JPH08104920A - Production of high-strength austenitic stainless steel sheet - Google Patents

Production of high-strength austenitic stainless steel sheet

Info

Publication number
JPH08104920A
JPH08104920A JP24410294A JP24410294A JPH08104920A JP H08104920 A JPH08104920 A JP H08104920A JP 24410294 A JP24410294 A JP 24410294A JP 24410294 A JP24410294 A JP 24410294A JP H08104920 A JPH08104920 A JP H08104920A
Authority
JP
Japan
Prior art keywords
rolling
stainless steel
austenitic stainless
steel sheet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24410294A
Other languages
Japanese (ja)
Inventor
Shinji Tsuge
信二 柘植
Seiki Hori
清貴 堀
Yukio Konuma
幸夫 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24410294A priority Critical patent/JPH08104920A/en
Publication of JPH08104920A publication Critical patent/JPH08104920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To provide a producing method in which rolling efficiency is high and the production cost is inexpensive in the method for producing a high- strength austenitic stainless steel sheet for eliminating final annealing. CONSTITUTION: An austenitic stainless steel contg., by weight, <=0.040% C, <=1% Si, <=2% Mn, 16 to 20% Cr, 7 to 15% Ni, <=0.25% N and 0.003 to 0.020% Ti is heated to the temp. range of 1150 to 1300 deg.C and is thereafter subjected to primary hot rolling at the temp. range above 950 deg.C, and the rolling is once interrupted. The steel is water-cooled so as to regulate the temp. to the range of 900 to 700 deg.C and is subjected to secondary hot rolling in the temp. range of 900 to 700 deg.C at 5 to 30% cumulative draft, and the rolling is finished. After that, it is air cooled to produce the high strength austenitic stainless steel sheet excellent in rolling efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は製造コストが安価な高強
度を有するオーステナイトステンレス鋼板の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high strength austenitic stainless steel sheet which is inexpensive to produce.

【0002】[0002]

【従来の技術】ステンレスの厚板はSUS304が主要
鋼種であり、使用実績の8割を越える。オーステナイト
ステンレス鋼では組織の均一化と炭化物の固溶による耐
食性の向上を目的として通常の製品では溶体化処理と称
する1000℃〜1150℃の温度域での最終焼鈍が施
される。近年この最終焼鈍の省略を狙って圧延後冷却し
たままで厚板製品を製造する方法が種々提案されてい
る。
2. Description of the Related Art SUS304 is the main type of stainless steel thick plate, which exceeds 80% of the actual usage. Austenitic stainless steel is subjected to final annealing in a temperature range of 1000 ° C. to 1150 ° C., which is referred to as solution treatment, for ordinary products for the purpose of homogenizing the structure and improving corrosion resistance due to solid solution of carbide. In recent years, various methods have been proposed for manufacturing thick plate products while cooling after rolling with the aim of omitting the final annealing.

【0003】これらの方法は特公平6−15692号
公報に開示されている最終焼鈍の省略のみを図ったも
の、特公平5−75809号に開示されている高強度
化と最終焼鈍の省略を図ったものに区分される。
In these methods, only the final annealing disclosed in Japanese Examined Patent Publication No. 6-15692 is omitted, and the strength enhancement and the final annealing disclosed in Japanese Examined Patent Publication No. 5-75809 are omitted. It is divided into

【0004】本発明はの方法に関するものである。高
強度化とは構造用材料として要求される降伏強度(0.2%
耐力等)を高めることである。オーステナイトステンレ
ス鋼では特にこの降伏強度が低いため構造用材料として
の適用が制約されている。
The present invention relates to the method of Strengthening means the yield strength required for structural materials (0.2%
Proof strength). Austenitic stainless steel has a low yield strength, which limits its application as a structural material.

【0005】オーステナイトステンレス鋼の降伏強度の
改善は、結晶粒の微細化や転位の導入により可能である
ことが知られているが、そのためには再結晶温度の低温
域や未再結晶温度域での圧延が必須となる。
It is known that the yield strength of austenitic stainless steel can be improved by refining the crystal grains and introducing dislocations. For that purpose, in the low recrystallization temperature range and the non-recrystallization temperature range. Must be rolled.

【0006】上記特公平5−75809号公報に記載の
方法は、高温域で一次圧延を行った後、低温域での二次
圧延により高強度化する方法であるが、圧延能率を上げ
るために高温域での一次圧下の圧下率を上げると割れが
発生するという問題があった。この割れが微細であって
も、二次の低温圧延にともなう熱間加工性の低下により
表面疵がより大きくなる。また、一次圧延中断後二次圧
延までの間に降温時間を要するため圧延能率もよくな
い。
The method described in the above Japanese Patent Publication No. 5-75809 is a method in which primary rolling is performed in a high temperature range and then secondary rolling is performed in a low temperature range to increase the strength. There is a problem that cracking occurs when the reduction rate of the primary reduction in the high temperature range is increased. Even if the cracks are fine, the surface defects become larger due to the deterioration of hot workability associated with the secondary low temperature rolling. In addition, the rolling efficiency is not good because the cooling time is required between the interruption of the primary rolling and the secondary rolling.

