JP4494237B2 - Austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, and method for producing the same - Google Patents

Austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, and method for producing the same Download PDF

Info

Publication number
JP4494237B2
JP4494237B2 JP2005026176A JP2005026176A JP4494237B2 JP 4494237 B2 JP4494237 B2 JP 4494237B2 JP 2005026176 A JP2005026176 A JP 2005026176A JP 2005026176 A JP2005026176 A JP 2005026176A JP 4494237 B2 JP4494237 B2 JP 4494237B2
Authority
JP
Japan
Prior art keywords
toughness
stainless steel
steel
corrosion resistance
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005026176A
Other languages
Japanese (ja)
Other versions
JP2006213950A (en
Inventor
信二 柘植
雄介 及川
成雄 福元
和広 末次
亮 松橋
裕滋 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2005026176A priority Critical patent/JP4494237B2/en
Priority to US11/343,516 priority patent/US20060243356A1/en
Publication of JP2006213950A publication Critical patent/JP2006213950A/en
Priority to US12/391,045 priority patent/US8105447B2/en
Application granted granted Critical
Publication of JP4494237B2 publication Critical patent/JP4494237B2/en
Priority to US13/349,866 priority patent/US8506729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、海洋・湾岸環境、塩化物環境で使用される耐食性に優れた構造用ステンレス鋼材の製品に係わり、たとえば船体構造用としての外殻、隔壁、骨材、水中翼等の材料として使用するにあたり好適な強度・靭性に優れ、安価なステンレス鋼材を提供するものである。   The present invention relates to a structural stainless steel product with excellent corrosion resistance that is used in marine / gulf environments and chloride environments. For example, it is used as a material for outer shells, bulkheads, aggregates, hydrofoils, etc. for hull structures. Therefore, the present invention provides an inexpensive stainless steel material having excellent strength and toughness.

従来、船体構造用には重防食を施した塗装鋼板が使用されてきた。過去に水中翼等を備えた高速船の需要が高まり、この用途では高速の海水流が接するため、塗装を要しない耐海水性の優れた材料が要求され、耐海水性に優れたオーステナイト系ステンレス鋼の高強度材が検討された(特許文献1−3)。   Conventionally, coated steel plates with heavy anticorrosion have been used for hull structures. In the past, the demand for high-speed ships equipped with hydrofoil has increased, and because high-speed seawater flows in this application, materials with excellent seawater resistance that do not require painting are required, and austenitic stainless steel with excellent seawater resistance Steel high-strength materials have been studied (Patent Documents 1-3).

これらの文献では制御圧延と0.3%以上のN添加、0.5〜3.0%のMo添加により耐力が500MPa以上の高強度かつ耐海水性に優れたオーステナイト系ステンレス鋼の製造技術や、Nb等の元素の添加により溶接部の軟化の少ないオーステナイト系ステンレス鋼の製造技術を開示している。   In these documents, a technology for producing austenitic stainless steel with high strength and seawater resistance of 500 MPa or more by controlled rolling, 0.3% or more of N addition, and 0.5 to 3.0% of Mo addition, , Nb and other elements are added, and the manufacturing technology of austenitic stainless steel with less weld softening is disclosed.

耐海水性を高める元素としてはCr、Mo、Nが重要であり、孔食指数としてPI=Cr+3.3(Mo+0.5W)+16N といった数式により鋼種の耐食順位が整理される。特許文献1の実施例で示された成分のPI値を計算すると最小の場合は約32であるが、より高PI値(35以上)を満たすステンレス鋼としてはオーステナイト系ではNiを23%以上含有するSUS836L、890L、二相系ではNiを5.5〜7.5%含有するSUS329J4Lがある。   Cr, Mo, and N are important as elements that enhance seawater resistance, and the corrosion resistance order of steel types is arranged by a mathematical formula such as PI = Cr + 3.3 (Mo + 0.5W) + 16N as a pitting corrosion index. When the PI value of the component shown in the example of Patent Document 1 is calculated, the minimum value is about 32. However, as a stainless steel satisfying a higher PI value (35 or more), the austenitic system contains 23% or more of Ni. SUS836L, 890L, and SUS329J4L containing 5.5 to 7.5% Ni in the two-phase system.

二相系のSUS329J4Lはフェライト相を含有するために降伏強度が高い。近年Mo、Wを増量したスーパー二相と呼ばれる二相ステンレス鋼も開発され、高強度・高耐食材として適用がはじまっている。ところがオーステナイト系の高耐食ステンレス鋼の高強度鋼材としてはPI値が35を越えるものはいまだ実用化されていないのが実情である。   Since the two-phase SUS329J4L contains a ferrite phase, the yield strength is high. In recent years, a duplex stainless steel called super duplex with increased amounts of Mo and W has been developed, and its application has started as a high strength and high corrosion resistance material. However, as a high-strength steel material of austenitic high corrosion-resistant stainless steel, those having a PI value exceeding 35 have not yet been put into practical use.

特公平7−13252号公報Japanese Examined Patent Publication No. 7-13252 特許第2783895号公報Japanese Patent No. 2783895 特許第2783896号公報Japanese Patent No. 2784896

ステンレス鋼はすき間形状となる場合すき間腐食を生じ、平板部より激しい腐食を生じる。そのため、船体構造用として汎用かつメンテフリー狙いで使用するためには特許文献1に示す鋼材の下限より上位の高耐食鋼材の開発が求められた。   Stainless steel causes crevice corrosion when it has a crevice shape, and more severe corrosion than a flat plate portion. Therefore, in order to use the hull structure for general purpose and maintenance-free purposes, development of a high corrosion resistance steel material higher than the lower limit of the steel material shown in Patent Document 1 has been required.

一方、岩礁への座礁や船舶同士の衝突事故に対する信頼性のある耐海水性ステンレス鋼材への要望が高まりつつある。鋼材の信頼性としては溶接性と母材の特性の両者となる。   On the other hand, there is an increasing demand for reliable seawater-resistant stainless steel materials for grounding on rock reefs and collision accidents between ships. The reliability of the steel material is both the weldability and the characteristics of the base material.

