しづらく耐食性の低下は小さい。   On the other hand, when the welding heat input is large and the cooling rate is low as in the case of submerged arc welding, the time for which the austenite phase is maintained in the precipitation temperature range becomes long, so that the austenite phase can precipitate enough for N to form a solid solution. Even if the time for which the chromium nitride is kept in the temperature range for depositing chromium nitride is prolonged, the chromium nitride is not easily deposited and the decrease in corrosion resistance is small.

しかしながら、例えば、薄板の溶接で一般に使用されるTIG溶接の冷却速度は、レーザー溶接とサブマージアーク溶接との中間である。このような冷却速度の場合には、溶接金属部および溶接熱影響部では、Nが十分固溶できるだけのオーステナイト相の析出がないにも関わらず、クロム窒化物の析出温度域に保持される時間が長くなるため、耐食性の低下が大きくなってしまう。   However, for example, the cooling rate of TIG welding, which is commonly used for welding thin sheets, is between laser welding and submerged arc welding. In the case of such a cooling rate, in the weld metal portion and the weld heat-affected zone, although there is no precipitation of an austenite phase enough for N to form a solid solution, the time maintained in the chromium nitride precipitation temperature range. , The corrosion resistance is greatly reduced.

特許文献1は冷却速度が遅いサブマージアーク溶接、特許文献2は冷却速度が速いレーザー溶接を対象とし、さらに厚さが10mm程度の厚板を対象としている。そのため、それらの中間の溶接入熱となるような溶接方法で薄板を溶接した際の、溶接金属部および溶接熱影響部の耐食性を向上させる技術については十分な検討がなされていない。   Patent Literature 1 targets submerged arc welding with a low cooling rate, and Patent Literature 2 targets laser welding with a high cooling rate, and further targets a thick plate having a thickness of about 10 mm. Therefore, no sufficient study has been made on a technique for improving the corrosion resistance of a weld metal portion and a weld heat affected zone when a thin plate is welded by a welding method that results in a welding heat input intermediate between them.

また、特許文献3では、溶接時の条件制御が重要となり、特許文献4では溶接後の熱処理が必要となる。薄板用途では大量に溶接する事が多く、溶接方法の制限または溶接後の熱処理などが難しい場合がある。さらに一般に薄板用途では溶加材を用いないため、溶加材による耐食性の改善も難しい。母材への合金元素の添加によって溶接金属部および溶接熱影響部の耐食性を向上させることは可能であるが、それには合金コストの増加という別の問題が生じる。   Further, in Patent Literature 3, condition control during welding is important, and in Patent Literature 4, heat treatment after welding is required. Welding is often performed in large quantities for thin sheet applications, and it may be difficult to restrict welding methods or to perform heat treatment after welding. Further, in general, a filler material is not used in a thin plate application, so that it is difficult to improve the corrosion resistance by the filler material. Although it is possible to improve the corrosion resistance of the weld metal and the weld heat affected zone by adding an alloying element to the base metal, there is another problem in that the alloy cost increases.

そのため、特に合金コストの観点から、合金添加が難しい省合金二相ステンレス鋼において、TIG溶接のような冷却速度がレーザー溶接またはスポット溶接ほど速くも、サブマージアーク溶接ほど遅くもない溶接について、溶接方法の制限、溶接後の再熱処理の実施および溶加材による耐食性改善を必要としない、溶接部耐食性に優れた二相ステンレス鋼板が望まれている。   Therefore, especially in the case of alloy saving duplex stainless steel in which addition of an alloy is difficult from the viewpoint of alloy cost, a welding method in which the cooling rate such as TIG welding is not as fast as laser welding or spot welding and not as slow as submerged arc welding. Therefore, there is a demand for a duplex stainless steel sheet excellent in corrosion resistance at the welded portion, which does not require the restriction of the heat treatment, the re-heat treatment after welding, and the improvement of the corrosion resistance by the filler metal.

本発明は、オーステナイト相とフェライト相との二相を持つ二相ステンレス鋼のうち、Cr、Ni、Mo等の高価な合金の含有量を抑えた省合金二相ステンレス鋼板において、溶接時の冷却速度がレーザー溶接ほど速くも、サブマージアーク溶接ほど遅くもない溶接方法で溶接した際の、溶接金属部および溶接熱影響部の耐食性低下が少なく、それにより当該鋼使用時のネックとなりうる溶接作業性の向上を図ることができ、さらに製造性の良好な、省合金フェライト・オーステナイト二相ステンレス鋼板および溶接構造物を提供することを目的とする。   The present invention relates to a duplex stainless steel sheet having two phases of an austenitic phase and a ferrite phase, and among alloyed duplex stainless steel sheets in which the content of expensive alloys such as Cr, Ni, and Mo is suppressed, cooling during welding is performed. When welding with a welding method that is not as fast as laser welding or not as slow as submerged arc welding, there is little decrease in corrosion resistance of the weld metal part and the weld heat affected zone, and thereby welding workability that can become a neck when using the steel It is an object of the present invention to provide an alloy-saving ferritic / austenitic duplex stainless steel sheet and a welded structure, which can further improve the productivity and have good productivity.

本発明者らは、種々の成分および板厚を有する鋼について、TIG溶接で溶接した際の、溶接金属部および溶接熱影響部の耐食性に影響する因子を評価するため、種々の試験を実施した。   The present inventors conducted various tests on steels having various components and plate thicknesses in order to evaluate factors affecting the corrosion resistance of a weld metal part and a welding heat affected zone when welding by TIG welding. .

上記の試験結果について、溶接部の孔食電位に着目し、孔食電位を良好にする因子を調査した結果、以下の知見を得た。
(a)DF値が小さいほど溶接部の孔食電位が良好になる。
(b)Cu含有量が少ないほど溶接部の孔食電位が良好になる。
(c)母材の粒径が小さいほど溶接部の孔食電位が良好になる。
このうち、(a)は二相ステンレス鋼の溶接部に対して一般に知られている知見であるが、(b)および(c)は本調査によって初めて得られた知見である。
Regarding the above test results, the following findings were obtained as a result of investigating factors that improve the pitting potential by focusing on the pitting potential of the welded portion.
(A) The smaller the DF value, the better the pitting potential of the welded portion.
(B) The smaller the Cu content, the better the pitting potential of the weld.
(C) The smaller the particle size of the base material, the better the pitting potential of the welded portion.
Of these, (a) is the knowledge generally known for the welded portion of duplex stainless steel, but (b) and (c) are the knowledge obtained for the first time by this survey.

本発明は、上記の知見に基づいてなされたものであり、下記のフェライト・オーステナイト二相ステンレス鋼板および溶接構造物、ならびにそれらの製造方法を要旨とする。   The present invention has been made based on the above findings, and has the following features of the following ferrite-austenite duplex stainless steel sheet and welded structure, and a method for producing them.

(1)化学組成が、質量%で、
C:0.050%以下、
Si:2.00%以下、
Mn:0.50〜6.00%、
P:0.050%以下、
S:0.050%以下、
N:0.08〜0.25%、
Cr:17.0〜30.0%、
Ni:0.10〜8.00%、
Cu:0.10〜1.50%、
Nb:0〜0.10%、
Mo:0〜3.50%、
Sn:0〜1.00%、
W:0〜1.00%、
V:0〜1.00%、
Ti:0〜0.05%、
B:0〜0.0050%、
Ca:0〜0.0050%、
Mg:0〜0.0050%、
Al:0〜0.05%、
REM:0〜0.50%、
残部:Feおよび不純物であり、
下記(i)式で計算されるPREN_Mn値が40.0未満であり、
下記(ii)式で計算されるDF値が40.0〜65.0であり、
下記(iii)式で計算される溶接部の孔食電位低下量予測値が100mV未満であり、
鋼板の圧延方向に垂直な断面における、フェライト粒の平均結晶粒径が12.0μm未満である金属組織を有する、
フェライト・オーステナイト二相ステンレス鋼板。
PREN_Mn値=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(i)
DF値=7.2×(Cr+0.88Mo+0.78Si)−8.9×(Ni+0.03Mn+0.72Cu+22C+21N)−44.9 ・・・(ii)
溶接部の孔食電位低下量予測値=3.2DF値+54Cu−115 ・・・(iii)
但し、上記式中の元素記号は、鋼中に含まれる各元素の含有率(質量%)であり、含有しない場合は0を代入する。
(1) The chemical composition is expressed in mass%
C: 0.050% or less,
Si: 2.00% or less,
Mn: 0.50 to 6.00%,
P: 0.050% or less,
S: 0.050% or less,
N: 0.08 to 0.25%,
Cr: 17.0-30.0%,
Ni: 0.10 to 8.00%,
Cu: 0.10 to 1.50%,
Nb: 0 to 0.10%,
Mo: 0 to 3.50%,
Sn: 0 to 1.00%,
W: 0 to 1.00%,
V: 0 to 1.00%,
Ti: 0 to 0.05%,
B: 0 to 0.0050%,
Ca: 0 to 0.0050%,
Mg: 0 to 0.0050%,
Al: 0 to 0.05%,
REM: 0-0.50%,
The balance: Fe and impurities,
The PREN_Mn value calculated by the following formula (i) is less than 40.0,
The DF value calculated by the following equation (ii) is 40.0 to 65.0,
The predicted value of the pitting potential decrease amount of the welded portion calculated by the following formula (iii) is less than 100 mV,
In a cross section perpendicular to the rolling direction of the steel sheet, having a metal structure in which the average crystal grain size of ferrite grains is less than 12.0 μm,
Ferrite-austenite duplex stainless steel sheet.
PREN_Mn value = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (i)
DF value = 7.2 × (Cr + 0.88Mo + 0.78Si) -8.9 × (Ni + 0.03Mn + 0.72Cu + 22C + 21N) -44.9 (ii)
Predicted value of pitting potential decrease of welded portion = 3.2 DF value + 54Cu-115 (iii)
However, the symbol of the element in the above formula is the content (% by mass) of each element contained in the steel, and 0 is substituted when the element is not contained.

(2)前記化学組成が、質量%で、
Nb:0.01〜0.10%、
Mo:0.10〜2.50%、
Sn:0.030〜1.00%、
W:0.01〜1.00%、および、
V:0.01〜1.00%、
から選択される1種以上を含有する、
上記(1)に記載のフェライト・オーステナイト二相ステンレス鋼板。
(2) the chemical composition is expressed in mass%;
Nb: 0.01 to 0.10%,
Mo: 0.10 to 2.50%,
Sn: 0.030 to 1.00%,
W: 0.01 to 1.00%, and
V: 0.01-1.00%,
Containing at least one member selected from the group consisting of:
The ferrite-austenite duplex stainless steel sheet according to (1).