【0007】二次圧延後の冷却は、Cr炭化物の析出によ
る鋭敏化を防止するために強制冷却するのが一般的であ
るが、水冷すると鋼板の平坦度が悪化し冷却設備の中で
通板不能になる場合があり、矯正工程も必要になること
もあり、圧延能率を低下させる原因となる。
The cooling after the secondary rolling is generally forced cooling in order to prevent sensitization due to precipitation of Cr carbide. However, water cooling deteriorates the flatness of the steel sheet, and the steel sheet is run in a cooling facility. In some cases, it may be impossible, and a straightening step may be required, which causes a reduction in rolling efficiency.

【0008】従来よりオーステナイトステンレス鋼のC
量を低下させることで炭化物析出の速度が低下し、圧延
ままでも鋭敏化を生じない条件が存在することが知られ
ている。ところが空冷した鋼板の溶接部の耐食性につい
ての知見が少なく、強制冷却を行う方が鋭敏化がより完
全に防止できるため耐食性を確保することができるため
に、放冷する方法は実際には採用されていなかった。
Conventionally, austenitic stainless steel C
It is known that the rate of carbide precipitation decreases by decreasing the amount, and there are conditions under which sensitization does not occur even in the as-rolled state. However, there is little knowledge about the corrosion resistance of the welded part of the air-cooled steel plate, and since forced cooling can more completely prevent sensitization, corrosion resistance can be secured, so the method of cooling is actually adopted. Didn't.

【0009】このように、二回圧延法による圧延ままの
ステンレス鋼板を製品とする方法においては、圧延コス
トや歩留まりロスが高く、最終焼鈍の省略に見合ったコ
スト改善を実現し得ない問題点を有していた。ところ
が、圧延能率や熱間加工疵といった重要なコスト因子に
ついて開示した文献は見あたらない。
As described above, in the method of producing an as-rolled stainless steel sheet by the double rolling method, the rolling cost and the yield loss are high, and the cost improvement commensurate with the omission of the final annealing cannot be realized. Had. However, there are no documents that disclose important cost factors such as rolling efficiency and hot work flaws.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記の問題
を解消することを目的とし、最終焼鈍を省略するための
高強度オーステナイトステンレス鋼板の製造方法におい
て圧延能率が高く製造コストが安価な製造方法を提供す
るものである。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above problems, and in a method for producing a high-strength austenitic stainless steel sheet for omitting final annealing, the production method has a high rolling efficiency and a low production cost. It provides a method.

【0011】[0011]

【課題を解決するための手段】本発明者らは圧延ままで
高強度を有するオーステナイトステンレス鋼板の製造方
法として、低温圧延で高強度化する二回圧延法に着目
し、コストを改善するために熱間加工疵の発生を防止す
ることによる手入れ工程の省略、高強度化について鋼材
の成分と圧延条件の影響を鋭意研究した結果下記の知見
を得た。
As a method for producing an austenitic stainless steel sheet having high strength as rolled, the present inventors have focused on a double rolling method in which high strength is obtained by low temperature rolling, and in order to improve the cost. The following findings were obtained as a result of diligent research on the influence of the composition of the steel material and the rolling conditions on the omission of the maintenance process and the enhancement of strength by preventing the occurrence of hot work flaws.

【0012】A )熱間加工疵の防止のために、Tiを微
量添加し、極力高い温度で一次熱間圧延を実施すること
により強加工を行っても表面疵が有効に防止されるこ
と。
A) In order to prevent hot work flaws, a small amount of Ti is added and primary hot rolling is performed at a temperature as high as possible so that surface flaws can be effectively prevented even when heavy working is performed.

【0013】B )一次熱間圧延の終了温度を950℃以
上とすれば、再結晶がほぼ5秒以内に完了し、細粒なミ
クロ組織が得られるため、二次の低温圧延を行っても大
きな展伸粒とならず高強度化が図れること。
B) If the end temperature of the primary hot rolling is 950 ° C. or higher, recrystallization is completed within about 5 seconds and a fine-grained microstructure is obtained. Being able to achieve high strength without forming large expanded grains.

【0014】C )高強度化のために二次圧延は充分低い
温度で必要最小限の5〜30%の圧延率で実施すること
により、所定の強度が得られること。
C) A predetermined strength can be obtained by carrying out the secondary rolling at a sufficiently low temperature and a minimum required rolling ratio of 5 to 30% for increasing the strength.

【0015】E )高温での一次圧延の後に水冷を実施し
て鋼材の温度をすみやかに低下させることも圧延能率を
大きく向上させ、この水冷は耐食性、機械的性質に悪影
響を及ぼさないこと。
E) Immediately lowering the temperature of the steel material by performing water cooling after high-temperature primary rolling also greatly improves rolling efficiency, and this water cooling does not adversely affect corrosion resistance and mechanical properties.