特許文献2、3が開示するような溶接部に対するN、Nbの影響としては確かに強度を確保する点では有効であるが、過剰なNの添加は溶接部に気泡を生じやすく、逆に溶接部の接合強度や信頼性を低下させることがある。   Although the effects of N and Nb on the welded part as disclosed in Patent Documents 2 and 3 are certainly effective in ensuring strength, excessive addition of N tends to cause bubbles in the welded part, conversely welding. The joint strength and reliability of the part may be reduced.

一方母材の信頼性としては、衝突事故に備えて高い靭性が要求される。一般にステンレス鋼で高い靭性を確保するには多量のNiを添加することで達成される。PI値が35以上のCr、Moを多く含有するオーステナイト系ステンレス鋼ではさらに多量のNi添加が必要となる。しかしながら昨今のNi、Mo原料価格の高騰を考えると殊更に省資源・低コスト型の高耐食ステンレス鋼の開発が望まれる。これらのオーステナイト系ステンレス鋼はCr、Mo、Niの含有量が高く、また熱間製造コストが高いので非常に高価なものとなっていた。   On the other hand, as the reliability of the base material, high toughness is required in preparation for a collision accident. Generally, high toughness can be secured with stainless steel by adding a large amount of Ni. In the austenitic stainless steel containing a large amount of Cr and Mo having a PI value of 35 or more, a larger amount of Ni needs to be added. However, considering the recent rise in Ni and Mo raw material prices, development of resource-saving, low-cost, high corrosion-resistant stainless steel is desired. These austenitic stainless steels are very expensive due to their high Cr, Mo and Ni contents and high hot production costs.

本発明者らは溶接性の観点からN量が0.35%以下でかつPI値が35以上の条件でできるオーステナイト系の成分系について、鋳造、熱間加工、熱処理によって得られる厚鋼板の強度、靭性、耐食性を調査した。特に靭性についてはNi含有量のみで整理されるものではなく、鋼材中に含まれる非金属介在物やCr、Mo組成比が高い金属間化合物の含有率が靭性を支配することを知見した。特に本発明が対象とするCr、Mo含有量の高いオーステナイト系ステンレス鋼では鋼材に含まれる金属間化合物含有率の制御が重要である。金属組織の形成は鋼の凝固よりはじまるので、凝固組織に及ぼす化学組成の影響より調査を始め、さらに鋳鋼の粗圧延、均質化熱処理、熱間加工、熱処理条件についての影響を調査した。その結果、従来技術の問題点を克服し、耐食性、強靱性および熱間加工性に優れるオーステナイト系ステンレス鋼材を得るための成分元素含有量と凝固組織の限定、鋼材の金属組織の限定を行い、またその鋼材を製造するために有効な製造方法を見いだしたのである。   From the viewpoint of weldability, the inventors of the present invention have the strength of thick steel plates obtained by casting, hot working, and heat treatment for austenite-based component systems with N content of 0.35% or less and PI value of 35 or more. The toughness and corrosion resistance were investigated. In particular, the toughness is not limited only by the Ni content, but it has been found that the content of non-metallic inclusions contained in the steel material and the intermetallic compounds having a high Cr and Mo composition ratio dominate the toughness. In particular, in the austenitic stainless steel having a high Cr and Mo content targeted by the present invention, it is important to control the content of intermetallic compounds contained in the steel material. Since the formation of the metal structure begins with the solidification of the steel, we investigated the influence of the chemical composition on the solidification structure, and further investigated the effects of rough rolling, homogenization heat treatment, hot working, and heat treatment conditions on the cast steel. As a result, overcoming the problems of the prior art, limiting the content of component elements and solidification structure to obtain an austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, limiting the metal structure of the steel material, They also found an effective manufacturing method for manufacturing the steel material.

すなわち、本発明の要旨とするところは以下の通りである。
質量%で、C:0.03%以下、Si:0.1〜1.5%、Mn:0.1〜3.0%、P:0.05%以下、S:0.003%以下、Ni:15.0〜21.0%、Cr:22.0〜28.0%、Mo:1.5〜3.5%、Cu:2.0%以下、N:0.15〜0.35%、Al:0.005〜0.1%以下を含有し、かつ、PI:35〜40、δcal:−6〜+4 の関係を満たし、さらに鋼材に含まれる、σ相、χ相と呼ばれる金属間化合物の含有率が0.5%以下であり、必要に応じてTi:0.003〜0.03%、Nb:0.02〜0.20%、V:0.05〜0.5%、W:0.3〜3.0%のうちの1種または2種以上、およびまたはB:0.0003〜0.0060%、Ca:0.0005〜0.0050%、Mg:0.0005〜0.0050%、REM:0.005〜0.10%のうちの1種または2種以上を含有することを特徴とする耐食性、強靱性および熱間加工性が良好なオーステナイト系ステンレス鋼材。さらに鋳片または粗熱間加工後の鋼片に対して鋼材中の金属間化合物の含有率を低減させるために1200〜1300℃で1時間以上の均質化熱処理を加えることを特徴とする上記鋼材の製造方法。
PI=Cr+3.3(Mo+0.5W)+16N (1)
δcal =2.9(Cr+0.3Si+Mo+0.5W)−2.6(Ni+
0.3Mn+0.25Cu+35C+20N)−18 (2)
ここで元素名は質量%で表示されるその元素の含有量
That is, the gist of the present invention is as follows.
In mass%, C: 0.03% or less, Si: 0.1-1.5%, Mn: 0.1-3.0%, P: 0.05% or less, S: 0.003% or less, Ni: 15.0 to 21.0%, Cr: 22.0 to 28.0%, Mo: 1.5 to 3.5%, Cu: 2.0% or less, N: 0.15 to 0.35 %, Al: 0.005 to 0.1% or less, satisfying the relationship of PI: 35 to 40, δcal: −6 to +4, and further contained in steel materials called σ phase and χ phase The content of the intermetallic compound is 0.5% or less, and Ti: 0.003 to 0.03%, Nb: 0.02 to 0.20%, V: 0.05 to 0.5% as necessary. , W: one or more of 0.3 to 3.0%, and / or B: 0.0003 to 0.0060%, Ca: 0.0005 to 0.0050%, Mg: 0.0005 An austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, characterized by containing one or more of ˜0.0050% and REM: 0.005 to 0.10%. Furthermore, in order to reduce the content rate of the intermetallic compound in steel materials with respect to the slab or the steel slab after rough hot working, the said steel materials characterized by adding the homogenization heat processing for 1 hour or more at 1200-1300 degreeC Manufacturing method.
PI = Cr + 3.3 (Mo + 0.5W) + 16N (1)
δcal = 2.9 (Cr + 0.3Si + Mo + 0.5W) −2.6 (Ni +
0.3Mn + 0.25Cu + 35C + 20N) -18 (2)
Here, the element name is expressed in mass%.