(3)前記化学組成が、質量%で、
Ti:0.005〜0.05%、および、
B:0.0003〜0.0050%、
から選択される1種以上を含有する、
上記(1)または(2)に記載のフェライト・オーステナイト二相ステンレス鋼板。
(3) The chemical composition is represented by mass%
Ti: 0.005 to 0.05%, and
B: 0.0003-0.0050%,
Containing at least one member selected from the group consisting of:
The ferrite-austenite duplex stainless steel sheet according to the above (1) or (2).

(4)前記化学組成が、質量%で、
Ca:0.0001〜0.0050%、
Mg:0.0001〜0.0050%、
Al:0.0030〜0.05%、および、
REM:0.005〜0.50%、
から選択される1種以上を含有する、
上記(1)から(3)までのいずれかに記載のフェライト・オーステナイト二相ステンレス鋼板。
(4) The chemical composition is represented by mass%
Ca: 0.0001 to 0.0050%,
Mg: 0.0001-0.0050%,
Al: 0.0030 to 0.05%, and
REM: 0.005 to 0.50%,
Containing at least one member selected from the group consisting of:
The ferrite-austenite duplex stainless steel sheet according to any one of the above (1) to (3).

(5)上記(1)から(4)までのいずれかに記載のフェライト・オーステナイト二相ステンレス鋼板からなり、溶接部の孔食電位低下量実測値が100mV未満である、
溶接構造物。
(5) The ferrite-austenite duplex stainless steel sheet according to any one of (1) to (4) above, wherein the measured value of the decrease in the pitting potential of the welded portion is less than 100 mV.
Welded structures.

(6)上記(1)から(4)までのいずれかに記載のフェライト・オーステナイト二相ステンレス鋼板を製造する方法であって、
上記(1)から(4)までのいずれかに記載の化学組成を有する鋼を連続鋳造し、熱間圧延を行い、熱間圧延によって得られた熱延板を1150℃以下で焼鈍し、冷延圧下率が50%以上である1回の冷間圧延、または中間焼鈍を挟む2回以上の冷間圧延を行い、1050℃未満で最終焼鈍を行う、
フェライト・オーステナイト二相ステンレス鋼板の製造方法。
ここで、冷延圧下率(%)は、(冷延前の板厚−冷延後の板厚)/冷延前の板厚×100で計算される値である。但し、冷間圧延を複数回行い、冷間圧延の間で中間焼鈍を行った場合は、最終の冷間圧延の圧下率とする。
(6) A method for producing a ferrite-austenite duplex stainless steel sheet according to any one of the above (1) to (4),
A steel having the chemical composition according to any one of the above (1) to (4) is continuously cast, hot-rolled, and a hot-rolled sheet obtained by hot rolling is annealed at 1150 ° C. or less, and cooled. One time cold rolling with a draft reduction of 50% or more, or two or more cold rollings sandwiching intermediate annealing, and performing final annealing at less than 1050 ° C.
Manufacturing method of ferritic-austenite duplex stainless steel sheet.
Here, the cold rolling reduction (%) is a value calculated by (sheet thickness before cold rolling−sheet thickness after cold rolling) / sheet thickness before cold rolling × 100. However, when the cold rolling is performed a plurality of times and the intermediate annealing is performed between the cold rollings, the rolling reduction of the final cold rolling is set.

(7)上記(5)に記載の溶接構造物を製造する方法であって、
上記(1)から(4)までのいずれかに記載のフェライト・オーステナイト二相ステンレス鋼板に対して、板厚1mmあたり500〜3000J/cmの溶接入熱となる条件で溶接を行う、
溶接構造物の製造方法。
(7) A method for producing a welded structure according to the above (5),
Welding to the ferrite-austenite duplex stainless steel sheet according to any one of the above (1) to (4) under conditions that provide a welding heat input of 500 to 3000 J / cm per 1 mm of sheet thickness;
Manufacturing method for welded structures.

本発明によれば、省合金二相ステンレス鋼板において、溶接部の耐食性に優れたフェライト・オーステナイト二相ステンレス鋼板およびそれを用いた溶接構造物を得ることが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to obtain the ferrite-austenite duplex stainless steel sheet excellent in the corrosion resistance of a weld part, and the welded structure using the same in an alloy saving duplex stainless steel sheet.

DF値が同等でCu含有量の異なる試料の溶接熱影響部および溶接金属部の断面組織写真である。(a)は試料番号8−2であり、(b)は試料番号15−1である。It is a cross-sectional micrograph of a weld heat affected zone and a weld metal part of samples with the same DF value and different Cu content. (A) is sample number 8-2, and (b) is sample number 15-1. 溶接部の孔食電位低下量予測値と実際に測定した孔食電位低下量との関係を示す図である。但し、粒径が本発明の特許請求の範囲外となる例は白抜きで示し、孔食電位以外の要因で本発明の特許請求の範囲外となる例を除く。It is a figure which shows the relationship between the pitting potential reduction amount prediction value of a welding part, and the pitting potential reduction amount actually measured. However, examples in which the particle size is out of the scope of the claims of the present invention are outlined, and examples in which the particle size is outside the scope of the claims of the present invention due to factors other than the pitting potential are excluded.

以下、本発明の各要件について詳しく説明する。   Hereinafter, each requirement of the present invention will be described in detail.

1.鋼板の化学組成
各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
1. Chemical composition of steel sheet The reasons for limiting each element are as follows. In the following description, “%” for the content means “% by mass”.

C:0.050%以下
Cは、オーステナイト相に固溶して強度を高める元素である。しかし、C含有量が0.050%を超えると、鋼板の強度が高くなり加工性が劣化する。また、Cr炭化物の析出を促進するために粒界腐食の発生をもたらす。したがって、C含有量は0.050%以下とする。C含有量は0.040%以下であるのが好ましい。また、耐食性の点からCは低くする方が好ましいが、現存の製鋼設備ではC含有量を0.002%以下に低下させるには大きなコスト増加を招く。そのため、C含有量は0.002%以上であることが好ましい。
C: 0.050% or less C is an element that forms a solid solution in the austenite phase to increase the strength. However, when the C content exceeds 0.050%, the strength of the steel sheet increases, and the workability deteriorates. In addition, intergranular corrosion occurs to promote the precipitation of Cr carbide. Therefore, the C content is set to 0.050% or less. The C content is preferably 0.040% or less. Further, it is preferable to lower C from the viewpoint of corrosion resistance. However, in existing steelmaking equipment, reducing the C content to 0.002% or less causes a large increase in cost. Therefore, the C content is preferably 0.002% or more.

Si:2.00%以下
Siは、脱酸元素として使われたり、耐酸化性向上のために添加されたりする場合がある。しかし、Si含有量が2.00%を超えると、鋼板の硬質化をもたらし、靭性および加工性が劣化する。したがって、Si含有量は2.00%以下とする。Si含有量は1.50%以下であるのが好ましく、1.00%以下であるのがより好ましい。また、Si含有量を極少量まで低減するためには、鋼の精錬時のコスト増加を招く。そのため、Si含有量は0.03%以上であることが好ましい。
Si: 2.00% or less Si may be used as a deoxidizing element or added for improving oxidation resistance. However, when the Si content exceeds 2.00%, the steel sheet is hardened, and the toughness and workability deteriorate. Therefore, the Si content is set to 2.00% or less. The Si content is preferably at most 1.50%, more preferably at most 1.00%. Further, in order to reduce the Si content to a very small amount, costs for refining steel are increased. Therefore, the Si content is preferably 0.03% or more.

Mn:0.50〜6.00%
Mnは、オーステナイト相を増加させ、また窒素の固溶度を上げ製造時の気泡欠陥などを抑制する効果を有する。しかし、Mnを多量に含有すると、耐食性および熱間加工性を低下させる。したがって、Mn含有量は0.50〜6.00%とする。Mn含有量は1.00%以上であるのが好ましく、2.50%以上であるのがより好ましい。また、Mn含有量は4.00%以下であるのが好ましい。
Mn: 0.50 to 6.00%
Mn has the effect of increasing the austenite phase, increasing the solid solubility of nitrogen, and suppressing bubble defects and the like during production. However, when Mn is contained in a large amount, corrosion resistance and hot workability are reduced. Therefore, the Mn content is set to 0.50 to 6.00%. The Mn content is preferably at least 1.00%, more preferably at least 2.50%. Further, the Mn content is preferably 4.00% or less.

P:0.050%以下
Pは、鋼中に不可避的に混入する元素であり、またCrなどの原料にも含有されているため、低減することが困難であるが、Pを多量に含有すると成形性を低下させる。P含有量は少ないほど好ましく、0.050%以下とする。P含有量は0.040%以下であるのが好ましい。
P: 0.050% or less P is an element inevitably mixed in steel and is also contained in raw materials such as Cr, so it is difficult to reduce it. Decreases moldability. The P content is preferably as small as possible, and is set to 0.050% or less. The P content is preferably 0.040% or less.

S:0.050%以下
Sは、鋼中に不可避的に混入する元素であり、Mnと結合して介在物を作り、発銹の基点となる場合がある。したがって、S含有量は0.050%以下とする。S含有量は低いほど耐食性が向上するので、0.0030%以下であるのが好ましい。
S: 0.050% or less S is an element unavoidably mixed into steel, and may combine with Mn to form inclusions and serve as a starting point of rust. Therefore, the S content is set to 0.050% or less. Since the corrosion resistance improves as the S content decreases, it is preferably 0.0030% or less.

N:0.08〜0.25%
Nは、オーステナイト相に固溶して強度および耐食性を高めて省合金化に寄与する元素である。しかしながら、Nは、溶接冷却時のクロム窒化物の析出に大きく影響する元素である。0.25%を超えて含有させると、溶接金属部および溶接熱影響部のクロム窒化物の析出量が多く、母材試料と溶接部との耐食性差が大きくなる。したがって、N含有量は、0.08〜0.25%とする。強度および耐食性の観点からは、N含有量は0.15%以上であるのが好ましい。また、クロム窒化物の析出を抑制する観点からは、N含有量は0.20%であるのが好ましい。
N: 0.08 to 0.25%
N is an element that forms a solid solution with the austenite phase to enhance strength and corrosion resistance and contribute to alloy saving. However, N is an element that greatly affects the precipitation of chromium nitride during welding cooling. When the content exceeds 0.25%, the precipitation amount of chromium nitride in the weld metal part and the weld heat affected zone is large, and the difference in corrosion resistance between the base material sample and the weld part increases. Therefore, the N content is set to 0.08 to 0.25%. From the viewpoint of strength and corrosion resistance, the N content is preferably 0.15% or more. Further, from the viewpoint of suppressing the precipitation of chromium nitride, the N content is preferably 0.20%.