【0016】F )C含有量を0.04%以下、好ましく
は0.025%以下に規制することにより二次熱間圧延
後の水冷の代わりに、放冷しても鋭敏化を防止すること
ができ、もって水冷する場合に水冷前に必須であった平
坦度矯正工程の省略が可能であること。
F) C content is controlled to 0.04% or less, preferably 0.025% or less to prevent sensitization even if it is allowed to cool instead of water cooling after the secondary hot rolling. Therefore, when cooling with water, it is possible to omit the flatness correction step that was essential before water cooling.

【0017】この発明は、上記の知見に基づき完成され
たもので、その要旨は、「重量%で、C:0.040%
以下、Si:1%以下、Mn:2%以下、Cr:16〜
20%、Ni:7〜15%、N:0.25%以下、T
i:0.003〜0.020%を含有するオーステナイ
トステンレス鋼を1150〜1300℃の温度範囲に加
熱後、950℃までの温度域で一次熱間圧延をおこなっ
て圧延を一旦中断し、鋼材の温度が900〜700℃の
範囲内の温度となるように水冷をし、900〜700℃
の温度域で5〜30%の累積圧下率の二次熱間圧延を行
って圧延を終了し、その後放冷することを特長とする圧
延能率の優れた高強度オーステナイトステンレス鋼板の
製造方法」にある。
The present invention has been completed based on the above findings, and the gist thereof is "% by weight, C: 0.040%.
Hereinafter, Si: 1% or less, Mn: 2% or less, Cr: 16 to
20%, Ni: 7 to 15%, N: 0.25% or less, T
i: Austenitic stainless steel containing 0.003 to 0.020% is heated to a temperature range of 1150 to 1300 ° C., then primary hot rolling is performed in a temperature range of up to 950 ° C. to temporarily stop the rolling, and Water-cool it so that the temperature is within the range of 900-700 ℃, 900-700 ℃
Method for producing high strength austenitic stainless steel sheet with excellent rolling efficiency, which is characterized by performing secondary hot rolling with a cumulative reduction of 5 to 30% in the temperature range of 1 to finish rolling, and then allowing to cool. is there.

【0018】[0018]

【作用】次に、各成分元素の含有量と製造条件を限定し
た理由と作用について述べる。
Next, the reasons and functions for limiting the content of each component element and the manufacturing conditions will be described.

【0019】C:Cは、鋼板を二次熱間圧延後に放冷し
た場合に、Cr炭化物となり耐食性を劣化させるのを防止
するために低減する必要があり0.04%以下とする。
C: C must be reduced to prevent it from becoming a Cr carbide and deteriorating the corrosion resistance when the steel sheet is allowed to cool after secondary hot rolling, and is made 0.04% or less.

【0020】Cr:Crはステンレス鋼の耐食性を担う
主要元素であり、充分な耐食性を得る為には16%以上
が必要で、20%を超えると熱間加工性が悪化するので
上限を20%とした。
Cr: Cr is the main element responsible for the corrosion resistance of stainless steel, and 16% or more is necessary to obtain sufficient corrosion resistance. If it exceeds 20%, the hot workability deteriorates, so the upper limit is 20%. And

【0021】Si、Mn:Si、Mnは鋼の脱酸にかか
る基本元素であり添加が必要であるが過剰な添加は加工
性をそこなう場合があるのでそれぞれ1%以下、2%以
下に限定した。
Si, Mn: Si and Mn are basic elements involved in deoxidation of steel and need to be added. However, excessive addition may impair workability. Therefore, they are limited to 1% or less and 2% or less, respectively. .

【0022】Ni:Niは、オーステナイト組織とする
ため及び耐酸性を確保するための必須元素であり、その
ためには7%以上が必要で、15%を超えるとコスト高
となるの7〜15%とした。
Ni: Ni is an essential element for forming an austenite structure and for ensuring acid resistance. For that purpose, 7% or more is necessary, and if it exceeds 15%, the cost becomes high. And

【0023】N:Nはオーステナイトステンレス鋼の強
度と耐食性を改善するために添加される。0.25%以
上の添加は熱間加工性を低下させ、製造コストの上昇を
招くため上限を0.25%以下とした。
N: N is added to improve the strength and corrosion resistance of austenitic stainless steel. The addition of 0.25% or more deteriorates the hot workability and raises the manufacturing cost, so the upper limit was made 0.25% or less.

【0024】Ti:連続鋳造スラブは、鋳込み時に表面
にオシレーションマークが形成されるが、通常は表面を
研磨手入れしてそれを取り除く。しかし、オシレーショ
ンマークの下部には粗い凝固組織が形成されており、こ
れが厚板の表面疵の原因となる場合が多い。表皮下1mm
で結晶粒径が2〜3mmの粗大粒が存在することがある。
Ti: Continuously cast slabs have oscillation marks formed on the surface during casting, but usually the surface is polished and removed to remove it. However, a coarse solidified structure is formed below the oscillation mark, which often causes surface defects on the thick plate. Subcutaneous 1 mm
Therefore, coarse particles having a crystal grain size of 2 to 3 mm may be present.