本発明は耐海水性を有する船体用構造材として好適な耐食性、強靱性および熱間加工性が良好なオーステナイト系ステンレス鋼材を実現し、産業上寄与するところは極めて大である。   The present invention realizes an austenitic stainless steel material having good corrosion resistance, toughness, and hot workability suitable as a structural material for ship hulls having seawater resistance, and greatly contributes industrially.

以下に、先ず、本発明の請求項1記載の限定理由について説明する。   Below, the reason for limitation of Claim 1 of this invention is demonstrated first.

Cは、ステンレス鋼の耐食性を確保するために、0.03%以下の含有量に制限する。0.03%を越えて含有させるとCr炭化物が生成して、耐食性、靱性が劣化する。   C limits the content to 0.03% or less in order to ensure the corrosion resistance of the stainless steel. If the content exceeds 0.03%, Cr carbide is produced and the corrosion resistance and toughness deteriorate.

Siは、脱酸のため0.1%以上添加する。しかしながら、1.5%を超えて添加すると靱性が劣化する。そのため、上限を1.5%に限定する。好ましい範囲は、0.2〜1.0%である。   Si is added in an amount of 0.1% or more for deoxidation. However, if added over 1.5%, the toughness deteriorates. Therefore, the upper limit is limited to 1.5%. A preferable range is 0.2 to 1.0%.

Mnは、脱酸のため0.1%以上添加する。しかしながら、3.0%を超えて添加すると耐食性および靭性が劣化する。そのため、上限を3.0%に限定する。好ましい範囲は、0.2〜1.5%である。   Mn is added in an amount of 0.1% or more for deoxidation. However, if it exceeds 3.0%, corrosion resistance and toughness deteriorate. Therefore, the upper limit is limited to 3.0%. A preferable range is 0.2 to 1.5%.

Pは、熱間加工性および靱性を劣化させるため、0.05%以下に限定する。好ましくは、0.03%以下である。   P is limited to 0.05% or less in order to deteriorate hot workability and toughness. Preferably, it is 0.03% or less.

Sは、熱間加工性、靱性および耐食性をも劣化させるため、0.003%以下に限定する。好ましくは、0.001%以下である。   S degrades hot workability, toughness, and corrosion resistance, so is limited to 0.003% or less. Preferably, it is 0.001% or less.

Niは、オーステナイト組織を安定にし、各種酸に対する耐食性、さらに靭性を改善するため15.0%以上含有させる。一方高価な合金であり、コストの観点より21.0%以下の含有量に制限する。   Ni is contained in an amount of 15.0% or more in order to stabilize the austenite structure and improve corrosion resistance to various acids and further toughness. On the other hand, it is an expensive alloy and is limited to a content of 21.0% or less from the viewpoint of cost.

Crは、基本的な耐食性を確保するため22.0%以上含有させる。一方28.0%を超えて含有させると金属間化合物が析出しやすくなり靭性を阻害する。このためCrの含有量を22.0%以上28.0%以下とした。   Cr is contained at 22.0% or more in order to ensure basic corrosion resistance. On the other hand, if the content exceeds 28.0%, intermetallic compounds are liable to precipitate and inhibit toughness. Therefore, the Cr content is set to 22.0% or more and 28.0% or less.

Moは、ステンレス鋼の耐食性を付加的に高める非常に有効な元素であり、本発明鋼では1.5%以上含有させる。一方非常に高価な元素であり、またCrとともに金属間化合物の析出を促進する元素であるためその上限を3.5%以下と規定する。望ましい含有量は2.0〜3.0%である。   Mo is a very effective element that additionally increases the corrosion resistance of stainless steel, and the steel of the present invention contains 1.5% or more. On the other hand, since it is an extremely expensive element and promotes the precipitation of intermetallic compounds together with Cr, the upper limit is defined as 3.5% or less. A desirable content is 2.0 to 3.0%.

Nは、オーステナイト相に固溶して強度、耐食性を高める有効な元素である。このために0.15%以上含有させる。母材に対しては本発明鋼で0.4%まで固溶させることは可能であるが溶接をおこなったときの気泡発生の感受性を高めるため、上限の含有量を0.35%と定めた。好ましくは、0.30%以下である。   N is an effective element that improves the strength and corrosion resistance by dissolving in the austenite phase. For this reason, it is made to contain 0.15% or more. For the base metal, it is possible to make a solid solution up to 0.4% with the steel of the present invention, but in order to increase the sensitivity of bubble generation when welding is performed, the upper limit content was set to 0.35%. . Preferably, it is 0.30% or less.

Alは、鋼の脱酸のための重要な元素であり、鋼中の酸素を低減するために0.005%以上含有させる。一方でAlはNとの親和力が比較的大きな元素であり、過剰に添加するとAlNを生じてステンレス鋼の靭性を阻害する。その程度はN含有量にも依存するが、Alが0.1%を越えると靭性低下が著しくなるためその含有量の上限を0.1%と定めた。   Al is an important element for deoxidation of steel, and is contained in an amount of 0.005% or more in order to reduce oxygen in the steel. On the other hand, Al is an element having a relatively large affinity with N, and if added excessively, AlN is generated and inhibits the toughness of stainless steel. The degree depends on the N content, but when Al exceeds 0.1%, the toughness deteriorates remarkably, so the upper limit of the content is set to 0.1%.