Cr:17.0〜30.0%
Crは、耐食性を確保するために必要な元素である。しかし、Crを多量に含有すると、熱間加工割れをもたらし、また、溶接金属部および溶接熱影響部でのクロム窒化物の析出量が多くなる。したがって、Cr含有量は17.0〜30.0%とする。Cr含有量は20.0%以上であるのが好ましく、21.0%以上であるのがより好ましい。また、Cr含有量は25.0%以下であるのが好ましく、23.0%以下であるのがより好ましく、22.0%以下であるのがさらに好ましい。
Cr: 17.0-30.0%
Cr is an element necessary for ensuring corrosion resistance. However, when a large amount of Cr is contained, hot work cracking is caused, and the precipitation amount of chromium nitride in the weld metal part and the weld heat affected zone increases. Therefore, the Cr content is set to 17.0 to 30.0%. The Cr content is preferably at least 20.0%, more preferably at least 21.0%. Further, the Cr content is preferably 25.0% or less, more preferably 23.0% or less, and still more preferably 22.0% or less.

Ni:0.10〜8.00%
Niは、オーステナイト安定化元素であり、DF値を調整するために重要な元素である。また、Niは耐食性を向上させる効果を有する。しかし、Niを多量に含有すると、原料コストの増加をもたらし、またDF値が低くなることで応力腐食割れなどの問題が生じる可能性がある。したがって、Ni含有量は0.10〜8.00%とする。Ni含有量は1.00%以上であるのが好ましい。また、Ni含有量は6.00%以下であるのが好ましく、4.00%以下であるのがより好ましく、3.00%以下であるのがさらに好ましい。
Ni: 0.10 to 8.00%
Ni is an austenite stabilizing element and is an important element for adjusting the DF value. Ni has the effect of improving corrosion resistance. However, when a large amount of Ni is contained, the raw material cost is increased, and a problem such as stress corrosion cracking may be caused due to a low DF value. Therefore, the Ni content is 0.10 to 8.00%. The Ni content is preferably at least 1.00%. Further, the Ni content is preferably 6.00% or less, more preferably 4.00% or less, and still more preferably 3.00% or less.

Cu:0.10〜1.50%
Cuは、耐硫酸性の向上に非常に有効な元素である。しかし、上述のように、本発明者らは、Cuが溶接部の孔食電位を劣化させる元素であることを見出した。図1は、DF値が同等でCu含有量の異なる試料の溶接熱影響部および溶接金属部の断面組織写真である。図1に示すように、DF値が同等でもCu含有量が少ない試料では、溶接金属部の黒色にエッチングされた領域、つまりクロム窒化物の析出部の面積は、Cu含有量が多い試料に比べて明らかに小さいことが分かる。
Cu: 0.10 to 1.50%
Cu is a very effective element for improving sulfuric acid resistance. However, as described above, the present inventors have found that Cu is an element that degrades the pitting potential of a weld. FIG. 1 is a photograph of a cross-sectional structure of a weld heat affected zone and a weld metal zone of samples having the same DF value and different Cu content. As shown in FIG. 1, in a sample having the same DF value but a small Cu content, the black-etched region of the weld metal, that is, the area of the deposited portion of chromium nitride is smaller than that of the sample having a high Cu content. It is clear that it is small.

特に、Cu含有量が1.50%を超えると、孔食電位差を大きくし溶接金属部および溶接熱影響部の耐食性を劣化させる。したがって、Cu含有量は0.10〜1.50%とする。Cu含有量は0.30%以上であるのが好ましく、0.50%以上であるのがより好ましい。また、Cu含有量は1.00%以下であるのが好ましく、0.75%以下であるのがより好ましい。   In particular, when the Cu content exceeds 1.50%, the pitting potential difference is increased, and the corrosion resistance of the weld metal portion and the weld heat affected zone is deteriorated. Therefore, the Cu content is set to 0.10 to 1.50%. The Cu content is preferably at least 0.30%, more preferably at least 0.50%. Further, the Cu content is preferably 1.00% or less, more preferably 0.75% or less.

本発明に係るフェライト・オーステナイト二相ステンレス鋼板は、耐食性を向上させることを目的として、必要に応じて、Nb、Mo、Sn、WおよびVから選択される1種以上を含有させてもよい。   The ferrite-austenite duplex stainless steel sheet according to the present invention may contain one or more selected from Nb, Mo, Sn, W, and V as necessary for the purpose of improving corrosion resistance.

Nb:0〜0.10%
Nbは、Nと化合物を作ることでクロム窒化物の析出を抑制する効果があるため、必要に応じて含有させてもよい。しかし、Nbを多量に含有すると、鋼板の加工性を低下させる。したがって、Nb含有量は0.10%以下とする。上記の効果を得るためには、Nb含有量は0.01%以上であるのが好ましく、0.04%以上であるのがより好ましい。
Nb: 0 to 0.10%
Since Nb has an effect of suppressing precipitation of chromium nitride by forming a compound with N, Nb may be contained as necessary. However, when Nb is contained in a large amount, the workability of the steel sheet is reduced. Therefore, the Nb content is set to 0.10% or less. In order to obtain the above effects, the Nb content is preferably at least 0.01%, more preferably at least 0.04%.

Mo:0〜3.50%
Moは、耐食性を向上させる元素であるため、必要に応じて含有させてもよい。しかし、Moを多量に含有すると、原料コストの増加をもたらし、また溶接部のσ相の析出による耐食性低下が問題となる。したがって、Mo含有量は3.50%以下とする。上記の効果を得るためには、Mo含有量は0.10%以上であるのが好ましい。また、Mo含有量は2.50%以下であるのが好ましく、1.00%以下であるのがより好ましく、0.60%以下であるのがさらに好ましい。
Mo: 0 to 3.50%
Mo is an element that improves the corrosion resistance, and may be contained as necessary. However, when Mo is contained in a large amount, the cost of raw materials increases, and the corrosion resistance decreases due to precipitation of the σ phase in the welded portion. Therefore, the Mo content is set to 3.50% or less. In order to obtain the above effects, the Mo content is preferably 0.10% or more. Further, the Mo content is preferably 2.50% or less, more preferably 1.00% or less, and still more preferably 0.60% or less.

Sn:0〜1.00%
Snは、耐食性を向上させる元素であるため、必要に応じて含有させてもよい。しかし、Snを多量に含有すると、熱間加工性を悪化させる。したがって、Sn含有量は1.00%以下とする。上記の効果を得るためには、Sn含有量は0.030%以上であるのが好ましい。
Sn: 0 to 1.00%
Since Sn is an element that improves corrosion resistance, Sn may be included as necessary. However, when Sn is contained in a large amount, hot workability is deteriorated. Therefore, the Sn content is set to 1.00% or less. In order to obtain the above effects, the Sn content is preferably 0.030% or more.

W:0〜1.00%
Wは、耐食性を向上させる元素であるため、必要に応じて含有させてもよい。しかし、Wを多量に含有すると、圧延時の負荷を増大させて製造疵を生成させやすくなる。したがって、W含有量は1.00%以下とする。上記の効果を得るためには、W含有量は0.01%以上であるのが好ましい。また、W含有量は0.50%以下であるのが好ましい。
W: 0-1.00%
W is an element that improves corrosion resistance, and may be included as necessary. However, when W is contained in a large amount, the load at the time of rolling is increased, so that a production flaw is easily generated. Therefore, the W content is set to 1.00% or less. In order to obtain the above effects, the W content is preferably 0.01% or more. Further, the W content is preferably 0.50% or less.

V:0〜1.00%
Vは、耐食性を向上させる元素であるため、必要に応じて含有させてもよい。しかし、Vを多量に含有すると、圧延時の負荷を増大させて製造疵を生成させやすくなる。したがって、V含有量は1.00%以下とする。上記の効果を得るためには、V含有量は0.01%以上であるのが好ましい。また、V含有量は0.50%以下であるのが好ましい。
V: 0 to 1.00%
V is an element that improves corrosion resistance, and may be included as necessary. However, when V is contained in a large amount, the load at the time of rolling is increased, so that a production flaw is easily generated. Therefore, the V content is set to 1.00% or less. In order to obtain the above effects, the V content is preferably 0.01% or more. Further, the V content is preferably 0.50% or less.

本発明に係るフェライト・オーステナイト二相ステンレス鋼板は、熱間加工性および成形性を向上させることを目的として、必要に応じて、TiおよびBから選択される1種以上を含有させてもよい。   The ferrite-austenite duplex stainless steel sheet according to the present invention may contain one or more selected from Ti and B as needed for the purpose of improving hot workability and formability.

Ti:0〜0.05%
Tiは、Nbと同様に、溶接熱影響部の粗大化を防止し、さらには凝固組織を微細等軸晶化する効果を有するため、必要に応じて含有させてもよい。しかし、Tiを多量に含有すると、均一伸びおよび局部伸びを低下させる。したがって、Ti含有量は0.05%以下とする。上記の効果を得るためには、Ti含有量は0.005%以上であるのが好ましい。
Ti: 0 to 0.05%
Ti, like Nb, has the effect of preventing the weld heat-affected zone from becoming coarser and further has the effect of finely equiaxing the solidified structure, and therefore may be contained as necessary. However, when a large amount of Ti is contained, uniform elongation and local elongation are reduced. Therefore, the Ti content is set to 0.05% or less. In order to obtain the above effects, the Ti content is preferably 0.005% or more.

B:0〜0.0050%
Bは、熱間加工性を向上させる効果を有するため、必要に応じて含有させてもよい。しかし、Bを多量に含有すると、耐食性が著しく劣化する。したがって、B含有量は0.0050%以下とする。上記の効果を得るためには、B含有量は0.0003%以上であるのが好ましい。また、B含有量は0.0030%以下であるのが好ましい。
B: 0 to 0.0050%
Since B has an effect of improving hot workability, it may be contained as necessary. However, when B is contained in a large amount, the corrosion resistance is significantly deteriorated. Therefore, the B content is set to 0.0050% or less. In order to obtain the above effects, the B content is preferably 0.0003% or more. Further, the B content is preferably 0.0030% or less.

本発明に係るフェライト・オーステナイト二相ステンレス鋼板は、精錬時に脱酸および脱硫を行うことを目的として、必要に応じて、Ca、Mg、AlおよびREMから選択される1種以上を含有させてもよい。   The ferritic-austenite duplex stainless steel sheet according to the present invention may contain one or more kinds selected from Ca, Mg, Al and REM for the purpose of performing deoxidation and desulfurization at the time of refining. Good.

Ca:0〜0.0050%
Caは、脱硫、脱酸のために必要に応じて含有させてもよい。しかし、Caを多量に含有すると、熱間加工割れが生じやすくなり、また耐食性が低下する。したがって、Ca含有量は0.0050%以下とする。上記の効果を得るためには、Ca含有量は0.0001%以上であるのが好ましい。
Ca: 0 to 0.0050%
Ca may be contained as needed for desulfurization and deoxidation. However, when Ca is contained in a large amount, hot working cracks are likely to occur, and the corrosion resistance is reduced. Therefore, the Ca content is set to 0.0050% or less. In order to obtain the above effects, the Ca content is preferably 0.0001% or more.