【0025】このような熱間変形能の低いスラブを圧延
の初期に強圧下することは熱間加工性の観点から好まし
くない。本発明では、圧延能率を高めるために高温域の
一次圧延でパス当たりの圧下率を高くするので、鋳込み
状態でのスラブの熱間加工性を充分高めておく必要があ
る。
From the viewpoint of hot workability, it is not preferable to strongly reduce such a slab having a low hot deformability at the initial stage of rolling. In the present invention, since the rolling reduction per pass is increased in the primary rolling in the high temperature region in order to increase the rolling efficiency, it is necessary to sufficiently enhance the hot workability of the slab in the cast state.

【0026】従って、Tiは、Tiの酸化物叉は窒化物
として凝固過程で析出させ凝固組織を微細化し、スラブ
の熱間加工性を高め圧延時の表面疵の発生を防止すると
共に、鋼板の強度、靭性を改善するために添加する。
0.003%未満では表面疵を防止する効果が不十分
で、0.02%を超えるとTiの酸化物や窒化物が粗大
となって、結晶粒微細化効果が減少するので0.003
〜0.02%とした。
Therefore, Ti is precipitated as an oxide or nitride of Ti in the solidification process to refine the solidification structure, enhance the hot workability of the slab and prevent the generation of surface defects during rolling, and It is added to improve strength and toughness.
If it is less than 0.003%, the effect of preventing surface defects is insufficient, and if it exceeds 0.02%, the oxides and nitrides of Ti become coarse and the grain refining effect is reduced.
Was made 0.02%.

【0027】その他、本発明の対象とするオーステナイ
トステンレス鋼に一般的に含有される元素の含有量につ
いて以下に記述する。
In addition, the contents of the elements generally contained in the austenitic stainless steel to which the present invention is applied will be described below.

【0028】P:Pは耐食性に有害な元素であり、0.
04%以下に制限することが望ましい。
P: P is an element harmful to corrosion resistance, and
It is desirable to limit it to 04% or less.

【0029】S:Sは熱間加工性および靭性を低下させ
る元素であり0.020%以下に低減することが望まし
い。
S: S is an element that reduces hot workability and toughness, and is preferably reduced to 0.020% or less.

【0030】Cu:Cuは一般耐食性を向上させるため
に添加する場合がある。過剰な添加は熱間加工性を低下
させるので1.0%以下とすることが好ましい。
Cu: Cu may be added in order to improve general corrosion resistance. Excessive addition lowers the hot workability, so the content is preferably 1.0% or less.

【0031】Mo:Moはステンレス鋼の耐食性を高め
る場合に添加する元素であるが、多量の添加はコスト高
となるので4%以下で含有させるのが好ましい。
Mo: Mo is an element to be added in order to improve the corrosion resistance of stainless steel. However, it is preferable to add Mo in an amount of 4% or less because adding a large amount will increase the cost.

【0032】Al:Alは鋼の脱酸能力が非常に大きい
元素であり、脱酸のためにSi、Mnとあわせて添加す
る場合がある。このためには0.003%以上の添加が
必要である。脱酸により酸化物系介在物が減少し高い靭
性が得られる。一方過剰な添加は鋼の硬質化を招き、加
工性を低下させる場合があるので0.1%以下の添加量
とすることが望ましい。
Al: Al is an element having a very large deoxidizing ability of steel, and may be added together with Si and Mn for deoxidizing. For this purpose, it is necessary to add 0.003% or more. Deoxidation reduces oxide inclusions and provides high toughness. On the other hand, excessive addition causes hardening of the steel and may deteriorate workability, so it is desirable to add 0.1% or less.

【0033】V、Nb:これらの元素はステンレス鋼の
強度を付加的に高めるために必要に応じて添加されるも
のである。このためには0.01%以上の添加が必要で
ある。一方で0.5%以上の過剰な添加は靭性を低下さ
せる。このためその含有量をそれぞれ0.5%以下とす
ることが望ましい。
V, Nb: These elements are added as necessary to increase the strength of stainless steel. For this purpose, it is necessary to add 0.01% or more. On the other hand, excessive addition of 0.5% or more reduces toughness. Therefore, it is desirable that the content of each is 0.5% or less.

【0034】そのほか熱間加工性を高めるために0.0
1%以下のCa、Mg、Bおよび0.1%以下のZr、
Y、La、Ceを含有させることができる。
In addition, 0.0 to improve hot workability.
1% or less of Ca, Mg, B and 0.1% or less of Zr,
Y, La, and Ce can be contained.

【0035】次に製造条件を規定した理由について述べ
る。
Next, the reason for defining the manufacturing conditions will be described.

