JPH046214A - Production of high strength austenitic stainless steel excellent in seawater corrosion resistance - Google Patents

Production of high strength austenitic stainless steel excellent in seawater corrosion resistance

Info

Publication number
JPH046214A
JPH046214A JP10685590A JP10685590A JPH046214A JP H046214 A JPH046214 A JP H046214A JP 10685590 A JP10685590 A JP 10685590A JP 10685590 A JP10685590 A JP 10685590A JP H046214 A JPH046214 A JP H046214A
Authority
JP
Japan
Prior art keywords
stainless steel
less
rolling
seawater
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10685590A
Other languages
Japanese (ja)
Other versions
JPH0713252B2 (en
Inventor
Masayuki Tento
雅之 天藤
Takanori Nakazawa
中澤 崇徳
Masaaki Hashimoto
橋本 政哲
Kazuhiro Suetsugu
和広 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10685590A priority Critical patent/JPH0713252B2/en
Publication of JPH046214A publication Critical patent/JPH046214A/en
Publication of JPH0713252B2 publication Critical patent/JPH0713252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide superior seawater corrosion resistance and high fatigue strength in seawater by limiting components in a steel and carrying out controlled rolling and controlled cooling under the conditions suited to the above components, respectively. CONSTITUTION:A stainless steel has a composition consisting of, by weight, <=0.08% C, <= 2.00% Si, <= 2.0% Mn, > 21-30% Cr, 10-20%Ni, 0.5-3.0% Mo, > 0.3-0.5% N, and the balance Fe with impurity elements. This steel is heated to 1100-1300 deg.C and roughed at >= 1050 deg.C at >= 50% total reduction of area. Successively, finish rolling is performed at 800-1050 deg.C at >= 10% total reduction of area. After rolling, controlled cooling is carried out at >= 50 deg.C/min average cooling rate until 800-500 deg.C is reached, by which the recovery of working strain introduced by the finish rolling is inhibited. Further, the precipitation of Cr carbide in the above temp. region is inhibited. By this method, a high strength austenitic stainless steel excellent in seawater corrosion resistance can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は船体構造用、例えば高速船の水中翼等に用いら
れる耐海水性、耐力および海水中での疲労強度の優れた
オーステナイトステンレス鋼の製造方法に関するもので
ある。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to austenitic stainless steel that has excellent seawater resistance, yield strength, and fatigue strength in seawater and is used for hull structures, such as hydrofoils of high-speed ships. This relates to a manufacturing method.

(従来の技術) 従来、船体構造用には重防食を施した塗装鋼板が使用さ
れてきた。最近になって水中翼等を備えた高速船の需要
が増加しており、この用途では高速の海水流が接するた
め、塗装を認しない耐海水性の優れた材料が要求されて
いる。さらに船体重量を軽減するため高強度の材料か望
まれる。
(Prior Art) Painted steel plates with heavy corrosion protection have conventionally been used for ship hull structures. Recently, there has been an increase in demand for high-speed ships equipped with hydrofoils, etc., and because these applications come into contact with high-speed seawater currents, materials with excellent seawater resistance that do not allow painting are required. Furthermore, high-strength materials are desired to reduce the weight of the ship.

耐海水性の優れた材料としてオーステナイトステンレス
鋼が有望であるか、従来の製造方法では熱間圧延後、溶
体化焼鈍を施すため軟質化し、耐力はせいぜい40kg
f/mjで、海水中での疲労強度も低い。
Austenitic stainless steel is promising as a material with excellent seawater resistance, but in the conventional manufacturing method, it is subjected to solution annealing after hot rolling, which softens it and has a yield strength of 40 kg at most.
f/mj and low fatigue strength in seawater.

この問題を解決するため特開昭62−267418号あ
るいは特開昭83−199851号の各公報では、溶体
化焼鈍を省略し強度あるいは腐食疲労強度を改善する方
法を提唱しているか、Q、296耐力が80kgf/−
以下または海水中での疲労強度が40kg f /−以
下とその効果は十分てなく、この用途では使用が難しい
To solve this problem, do JP-A-62-267418 or JP-A-83-199851 propose a method to improve strength or corrosion fatigue strength by omitting solution annealing?Q, 296 Yield strength is 80kgf/-
If the fatigue strength in seawater is less than 40 kgf/-, the effect is not sufficient and it is difficult to use it for this purpose.