Mg:0〜0.0050%
Mgは、脱酸だけでなく、凝固組織を微細化する効果を有するため、必要に応じて含有させてもよい。しかし、Mgを多量に含有すると、製鋼工程でのコスト増加をもたらす。したがって、Mg含有量は0.0050%以下とする。上記の効果を得るためには、Mg含有量は0.0001%以上であるのが好ましい。
Mg: 0 to 0.0050%
Since Mg has an effect of not only deoxidizing but also making a solidified structure finer, Mg may be contained as necessary. However, when Mg is contained in a large amount, the cost in the steel making process is increased. Therefore, the Mg content is set to 0.0050% or less. In order to obtain the above effects, the Mg content is preferably 0.0001% or more.

Al:0〜0.05%
Alは、脱硫、脱酸のために必要に応じて含有させてもよい。しかし、Alを多量に含有すると、製造疵の増加ならびに原料コストの増加を招く。したがって、Al含有量は0.05%以下とする。上記の効果を得るためには、Al含有量は0.0030%以上であるのが好ましい。
Al: 0 to 0.05%
Al may be contained as needed for desulfurization and deoxidation. However, when a large amount of Al is contained, an increase in manufacturing defects and an increase in raw material cost are caused. Therefore, the Al content is set to 0.05% or less. In order to obtain the above effects, the Al content is preferably 0.0030% or more.

REM:0〜0.50%
REM(希土類元素)は、熱間加工性を向上させる効果を有するため、必要に応じて含有させてもよい。しかし、REMを多量に含有すると、製造性を損なうとともにコスト増加をもたらす。したがって、REM含有量は0.50%以下とする。上記の効果を得るためには、REM含有量は0.005%以上であるのが好ましい。REM含有量は0.020%以上であるのが好ましく、0.20%以下であるのが好ましい。
REM: 0-0.50%
REM (rare earth element) has an effect of improving hot workability, and may be contained as necessary. However, when REM is contained in a large amount, the productivity is impaired and the cost is increased. Therefore, the REM content is set to 0.50% or less. In order to obtain the above effects, the REM content is preferably 0.005% or more. The REM content is preferably 0.020% or more, and more preferably 0.20% or less.

なお、REMは、Sc、YおよびLa〜Luまでの15元素(ランタノイド)の計17元素の総称であり、REMの含有量はこれらの元素の合計含有量を意味する。なお、ランタノイドは、工業的には、ミッシュメタルの形で添加される。   REM is a collective term for a total of 17 elements of Sc, Y, and 15 elements (lanthanoids) La to Lu, and the content of REM means the total content of these elements. The lanthanoid is industrially added in the form of misch metal.

本発明の鋼板の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。   In the chemical composition of the steel sheet of the present invention, the balance is Fe and impurities. Here, the "impurities" are components that are mixed due to various factors in the ore, scrap and other raw materials and the production process when steel is industrially produced, and are acceptable as long as they do not adversely affect the present invention. Means something.

本発明の鋼板の化学組成は、各元素の含有量が上述した範囲内であるのに加えて、下記に示す式によって算出されるPREN_Mn値、DF値および溶接部の孔食電位低下量予測値がそれぞれ所定の範囲内である必要がある。   The chemical composition of the steel sheet of the present invention is such that, in addition to the content of each element being within the above-described range, the PREN_Mn value, the DF value, and the predicted value of the pitting potential reduction amount of the welded portion are calculated by the following equations. Must be within a predetermined range.

PREN_Mn値:40.0未満
PREN_Mn値は、ステンレス鋼板の耐孔食性を示す一般的な指標であり、鋼板の化学組成から、下記(i)式で計算される。
PREN_Mn値=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(i)
但し、上記式中の元素記号は、鋼中に含まれる各元素の含有率(質量%)であり、含有しない場合は0を代入する。
PREN_Mn value: less than 40.0 The PREN_Mn value is a general index indicating the pitting corrosion resistance of a stainless steel sheet, and is calculated from the chemical composition of the steel sheet by the following formula (i).
PREN_Mn value = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (i)
However, the element symbol in the above formula is the content (% by mass) of each element contained in the steel, and 0 is substituted when it is not contained.

PREN_Mn値の増加は、CrおよびMoの含有量の増加による、合金コスト増加およびσ相の析出の問題を生じさせるおそれがある。さらに、N含有量の増加およびMn含有量の低減による窒素気泡の発生が問題になる。したがって、PREN_Mn値は40.0未満とする。PREN_Mn値は30.0未満であるのが好ましく、27.0未満であるのがより好ましい。下限は特に規定する必要はないが、SUS304相当の耐食性を得るためには、18.0以上であるのが好ましく、20.0以上であるのがより好ましい。   An increase in the PREN_Mn value may cause a problem of an increase in alloy cost and precipitation of the σ phase due to an increase in the content of Cr and Mo. Further, the generation of nitrogen bubbles due to an increase in the N content and a decrease in the Mn content becomes a problem. Therefore, the PREN_Mn value is set to less than 40.0. The PREN_Mn value is preferably less than 30.0, more preferably less than 27.0. The lower limit does not need to be particularly specified, but is preferably 18.0 or more, more preferably 20.0 or more, in order to obtain corrosion resistance equivalent to SUS304.

DF値:40.0〜65.0
DF値は、オーステナイト相の安定度を示す指標であり、鋼板の化学組成から、下記(ii)式で計算される。
DF値=7.2×(Cr+0.88Mo+0.78Si)−8.9×(Ni+0.03Mn+0.72Cu+22C+21N)−44.9 ・・・(ii)
但し、上記式中の元素記号は、鋼中に含まれる各元素の含有率(質量%)であり、含有しない場合は0を代入する。
DF value: 40.0-65.0
The DF value is an index indicating the stability of the austenite phase, and is calculated from the chemical composition of the steel sheet by the following equation (ii).
DF value = 7.2 × (Cr + 0.88Mo + 0.78Si) −8.9 × (Ni + 0.03Mn + 0.72Cu + 22C + 21N) -44.9 (ii)
However, the element symbol in the above formula is the content (% by mass) of each element contained in the steel, and 0 is substituted when it is not contained.

オーステナイト相はフェライト相に比べてNの固溶限が大きく、溶接冷却時のオーステナイト相の析出はクロム窒化物の析出を抑制する。したがって、耐食性の観点からはDF値は小さいほうが望ましい。一方、DF値が小さいと熱間加工性が悪化し製造時に問題が生じるとともに耐応力腐食割れ性が劣化する。したがって、DF値は40.0〜65.0とする。DF値は45.0以上であるのが好ましく、60.0以下であるのが好ましい。   The austenite phase has a larger solid solubility limit of N than the ferrite phase, and the precipitation of the austenite phase during welding cooling suppresses the precipitation of chromium nitride. Therefore, from the viewpoint of corrosion resistance, a smaller DF value is desirable. On the other hand, when the DF value is small, the hot workability is deteriorated, causing a problem at the time of manufacturing, and the stress corrosion cracking resistance is deteriorated. Therefore, the DF value is 40.0 to 65.0. The DF value is preferably 45.0 or more, and more preferably 60.0 or less.

溶接部の孔食電位低下量予測値:100mV未満
溶接部の孔食電位低下量予測値は、DF値および鋼板中のCuの化学組成から、下記(iii)式で計算される値である。
溶接部の孔食電位低下量予測値=3.2DF値+54Cu−115 ・・・(iii)
但し、上記式中の元素記号は、鋼中に含まれる各元素の含有率(質量%)であり、含有しない場合は0を代入する。
Predicted value of pitting potential decrease of welded portion: less than 100 mV The predicted value of pitting potential reduced amount of welded portion is a value calculated from the DF value and the chemical composition of Cu in the steel sheet by the following formula (iii).
Predicted value of decrease in pitting potential of the welded portion = 3.2 DF value + 54Cu-115 (iii)
However, the element symbol in the above formula is the content (% by mass) of each element contained in the steel, and 0 is substituted when it is not contained.

(iii)式において、DF値は二相ステンレス鋼の鋳片表層のδ−Fe量の指標であり、小さいほうがオーステナイト相の安定度が高い。係数が正であることは、DF値が小さいほど溶接部の耐孔食性が良好であることを意味している。これは溶接金属部および溶接熱影響部で冷却中のオーステナイト相の析出が多く、固溶される窒素が多いためだと考えられ、過去知見と矛盾しない。   In the formula (iii), the DF value is an index of the amount of δ-Fe in the surface layer of the slab of the duplex stainless steel, and the smaller the value, the higher the stability of the austenite phase. The fact that the coefficient is positive means that the smaller the DF value, the better the pitting corrosion resistance of the welded portion. This is considered to be due to the large precipitation of austenite phase during cooling in the weld metal and the weld heat affected zone, and a large amount of dissolved nitrogen, which is consistent with past knowledge.

また、Cuの係数は正であり、Cu含有量が低いほど溶接部の耐孔食性が良好であることを意味している。この原因については完全に解明されてはいないが、Cuは窒素と反発相互作用を有する元素であるため、Cu含有量が高くなると鋼中の固溶Cuによって窒素が窒化物として析出しやすくなることが考えられる。   Further, the coefficient of Cu is positive, meaning that the lower the Cu content, the better the pitting corrosion resistance of the welded portion. Although the cause has not been completely elucidated, since Cu is an element having a repulsive interaction with nitrogen, when the Cu content is high, nitrogen is likely to precipitate as nitride by solid solution Cu in the steel. Can be considered.

以上の知見に基づいて、上記(iii)式が導出された。なお、後述するように、溶接部の孔食電位低下量の予測値と溶接部の孔食電位低下量の実測値とはよく一致する。   Based on the above findings, the above equation (iii) was derived. In addition, as described later, the predicted value of the pitting potential reduction amount of the welded portion and the actually measured value of the pitting potential reduction amount of the welded portion match well.

溶接部は母材部よりも耐食性が低下するため、使用可能な環境は溶接部の耐食性で決定される。溶接部の耐食性を担保するために合金添加によってPREN_Mn値を上げる必要があるが、前述の理由のため難しい。省合金二相鋼はSUS304またはSUS316Lの代替鋼種としての用途が存在するが、その場合に許容される孔食電位低下量は100mVである。   Since the corrosion resistance of the welded portion is lower than that of the base material portion, the usable environment is determined by the corrosion resistance of the welded portion. It is necessary to increase the PREN_Mn value by adding an alloy in order to secure the corrosion resistance of the welded portion, but it is difficult for the above-mentioned reason. Although the low-alloy duplex stainless steel has applications as an alternative steel type to SUS304 or SUS316L, the permissible decrease in pitting potential in this case is 100 mV.