【0036】加熱温度:オーステナイトステンレス鋼は
熱間変形抵抗が高いため1150℃未満の加熱温度では
圧延することが困難である。一方1300℃を越えて加
熱すると酸化スケールが異常に成長して鋼板の肌荒れを
招く様になることから、1150〜1300℃と規定し
た。
Heating temperature: Since austenitic stainless steel has a high resistance to hot deformation, it is difficult to roll at a heating temperature of less than 1150 ° C. On the other hand, if heated above 1300 ° C, the oxide scale grows abnormally and the surface of the steel sheet becomes rough, so it was defined as 1150 to 1300 ° C.

【0037】一次熱間圧延・圧延中断:本発明に於いて
は、ほぼ目標板厚まで圧延する主要な一次圧延と強度を
付与するための二次圧延を区分しておこなうことで熱間
加工性改善と圧延能率の向上を果たすことができる。
Primary hot rolling / rolling interruption: In the present invention, hot workability is achieved by separately performing the main primary rolling for rolling to a target plate thickness and the secondary rolling for imparting strength. It is possible to improve and improve rolling efficiency.

【0038】一次圧延の終了温度を950℃以上とする
のは、950℃以上の温度はオーステナイトステンレス
鋼の再結晶温度域にあたり、圧延終了後すみやかに一次
圧延による歪を解放させ再結晶させるためである。
The temperature at which the primary rolling ends is set to 950 ° C. or higher because the temperature of 950 ° C. or higher corresponds to the recrystallization temperature range of the austenitic stainless steel, and the strain caused by the primary rolling is released immediately after the rolling to recrystallize. is there.

【0039】一次圧下終了温度を決めるために次の試験
を実施した。
The following tests were conducted to determine the end temperature of the primary reduction.

【0040】炭素含有量0.015%のSUS304L
鋼の連続鋳造スラブより切り出した60mm厚x100
mm幅x130mm長の鋼片を1230℃に加熱後60
→50→40→32→25mm厚に圧延し、この圧延中
断温度をT1とし、5秒以内にスプレー水で冷却を開始
し850℃まで冷却後、800℃で12%の熱間圧延を
加え22mm厚とした後、空冷した。圧延パスを加える
ピッチを調整することで圧延中断温度を1020℃から
880℃に調整した。得られた鋼板の圧延直角方向断面
のミクロ組織を蓚酸電解腐食して粒度と鋭敏化の程度を
判定した。いずれも鋭敏化は見られなかったが、圧延中
断温度が920から960℃では混粒組織となってい
た。
SUS304L with a carbon content of 0.015%
60mm thickness x 100 cut from a continuous cast slab of steel
60 mm width x 130 mm long steel slab is heated to 1230 ° C and then 60
→ 50 → 40 → 32 → 25mm thickness, set the rolling interruption temperature to T1, start cooling with spray water within 5 seconds, cool to 850 ° C, then add 12% hot rolling at 800 ° C to add 22mm After thickening, it was air-cooled. The rolling interruption temperature was adjusted from 1020 ° C to 880 ° C by adjusting the pitch to which the rolling pass was applied. The microstructure of the cross section of the obtained steel sheet in the direction perpendicular to the rolling direction was subjected to oxalic acid electrolytic corrosion to determine the grain size and the degree of sensitization. Although no sensitization was observed in any of them, a mixed grain structure was formed at a rolling interruption temperature of 920 to 960 ° C.

【0041】図1は、上記試験結果を示し、一次圧延終
了温度と細粒化度を示す図である。
FIG. 1 shows the results of the above test and shows the primary rolling end temperature and the degree of grain refinement.

【0042】同図より一次圧延終了温度を950℃以上
とした場合は90%以上が細粒化されていることがわか
る。
It can be seen from the figure that 90% or more of the particles are finely divided when the primary rolling end temperature is 950 ° C. or more.

【0043】このようにして製造された鋼板を母材とし
た溶接部においても炭化物析出がなく、溶体化状態と同
じ水準の耐食性を有することも確認した。
It was also confirmed that there was no precipitation of carbides even in the welded part using the steel sheet thus produced as a base material, and that it had the same level of corrosion resistance as in the solution state.

【0044】一次圧延を950℃以上でおこなうこと、
及びTi添加による熱間加工性改善と相まって、強加工
の圧延でも鋼板の表面疵の発生を防止することができ
る。また、高温域圧延であるが故に熱間変形抵抗が小さ
いため圧延速度を高く取ることが可能となり圧延能率が
向上する。
Performing primary rolling at 950 ° C. or higher,
In addition to the improvement of hot workability due to addition of Ti and Ti, it is possible to prevent the occurrence of surface flaws on the steel sheet even in the rolling of strong working. Further, since it is a high temperature region rolling, the hot deformation resistance is small, so that the rolling speed can be made high and the rolling efficiency is improved.

【0045】水冷:主要な一次熱間圧延を高い温度で終
了するために瞬時に再結晶が完了する。このため圧延中
断後すみやかに冷却をおこなっても均一な再結晶組織を
得ることが可能である。また水冷することにより圧延中
断中の待ち時間を大幅に短縮することが可能となり、圧
延能率の改善ができる。
Water cooling: Recrystallization is completed instantly in order to finish the main primary hot rolling at a high temperature. For this reason, it is possible to obtain a uniform recrystallized structure even if cooling is performed immediately after the interruption of rolling. Further, by cooling with water, the waiting time during the rolling interruption can be significantly shortened, and the rolling efficiency can be improved.