また溶体化焼鈍後も強度の高いマルテンサイト系ステン
レス鋼は耐蝕性、成形性、溶接性に問題があった。
Furthermore, martensitic stainless steel, which has high strength even after solution annealing, has problems in corrosion resistance, formability, and weldability.

(発明が解決しようとする課題) 本発明は高速船の水中翼等で要求される耐海水性、耐力
、海水中での疲労強度の優れたオーステナイトステンレ
ス鋼を製造することを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to produce an austenitic stainless steel having excellent seawater resistance, yield strength, and fatigue strength in seawater required for hydrofoils of high-speed ships, etc.

つまり孔食発生温度か30℃以上、耐力が60kg f
 /−1海水中ての疲労強度が40kg f /mJを
超えるオーステナイトステンレス鋼を実現することであ
る。
In other words, the temperature at which pitting corrosion occurs is 30℃ or higher, and the yield strength is 60kg f.
/-1 An object of the present invention is to realize an austenitic stainless steel whose fatigue strength in seawater exceeds 40 kg f /mJ.

(課題を解決するための手段) 本発明は従来技術の問題点を克服し、耐海水性に優れ、
耐力および海水中での疲労強度の高いオーステナイトス
テンレス鋼を製造するために、成分の限定を行い、その
範囲で有効な制御圧延・制御冷却方法を見出したもので
ある。この製造方法によって強度の低下を招く溶体化焼
鈍を省略できる。
(Means for Solving the Problems) The present invention overcomes the problems of the prior art, has excellent seawater resistance,
In order to produce austenitic stainless steel with high yield strength and fatigue strength in seawater, we limited the ingredients and found effective controlled rolling and controlled cooling methods within that range. With this manufacturing method, solution annealing that causes a decrease in strength can be omitted.

つまり、重;%でC0.08%以下、S+2.00%以
下、Mn2.0%以下、Cr21%超〜30%、N11
0〜20%、Mo 0.5〜3.0%、N003%超〜
0.5%を含有し、残部Feならびに不純物元素からな
るオーステナイトステンレス鋼を、1100℃〜130
0℃に加熱し、1050℃以上で全圧下量が50%以上
となるように圧延し、ついて800℃〜1050℃で全
圧下量が10%以上となるよう仕上げ圧延を行い、さら
に圧延後800℃〜500℃の平均冷却速度が50’C
/win以上とすることである。
In other words, weight: C0.08% or less, S+2.00% or less, Mn2.0% or less, Cr21% to 30%, N11
0~20%, Mo 0.5~3.0%, N003%~
Austenitic stainless steel containing 0.5% Fe and impurity elements was heated at 1100°C to 130°C.
It is heated to 0°C, rolled at 1050°C or higher to a total reduction of 50% or more, then finish rolled at 800°C to 1050°C to a total reduction of 10% or more, and further rolled at 800°C or higher. Average cooling rate from ℃ to 500℃ is 50'C
/win or more.

この製造方法によって耐海水性を劣化させることなく、
熱間圧延時に導入された歪を効果的に残留させ、耐力お
よび海水中での疲労強度を改善することができる。
This manufacturing method does not deteriorate seawater resistance,
It is possible to effectively retain the strain introduced during hot rolling and improve yield strength and fatigue strength in seawater.

ます、本発明において成分を限定した理由を説明する。First, the reason for limiting the components in the present invention will be explained.

Cは強度を増加させる元素であるが、含有量が増大する
と熱間圧延時にCr炭化物が形成し耐蝕性を劣化させる
ため、0.08%以下とした。
C is an element that increases strength, but if the content increases, Cr carbides are formed during hot rolling and the corrosion resistance deteriorates, so it is set to 0.08% or less.

Stは通常脱酸元素として添加されるが、2.00%を
超えると熱間加工性か低下するため、2.00%以下に
限定した。
St is usually added as a deoxidizing element, but if it exceeds 2.00%, hot workability deteriorates, so it is limited to 2.00% or less.

Mnは不可避的な不純物元素であるが、2.0%を超え
ると耐蝕性が低下するため、2.0%以下に限定した。
Mn is an unavoidable impurity element, but if it exceeds 2.0%, corrosion resistance decreases, so it is limited to 2.0% or less.