そのため、溶接部の孔食電位低下量予測値は100mV未満とする。また、成分調整および製造条件の厳密化によるコスト増の観点から、90mV以下であるのが好ましく、85mV以下であるのがより好ましい。溶接部の孔食電位低下量は小さいほうが望ましいため下限は設けない。   Therefore, the predicted value of the pitting potential decrease amount of the welded portion is set to less than 100 mV. In addition, from the viewpoint of cost increase due to component adjustment and strict production conditions, it is preferably 90 mV or less, and more preferably 85 mV or less. The lower limit of the pitting potential at the welded portion is desirably small, so no lower limit is set.

2.鋼板の金属組織
フェライト粒の平均結晶粒径:12.0μm未満
上述のように、本発明者らは、溶接前のフェライト粒の平均結晶粒径が小さいほど、溶接熱影響部においてクロム窒化物の析出が少なくなり、良好な溶接部耐食性が得られることを見出した。この原因として、フェライト粒径が小さいほどオーステナイト析出サイトであるフェライト/フェライト粒界が多いため、溶接冷却時のオーステナイト相析出が促進され、窒素が多く固溶されたことが考えられる。
2. Metal structure of steel sheet Average crystal grain size of ferrite grains: less than 12.0 μm As described above, the present inventors have found that the smaller the average crystal grain size of ferrite grains before welding is, the smaller the average crystal grain size of chromium nitride in the weld heat-affected zone is. It has been found that precipitation is reduced and good weld corrosion resistance is obtained. It is conceivable that the reason for this is that the smaller the ferrite grain size, the more ferrite / ferrite grain boundaries that are austenite precipitation sites, so that austenite phase precipitation during welding cooling was promoted and a large amount of nitrogen was dissolved.

そのため、フェライト粒の平均結晶粒径は12.0μm未満とする。上記平均結晶粒径は8.0μm未満であるのが好ましい。また、平均結晶粒径の下限は特に規定する必要はないが、平均結晶粒径を過度に小さくすると伸びが低下するため、2.0μm以上であるのが好ましい。なお、本発明において、フェライト粒の平均結晶粒径は、C断面(圧延長さ方向に垂直な面を圧延方向から観察した面)の電子後方散乱解析像法(EBSP)を用いた測定により、フェライト粒の投影面積円相当径の測定結果の平均値を算出することにより求める。   Therefore, the average crystal grain size of the ferrite grains is set to less than 12.0 μm. The average crystal grain size is preferably less than 8.0 μm. The lower limit of the average crystal grain size does not need to be particularly defined. However, if the average crystal grain size is excessively reduced, elongation is reduced. Therefore, the lower limit is preferably 2.0 μm or more. In the present invention, the average crystal grain size of the ferrite grains is determined by electron backscattering analysis (EBSP) of a C section (a plane perpendicular to the elongation direction from the rolling direction). It is determined by calculating the average value of the measurement results of the equivalent diameter of the projected area circle of the ferrite grains.

3.鋼板の製造方法
本発明に係るフェライト・オーステナイト二相ステンレス鋼板の製造方法については、特に制限は設けないが、例えば、上記の化学組成を有する鋼を連続鋳造し、熱間圧延を行い、熱間圧延によって得られた熱延板を1150℃以下で焼鈍し、冷延圧下率が50%以上である1回の冷間圧延、または中間焼鈍を挟む2回以上の冷間圧延を行い、1050℃未満で最終焼鈍を行うことによって製造することができる。
3. The method for producing a ferritic / austenitic duplex stainless steel sheet according to the present invention is not particularly limited.For example, steel having the above chemical composition is continuously cast, hot-rolled, and hot-rolled. The hot-rolled sheet obtained by rolling is annealed at 1150 ° C. or less, and is subjected to one cold rolling with a cold rolling reduction of 50% or more, or two or more cold rollings sandwiching intermediate annealing, and then to 1050 ° C. It can be manufactured by performing final annealing at less than.

熱延板焼鈍温度:1150℃以下
最終製品のフェライト粒径を小さくするためには、冷延素材である熱延焼鈍板でのフェライト粒径を小さくする必要がある。熱延板焼鈍温度が1150℃を超えると、最終焼鈍後のフェライト相粒径が12.0μm以上となり、溶接部の耐食性が劣化するおそれがある。したがって、熱延板焼鈍温度は1150℃以下とする。
Hot rolled sheet annealing temperature: 1150 ° C or less In order to reduce the ferrite grain size of the final product, it is necessary to reduce the ferrite grain size in the hot rolled annealed sheet, which is a cold rolled material. If the hot-rolled sheet annealing temperature exceeds 1150 ° C., the ferrite phase particle size after final annealing becomes 12.0 μm or more, and the corrosion resistance of the welded portion may be deteriorated. Therefore, the hot-rolled sheet annealing temperature is set to 1150 ° C. or less.

下限は特に設けないが、熱延板焼鈍温度が1000℃未満であると、十分な再結晶ができず冷間圧延を実施しづらくなるため、1000℃以上とすることが好ましい。熱延板焼鈍温度は1050℃超であるのがより好ましい。実用上は1100℃超であってよい。好適温度範囲に制御することによって、その後の冷延における冷延率を上げることができ、最終焼鈍におけるフェライト粒径の制御が容易になるため、実用上好適である。   Although a lower limit is not particularly set, if the hot-rolled sheet annealing temperature is lower than 1000 ° C., sufficient recrystallization cannot be performed, and it becomes difficult to perform cold rolling. More preferably, the hot rolled sheet annealing temperature is above 1050 ° C. In practice, it may be higher than 1100 ° C. By controlling the temperature in a preferable temperature range, the cold rolling rate in the subsequent cold rolling can be increased, and the control of the ferrite grain size in the final annealing becomes easy, which is practically preferable.

冷延率:50%以上
冷延率が50%未満であると、冷延焼鈍後のフェライト相粒径が12.0μm以上となり、溶接部の耐食性が劣化するおそれがある。したがって、冷間圧延を行うに際しては、その冷延率は50%以上とする。より好ましくは60%以上であり、さらに好ましくは75%以上である。ここで冷延圧下率(%)は、(冷延前の板厚−冷延後の板厚)/冷延前の板厚×100で計算される値である。但し、冷間圧延を複数回行い、冷間圧延の間で中間焼鈍を行った場合は、最終の冷間圧延の圧下率とする。
Cold rolling rate: 50% or more If the cold rolling rate is less than 50%, the ferrite phase particle size after cold rolling annealing becomes 12.0 μm or more, and the corrosion resistance of the welded portion may be deteriorated. Therefore, when performing cold rolling, the cold rolling rate is set to 50% or more. It is more preferably at least 60%, further preferably at least 75%. Here, the cold rolling reduction (%) is a value calculated by (sheet thickness before cold rolling−sheet thickness after cold rolling) / sheet thickness before cold rolling × 100. However, when the cold rolling is performed a plurality of times and the intermediate annealing is performed between the cold rollings, the rolling reduction of the final cold rolling is set.

最終焼鈍温度:1050℃未満
最終焼鈍温度が1050℃以上であると、最終焼鈍後のフェライト相粒径が12.0μm以上となり、溶接部の耐食性が劣化するおそれがある。したがって、最終焼鈍温度は1050℃未満とする。下限は特に設けないが、最終焼鈍温度が1000℃未満である場合は十分な再結晶が出来ず加工性が劣化するため1000℃以上とすることが好ましい。
Final annealing temperature: less than 1050 ° C. If the final annealing temperature is 1050 ° C. or more, the ferrite phase particle size after the final annealing becomes 12.0 μm or more, and the corrosion resistance of the welded portion may be deteriorated. Therefore, the final annealing temperature is less than 1050 ° C. Although there is no particular lower limit, when the final annealing temperature is lower than 1000 ° C., it is preferable to set the temperature to 1000 ° C. or higher because sufficient recrystallization cannot be performed and workability deteriorates.

4.溶接構造物
本発明に係る溶接構造物は、上述した化学組成および金属組織を有する鋼板に対して、後述する条件において溶接を実施することによって得られる。そのようにして得られた溶接構造物は、溶接部の孔食電位低下量の実測値が100mV未満となるため、SUS304またはSUS316Lの代替鋼種としての用途に好適である。
4. Welded structure The welded structure according to the present invention is obtained by performing welding on a steel sheet having the above-described chemical composition and metal structure under the conditions described below. The welded structure obtained in this way is suitable for use as a substitute steel type for SUS304 or SUS316L because the measured value of the pitting potential reduction amount of the welded portion is less than 100 mV.

5.溶接構造物の製造方法
本発明に係る溶接構造物を製造する方法についても、特に制限は設けない。しかし、溶接部における耐食性を確保する観点からは、上記のフェライト・オーステナイト二相ステンレス鋼板に対して、板厚1mmあたり500〜3000J/cmの溶接入熱となる条件で溶接を行うことが好ましい。
5. Method for Manufacturing Welded Structure There is no particular limitation on the method for manufacturing a welded structure according to the present invention. However, from the viewpoint of ensuring the corrosion resistance of the welded portion, it is preferable to perform welding on the ferritic-austenite duplex stainless steel plate under the condition that the welding heat input is 500 to 3000 J / cm per 1 mm of the plate thickness.

なお、板厚1mmあたりの溶接入熱は、溶接電流I(A)、溶接電圧E(V)、溶接速度v(cm/s)、板厚t(mm)を用いて、下記(iv)式により計算される。
板厚1mmあたりの溶接入熱(J/cm/mm)=I×E÷v÷t ・・・(iv)
The welding heat input per 1 mm of the plate thickness is calculated by the following formula (iv) using the welding current I (A), the welding voltage E (V), the welding speed v (cm / s), and the plate thickness t (mm). Is calculated by
Heat input per 1 mm of plate thickness (J / cm / mm) = I × E ÷ v ÷ t (iv)

上記の溶接入熱が500J/cm/mm未満では、溶接時に裏面まで溶融できず、溶接部の強度が低下する。また、溶接入熱が3000J/cm/mm超では、溶接部の溶け落ちが頻発し、溶接部の強度が低下する。したがって、板厚1mmあたりの溶接入熱は500〜3000J/cm/mmとする。   When the welding heat input is less than 500 J / cm / mm, the back surface cannot be melted during welding, and the strength of the welded portion decreases. On the other hand, if the welding heat input exceeds 3000 J / cm / mm, the burn-through of the welded portion frequently occurs, and the strength of the welded portion decreases. Therefore, the welding heat input per 1 mm of plate thickness is set to 500 to 3000 J / cm / mm.