【0046】二次圧延:350MPa 以上の強度を得るた
めに900〜700℃の温度域で二次圧延を行う。90
0℃以下の温度はオーステナイトステンレス鋼の未再結
晶温度域であり、圧延による歪が有効に強度上昇に利用
できる。一方、700℃以上とした理由は、700℃未
満では熱間変形抵抗が高くなり圧延が困難になるためで
ある。
Secondary rolling: Secondary rolling is performed in a temperature range of 900 to 700 ° C. to obtain a strength of 350 MPa or more. 90
The temperature of 0 ° C. or lower is in the non-recrystallization temperature range of austenitic stainless steel, and the strain due to rolling can be effectively utilized for increasing the strength. On the other hand, the reason why the temperature is 700 ° C. or higher is that if the temperature is lower than 700 ° C., hot deformation resistance becomes high and rolling becomes difficult.

【0047】二次圧延の圧下率は、5%未満では強度上
昇が望めず、一方30%以上では強度が上昇し過ぎて靭
性の低下を招くこと及び表面疵を発生させやすくなるこ
とから5〜30%とした。通常の厚板圧延では2〜3パ
スの圧延でよい。
If the rolling reduction of the secondary rolling is less than 5%, the strength cannot be expected to increase. On the other hand, if it exceeds 30%, the strength is excessively increased, leading to a decrease in toughness and the occurrence of surface defects. It was set to 30%. In normal thick plate rolling, rolling of 2 to 3 passes may be sufficient.

【0048】二次圧延後の放冷:従来の水冷工程では、
水冷前の平坦矯正が必要であり圧延能率を大幅に低下さ
せていた。すなわち、平坦度の悪い鋼板を水冷すると水
冷中に加速的に平坦度が悪化し、水冷装置の通板が困難
となることがあったので、水冷前の矯正工程が必須であ
った。これに対して圧延後放冷することで平坦度の悪化
が防止でき、矯正工程も必要でなくなり、圧延能率が大
幅に向上する。
Cooling after secondary rolling: In the conventional water cooling process,
Flatness correction before water cooling was necessary, which significantly reduced the rolling efficiency. That is, when a steel plate having poor flatness is water-cooled, the flatness may be deteriorated rapidly during water cooling, which makes it difficult to pass the plate through the water-cooling device. Therefore, the straightening step before water-cooling is essential. On the other hand, by cooling after rolling, deterioration of flatness can be prevented, a straightening step is not required, and rolling efficiency is significantly improved.

【0049】[0049]

【実施例】表1に示す成分組成の 200mm厚の連続鋳造ス
ラブを溶製し、表2に示す各条件で熱間圧延を行い厚鋼
板を製造した。表2に圧延実績と評価結果を示す。
Example A 200 mm thick continuously cast slab having the composition shown in Table 1 was melted and hot rolled under the conditions shown in Table 2 to manufacture a thick steel plate. Table 2 shows rolling results and evaluation results.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】表中「水冷」欄には圧延中断後の水冷の有
無、「冷却」欄には圧延終了後の鋼板の冷却方法を示し
た。「水冷」に「−」を記載したものは圧延の中断なく
高温で仕上げた方法、一次圧下終了温度および圧下率欄
に「−」を記載したものは圧延の中断なくパス毎に待ち
ながら低温で仕上げた方法を示す。
In the table, the "water cooling" column shows the presence or absence of water cooling after the rolling interruption, and the "cooling" column shows the cooling method of the steel sheet after the rolling. "Water-cooled" with "-" is a method of finishing at a high temperature without interruption of rolling, and those with "-" in the primary reduction end temperature and reduction ratio column are at low temperature while waiting for each pass without interruption of rolling. The finished method is shown.

【0053】スラブの単重は6〜10トンであり、圧延
開始から終了までの所要時間にもとづき圧延能率(ton/
hr)を計算した。
The unit weight of the slab is 6 to 10 tons, and the rolling efficiency (ton / ton /
hr) was calculated.

【0054】表面疵の判定は、圧延後に発生した表面疵
をグラインダーにより手直しし、その程度により○、
△、×と評価をおこなった。○は手直しの面積率が1%
未満、△は1〜3%、×は全面手入れ、××は全面手入
れに加えて耳割れが発生したもの示す。圧延後端部の1
/4幅部より圧延直角方向に引張試験片を採取し、0.
2%耐力を測定した。またこの部位の板厚断面のミクロ
試料についてJISG0571に規定された蓚酸電解腐
食試験により耐食性を評価した。ステップ組織の場合を
○、デュアル、ディッチ組織を×と判定した。
The surface defects were judged by reworking the surface defects generated after rolling with a grinder, and ◯,
It was evaluated as Δ or ×. ○ indicates that the area ratio of rework is 1%
Less than, Δ is 1 to 3%, × is all-surface care, XX is all-surface care, and ear cracking has occurred. 1 after rolling
Tensile test pieces were sampled in the direction perpendicular to the rolling direction from the / 4 width part, and
The 2% proof stress was measured. In addition, the corrosion resistance of the micro-sample of the plate thickness section of this portion was evaluated by the oxalic acid electrolytic corrosion test specified in JIS G0571. The case of the step structure was judged as ◯, the dual structure and the ditch structure were judged as ×.