Crは海水中での耐蝕性を維持するのに必須の元素であ
り、海水中で十分な耐蝕性を保ち、さらに海水中での疲
労強度の低下を防止するためにはCrを21%を超えて
添加する必要がある。しかしCr含有量が3096を超
えると熱間加工性が低下し、製造が難しくなるためCr
含自゛;を21%超〜30%に限定した。
Cr is an essential element to maintain corrosion resistance in seawater, and in order to maintain sufficient corrosion resistance in seawater and furthermore prevent a decrease in fatigue strength in seawater, Cr must exceed 21%. It is necessary to add it. However, if the Cr content exceeds 3096, hot workability decreases and manufacturing becomes difficult.
The content was limited to more than 21% to 30%.

Niは組織をオーステナイトに保つ基本的な元素で、そ
の含有量が10%未満であるとオーステナイトが不安定
となり、フェライトが晶出し熱間加工性が低下する。し
かし20%を超えて添加しても効果がなく、価格的に不
利になるだけである。
Ni is a basic element that maintains the structure as austenite, and if its content is less than 10%, austenite becomes unstable, ferrite crystallizes, and hot workability decreases. However, adding more than 20% has no effect and is only disadvantageous in terms of cost.

従ってNi含有量を10〜20%に限定した。Therefore, the Ni content was limited to 10 to 20%.

Moは耐蝕性を向上させる有効な元素で、海水中での耐
蝕性および疲労強度を確保するためには0.5%以上添
加しなければならない。しかし3.0%を超えて添加す
ると熱間加工性が低下するため、Mo含有量は0.5〜
3,0%に限定した。
Mo is an effective element for improving corrosion resistance, and must be added in an amount of 0.5% or more to ensure corrosion resistance and fatigue strength in seawater. However, if it is added in excess of 3.0%, hot workability will decrease, so the Mo content should be between 0.5 and 3.0%.
It was limited to 3.0%.

Nは鋼中に固溶し、強度を上昇させるために必須の元素
であり、また海水中での耐蝕性を向上させる効果がある
。本発明での製造方法で強度を確保するためにはNを0
,3%超含有させる必要かあるか、0.5%を超えて添
加すると製造性を低下させるため、Nの含’fWは0.
3%超〜0.5%に限定した。
N is a solid solution in steel and is an essential element for increasing strength, and also has the effect of improving corrosion resistance in seawater. In order to ensure strength with the manufacturing method of the present invention, N is 0.
, Is it necessary to include more than 3%? Since adding more than 0.5% reduces manufacturability, the content of N is 0.5%.
It was limited to more than 3% to 0.5%.

本発明の製造方法で耐海水性の優れた高強度オーステナ
イトステンレス鋼を得るには上記成分だけでもよいが、
その他の添加元素として、Cuは耐孔食性、Tiおよび
Zrは耐粒界腐食性、さらにAjll、Ca、Mg、ラ
ンタノイド系希土類元素は製造性を改善する効果を有す
る。
In order to obtain high-strength austenitic stainless steel with excellent seawater resistance using the production method of the present invention, only the above-mentioned components are sufficient.
As other additive elements, Cu has the effect of pitting corrosion resistance, Ti and Zr have the effect of intergranular corrosion resistance, and Ajll, Ca, Mg, and lanthanoid rare earth elements have the effect of improving manufacturability.

以下に上記添加元素の成分範囲について述べる。The component ranges of the above additive elements will be described below.

Cuは耐蝕性、特に耐孔食性の向上に効果があるが、過
度の添加はコストの上昇を招くため2,0%以下に限定
した。
Cu is effective in improving corrosion resistance, particularly pitting corrosion resistance, but excessive addition leads to an increase in cost, so it was limited to 2.0% or less.

Ti、ZrはCr炭化物の形成を抑制し、耐粒界腐食性
の向上に効果があるか、多量の添加は製造性の低下を招
くため0.5%以下に限定した。
Ti and Zr are effective in suppressing the formation of Cr carbides and improving intergranular corrosion resistance, and addition of a large amount leads to a decrease in manufacturability, so the content was limited to 0.5% or less.