Oは、非金属介在物の代表である酸化物を構成する重要な元素であり、過剰な含有は靭性を阻害し、他方で粗大なクラスター状酸化物が生成すると表面疵の原因となる。このためその含有量の上限を0.007%と定めた。好ましくは0.004%以下である。   O is an important element that constitutes an oxide that is representative of non-metallic inclusions. Excessive inclusion inhibits toughness, and on the other hand, a coarse clustered oxide causes surface defects. For this reason, the upper limit of the content was set to 0.007%. Preferably it is 0.004% or less.

上記(1)式で示すPI値:孔食指数は、ステンレス鋼の塩化物環境に対する耐食性の指標であり、当該目的に見合う耐食性を得るには最低35以上とすることが必要である。40を越えるステンレス鋼はSUS836L等が存在するが、Ni含有量が24%以上で非常に高価となる。本発明ではコストに見合った耐食性を有するオーステナイト系ステンレス鋼を対象とするためPI値の上限を40と定めた。なお、Wを含有しない本発明においては、(1)式のWを0とする。   The PI value: pitting corrosion index represented by the above formula (1) is an index of the corrosion resistance of stainless steel to the chloride environment, and is required to be at least 35 or more in order to obtain the corrosion resistance commensurate with the purpose. SUS836L and the like exist in stainless steel exceeding 40, but the Ni content is 24% or more, and becomes very expensive. In the present invention, since the austenitic stainless steel having corrosion resistance commensurate with the cost is targeted, the upper limit of the PI value is set to 40. In the present invention not containing W, W in the formula (1) is set to zero.

上記(2)式で示すδcalは、オーステナイトステンレス鋼の凝固組織に現れるデルタフェライトの量を表わす指標であり、凝固割れ感受性を低減したり、組織を微細にするためには一般に0〜7%程度に制御されるものである。ところが本発明鋼のようにCr量が高い鋼においては、凝固組織中のデルタフェライトが熱間製造工程の間に金属間化合物に変化し、製品となる鋼材の中に残留し靭性を阻害する。このためデルタフェライトが少なくなるようにδcalの上限を+4に制限した。この値を超えると熱間製造工程に於ける工夫を凝らしても高い靭性を得ることが困難となる。一方δcalの小さい(マイナス)側はデルタフェライト量が実質的に0%となることを意味し、上記効果が飽和するばかりかNi量を過剰に高く含有させることになるので、コストの観点より−6を下限とした。好ましい範囲は−3〜+3である。なお、W若しくはCuを含有しない本発明においては、(2)式のW若しくはCuを0とする。   Δcal shown in the above equation (2) is an index representing the amount of delta ferrite appearing in the solidified structure of austenitic stainless steel, and is generally about 0 to 7% in order to reduce the solidification cracking susceptibility or make the structure finer. Are controlled by However, in a steel having a high Cr content such as the steel of the present invention, the delta ferrite in the solidified structure is changed to an intermetallic compound during the hot manufacturing process, and remains in the steel material as a product to inhibit toughness. Therefore, the upper limit of δcal is limited to +4 so that delta ferrite is reduced. If this value is exceeded, it will be difficult to obtain high toughness even if the device is devised in the hot manufacturing process. On the other hand, a small (minus) side of δcal means that the amount of delta ferrite is substantially 0%, and not only the above effect is saturated, but also an excessively high amount of Ni is contained. 6 was the lower limit. A preferred range is -3 to +3. In the present invention that does not contain W or Cu, W or Cu in formula (2) is set to zero.

鋼材に含まれる金属間化合物の含有率は、本発明に於けるオーステナイト系ステンレス鋼材の靭性を支配する重要な因子である。金属間化合物とはσ相、χ相と呼ばれるCr、MoあるいはWを主要な成分とする化合物のことである。この化合物の含有率はミクロ組織をアルカリ電解腐食し、400倍程度の光学顕微鏡観察により測定することができる。本発明者らは鋼材断面観察の平均値としてのこの含有率が0.5%を越えると鋼材のシャルピー吸収エネルギーが100Jを下回ることを知見し、その上限を0.5%と定めた。   The content of the intermetallic compound contained in the steel material is an important factor governing the toughness of the austenitic stainless steel material in the present invention. An intermetallic compound is a compound having Cr, Mo, or W as a main component, called σ phase or χ phase. The content of this compound can be measured by observing an optical microscope of about 400 times with alkaline electrolytic corrosion of the microstructure. The present inventors have found that the Charpy absorbed energy of the steel material is less than 100 J when the content ratio as an average value of the cross section observation of the steel material exceeds 0.5%, and the upper limit is set to 0.5%.

本発明の請求項2記載の限定理由について説明する。   The reason for limitation according to claim 2 of the present invention will be described.

Cuは、ステンレス鋼の酸にたいする耐食性を付加的に高める元素であり、この目的のもと、0.1%以上含有させることができる。2.0%を越えて含有させてもコストに見合った効果が飽和するので上限を2.0%とした。   Cu is an element that additionally enhances the corrosion resistance of stainless steel to acids, and for this purpose, it can be contained in an amount of 0.1% or more. Even if the content exceeds 2.0%, the effect corresponding to the cost is saturated, so the upper limit was made 2.0%.