【0055】また得られた1〜7の鋼板にV開先を施し
て被覆アーク多層溶接をおこない(溶接棒はY308L
またはY316L、層間温度は150℃以下)、表面の
ビードを切削除去したのちに溶金およびHAZ部を含む
ように幅30mm長さ50mm厚さ5mmの試験片を表
層部より採取し、JIS0573に規定した沸騰65%
硝酸試験(ヒューイ試験)をおこなった結果、5サイク
ルの腐食減量の平均値がいずれも0.3g/m2 h以下
の良好な値を示した。
Further, V-grooves were applied to the obtained steel sheets 1 to 7 to perform a covered arc multilayer welding (the welding rod is Y308L).
Or Y316L, interlayer temperature is 150 ° C or less), after removing the bead on the surface, a test piece with a width of 30 mm, a length of 50 mm and a thickness of 5 mm is taken from the surface layer so as to include the molten metal and the HAZ part, and is specified in JIS 0573. Boiled 65%
As a result of performing a nitric acid test (Huiy test), the average values of corrosion weight loss for 5 cycles were all good values of 0.3 g / m 2 h or less.

【0056】表2中比較例の試験番号8は一次圧延10
50℃で終了後二次圧延まで放冷したので、待ち時間と
して約2分要したため圧延能率が低下した。また、試験
番号9は、最終冷却にはいる前に熱間レベラーにて平坦
度を矯正し、スプレー冷却を実施したため、レベラーへ
の搬送時間と矯正時間を要したために圧延能率が低下し
た。
In Table 2, the test number 8 of the comparative example is primary rolling 10
After finishing at 50 ° C., the material was allowed to cool to the secondary rolling, so about 2 minutes was required as a waiting time, so the rolling efficiency was lowered. Further, in Test No. 9, the flatness was corrected by a hot leveler and spray cooling was carried out before the final cooling, so that the rolling efficiency was lowered because the transfer time to the leveler and the correction time were required.

【0057】試験番号11、12、13はF鋼を用いた
結果で、F鋼はSUS304鋼であり、C、Ti量が本
発明の規定する範囲を外れている。最終圧延後水冷した
試験番号11、13、は炭化物の析出が抑制され耐食性
は良好であるが、Ti含有量が低いので高温強圧延下+
低温仕上げ圧延のため表面疵が多発し、疵手入れ等に時
間がかかり圧延能率が低下した。一方放冷した試験番号
12は耐食性が不良であった。
Test Nos. 11, 12, and 13 are results obtained by using F steel. F steel is SUS304 steel, and the amounts of C and Ti are out of the range specified by the present invention. Test Nos. 11 and 13, which were water-cooled after the final rolling, were excellent in corrosion resistance due to the suppression of carbide precipitation, but had a low Ti content, so under high temperature strong rolling +
Due to the low-temperature finish rolling, surface defects frequently occurred, and it took time to maintain the defects and the rolling efficiency decreased. On the other hand, test number 12 which was left to cool had poor corrosion resistance.

【0058】試験番号16は溶体化焼鈍を施したため耐
食性は良好であるが、強度が低い。
Test No. 16 has been subjected to solution annealing, so that it has good corrosion resistance but low strength.

【0059】同14、15はG鋼を用いた結果を示し、
Ti含有量が少なく、N、Moを含有しているので疵が
発生しやすい鋼種であるので表面疵が多発した。一方同
5はC鋼を用いた本発明例であり、N、Moを含有して
いるがTiの添加効果により良好な表面性状であった。
14 and 15 show the results using G steel,
Since the Ti content is low and N and Mo are contained in the steel, which is a type of steel that is likely to have flaws, surface flaws frequently occur. On the other hand, No. 5 is an example of the present invention using C steel, which contained N and Mo but had good surface properties due to the effect of adding Ti.