さらにAN、Ca、Mg、ランタノイド系希土類元素の
適量添加はSおよびOによる熱間加工性の低下、地疵の
発生を抑制する。しかし過剰に添加すると、逆に地疵が
多くなるため、その含有量は、Ap 0.旧〜0.20
%、Ca 0.001〜0.020%、Mg 0.00
1〜0.020%、ランタノイド系希土類元素0.00
2〜0.050%に限定した。
Furthermore, addition of appropriate amounts of AN, Ca, Mg, and lanthanoid rare earth elements suppresses deterioration of hot workability and occurrence of ground defects due to S and O. However, if it is added in excess, the ground flaws will increase, so the content should be set at Ap 0. Old ~ 0.20
%, Ca 0.001-0.020%, Mg 0.00
1 to 0.020%, lanthanide rare earth elements 0.00
It was limited to 2 to 0.050%.

ここでのランタノイド系希土類元素とはLa。The lanthanoid rare earth element here is La.

Cc等のランタン系元素の単独あるいは混合物を示す。Indicates a single or a mixture of lanthanum-based elements such as Cc.

次に製造条件の限定理由を説明する。Next, the reason for limiting the manufacturing conditions will be explained.

本発明の制御圧延は、鋼塊を1100℃〜1300℃に
加熱し、1050℃以上で全圧下量が50%以上とする
粗圧延段階と、続いて800℃〜1050℃で全圧下;
が10%以上とする仕上げ圧延段階から成る。
The controlled rolling of the present invention includes a rough rolling stage in which the steel ingot is heated to 1100°C to 1300°C and a total reduction of 50% or more at 1050°C or higher, followed by a total reduction at 800°C to 1050°C;
This consists of a finish rolling step in which the rolling stock is 10% or more.

前者は主に凝固組織を壊し、均一な再結晶組織を得るだ
めの段階で、後右は圧延により加工歪を導入し、圧延後
の強度を上昇させる段階である。
The former is a stage in which the solidified structure is mainly broken and a uniform recrystallized structure is obtained, and the rear right is a stage in which working strain is introduced by rolling to increase the strength after rolling.

そして圧延後800℃〜500℃までを50℃/ll1
n以上の平均冷却速度で制御冷却し、仕上げ圧延で導入
された加工歪が回復するのを抑制し、またこの温度領域
でのCr炭化物析出を抑制することにより、耐海水性に
優れた高強度オーステナイトステンレス鋼を得ることが
できる。
After rolling, the temperature is 50℃/ll1 from 800℃ to 500℃.
Controlled cooling at an average cooling rate of n or more suppresses recovery of processing strain introduced during finish rolling, and suppresses Cr carbide precipitation in this temperature range, resulting in high strength with excellent seawater resistance. Austenitic stainless steel can be obtained.

さらに詳細に条件限定理由を述べる。The reasons for limiting the conditions will be explained in more detail.

1050℃以上で全圧下量が50%以上となる圧延を可
能にし、かつ変形抵抗を下げ圧延を容易にするために鋼
塊の加熱は1100℃以上必要である。しかし1300
℃を超えて加熱すると粒界部が溶融し、圧延時に割れを
生じるため加熱温度は1100℃〜1300℃に限定し
た。
In order to enable rolling with a total reduction of 50% or more at 1050°C or higher, and to reduce deformation resistance and facilitate rolling, the steel ingot needs to be heated to 1100°C or higher. But 1300
The heating temperature was limited to 1100°C to 1300°C because heating above 130°C melts the grain boundaries and causes cracks during rolling.

粗圧延段階では、凝固組織を壊し均一な再結晶組織を得
るため、1050℃以上で全圧下量を50%以上としな
ければならない。圧延温度が1050℃以下あるいは全
圧下量が50%以下であると、均一な再結晶組織を得る
ことかできず、また凝固時の成分偏析が残るため海水中
ての耐蝕性が劣化する。
In the rough rolling stage, in order to break the solidification structure and obtain a uniform recrystallized structure, the total rolling reduction must be at least 50% at 1050° C. or higher. If the rolling temperature is 1050° C. or less or the total reduction is 50% or less, a uniform recrystallized structure cannot be obtained, and component segregation during solidification remains, resulting in deterioration of corrosion resistance in seawater.