Tiは、極微量で酸化物、窒化物、硫化物を形成し鋼の結晶粒を微細化する元素であり、本発明鋼では積極的に利用して良い元素である。鋼材中の金属間化合物含有率を低減するためにはδcal上限値の制限と鋼片の均質化熱処理の実施が有効である。このうち後者の方法では1250℃程度の高い温度で数時間の熱処理を実施することになるが、Tiの適量の含有はこのような高い温度での熱処理中の結晶粒の成長を有効に抑制する。この目的のためには0.003%以上の含有が必要である。一方Tiは窒化物生成能が非常に高い元素であり、Nを含有する本発明鋼においては0.03%を越えて含有させると粗大なTiNが鋼の靭性を阻害するようになる。このためその含有量を0.003〜0.03%と定めた。含有させる場合の好適な含有率は0.005〜0.02%である。   Ti is an element that forms oxides, nitrides, and sulfides in a very small amount to refine the crystal grains of the steel, and is an element that can be actively used in the steel of the present invention. In order to reduce the intermetallic compound content in steel, it is effective to limit the upper limit of δcal and perform homogenization heat treatment on the steel slab. Among these, in the latter method, heat treatment is performed at a high temperature of about 1250 ° C. for several hours, but the inclusion of an appropriate amount of Ti effectively suppresses the growth of crystal grains during the heat treatment at such a high temperature. . For this purpose, a content of 0.003% or more is necessary. On the other hand, Ti is an element having a very high ability to form nitrides. In the steel of the present invention containing N, if Ti is contained in an amount exceeding 0.03%, coarse TiN will inhibit the toughness of the steel. For this reason, the content was determined to be 0.003 to 0.03%. The preferable content rate when it is contained is 0.005 to 0.02%.

Nbは、炭化物を形成してCを固定することで、Cr炭化物の生成を抑制し、耐食性、靱性を向上させる。また窒化物を形成して結晶粒成長を抑制し、鋼材を細粒化し強度を上昇させる。この耐食性改善、強度上昇の目的のため、0.02%以上添加することができる。しかしながら、0.2%を超えて添加すると、熱間加工中にNbの炭窒化物が多量析出して熱間再結晶を阻害し、製品となる鋼材に粗大な組織が残留するようになるので0.2%を上限と定めた。添加する場合の好ましい含有率範囲は、0.05%〜0.15%である。   Nb forms carbide and fixes C, thereby suppressing the formation of Cr carbide and improving corrosion resistance and toughness. Also, nitrides are formed to suppress crystal grain growth, and the steel material is refined to increase the strength. For the purpose of improving the corrosion resistance and increasing the strength, 0.02% or more can be added. However, if added over 0.2%, a large amount of Nb carbonitride precipitates during hot working and hinders hot recrystallization, leaving a coarse structure in the steel product. The upper limit was set to 0.2%. A preferable content range in the case of adding is 0.05% to 0.15%.

Vは、Nbと同様に炭窒化物を生成する元素であり、耐食性、靱性を確保するために添加することができる。この目的のためには0.05%以上含有させるが、0.5%を超えて含有させると粗大なV系炭窒化物が生成し、逆に靱性が劣化する。そのため、上限を0.5%に限定する。好ましくは、0.1〜0.3%の範囲である。   V is an element that forms carbonitrides similarly to Nb, and can be added to ensure corrosion resistance and toughness. For this purpose, it is contained in an amount of 0.05% or more, but if it exceeds 0.5%, coarse V-based carbonitrides are produced, and conversely, toughness deteriorates. Therefore, the upper limit is limited to 0.5%. Preferably, it is 0.1 to 0.3% of range.

Wは、Moと同様にステンレス鋼の耐食性を付加的に向上させる元素であり、本発明鋼においてこの目的のために0.3〜3.0%を含有させることができる。   W, like Mo, is an element that additionally improves the corrosion resistance of stainless steel, and 0.3 to 3.0% can be contained in the steel of the present invention for this purpose.

本発明の請求項3記載の限定理由について説明する。   The reason for limitation according to claim 3 of the present invention will be described.

B、Ca、Mg、REMは、いずれも鋼の熱間加工性を改善する元素であり、その目的で1種または2種以上添加される。いずれも過剰な添加は逆に熱間加工性を低下するためその含有量の上下限を次のように定めた。Bについては0.0003〜0.0060%、CaとMgについては0.0005〜0.0050%、REMについては0.005〜0.10%である。ここでREMはLaやCe等のライタノイド系希土類元素の含有量の総和とする。   B, Ca, Mg, and REM are all elements that improve the hot workability of steel, and one or more of them are added for that purpose. In any case, excessive addition conversely decreases hot workability, so the upper and lower limits of the content were determined as follows. B is 0.0003 to 0.0060%, Ca and Mg are 0.0005 to 0.0050%, and REM is 0.005 to 0.10%. Here, REM is the total content of lanthanoid rare earth elements such as La and Ce.

本発明の請求項4記載の限定理由について説明する。   The reason for limitation according to claim 4 of the present invention will be described.

本発明においては鋼材の靭性を高めるために鋼材に含まれる金属間化合物の量が0.5%以下になるように制限するが、その手法としてはδcalという凝固組織中のデルタフェライト量を予測する化学組成式と本請求項で記載する鋼片に対する均質化熱処理である。本発明が対象とする鋼材において凝固偏析が無い場合に金属間化合物が生成する温度はおよそ1000℃以下である。しかし、凝固により成分偏析をともなった鋼片においては金属間化合物の含有率を低減させるために偏析を拡散させ、均質化する製造工程が必要となる。この均質化熱処理の温度と時間は鋳片の凝固速度や断面積、鋼片にしたときの熱間加工度、δcal等の化学組成等によりいくぶん変化するが、Cr、Mo、Ni等の拡散に律速されるため必要な温度は1200℃以上が必要である。一方1300℃を越えると酸化スケールが異常に発生する。また時間については長時間ほど良いが、最低1時間は必要となる。また製品圧延のための鋼片の加熱において1200℃x1h以上の均熱をとることによってもこの目的は達成される。以上より1200〜1300℃で1時間以上の均質化熱処理を加えると規定した。効果と経済性を考慮すると均熱時間の望ましい範囲は2〜20hである。   In the present invention, in order to increase the toughness of the steel material, the amount of intermetallic compounds contained in the steel material is limited to 0.5% or less, but as the method, the amount of delta ferrite in the solidified structure called δcal is predicted. It is a homogenization heat treatment for the steel slab described in the chemical composition formula and this claim. In the steel material to which the present invention is applied, the temperature at which the intermetallic compound is formed when there is no solidification segregation is about 1000 ° C. or less. However, a steel slab with component segregation due to solidification requires a production process in which segregation is diffused and homogenized in order to reduce the content of intermetallic compounds. The temperature and time of this homogenization heat treatment vary somewhat depending on the solidification rate and cross-sectional area of the slab, the hot workability when it is made into a steel slab, the chemical composition such as δcal, etc., but the diffusion of Cr, Mo, Ni etc. Since the rate is limited, a necessary temperature is 1200 ° C. or higher. On the other hand, when the temperature exceeds 1300 ° C., oxide scale is abnormally generated. The longer the time, the better, but a minimum of 1 hour is required. This object can also be achieved by taking soaking of 1200 ° C. × 1 h or more in the heating of the steel slab for product rolling. From the above, it was defined that a homogenization heat treatment at 1200 to 1300 ° C. for 1 hour or longer was applied. Considering the effect and economy, the desirable range of soaking time is 2 to 20 hours.