なお、薄板でこのような溶接入熱となる溶接方法の1つにTIG溶接がある。発明者らの熱電対を用いた溶接部の冷却速度の実測では、溶接冷却時の溶接金属部の1200〜900℃の区間の冷却速度は、サブマージアーク溶接では30℃/s以下、レーザー溶接では400℃/s以上であったのに対して、上記の入熱範囲でTIG溶接を行った場合には、60〜300℃/sであった。   Note that TIG welding is one of the welding methods that achieve such welding heat input with a thin plate. In the actual measurement of the cooling rate of the welded part using the thermocouple of the inventors, the cooling rate in the section of 1200 to 900 ° C. of the weld metal part at the time of welding cooling is 30 ° C./s or less for submerged arc welding and for laser welding. In contrast to 400 ° C./s or more, when TIG welding was performed in the above heat input range, it was 60 to 300 ° C./s.

なお、その他の溶接方法または溶接条件および溶加材の使用有無については、適宜設定することが可能であり、何ら限定されるものではない。また、鋼板形状、溶接継手形状についても何ら限定されるものではない。   It should be noted that other welding methods or welding conditions and whether or not a filler metal is used can be appropriately set, and are not limited at all. Further, the shape of the steel sheet and the shape of the weld joint are not limited at all.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

表1に示す化学組成を有する鋼を溶製して鋼片とし、板厚5mmに熱間圧延した後、焼鈍を実施した。この熱延焼鈍板に対して冷間圧延を施すことよって、板厚1〜3mmの冷延鋼板を作製し、その後、最終焼鈍を実施した。   Steel having the chemical composition shown in Table 1 was melted into a billet, hot-rolled to a thickness of 5 mm, and then annealed. By subjecting this hot-rolled annealed sheet to cold rolling, a cold-rolled steel sheet having a sheet thickness of 1 to 3 mm was produced, and then subjected to final annealing.

Figure 2019218613
Figure 2019218613

溶接前の鋼板の組織形態を調査するために、製造した冷延焼鈍鋼板の圧延幅方向中心位置の圧延長さ方向に垂直な断面(C断面)の金属組織をEBSPにより調査した。このEBSPによる調査では、相の同定および結晶粒径の測定を行った。   In order to investigate the microstructure of the steel sheet before welding, the metal structure of a cross section (C cross section) perpendicular to the rolling direction at the center position in the rolling width direction of the manufactured cold rolled annealed steel sheet was investigated by EBSP. In the EBSP investigation, phase identification and crystal grain size measurement were performed.

そして、EBSPより得られたデータを結晶粒ごとにフェライト粒(BCC相)およびオーステナイト粒(FCC相)に分類し、その境界を結晶粒界とした。また、同一の結晶構造を有する粒同士が隣接している場合は、隣接する測定点における結晶方位差が15°以上の箇所については結晶粒界とみなした。フェライト粒(BCC相)の各粒の投影面積円相当径を測定した。   The data obtained from the EBSP were classified into ferrite grains (BCC phase) and austenite grains (FCC phase) for each crystal grain, and the boundary was defined as a crystal grain boundary. Further, when grains having the same crystal structure are adjacent to each other, a portion where the crystal orientation difference at adjacent measurement points is 15 ° or more was regarded as a crystal grain boundary. The projected area circle equivalent diameter of each grain of the ferrite grains (BCC phase) was measured.

その後、製造した冷延焼鈍鋼板に対して、1パスのTIGなめつけ溶接を、シールドガスをArガスとし、溶加材を使用せず、所定の電流・電圧・速度条件において、長さ300mm以上行った。   Thereafter, one pass TIG tanning welding was performed on the produced cold-rolled annealed steel sheet, using a shielding gas of Ar gas, no filler material, and a predetermined length of 300 mm or more under predetermined current, voltage and speed conditions. went.

それらの製造条件を表2にまとめて示す。なお、表2中の符号の意味は、以下に示すとおりである。
HA:熱延板焼鈍温度(℃)
FA:最終焼鈍温度(℃)
α粒径:溶接前の鋼板のフェライト粒の平均結晶粒径(μm)
Table 2 summarizes the manufacturing conditions. In addition, the meaning of the code | symbol in Table 2 is as showing below.
HA: hot rolled sheet annealing temperature (° C)
FA: Final annealing temperature (° C)
α grain size: average grain size of ferrite grains of steel sheet before welding (μm)

Figure 2019218613
Figure 2019218613

溶接前の鋼板について、その表皮下0.2mmの面に対して研磨粒度#600で湿式研磨した後、JIS G 0577に定められた方法にて、30℃の1mol/L NaCl溶液と飽和塩化銀電極(SSE)を用いて、電流密度100μA/cmに対応する孔食電位(V´c100)を測定し、測定データ6個を平均した値を母材部の孔食電位平均値とした。 The steel plate before welding is wet-polished with a polishing particle size of # 600 on a surface of 0.2 mm under the surface of the skin, and then a 1 mol / L NaCl solution at 30 ° C. and a saturated silver chloride solution at a temperature of 30 ° C. by a method specified in JIS G 0577. Using the electrode (SSE), the pitting corrosion potential ( V'c100 ) corresponding to the current density of 100 μA / cm 2 was measured, and the value obtained by averaging six measured data was defined as the pitting corrosion potential average value of the base material portion.

さらに、上記で溶接を施した鋼板について、溶接開始点または終了点から50mm以上離れており、かつ裏面まで溶融しており溶け落ちなどの不良がない部分を溶接定常部とし、その表皮下0.2mmの面に対して研磨粒度#600で湿式研磨した後、JIS G 0577に定められた方法にて、30℃の1mol/L NaCl溶液および飽和塩化銀電極(SSE)を用いて、電流密度100μA/cmに対応する孔食電位(V´c100)を測定し、測定データ6個を平均した値を溶接部の孔食電位平均値とした。 Further, in the steel sheet subjected to the above welding, a portion which is at least 50 mm away from the welding start point or the end point and which has been melted to the back surface and has no defect such as burn-through is defined as a steady welding portion. After the surface of 2 mm is wet-polished with a polishing particle size of # 600, the current density is 100 μA using a 1 mol / L NaCl solution at 30 ° C. and a saturated silver chloride electrode (SSE) according to the method specified in JIS G 0577. The pitting potential ( V ′ c100 ) corresponding to / cm 2 was measured, and a value obtained by averaging six measured data was defined as an average pitting potential of the welded portion.

なお、試験片は幅3〜6mm程度の溶接線を中央として、測定面積1cmに溶接長が10mm含まれるように作製した。したがって、試験片の測定面積中には、溶接金属部、溶接熱影響部および母材部が含まれている。孔食電位の測定後に試験片の孔食発生位置を確認し、溶接金属部または溶接熱影響部以外の、例えば樹脂との隙間部などで孔食が発生している場合は、測定データから除いた。また、測定データを採取した前記試験片の部位は、本発明においては溶接部と定義した。溶接部は、溶接金属部および溶接熱影響部から構成される。 In addition, the test piece was produced so that 10 mm of a welding length might be included in 1 cm < 2 > of measurement area centering on the welding line about 3-6 mm in width. Therefore, the measurement area of the test piece includes the weld metal portion, the weld heat affected zone, and the base metal portion. After measuring the pitting potential, confirm the position of pitting on the test piece.If pitting occurs in the gap other than the weld metal or welding heat affected zone, for example, resin, exclude it from the measurement data. Was. Further, the portion of the test piece from which the measurement data was collected was defined as a welded portion in the present invention. The welded portion is composed of a welded metal portion and a weld heat affected zone.

そして、母材部の孔食電位測定データ6個の平均値から、溶接部の孔食電位測定データ6個の平均値を引いた値(V´c100 mV vs SSE)を、孔食電位低下量実測値として求めた。 Then, a value obtained by subtracting the average value of the six pieces of pitting potential measurement data of the welded part from the average value of the six pieces of pitting potential measurement data of the base material ( V ′ c100 mV vs SSE) is calculated as the pitting potential reduction amount. It was determined as an actual measurement.

なお、溶接部の外観評価において、溶接裏ビードが出ず、溶接定常部が採取できなかった鋼板に「裏波出ず」、溶接の溶け落ちが発生し、溶接定常部が採取できなかった鋼板に「溶落ち大」と記載した。   In the evaluation of the appearance of the welded portion, the steel plate where no weld back bead appeared and the welded steady portion could not be sampled was `` no backwash out '', the welding burn-through occurred, and the steel plate where the welded steady portion could not be sampled "Large burn-through" was described.

上記の結果を表2に併せて示す。   The results are shown in Table 2.

試料番号1−1および1−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号1−3は比較例であり、HAが高すぎるため、α粒径が大きくなり、孔食電位低下量実測値が悪化する結果となった。   Sample Nos. 1-1 and 1-2 are examples of the present invention, and the measured values of the pitting potential reduction amount of the welded portions were good. Sample Nos. 1-3 are comparative examples, in which the HA particle size was too high, so that the α particle size was large, and the measured value of the pitting potential reduction amount was deteriorated.

試料番号2−1および2−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号2−3は比較例であり、FAが高すぎるためα粒径が大きくなり、孔食電位低下量実測値が悪化する結果となった。   Sample Nos. 2-1 and 2-2 are examples of the present invention, and the measured value of the pitting potential decrease amount of the welded portion was good. Sample No. 2-3 is a comparative example, in which the FA particle size was too large because the FA was too high, and the actual measured value of the amount of decrease in pitting potential was deteriorated.

試料番号3−1および3−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号3−3は比較例であり、FAが高すぎるためα粒径が大きくなり、孔食電位低下量実測値が悪化する結果となった。   Sample Nos. 3-1 and 3-2 are examples of the present invention, and the measured values of the pitting potential decrease in the welded portions were good. Sample No. 3-3 is a comparative example, in which the FA particle size was too large because the FA was too high, and the actual measured value of the amount of decrease in the pitting corrosion potential was deteriorated.

試料番号4−1および4−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号4−3は比較例であり、HAが高すぎるためα粒径が大きくなり、孔食電位低下量実測値が悪化する結果となった。   Sample Nos. 4-1 and 4-2 are examples of the present invention, and the measured values of the amount of decrease in the pitting potential of the welded portion were good. Sample No. 4-3 is a comparative example, in which the HA particle size was too large because the HA was too high, and the actual measured value of the amount of decrease in pitting potential was deteriorated.

試料番号5−1および5−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号5−3は比較例であり、冷延率が低すぎるためα粒径が大きくなり、孔食電位低下量実測値が悪化する結果となった。   Sample Nos. 5-1 and 5-2 are examples of the present invention, and the measured value of the pitting potential decrease amount of the welded portion was good. Sample No. 5-3 is a comparative example, in which the cold-rolling rate was too low, the α-particle size was large, and the measured value of the pitting potential reduction amount deteriorated.