仕上げ圧延段階は高強度オーステナイトステンレス鋼を
得るのに最も重要な段階である。第1図に800℃〜1
050℃での全圧下量と0゜2%耐力の関係を示し、第
2図に800℃〜1050℃での全圧下量と海水中の腐
食疲労強度の関係を示す。
The finish rolling stage is the most important stage to obtain high strength austenitic stainless steel. Figure 1 shows 800℃~1
The relationship between the total reduction at 050°C and 0°2% yield strength is shown, and the relationship between the total reduction at 800°C to 1050°C and corrosion fatigue strength in seawater is shown in Fig. 2.

図中のAは第1表に示すように本発明で限定した成分範
囲内にあり、J、L、Mは比較鋼種である。
As shown in Table 1, A in the figure is within the composition range limited by the present invention, and J, L, and M are comparative steel types.

この図より目標とする耐力が60kg f / mai
以上および海水中での疲労強度か40kg f /−以
上を満足する鋼を得るためには、本発明で限定した成分
範囲において800℃〜1050℃での全圧下量が10
%以上となる仕上げ圧延が必要である。また1050℃
超で圧延すると再結晶し、加工歪が蓄積できず、十分な
強度を得ることかできず、800℃未満で圧延を行うこ
とは変形抵抗か上昇し、制御圧延が困難である。制御圧
延後の制御冷却は加工歪の回復による強度低下を抑制し
、さらにC「炭化物析出による耐蝕性劣化を防止する。
From this diagram, the target proof strength is 60kg f/mai
In order to obtain a steel that satisfies the above and the fatigue strength in seawater of 40 kg f/- or more, the total reduction at 800°C to 1050°C must be 10
% or more is required. Also 1050℃
If rolled at a temperature higher than 800° C., the steel recrystallizes and cannot accumulate processing strain, making it impossible to obtain sufficient strength. Rolling at a temperature lower than 800° C. increases the deformation resistance, making controlled rolling difficult. Controlled cooling after controlled rolling suppresses the decrease in strength due to recovery of processing strain, and also prevents deterioration of corrosion resistance due to carbide precipitation.

第3図に本発明で限定している成分範囲を満足する供試
鋼Aについて800℃〜500℃までの平均冷却速度と
0.2%耐力の関係を示す。
FIG. 3 shows the relationship between the average cooling rate from 800 DEG C. to 500 DEG C. and 0.2% proof stress for test steel A that satisfies the composition range defined in the present invention.

この図から平均冷却速度が50℃/win未満では加工
歪の回復による強度罷工を招き、0.2%耐力を60k
g f / +*+i以上とするためには、800℃〜
500℃までを平均50℃/ m i n以上で制御冷
却する必要かある。なお本発明の限定成分外でも上記の
製造方法によって強度を上昇させることは可能であるが
、その効果は不十分である。
From this figure, if the average cooling rate is less than 50℃/win, strength failure will occur due to recovery of machining strain, and the 0.2% yield strength will be reduced to 60k.
In order to achieve g f / +*+i or more, the temperature must be 800℃~
Is it necessary to perform controlled cooling at an average rate of 50°C/min or more up to 500°C? Although it is possible to increase the strength by the above manufacturing method using ingredients other than the limited ingredients of the present invention, the effect is insufficient.

耐海水性を確保し、かつ十分な耐力、腐食疲労強度を得
るためには、本発明で限定している成分範囲と製造方法
の両方を満足しなければならない。
In order to ensure seawater resistance and obtain sufficient yield strength and corrosion fatigue strength, it is necessary to satisfy both the component range and the manufacturing method defined in the present invention.

(実 施 例) 第1表に供試鋼の化学成分を示す。なお表中に記載され
ている成分以外の不ロ■避的な不純物元素の含有量は通
當のステンレス鋼と同じ程度である。
(Example) Table 1 shows the chemical composition of the test steel. The content of unavoidable impurity elements other than those listed in the table is about the same as that of ordinary stainless steel.

つまり玉量%で硫黄含有量は0,01%以下、燐含有量
は0.05%以下、酸素含有量は0.01%以下である
。また表中のREMはランタノイド系希土類元素を意味
し、含有量はそれら元素の合計を示している。
In other words, the sulfur content is 0.01% or less, the phosphorus content is 0.05% or less, and the oxygen content is 0.01% or less. Further, REM in the table means a lanthanoid rare earth element, and the content indicates the total of these elements.

上記の供試鋼を各種条件で熱間圧延を実施した。The above test steel was hot rolled under various conditions.