以下に実施例について記載する。表1に供試鋼の化学組成を示す。なお表中に記載されている成分以外の不可避的不純物元素の含有量は通常のステンレス鋼と同じ程度である。また表1に示した成分について含有量が記載されていない部分は不純物レベルであることを示す。また表中のREMはランタノイド系希土類元素を意味し、含有量はそれら元素の合計を示している。   Examples are described below. Table 1 shows the chemical composition of the test steel. In addition, the content of inevitable impurity elements other than the components described in the table is the same as that of ordinary stainless steel. Moreover, the part in which content is not described about the component shown in Table 1 shows that it is an impurity level. REM in the table means lanthanoid rare earth elements, and the content indicates the total of these elements.

これらの鋼は実験室の50kg真空誘導炉により溶製され厚さが約100mmの扁平鋼塊に鋳造された。   These steels were melted in a laboratory 50 kg vacuum induction furnace and cast into a flat steel ingot having a thickness of about 100 mm.

Figure 0004494237
Figure 0004494237

上記の供試鋼を各種条件で粗圧延、均質化熱処理、製品圧延を実施した。粗圧延は1180℃に2h均熱した後65mmまで圧延した。この鋼片に1220〜1280℃で均質化熱処理を実施した。一部の鋼片は均質化熱処理を省略した。この鋼片を60mmに研削し、製品圧延用素材とした。製品圧延は1220℃に1h〜2h均熱した後、仕上温度850〜950℃の条件にて圧延し、12mm厚の鋼板を得た。なお圧延直後の鋼材温度が800℃以上の状態より300℃以下までスプレー冷却を実施した。最終の溶体化熱処理は1100℃x20分均熱後水冷の条件で実施した。また一部の鋼板では溶体化熱処理を省略した。   The above test steel was subjected to rough rolling, homogenization heat treatment, and product rolling under various conditions. The rough rolling was performed at 1180 ° C. for 2 hours and then rolled to 65 mm. The steel slab was subjected to a homogenization heat treatment at 1220 to 1280 ° C. Some steel pieces omitted the homogenization heat treatment. This steel slab was ground to 60 mm to obtain a material for product rolling. Product rolling was soaked at 1220 ° C. for 1 h to 2 h, and then rolled at a finishing temperature of 850 to 950 ° C. to obtain a 12 mm thick steel plate. Note that spray cooling was performed from a state where the steel material temperature immediately after rolling was 800 ° C or higher to 300 ° C or lower. The final solution heat treatment was carried out under conditions of water cooling after soaking at 1100 ° C. for 20 minutes. In some steel plates, solution heat treatment was omitted.

以上の製造条件で得られた厚鋼板について4号引っ張り試験片とJIS4号Vノッチシャルピー試験片を圧延直角方向より切り出し、0.2%オフセット耐力、引っ張り強さと−40℃での衝撃値を測定した。またミクロ組織観察用の試験片を切り出し、鏡面仕上げの後10%KOH電解エッチングにより金属間化合物を現出させ光学顕微鏡により含有率を測定した。含有率の測定は1/4、1/2、3/4厚部において400倍の各10視野でポイントカウントをおこない、すべての平均値を算出してその鋼材の金属間化合物含有率とした。得られた結果を表2に示す。   The No. 4 tensile test piece and the JIS No. 4 V-notch Charpy test piece were cut out from the direction perpendicular to the rolling for the thick steel plate obtained under the above production conditions, and 0.2% offset proof stress, tensile strength and impact value at −40 ° C. were measured. did. Further, a specimen for microstructural observation was cut out, and after mirror finishing, an intermetallic compound was revealed by 10% KOH electrolytic etching, and the content was measured with an optical microscope. For the measurement of the content rate, point counting was performed in each 10 visual fields 400 times in 1/4, 1/2, and 3/4 thick parts, and all average values were calculated to obtain the intermetallic compound content of the steel material. The obtained results are shown in Table 2.

Figure 0004494237
Figure 0004494237

熱間加工性の評価は製品圧延時の耳割れの発生により相対評価をおこなった。発明例3にかかる鋼材(鋼No.3〜15)においてはいずれも耳割れが発生せず良好な熱間加工性を示すことが確認された。一方発明例1,2の鋼材においては片側あたり5〜12mm程度の耳割れが発生し、若干歩留まりが低下することが確認された。耳割れの長さを表2に示す。すなわち鋼No0〜2については熱間加工性にやや問題があるものの金属間化合物の含有率を0.5%以下になるように製造した厚板では−40℃でのシャルピー衝撃値はいずれも100J/cm2を越えている。鋼No3〜15については熱間加工性を改善するべくAl、B、Ca、Mg、REMを含有させた鋼であって、耳割れは発生していない。また金属間化合物の含有率を0.5%以下になるように製造した発明例では−40℃でのシャルピー衝撃値がいずれも100J/cm2を越えている。 The hot workability was evaluated relative to the occurrence of ear cracks during product rolling. In the steel materials (steel Nos. 3 to 15) according to Invention Example 3, it was confirmed that no ear cracks occurred and good hot workability was exhibited. On the other hand, in the steel materials of Invention Examples 1 and 2, it was confirmed that an ear crack of about 5 to 12 mm occurred on one side and the yield was slightly lowered. Table 2 shows the length of the ear cracks. That is, for steel Nos. 0 to 2, although there is a slight problem in hot workability, the Charpy impact value at −40 ° C. is 100 J for all the thick plates manufactured so that the intermetallic compound content is 0.5% or less. / Cm 2 is exceeded. Steel Nos. 3 to 15 are steels containing Al, B, Ca, Mg, and REM to improve hot workability, and no ear cracks are generated. Further, in the inventive examples manufactured so that the content of the intermetallic compound is 0.5% or less, the Charpy impact value at −40 ° C. exceeds 100 J / cm 2 .