試料番号6−1および6−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号6−3は参考例であり、溶接入熱が小さすぎたため、板の裏まで溶け切らずに溶接定常部が採取できず、孔食電位試験が実施できなかった。   Sample Nos. 6-1 and 6-2 are examples of the present invention, and the measured values of the pitting potential reduction in the welded portions were good. Sample No. 6-3 is a reference example, and because the welding heat input was too small, the welding steady part could not be collected without completely melting to the back of the plate, and the pitting potential test could not be performed.

試料番号7−1および7−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号7−3は参考例であり、溶接入熱が大きすぎたため、溶接部で溶け落ちが発生して溶接定常部が採取できず、孔食電位試験が実施できなかった。   Sample Nos. 7-1 and 7-2 are examples of the present invention, and the measured value of the pitting potential decrease amount of the welded portion was good. Sample No. 7-3 is a reference example, in which the welding heat input was too large, burn-through occurred in the welded portion, and a steady welding portion could not be collected, and the pitting potential test could not be performed.

試料番号8−1および8−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号8−3は参考例であり、溶接入熱が小さすぎたため、板の裏まで溶け切らずに溶接定常部が採取できず、孔食電位試験が実施できなかった。   Sample Nos. 8-1 and 8-2 are examples of the present invention, and the measured values of the pitting potential decrease in the welded portions were good. Sample No. 8-3 is a reference example, and the welding heat input was too small, so that the welding steady part could not be collected without completely melting to the back of the plate, and the pitting potential test could not be performed.

試料番号9−1および9−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号9−3は比較例であり、冷延率が低すぎるためα粒径が大きくなり、孔食電位低下量実測値が悪化する結果となった。   Sample Nos. 9-1 and 9-2 are examples of the present invention, and the measured value of the pitting potential reduction amount of the welded portion was good. Sample No. 9-3 is a comparative example, in which the cold rolling reduction was too low, the α particle size became large, and the actual measured value of the pitting potential reduction amount deteriorated.

試料番号10−1および10−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号10−3は比較例であり、HAが高すぎるためα粒径が大きくなり、孔食電位低下量実測値が悪化する結果となった。   Sample Nos. 10-1 and 10-2 are examples of the present invention, and the measured value of the pitting potential decrease amount of the welded portion was good. Sample No. 10-3 is a comparative example, in which the HA particle size was too large because the HA was too high, and the actual measured value of the amount of decrease in pitting potential was deteriorated.

試料番号11−1および11−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号12−3は参考例であり、溶接入熱が大きすぎたため、溶接部で溶け落ちが発生して溶接定常部が採取できず、孔食電位試験が実施できなかった。   Sample Nos. 11-1 and 11-2 are examples of the present invention, and the measured value of the pitting potential decrease amount of the welded portion was good. Sample No. 12-3 is a reference example, in which the welding heat input was too large, burn-through occurred at the welded portion, and a steady welding portion could not be collected, and the pitting potential test could not be performed.

試料番号12−1および12−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号12−3は比較例であり、FAが高すぎるためα粒径が大きくなり、孔食電位低下量実測値が悪化する結果となった。   Sample Nos. 12-1 and 12-2 are examples of the present invention, and the measured values of the pitting potential decrease in the welded portion were good. Sample No. 12-3 is a comparative example, in which the FA particle size was too large because the FA was too high, resulting in a deterioration in the measured value of the pitting potential reduction amount.

試料番号13−1および13−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号13−3は比較例であり、冷延率が低すぎるためα粒径が大きくなり、孔食電位低下量実測値が悪化する結果となった。   Sample Nos. 13-1 and 13-2 are examples of the present invention, and the measured values of the pitting potential decrease in the welded portions were good. Sample No. 13-3 is a comparative example, in which the cold rolling reduction was too low, the α particle size became large, and the measured value of the pitting potential decrease amount deteriorated.

試料番号14−1および14−2は本発明例であり、溶接部の孔食電位低下量実測値は良好であった。試料番号14−3は比較例であり、FAが高すぎるためα粒径が大きくなり、孔食電位低下量実測値が悪化する結果となった。   Sample Nos. 14-1 and 14-2 are examples of the present invention, and the measured value of the pitting potential decrease amount of the welded portion was good. Sample No. 14-3 is a comparative example, in which the FA particle size was large because the FA was too high, and the measured value of the decrease in the pitting potential was deteriorated.

試料番号15−1、15−2および15−3は比較例であり、Cu含有量が高く、孔食電位低下量予測値が100mV以上のため、孔食電位低下量実測値が悪化する結果となった。   Sample Nos. 15-1, 15-2, and 15-3 are comparative examples, in which the Cu content is high and the pitting potential reduction amount predicted value is 100 mV or more, and the pitting potential reduction amount actually measured value deteriorates. became.

試料番号16−1、16−2および16−3は比較例であり、DF値が高く孔食電位低下量予測値が100mV以上のため、孔食電位低下量実測値が悪化する結果となった。   Sample numbers 16-1, 16-2, and 16-3 are comparative examples, and the DF value was high and the pitting potential reduction amount predicted value was 100 mV or more, so that the measured value of the pitting potential reduction amount deteriorated. .

試料番号17−1は比較例であり、DF値が低く、規定範囲から外れているため、熱間圧延時に10mm以上の大きな耳割れが発生した。そのため、それ以降の実験は中止した。   Sample No. 17-1 is a comparative example, in which the DF value was low and out of the specified range, so that large ear cracks of 10 mm or more occurred during hot rolling. Therefore, further experiments were stopped.

以上説明したように、本発明例では良好な熱間加工性および溶接部の孔食電位が得られた。一方、参考例では、溶接入熱が過大または過小であったため、適切な溶接継手を作製できなかった。また、比較例では、フェライト粒径が大きいか、もしくは溶接部の孔食電位低下量予測値が100mV以上であったため、溶接部の孔食電位低下量実測値が100mV以上となるか、またはDF値が小さすぎるため熱間加工性が不良であった。   As described above, in the example of the present invention, good hot workability and pitting potential of the welded portion were obtained. On the other hand, in the reference example, an appropriate welded joint could not be produced because the welding heat input was too large or too small. In the comparative example, the ferrite grain size was large, or the predicted value of the pitting potential reduction of the welded portion was 100 mV or more, so the measured value of the pitting potential reduction of the welded portion was 100 mV or more, or DF The hot workability was poor because the value was too small.

図2は、溶接部の孔食電位低下量予測値と実際に測定した孔食電位低下量との関係を示す図である。図2中においては、粒径が本発明の特許請求の範囲外となる例は白抜きで示し、孔食電位以外の要因で本発明の特許請求の範囲外となる例は除いている。図2に示すように、溶接部の孔食電位低下量の予測値と溶接部の孔食電位低下量の実測値とはよく一致することが分かる。   FIG. 2 is a diagram showing the relationship between the predicted value of the pitting potential decrease amount of the welded portion and the actually measured pitting potential decrease amount. In FIG. 2, examples in which the particle size is out of the scope of the claims of the present invention are outlined, and examples in which the particle size is outside the scope of the claims of the present invention due to factors other than the pitting potential are excluded. As shown in FIG. 2, it can be seen that the predicted value of the pitting potential reduction amount of the welded portion and the actually measured value of the pitting potential reduction amount of the welded portion match well.

本発明によれば、省合金二相ステンレス鋼板において、溶接部の耐食性に優れたフェライト・オーステナイト二相ステンレス鋼板およびそれを用いた溶接構造物を得ることが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to obtain the ferrite-austenite duplex stainless steel sheet excellent in the corrosion resistance of a weld part, and the welded structure using the same in an alloy saving duplex stainless steel sheet.

Claims (7)