【0060】[0060]

【発明の効果】以上説明したように、この発明の製造方
法によれば熱間圧延中に表面疵の発生が少なく、圧延効
率よく平坦度のよい耐食性に優れた高強度オーステナイ
トステンレス鋼板の製造でき、産業上の有用な効果がも
たらされる。
As described above, according to the manufacturing method of the present invention, it is possible to manufacture a high-strength austenitic stainless steel sheet with less surface defects during hot rolling, excellent rolling efficiency, good flatness, and excellent corrosion resistance. , Brings a useful effect on the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】一次熱間圧延終了温度と細粒化度との関係を示
す図である。
FIG. 1 is a diagram showing a relationship between a finish temperature of primary hot rolling and a degree of grain refining.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.040%以下、Si:
1%以下、Mn:2%以下、Cr:16〜20%、N
i:7〜15%、N:0.25%以下、Ti:0.00
3〜0.020%を含有するオーステナイトステンレス
鋼を1150〜1300℃の温度範囲に加熱後、950
℃までの温度域で一次熱間圧延をおこなって圧延を一旦
中断し、鋼材の温度が900〜700℃の範囲内の温度
となるように水冷をし、900〜700℃の温度域で5
〜30%の累積圧下率の二次熱間圧延を行って圧延を終
了し、その後放冷することを特長とする圧延能率の優れ
た高強度オーステナイトステンレス鋼板の製造方法。
1. C: 0.040% or less, Si:
1% or less, Mn: 2% or less, Cr: 16 to 20%, N
i: 7 to 15%, N: 0.25% or less, Ti: 0.00
After heating austenitic stainless steel containing 3 to 0.020% to a temperature range of 1150 to 1300 ° C., 950
Primary hot rolling is performed in a temperature range up to ℃, the rolling is temporarily stopped, water cooling is performed so that the temperature of the steel material falls within a range of 900 to 700 ° C.
A method for producing a high-strength austenitic stainless steel sheet with excellent rolling efficiency, characterized by performing secondary hot rolling with a cumulative reduction of -30%, finishing rolling, and then allowing to cool.
JP24410294A 1994-10-07 1994-10-07 Production of high-strength austenitic stainless steel sheet Pending JPH08104920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24410294A JPH08104920A (en) 1994-10-07 1994-10-07 Production of high-strength austenitic stainless steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24410294A JPH08104920A (en) 1994-10-07 1994-10-07 Production of high-strength austenitic stainless steel sheet

Publications (1)

Publication Number Publication Date
JPH08104920A true JPH08104920A (en) 1996-04-23

Family

ID=17113787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24410294A Pending JPH08104920A (en) 1994-10-07 1994-10-07 Production of high-strength austenitic stainless steel sheet

Country Status (1)

Country Link
JP (1) JPH08104920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007572A1 (en) 2006-07-13 2008-01-17 Nippon Steel & Sumikin Stainless Steel Corporation ROLLED AUSTENITE STAINLESS STEEL PLATE HAVING THICHKESS OF 100 mm OR MORE AND METHOD FOR PRODUCTION THEREOF
JP2008036698A (en) * 2006-08-09 2008-02-21 Daido Steel Co Ltd Method for manufacturing large forged product made of austenitic stainless steel
JP2012207301A (en) * 2011-03-17 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel with high n content excellent in surface flaw resistance and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007572A1 (en) 2006-07-13 2008-01-17 Nippon Steel & Sumikin Stainless Steel Corporation ROLLED AUSTENITE STAINLESS STEEL PLATE HAVING THICHKESS OF 100 mm OR MORE AND METHOD FOR PRODUCTION THEREOF
JP2008036698A (en) * 2006-08-09 2008-02-21 Daido Steel Co Ltd Method for manufacturing large forged product made of austenitic stainless steel
JP2012207301A (en) * 2011-03-17 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel with high n content excellent in surface flaw resistance and method for producing the same

Similar Documents

Publication Publication Date Title
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JPH09235617A (en) Production of seamless steel tube
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2009074123A (en) METHOD FOR MANUFACTURING Ni-CONTAINING STEEL HAVING EXCELLENT SURFACE QUALITY
JP2002096105A (en) Method for manufacturing high-strength steel pipe
JP6665658B2 (en) High strength steel plate
JP2005002372A (en) Method for producing thick steel plate having small anisotropic characteristic and variation in material quality
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JPH06172858A (en) Production of seamless steel tube excellent in scc resistance and having high strength and high toughness
JPH08104920A (en) Production of high-strength austenitic stainless steel sheet
JPH083635A (en) Production of steel plate excellent in toughness
JP2000104116A (en) Production of steel excellent in strength and toughness
JP3004155B2 (en) Manufacturing method of shaped steel with excellent toughness
JP5248222B2 (en) Cold tool steel manufacturing method
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
JP3243987B2 (en) Manufacturing method of high strength and high corrosion resistance martensitic stainless steel
JPH0860244A (en) Production of thick austenitic stainless steel plate
JP7513008B2 (en) Manufacturing method for steel plate with low edge crack occurrence rate
JP4240576B2 (en) Steel sheet with excellent surface properties
JP4112785B2 (en) Method for preventing surface cracking of continuous cast slabs under large hot width reduction
JP3687315B2 (en) B-containing stainless steel and method for producing hot rolled sheet thereof
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JPH05295480A (en) Thick steel plate for welded structure excellent in toughness of electron beam weld zone
JP3709794B2 (en) Manufacturing method of high strength and high toughness steel sheet
JP2007302978A (en) Method for manufacturing high-strength steel of tensile strength of 780 mpa class having excellent toughness of weld heat affected zone