第2表に製品板厚、圧延終了温度、1050℃超での全
圧下量、800℃〜1050℃での全圧下量と800℃
〜500℃までの平均冷却速度を示す。
Table 2 shows product plate thickness, rolling end temperature, total rolling reduction above 1050°C, total rolling reduction between 800°C and 1050°C and 800°C.
Shows the average cooling rate up to ~500°C.

なお圧延前の加熱は1140℃〜1270℃で行った。Note that heating before rolling was performed at 1140°C to 1270°C.

表中の1〜14番が本発明での製造条件範囲であり、1
5〜22番が比較条件である。
Numbers 1 to 14 in the table are the range of manufacturing conditions in the present invention, and 1
Numbers 5 to 22 are comparison conditions.

以上の製造条件で得られた熱延鋼板について、耐海水性
、耐力、腐食疲労強度を評価した。耐海水性は30℃の
人工海水中に1000時間浸漬し、孔食発生の有無を調
べた。
The seawater resistance, yield strength, and corrosion fatigue strength of the hot rolled steel sheets obtained under the above manufacturing conditions were evaluated. Seawater resistance was determined by immersing it in artificial seawater at 30°C for 1,000 hours and checking for pitting corrosion.

耐力は板厚中央から圧延方向と直角にJIS4号試験片
を切り出し、02%オフセット耐力を測定した。腐食疲
労強度は人工海水中で片振軸力疲労試験を行い、106
回の疲労強度で評価した。
The yield strength was determined by cutting out a JIS No. 4 test piece from the center of the plate thickness at right angles to the rolling direction, and measuring the 02% offset yield strength. Corrosion fatigue strength was determined by performing a vibration axial fatigue test in artificial seawater.
The fatigue strength was evaluated based on the fatigue strength.

なお疲労試験片の採取方法は耐力Mil+定時と同じで
あり、得られた腐食疲労強度は振幅応力範囲で表中に示
す。
The method for collecting fatigue test pieces is the same as that for proof stress Mil+time, and the obtained corrosion fatigue strength is shown in the table in terms of amplitude stress range.

これらの評価結果も併せて第2表に示す。These evaluation results are also shown in Table 2.

第2表の結果から知られるように、本発明の範囲である
1〜14番は、30℃の人工海水中で孔食を発生せず、
0.2%耐力か60kgf/IIIIi以上、腐食疲労
強度が40kg f / ml11以上をいずれも満足
しており、優れた耐海水性を示す高強度オーステナイト
ステンレス鋼である。
As is known from the results in Table 2, Nos. 1 to 14, which are in the range of the present invention, do not cause pitting corrosion in artificial seawater at 30°C.
It is a high-strength austenitic stainless steel that satisfies a 0.2% yield strength of 60 kgf/IIIi or more and a corrosion fatigue strength of 40 kgf/ml11 or more, and exhibits excellent seawater resistance.

(発明の効果) 本発明は、最適な成分を限定し、その成分に適した条件
での制御圧延・制御冷却を実施することによって耐海水
性に優れた高強度オーステナイトステンレス鋼を製造可
能にした。
(Effects of the Invention) The present invention has made it possible to manufacture high-strength austenitic stainless steel with excellent seawater resistance by limiting the optimum components and performing controlled rolling and controlled cooling under conditions suitable for the components. .

本発明は高速船の水中翼等に要求される耐海水性、耐力
および海水中での疲労強度を満足する船体構造に適した
オーステナイトステンレス鋼を実現し、産業上寄与する
ところは極めて大である。
The present invention has realized an austenitic stainless steel suitable for ship hull structures that satisfies the seawater resistance, yield strength, and fatigue strength in seawater required for hydrofoils of high-speed ships, and has an extremely large industrial contribution. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、第1表に示す供試鋼A、J、Lにおける80
0℃〜1050℃での全圧下量と0.2%耐力の関係を
示した図表、第2図は、第1表に示す供試鋼A、J、M
における800℃〜1050℃での全圧下量と海水中で
の腐食疲労強度の関係を示した図表、第3図は、第1表
に示す供試鋼Aにおける800℃〜500℃でのiV、
均冷却速度と0.2%耐力の関係を示した図表である。
Figure 1 shows the 80
A chart showing the relationship between total rolling reduction and 0.2% proof stress at 0°C to 1050°C, Figure 2 is for the test steels A, J, and M shown in Table 1.
Figure 3 shows the relationship between the total reduction at 800°C to 1050°C and the corrosion fatigue strength in seawater.
It is a chart showing the relationship between uniform cooling rate and 0.2% proof stress.