化学組成が、質量%で、
C:0.050%以下、
Si:2.00%以下、
Mn:0.50〜6.00%、
P:0.050%以下、
S:0.050%以下、
N:0.08〜0.25%、
Cr:17.0〜30.0%、
Ni:0.10〜8.00%、
Cu:0.10〜1.50%、
Nb:0〜0.10%、
Mo:0〜3.50%、
Sn:0〜1.00%、
W:0〜1.00%、
V:0〜1.00%、
Ti:0〜0.05%、
B:0〜0.0050%、
Ca:0〜0.0050%、
Mg:0〜0.0050%、
Al:0〜0.05%、
REM:0〜0.50%、
残部:Feおよび不純物であり、
下記(i)式で計算されるPREN_Mn値が40.0未満であり、
下記(ii)式で計算されるDF値が40.0〜65.0であり、
下記(iii)式で計算される溶接部の孔食電位低下量予測値が100mV未満であり、
鋼板の圧延方向に垂直な断面における、フェライト粒の平均結晶粒径が12.0μm未満である金属組織を有する、
フェライト・オーステナイト二相ステンレス鋼板。
PREN_Mn値=Cr+3.3(Mo+0.5W)+16N−Mn ・・・(i)
DF値=7.2×(Cr+0.88Mo+0.78Si)−8.9×(Ni+0.03Mn+0.72Cu+22C+21N)−44.9 ・・・(ii)
溶接部の孔食電位低下量予測値=3.2DF値+54Cu−115 ・・・(iii)
但し、上記式中の元素記号は、鋼中に含まれる各元素の含有率(質量%)であり、含有しない場合は0を代入する。
Chemical composition in mass%
C: 0.050% or less,
Si: 2.00% or less,
Mn: 0.50 to 6.00%,
P: 0.050% or less,
S: 0.050% or less,
N: 0.08 to 0.25%,
Cr: 17.0-30.0%,
Ni: 0.10 to 8.00%,
Cu: 0.10 to 1.50%,
Nb: 0 to 0.10%,
Mo: 0 to 3.50%,
Sn: 0 to 1.00%,
W: 0 to 1.00%,
V: 0 to 1.00%,
Ti: 0 to 0.05%,
B: 0 to 0.0050%,
Ca: 0 to 0.0050%,
Mg: 0 to 0.0050%,
Al: 0 to 0.05%,
REM: 0-0.50%,
The balance: Fe and impurities,
The PREN_Mn value calculated by the following formula (i) is less than 40.0,
The DF value calculated by the following equation (ii) is 40.0 to 65.0,
The predicted value of the pitting potential decrease amount of the welded portion calculated by the following formula (iii) is less than 100 mV,
In a cross section perpendicular to the rolling direction of the steel sheet, having a metal structure in which the average crystal grain size of ferrite grains is less than 12.0 μm,
Ferrite-austenite duplex stainless steel sheet.
PREN_Mn value = Cr + 3.3 (Mo + 0.5W) + 16N-Mn (i)
DF value = 7.2 × (Cr + 0.88Mo + 0.78Si) −8.9 × (Ni + 0.03Mn + 0.72Cu + 22C + 21N) -44.9 (ii)
Predicted value of decrease in pitting potential of the welded portion = 3.2 DF value + 54Cu-115 (iii)
However, the symbol of the element in the above formula is the content (% by mass) of each element contained in the steel, and 0 is substituted when the element is not contained.
前記化学組成が、質量%で、
Nb:0.01〜0.10%、
Mo:0.10〜2.50%、
Sn:0.030〜1.00%、
W:0.01〜1.00%、および、
V:0.01〜1.00%、
から選択される1種以上を含有する、
請求項1に記載のフェライト・オーステナイト二相ステンレス鋼板。
The chemical composition is, in mass%,
Nb: 0.01 to 0.10%,
Mo: 0.10 to 2.50%,
Sn: 0.030 to 1.00%,
W: 0.01 to 1.00%, and
V: 0.01-1.00%,
Containing at least one member selected from the group consisting of:
The ferritic-austenite duplex stainless steel sheet according to claim 1.
前記化学組成が、質量%で、
Ti:0.005〜0.05%、および、
B:0.0003〜0.0050%、
から選択される1種以上を含有する、
請求項1または請求項2に記載のフェライト・オーステナイト二相ステンレス鋼板。
The chemical composition is, in mass%,
Ti: 0.005 to 0.05%, and
B: 0.0003-0.0050%,
Containing at least one member selected from the group consisting of:
The ferritic-austenite duplex stainless steel sheet according to claim 1 or 2.
前記化学組成が、質量%で、
Ca:0.0001〜0.0050%、
Mg:0.0001〜0.0050%、
Al:0.0030〜0.05%、および、
REM:0.005〜0.50%、
から選択される1種以上を含有する、
請求項1から請求項3までのいずれかに記載のフェライト・オーステナイト二相ステンレス鋼板。
The chemical composition is, in mass%,
Ca: 0.0001 to 0.0050%,
Mg: 0.0001-0.0050%,
Al: 0.0030 to 0.05%, and
REM: 0.005 to 0.50%,
Containing at least one member selected from the group consisting of:
The ferrite-austenite duplex stainless steel sheet according to any one of claims 1 to 3.
請求項1から請求項4までのいずれかに記載のフェライト・オーステナイト二相ステンレス鋼板からなり、溶接部の孔食電位低下量実測値が100mV未満である、
溶接構造物。
The ferrite-austenite duplex stainless steel sheet according to any one of claims 1 to 4, wherein a measured value of a pitting potential reduction amount of a welded portion is less than 100 mV.
Welded structures.
請求項1から請求項4までのいずれかに記載のフェライト・オーステナイト二相ステンレス鋼板を製造する方法であって、
請求項1から請求項4までのいずれかに記載の化学組成を有する鋼を連続鋳造し、熱間圧延を行い、熱間圧延によって得られた熱延板を1150℃以下で焼鈍し、冷延圧下率が50%以上である1回の冷間圧延、または中間焼鈍を挟む2回以上の冷間圧延を行い、1050℃未満で最終焼鈍を行う、
フェライト・オーステナイト二相ステンレス鋼板の製造方法。
ここで、冷延圧下率(%)は、(冷延前の板厚−冷延後の板厚)/冷延前の板厚×100で計算される値である。但し、冷間圧延を複数回行い、冷間圧延の間で中間焼鈍を行った場合は、最終の冷間圧延の圧下率とする。
A method for producing a ferritic-austenite duplex stainless steel sheet according to any one of claims 1 to 4,
A steel having the chemical composition according to any one of claims 1 to 4 is continuously cast, hot-rolled, and a hot-rolled sheet obtained by hot rolling is annealed at 1150 ° C or less, and cold-rolled. One time cold rolling in which the rolling reduction is 50% or more, or two or more cold rollings sandwiching intermediate annealing, and performing final annealing at less than 1050 ° C.
Manufacturing method of ferritic-austenite duplex stainless steel sheet.
Here, the cold rolling reduction (%) is a value calculated by (sheet thickness before cold rolling−sheet thickness after cold rolling) / sheet thickness before cold rolling × 100. However, when the cold rolling is performed a plurality of times and the intermediate annealing is performed between the cold rollings, the rolling reduction of the final cold rolling is set.
請求項5に記載の溶接構造物を製造する方法であって、
請求項1から請求項4までのいずれかに記載のフェライト・オーステナイト二相ステンレス鋼板に対して、板厚1mmあたり500〜3000J/cmの溶接入熱となる条件で溶接を行う、
溶接構造物の製造方法。
A method for manufacturing a welded structure according to claim 5,
Welding is performed on the ferritic-austenite duplex stainless steel sheet according to any one of claims 1 to 4 under a condition that the welding heat input is 500 to 3000 J / cm per 1 mm of sheet thickness.
Manufacturing method for welded structures.
JP2018117593A 2018-06-21 2018-06-21 Ferrite-Austenite Duplex Stainless Steel Sheet and Welded Structure, and Manufacturing Method Therefor Active JP7285050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018117593A JP7285050B2 (en) 2018-06-21 2018-06-21 Ferrite-Austenite Duplex Stainless Steel Sheet and Welded Structure, and Manufacturing Method Therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018117593A JP7285050B2 (en) 2018-06-21 2018-06-21 Ferrite-Austenite Duplex Stainless Steel Sheet and Welded Structure, and Manufacturing Method Therefor

Publications (2)

Publication Number Publication Date
JP2019218613A true JP2019218613A (en) 2019-12-26
JP7285050B2 JP7285050B2 (en) 2023-06-01

Family

ID=69095619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018117593A Active JP7285050B2 (en) 2018-06-21 2018-06-21 Ferrite-Austenite Duplex Stainless Steel Sheet and Welded Structure, and Manufacturing Method Therefor

Country Status (1)

Country Link
JP (1) JP7285050B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138490A1 (en) * 2018-12-28 2020-07-02 日鉄ステンレス株式会社 Weld structure and method for producing same
WO2023234525A1 (en) * 2022-05-31 2023-12-07 주식회사 포스코 Austenite stainless steel and manufacturing method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206967A (en) * 1996-01-30 1997-08-12 Sumitomo Metal Ind Ltd Manufacture of two-phase stainless steel welded tube
JP2009035782A (en) * 2007-08-02 2009-02-19 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel with excellent corrosion resistance and workability, and its manufacturing method
WO2009119895A1 (en) * 2008-03-26 2009-10-01 新日鐵住金ステンレス株式会社 Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
JP2016078060A (en) * 2014-10-14 2016-05-16 新日鐵住金ステンレス株式会社 Weld joint of duplex stainless steel and method for production thereof
JP2016191094A (en) * 2015-03-30 2016-11-10 新日鐵住金ステンレス株式会社 Lean duplex stainless steel laser-welded member with good property of laser welded part and method for producing lean duplex stainless steel laser-weld member
JP2017088945A (en) * 2015-11-09 2017-05-25 新日鐵住金ステンレス株式会社 Stainless steel sheet for structural member excellent in processability and manufacturing method therefor
JP2017179427A (en) * 2016-03-29 2017-10-05 新日鐵住金ステンレス株式会社 Welded joint of duplex stainless steel, welding method of duplex stainless steel and manufacturing method of welded joint of duplex stainless steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206967A (en) * 1996-01-30 1997-08-12 Sumitomo Metal Ind Ltd Manufacture of two-phase stainless steel welded tube
JP2009035782A (en) * 2007-08-02 2009-02-19 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel with excellent corrosion resistance and workability, and its manufacturing method
WO2009119895A1 (en) * 2008-03-26 2009-10-01 新日鐵住金ステンレス株式会社 Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
JP2016078060A (en) * 2014-10-14 2016-05-16 新日鐵住金ステンレス株式会社 Weld joint of duplex stainless steel and method for production thereof
JP2016191094A (en) * 2015-03-30 2016-11-10 新日鐵住金ステンレス株式会社 Lean duplex stainless steel laser-welded member with good property of laser welded part and method for producing lean duplex stainless steel laser-weld member
JP2017088945A (en) * 2015-11-09 2017-05-25 新日鐵住金ステンレス株式会社 Stainless steel sheet for structural member excellent in processability and manufacturing method therefor
JP2017179427A (en) * 2016-03-29 2017-10-05 新日鐵住金ステンレス株式会社 Welded joint of duplex stainless steel, welding method of duplex stainless steel and manufacturing method of welded joint of duplex stainless steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138490A1 (en) * 2018-12-28 2020-07-02 日鉄ステンレス株式会社 Weld structure and method for producing same
JPWO2020138490A1 (en) * 2018-12-28 2021-10-14 日鉄ステンレス株式会社 Welded structure and its manufacturing method
JP7511480B2 (en) 2018-12-28 2024-07-05 日鉄ステンレス株式会社 Welded structure and manufacturing method thereof
WO2023234525A1 (en) * 2022-05-31 2023-12-07 주식회사 포스코 Austenite stainless steel and manufacturing method therefor

Also Published As

Publication number Publication date
JP7285050B2 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
KR101846759B1 (en) Steel plate and method for manufacturing same
JP6223351B2 (en) Ferritic stainless steel, exhaust system member using the same, and method for producing ferritic stainless steel
KR101557463B1 (en) Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
CN110225989B (en) Duplex stainless steel clad steel and method for producing same
TWI460293B (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
WO2008084838A1 (en) Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
EP2527484B1 (en) Method for manufacturing a high-strength galvanized steel sheet having excellent formability and spot weldability
JP2017160510A (en) Nickel steel sheet for low temperature and manufacturing method therefor
US8900380B2 (en) Low-chromium stainless steel excellent in corrosion resistance of weld
JP5225620B2 (en) Low chromium-containing stainless steel excellent in corrosion resistance of heat-affected zone multiple times and its manufacturing method
KR20220073804A (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP2013087352A (en) Duplex stainless steel, duplex stainless steel cast slab, and duplex stainless steel material
JP7285050B2 (en) Ferrite-Austenite Duplex Stainless Steel Sheet and Welded Structure, and Manufacturing Method Therefor
JP2015086443A (en) Ferrite-martensite two-phase stainless steel excellent in low temperature toughness and method of producing the same
CN102933732A (en) Structural stainless steel sheet having excellent corrosion resistance at weld and method for manufacturing same
JP6025362B2 (en) Ferritic stainless steel plate with excellent heat resistance
JP2010507021A (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
JP2017053028A (en) Ferrite-martensite two-phase stainless steel and manufacturing method therefor
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP6354772B2 (en) Ferritic stainless steel
JP4580403B2 (en) Hot-dip hot-dip steel sheet for deep drawing and method for producing the same
JP5131802B2 (en) High-strength hot-dip galvanized steel sheet with excellent spot weldability and formability
JP2007277713A (en) Hot dip plated high strength steel sheet for press working and its production method
US20040003876A1 (en) Structural Fe-Cr steel sheet, manufacturing method thereof, and structural shaped steel
JP7518686B2 (en) Fasteners using ferritic-austenitic duplex stainless steel sheets and spot welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220829

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220915

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220920

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221007

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221018

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221101

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230221

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7285050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150