ついで鋼No21から27の比較鋼例ではそれぞれ Ti<0.03%、Nb>0.2%、V>0.5%、Al>0.1%、O>0.007%、δFe>3%、Ni>21%(δFe<−6%)と本発明の請求範囲をはずれており、鋼27を除いていずれも衝撃特性に劣る。鋼27については衝撃特性は良好であるが、Ni含有量が高く、本発明の目的からはずれる鋼である。   Then, in the comparative steel examples No. 21 to 27, Ti <0.03%, Nb> 0.2%, V> 0.5%, Al> 0.1%, O> 0.007%, δFe> 3% Ni> 21% (δFe <−6%), which is out of the scope of the present invention, except for the steel 27, is inferior in impact characteristics. Steel 27 has good impact characteristics, but has a high Ni content and is not suitable for the purpose of the present invention.

表1および表2の結果から明らかなように本発明の範囲である鋼組成と金属間化合物含有率を満たす鋼材においては耐食性の指標であるPI値が35以上であり、高い強度を示し、かつシャルピー衝撃値がいずれも100J/cm2以上を示すことが明らかである。 As is clear from the results of Tables 1 and 2, in steel materials satisfying the steel composition and intermetallic compound content that are within the scope of the present invention, the PI value, which is an index of corrosion resistance, is 35 or more, and exhibits high strength. It is clear that each Charpy impact value is 100 J / cm 2 or more.

以上の実施例から分かるように本発明鋼材が耐食性、強靱性および熱間加工性が良好なオーステナイト系ステンレス鋼材であることが明確となった。   As can be seen from the above examples, the steel material of the present invention is clearly an austenitic stainless steel material having good corrosion resistance, toughness and hot workability.

本発明は耐海水性を有する船体用構造材として好適な耐食性、強靱性および熱間加工性が良好なオーステナイト系ステンレス鋼材を実現し、産業上寄与するところは極めて大である。   The present invention realizes an austenitic stainless steel material having good corrosion resistance, toughness, and hot workability suitable as a structural material for ship hulls having seawater resistance, and greatly contributes industrially.

Claims (4)

質量%で、C:0.03%以下、Si:0.1〜1.5%、Mn:0.1〜3.0%、P:0.05%以下、S:0.003%以下、Ni:15.0〜21.0%、Cr:22.0〜28.0%、Mo:1.5〜3.5%、N:0.15〜0.35%、Al:0.005〜0.1%以下、O:0.007%以下を含有し、かつ、PI:35〜40、δcal:−6〜+4 の関係を満たし、残部がFeおよび不可避的不純物より構成され、さらに鋼材に含まれる、σ相、χ相と呼ばれる金属間化合物の含有率が0.5%以下であることを特徴とする耐食性、強靱性に優れるオーステナイト系ステンレス鋼材。
PI=Cr+3.3(Mo+0.5W)+16N (1)
δcal =2.9(Cr+0.3Si+Mo+0.5W)−2.6(Ni+
0.3Mn+0.25Cu+35C+20N)−18 (2)
ここで元素名は質量%で表示されるその元素の含有量
In mass%, C: 0.03% or less, Si: 0.1-1.5%, Mn: 0.1-3.0%, P: 0.05% or less, S: 0.003% or less, Ni: 15.0 to 21.0%, Cr: 22.0 to 28.0%, Mo: 1.5 to 3.5%, N: 0.15 to 0.35%, Al: 0.005 0.1% or less, O: 0.007% or less, PI: 35-40, δcal: −6 to +4, the balance is composed of Fe and inevitable impurities. An austenitic stainless steel material excellent in corrosion resistance and toughness, characterized in that the content of intermetallic compounds called σ phase and χ phase is 0.5% or less.
PI = Cr + 3.3 (Mo + 0.5W) + 16N (1)
δcal = 2.9 (Cr + 0.3Si + Mo + 0.5W) −2.6 (Ni +
0.3Mn + 0.25Cu + 35C + 20N) -18 (2)
Here, the element name is expressed in mass%.
さらに質量%で、Cu:0.1〜2.0%、Ti:0.003〜0.03%、Nb:0.02〜0.20%、V:0.05〜0.5%、W:0.3〜3.0%のうちの1種または2種以上を含有することを特徴とする請求項1に記載の耐食性、強靱性に優れるオーステナイト系ステンレス鋼材。   Further, by mass, Cu: 0.1 to 2.0%, Ti: 0.003 to 0.03%, Nb: 0.02 to 0.20%, V: 0.05 to 0.5%, W The austenitic stainless steel material having excellent corrosion resistance and toughness according to claim 1, comprising one or more of 0.3 to 3.0%. 質量%で、B:0.0003〜0.0060%、Ca:0.0005〜0.0050%、Mg:0.0005〜0.0050%、REM:0.005〜0.10%のうちの1種または2種以上を含有することを特徴とする請求項1ないし2記載の耐食性、強靱性および熱間加工性に優れるオーステナイト系ステンレス鋼材。   % By mass of B: 0.0003 to 0.0060%, Ca: 0.0005 to 0.0050%, Mg: 0.0005 to 0.0050%, REM: 0.005 to 0.10% The austenitic stainless steel material having excellent corrosion resistance, toughness, and hot workability according to claim 1 or 2, wherein the austenitic stainless steel material has one or more kinds. 請求項1ないし3のいずれかに記載の化学成分を有する鋳片または粗熱間加工後の鋼片に対して鋼材中の前記金属間化合物の含有率を低減させるために1200〜1300℃で1時間以上の均質化熱処理を加えることを特徴とする請求項1ないし3のいずれかに記載の耐食性、強靱性および熱間加工性に優れるオーステナイト系ステンレス鋼材の製造方法。 Claims 1 to 1 at 1200 to 1300 ° C. in order to reduce the content of the intermetallic compound in the steel against steel strip after processing between slab or coarse heat having a chemical composition according to any one of 3 The method for producing an austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability according to any one of claims 1 to 3, wherein a homogenization heat treatment for at least hours is applied.
JP2005026176A 2005-02-02 2005-02-02 Austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, and method for producing the same Active JP4494237B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005026176A JP4494237B2 (en) 2005-02-02 2005-02-02 Austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, and method for producing the same
US11/343,516 US20060243356A1 (en) 2005-02-02 2006-01-30 Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof
US12/391,045 US8105447B2 (en) 2005-02-02 2009-02-23 Austenitic stainless hot-rolled steel material with excellent corrosion resistance, proof stress, and low-temperature toughness
US13/349,866 US8506729B2 (en) 2005-02-02 2012-01-13 Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026176A JP4494237B2 (en) 2005-02-02 2005-02-02 Austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006213950A JP2006213950A (en) 2006-08-17
JP4494237B2 true JP4494237B2 (en) 2010-06-30