Claims (1)

【特許請求の範囲】 1、重量%で C0.08%以下、 Si2.00%以下、 Mn2.0%以下、 Cr21%超〜30%、 Ni10〜20%、 Mo0.5〜3.0%、 N0.3%超〜0.5% 残部Feならびに不純物元素からなる鋼を、1100℃
〜1300℃に加熱し、1050℃以上で全圧下量が5
0%以上となるように圧延し、ついで800℃〜105
0℃で全圧下量が10%以上となるよう仕上げ圧延を行
い、さらに圧延後800℃〜500℃の平均冷却速度が
50℃/min以上とすることを特徴とする耐海水性に
優れた高強度オーステナイトステンレス鋼の製造方法。 2、重量%で Cu2.0%以下、 Ti0.5%以下、 Zr0.5%以下のうち1種ないし2種以上を含有する
ことを特徴とする請求項1記載の耐海水性に優れた高強
度オーステナイトステンレス鋼の製造方法。 3、重量%で Al0.01〜0.20%、 Ca0.001〜0.020%、 Mg0.001〜0.020%、 ランタノイド系希土類元素0.002〜0.050%の
うち1種ないし2種以上 を含有することを特徴とする請求項1記載の耐海水性に
優れた高強度オーステナイトステンレス鋼の製造方法。 4、重量%で Cu2.0%以下、 Ti0.5%以下、 Zr0.5%以下のうち1種ないし2種以上Al0.0
1〜0.20%、 Ca0.001〜0.020%、 Mg0.001〜0.020%、 ランタノイド系希土類元素0.002〜0.050%の
うち1種ないし2種以上 を含有することを特徴とする請求項1記載の耐海水性に
優れた高強度オーステナイトステンレス鋼の製造方法。
[Claims] 1. C0.08% or less, Si 2.00% or less, Mn 2.0% or less, Cr more than 21% to 30%, Ni 10 to 20%, Mo 0.5 to 3.0%, Steel consisting of more than 0.3% to 0.5% N, balance Fe and impurity elements was heated at 1100°C.
Heating to ~1300℃, the total pressure reduction is 5 at 1050℃ or higher.
Rolled to 0% or more, and then heated at 800°C to 105°C.
A highly resistant steel sheet with excellent seawater resistance characterized by finish rolling at 0°C with a total reduction of 10% or more and an average cooling rate of 50°C/min or more from 800°C to 500°C after rolling. Method of manufacturing high strength austenitic stainless steel. 2. The high quality seawater-retaining material with excellent seawater resistance according to claim 1, which contains one or more of Cu 2.0% or less, Ti 0.5% or less, and Zr 0.5% or less in weight percent. Method of manufacturing high strength austenitic stainless steel. 3. One or two of Al0.01-0.20%, Ca0.001-0.020%, Mg0.001-0.020%, and lanthanoid rare earth elements 0.002-0.050% by weight. 2. The method for producing a high-strength austenitic stainless steel with excellent seawater resistance according to claim 1, characterized in that it contains at least one of the following. 4. One or more of Cu2.0% or less, Ti0.5% or less, Zr0.5% or less, Al0.0 in weight%
1 to 0.20%, Ca0.001 to 0.020%, Mg0.001 to 0.020%, and lanthanoid rare earth elements 0.002 to 0.050%. A method for producing a high-strength austenitic stainless steel with excellent seawater resistance according to claim 1.
JP10685590A 1990-04-23 1990-04-23 Method for producing high strength austenitic stainless steel with excellent seawater resistance Expired - Lifetime JPH0713252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10685590A JPH0713252B2 (en) 1990-04-23 1990-04-23 Method for producing high strength austenitic stainless steel with excellent seawater resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10685590A JPH0713252B2 (en) 1990-04-23 1990-04-23 Method for producing high strength austenitic stainless steel with excellent seawater resistance

Publications (2)

Publication Number Publication Date
JPH046214A true JPH046214A (en) 1992-01-10
JPH0713252B2 JPH0713252B2 (en) 1995-02-15