Family

ID=36977418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005026176A Active JP4494237B2 (en) 2005-02-02 2005-02-02 Austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4494237B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5984213B2 (en) * 2012-10-23 2016-09-06 日本冶金工業株式会社 Austenitic Fe-Ni-Cr alloy for cladding tubes with excellent weldability
CN104846291B (en) * 2015-04-21 2017-11-28 宝山钢铁股份有限公司 A kind of high-strength corrosion-resistant stainless steel, stainless steel tubing and casing and its manufacture method
KR20210028382A (en) * 2019-09-04 2021-03-12 주식회사 포스코 High corrosion resistant austenitic stainless steel with excellent impact toughness and hot workability
US11618930B2 (en) * 2019-12-26 2023-04-04 Seiko Watch Kabushiki Kaisha Personal ornament and method for producing personal ornament

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046214A (en) * 1990-04-23 1992-01-10 Nippon Steel Corp Production of high strength austenitic stainless steel excellent in seawater corrosion resistance
JPH05320756A (en) * 1992-05-21 1993-12-03 Nippon Steel Corp Production of high strength austenitic stainless steel excellent in seawater corrosion rest stance
JPH07258800A (en) * 1994-03-23 1995-10-09 Nippon Steel Corp Austenitic stainless steel for building material
JP2002322545A (en) * 2001-04-25 2002-11-08 Nisshin Steel Co Ltd Mo-CONTAINING HIGH Cr HIGH Ni AUSTENITIC STAINLESS STEEL PLATE HAVING EXCELLENT DUCTILITY AND PRODUCTION METHOD THEREFOR

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046214A (en) * 1990-04-23 1992-01-10 Nippon Steel Corp Production of high strength austenitic stainless steel excellent in seawater corrosion resistance
JPH05320756A (en) * 1992-05-21 1993-12-03 Nippon Steel Corp Production of high strength austenitic stainless steel excellent in seawater corrosion rest stance
JPH07258800A (en) * 1994-03-23 1995-10-09 Nippon Steel Corp Austenitic stainless steel for building material
JP2002322545A (en) * 2001-04-25 2002-11-08 Nisshin Steel Co Ltd Mo-CONTAINING HIGH Cr HIGH Ni AUSTENITIC STAINLESS STEEL PLATE HAVING EXCELLENT DUCTILITY AND PRODUCTION METHOD THEREFOR

Also Published As

Publication number Publication date
JP2006213950A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
US8105447B2 (en) Austenitic stainless hot-rolled steel material with excellent corrosion resistance, proof stress, and low-temperature toughness
JP5979063B2 (en) Method for producing marine steel with excellent corrosion resistance and base metal toughness
JP4624808B2 (en) Ferritic stainless steel sheet with excellent workability and method for producing the same
KR101648694B1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
WO2018104984A1 (en) HIGH Mn STEEL SHEET AND PRODUCTION METHOD THEREFOR
JP7099653B1 (en) Steel plate and its manufacturing method
KR20130006546A (en) Hot-rolled shape steel for crude oil tanks and process for manufacturing the same
JP4754362B2 (en) Austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness, and method for producing the same
JP4494237B2 (en) Austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, and method for producing the same
JP6036645B2 (en) Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
JP6601258B2 (en) Corrosion-resistant steel for ballast tanks
EP0603402B1 (en) High-chromium and high-phosphorus ferritic stainless steel excellent in weatherproofness and rustproofness
JPH08144021A (en) Production of ferritic stainless steel and cold rolled sheet therefrom
JP4016770B2 (en) Seawater resistant steel and manufacturing method thereof
KR101809812B1 (en) Ferritic stainless steel having excellent corrosion resistance of weld zone
JPH05320756A (en) Production of high strength austenitic stainless steel excellent in seawater corrosion rest stance
CN115558852A (en) High-strength austenitic stainless steel with crevice corrosion resistance and pitting corrosion resistance superior to 317L and manufacturing method thereof
KR20150086347A (en) Steel material having excellent alcohol-induced pitting corrosion resistance and alcohol-induced scc resistance
KR101673218B1 (en) Ferritic stainless steel
KR101087420B1 (en) Hot-rolled steel having high strength, and method for producing the same
JPS61201759A (en) High strength and toughness welded steel pipe for line pipe
CN112969809B (en) High-strength steel for structure having excellent seawater corrosion resistance and method for manufacturing the same
JP7350705B2 (en) Low-strength thick steel plate with excellent elongation properties and corrosion resistance
JPH0713252B2 (en) Method for producing high strength austenitic stainless steel with excellent seawater resistance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Ref document number: 4494237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250