Family

ID=14444211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10685590A Expired - Lifetime JPH0713252B2 (en) 1990-04-23 1990-04-23 Method for producing high strength austenitic stainless steel with excellent seawater resistance

Country Status (1)

Country Link
JP (1) JPH0713252B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320756A (en) * 1992-05-21 1993-12-03 Nippon Steel Corp Production of high strength austenitic stainless steel excellent in seawater corrosion rest stance
JP2006213950A (en) * 2005-02-02 2006-08-17 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel having excellent corrosion resistance, toughness and hot workability and its production method
US8105447B2 (en) 2005-02-02 2012-01-31 Nippon Steel & Sumikin Stainless Steel Corporation Austenitic stainless hot-rolled steel material with excellent corrosion resistance, proof stress, and low-temperature toughness
CN114351051A (en) * 2022-01-11 2022-04-15 山西太钢不锈钢股份有限公司 Austenitic stainless steel, preparation method thereof and application thereof in hydrogen storage pressure vessel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320756A (en) * 1992-05-21 1993-12-03 Nippon Steel Corp Production of high strength austenitic stainless steel excellent in seawater corrosion rest stance
JP2006213950A (en) * 2005-02-02 2006-08-17 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel having excellent corrosion resistance, toughness and hot workability and its production method
JP4494237B2 (en) * 2005-02-02 2010-06-30 新日鐵住金ステンレス株式会社 Austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, and method for producing the same
US8105447B2 (en) 2005-02-02 2012-01-31 Nippon Steel & Sumikin Stainless Steel Corporation Austenitic stainless hot-rolled steel material with excellent corrosion resistance, proof stress, and low-temperature toughness
US8506729B2 (en) 2005-02-02 2013-08-13 Nippon Steel & Sumikin Stainless Steel Corporation Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof
CN114351051A (en) * 2022-01-11 2022-04-15 山西太钢不锈钢股份有限公司 Austenitic stainless steel, preparation method thereof and application thereof in hydrogen storage pressure vessel

Also Published As

Publication number Publication date
JPH0713252B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JP3041050B2 (en) Duplex stainless steel and its manufacturing method
JP3219820B2 (en) Low yield ratio high strength hot rolled steel sheet and method for producing the same
JP6851269B2 (en) Manufacturing method of ferritic stainless steel sheets, ferritic stainless steel members for steel pipes and exhaust system parts, and ferritic stainless steel sheets
EP2333130A1 (en) Heat resistant titanium alloy sheet excellent in cold workability and a method of production of the same
US10975459B2 (en) Ferritic stainless steel
KR20180017177A (en) Ferrite-based hot-rolled stainless steel sheet, hot-rolled annealed sheet, and method for manufacturing said sheets
KR100259739B1 (en) Ferrite type hot rolled stainless steel sheet having excellent resistance to surface roughening and to high temperature fatigue after working
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
JP4754362B2 (en) Austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness, and method for producing the same
JPS6366368B2 (en)
JPH05320756A (en) Production of high strength austenitic stainless steel excellent in seawater corrosion rest stance
JPH046216A (en) Production of high strength austenitic stainless steel excellent in seawater corrosion resistance and minimal in softening by welding
JPS5850299B2 (en) Manufacturing method for precipitation-strengthened high-strength cold-rolled steel sheets
KR102020511B1 (en) Ferritic stainless steel with excellent impact toughness and manufacturing method thereof
JPH046214A (en) Production of high strength austenitic stainless steel excellent in seawater corrosion resistance
JPH11241145A (en) Austenitic stainless steel excellent in high temperature setting resistance and its production
KR102537950B1 (en) Austenitic stainless steel with improved high temperature softening resistance
JPH08296000A (en) Ferritic stainless steel excellent in workability and corrosion resistance and its production
JPH05222484A (en) Hot rolled steel strip with low yield ratio for construction use excellent in refractoriness and toughness and its production
JPH046215A (en) Production of high strength austenitic stainless steel minimal in softening by welding
JP2003268498A (en) H-type steel excellent in fillet section toughness and its production method
WO2019151124A1 (en) Ferritic stainless steel
JP4082288B2 (en) Mo-containing austenitic stainless steel and method for producing the same
JPH10204588A (en) Ferritic stainless steel sheet excellent in workability and roping characteristic, and its manufacture
KR960005236B1 (en) Making method of high strength cold rolling steel sheet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 16