JP4744033B2 - Manufacturing method of ferritic stainless steel sheet with excellent workability - Google Patents

Manufacturing method of ferritic stainless steel sheet with excellent workability Download PDF

Info

Publication number
JP4744033B2
JP4744033B2 JP2001262934A JP2001262934A JP4744033B2 JP 4744033 B2 JP4744033 B2 JP 4744033B2 JP 2001262934 A JP2001262934 A JP 2001262934A JP 2001262934 A JP2001262934 A JP 2001262934A JP 4744033 B2 JP4744033 B2 JP 4744033B2
Authority
JP
Japan
Prior art keywords
annealing
hot
rolling
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001262934A
Other languages
Japanese (ja)
Other versions
JP2003073741A (en
Inventor
直人 平松
宏紀 冨村
保利 國武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2001262934A priority Critical patent/JP4744033B2/en
Publication of JP2003073741A publication Critical patent/JP2003073741A/en
Application granted granted Critical
Publication of JP4744033B2 publication Critical patent/JP4744033B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、加工性、特にr、Δrおよび耐リジング生に優れたフェライト系ステンレス鋼板の製造方法に関する。
【0002】
【従来の技術】
SUS430に代表させるフェライト系ステンレス鋼は、良好な耐食性を有し、また高価なNiを含有せず、オーステナイト系ステンレス鋼に比べると経済的な利点を併せ持つことなどから、耐久消費財を中心に広く使用されている。しかしながら、近年、ステンレス鋼板のプレス成形加工においては、より厳しい加工が行われる場合が多くなり、さらに優れた加工性を有するフェライト系ステンレス鋼板が要望されている。
【0003】
フェライト系ステンレス鋼板の加工性は、一般にオーステナイト系ステンレス鋼板に比べて劣り、また、プレス成形時にリジングと呼ばれる独特のシワ状の表面凹凸を生じる。したがって、フェライト系ステンレス鋼板において、そのプレス加工性および耐リジング性が改善されれば,加工性が厳しくオーステナイト系ステンレス鋼板が使用されていた箇所に、従来適用困難であったフェライト系ステンレス鋼板が使用できるようになる。
【0004】
【発明が解決しようとする課題】
ところで、フェライト系ステンレス鋼板のプレス成形性はr値に依存することが知られている。このr値を表す指標として、r値を示すrが用いられている。r値を向上させる技術は、いままでにも数多くの試みがなされている。例えば、特開昭53−48018号公報には、C,N含有量を極力低減させ、TiやNbを添加することによりr値を向上させる技術が提案されている。しかしながら、この技術は、C,N含有量を低くするために精錬に時間がかかり、また高価なTiやNbの添加を必要とするため、原材料費が高価になり、全体として、コスト高になってしまう。
【0005】
また、耐リジング性を改善する方法として、従来から、熱間圧延での仕上圧延温度の低温化により熱延板に蓄積される歪の増大をはかり、熱延板焼鈍で再結晶を促進する方法や、例えば特開昭62−199721号公報に提案されている圧延中に材料を一時的に待機させてパス時間を大きくするいわゆるディレイ圧延を用いる方法などが知られているが、上記の技術は、低温領域で大きな歪を与える方法であるので、形状不良や噛み込み不良を招き、また圧延時間の増大を招き、生産性の低下をもたらす。
【0006】
このように、製鋼コストの増大や熱延鋼板の生産性低下を招くことなく、プレス加工で必要とされる十分な深絞り性を持ち、かつ、十分な耐リジング性を有するフェライト系ステンレス鋼板の製造方法は確立されていない。
本発明は、このような問題を解消すべく案出されたものであり、優れた加工性を有するフェライト系ステンレス鋼板を、低コストで生産性良く製造できる方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の加工性に優れるフェライト系ステンレス鋼板の製造方法は、その目的を達成するため、式(1)によって定義されるγmaxが20以上70未満であるフェライト系ステンレス鋼のスラブに熱間圧延を施した後急冷し、得られた熱延板を600℃未満で巻き取り、フェライト相と炭素固溶量の多いマルテンサイト相の2相組織とした後、熱延板焼鈍を施すことなく、2相組織のまま圧延率20〜80%の中間冷間圧延を行ってフェライト相に歪を蓄積し、その後、箱型炉による焼鈍を施し、歪が蓄積されたフェライト相を再結晶させると同時に炭素固溶量の多いマルテンサイト相をフェライト相へ再結晶させて集合組織をランダム化した後、さらに仕上げ冷間圧延と再結晶焼鈍を行うことを特徴とする。

γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo

+9Cu−49Ti−50Nb−52Al+470N+189・・・・・・(1)
箱型炉による焼鈍は、再結晶温度以上Ac1点以下の温度範囲で均熱1時間以上の長時間焼鈍を行うことが好ましく、冷延後の焼鈍は、再結晶温度以上Ac1点以下の温度範囲で連続焼鈍炉を用いて行うことが好ましい。
【0008】
【作用】
本発明者等は、製鋼コストの増大や熱延鋼板の生産性低下および冷延時の耳割れ発生を招くことなく、フェライト系ステンレス鋼板の深絞り性および耐リジング性を向上させるための熱延条件および加工熱処理に関し種々調査検討した。その結果、本請求項に記載したような条件で熱延後の巻き取り、中間冷間圧延と中間焼鈍、および仕上げの冷間圧延と仕上げ焼鈍の条件を細かく設定し組み合わせることで初期の目的を達成することができた。
【0009】
その細かい加工熱処理条件と鋼板の加工性向上の関係について説明する。
熱延ステンレス鋼板を熱延巻き取り温度から室温まで冷却する過程で、鋼板が600〜800℃の温度域にあるとき、Cr系炭化物が析出しやすくなる。
熱延温度域が(フェライト+オーステナイト)であるSUS430のような鋼板では、冷却中にオーステナイトがマルテンサイト変態する。熱延後の巻き取り温度が高く600℃以上であると、熱延後の冷却中にオーステナイト中から炭化物が析出し、その後マルテンサイト変態をする。
【0010】
ところが、600℃未満で巻き取ると、オーステナイト中に炭素が固溶した状態でマルテンサイト変態するため、硬いマルテンサイトが形成され、しかも炭素が固溶された状態のオーステナイト相は、マルテンサイト変態する開始温度Ms点が低くなり、生成したマルテンサイト変態による変態転位の回復(自己焼戻し)が起こりにくくなる。
したがって、600℃未満で巻き取ったものは、600℃以上で巻き取ったものと比べて、炭素固溶量が多く、かつ転位が多く内蔵された硬いマルテンサイトを有する鋼板となる。
【0011】
つまり、本発明方法における熱延時の鋼板の組織は、炭素固溶量が多く硬質なマルテンサイト相とフェライト相の2相組織からなることに特徴がある。フェライト相はマルテンサイト相に比べ非常に軟質であるので、中間圧延により加工を加えると、軟らかいフェライト相に歪が蓄積される。これを箱型炉で長時間焼鈍を施すことにより、歪が蓄積されたフェライト相の再結晶が促進され、また、箱型炉の長時間焼鈍により、マルテンサイト相は炭化物を十分に析出し、フェライト相に再結晶する。ここで、不均一に多量の歪が蓄積されたフェライト相が再結晶するため、その集合組織はランダム化する。
【0012】
一般的に、リジングの発生は、冷延焼鈍板内に存在する結晶方位の近い結晶粒の集合(コロニー)に起因すると考えられている。コロニーの起源は、凝固柱状晶が熱延焼鈍後に残存することにより形成される圧延方向に伸びた粗大な未再結晶であるとされている。この未再結晶フェライト粒は冷延後の焼鈍時においても再結晶による結晶方位の分散が小さいため、鋼板にコロニーが形成されると考えられている。したがって、箱型炉による焼鈍後の集合組織のランダム化により、コロニーが残存しなくなり耐リジング性が改善されたと考えられる。
【0013】
また、箱型炉による焼鈍後の集合組織がランダム化することによって、通常工程では残存しやすいr値を下げる{100}のコロニーもランダム化されており、{100}のコロニーの悪影響なしで、仕上冷間圧延、再結晶焼鈍により、r値に有効な{111}集合組織が発達する。また、箱型炉による焼鈍後に集合組織がランダム化しているために、コロニーをもつ通常工程材に対して結晶粒界の大角粒界の占める割合が大きく、大角粒界の三重点など再結晶核となり易いサイトも多いと考えられるため、r値に有効な{111}集合組織が発達し易くなったと考えられる。
【0014】
次に、本発明方法の具体的手段の個々について詳述する。
γ max :20以上70未満
本発明は、熱延板をフェライト相とマルテンサイト相の2相組織からなるものとし、中間冷間圧延工程でフェライト相に十分な歪を蓄積させ、フェライトバンドの再結晶を促進させ、かつ所定量存在させたマルテンサイト相中固溶炭素の炭化物としての析出によるフェライト相への微細再結晶化と相俟って、再結晶後の集合組織の発達をコントロールしようとするものである。このためには少なくとも、20体積%程度のマルテンサイト相が必要で、この程度のマルテンサイト相を出現させるためには、γmaxを20以上にする必要がある。20に満たないとマルテンサイト量が少なく、その結果再結晶組織の発達が不十分でr値および耐リジング性の改善は得られない。
一方、γmaxを高くするためには、C,N,MnあるいはNiなどのオーステナイト形成元素の含有量を多くすればよいが、これらの元素含有量を多くすると鋼材の硬質化やコストの上昇を招き、また、γmaxが高い熱延板を熱延板焼鈍なしに冷間圧延すると耳切れを生じるため、γmaxは70未満に規定する。
【0015】
熱延後の巻き取り温度:600℃未満
本発明は上記したように、熱延巻き取り板をフェライト相とマルテンサイト相の2相組織からなるものとし、その組織を有効に利用することに特徴がある。熱間圧延の際の加熱時および熱延工程中に生成したγ相を適切にマルテンサイト変態させるためには、巻取り温度を600℃未満にする必要がある。巻取り温度が600℃以上であると、生成したγ相が熱延巻き取り後の冷却中にオーステナイト中で炭化物の析出が起こり、その後マルテンサイト変態するものの自己焼戻しにより軟化するため加工性の改善の効果は得られない。
また、熱間圧延は、800℃以上の高温で仕上げ圧延を完了し、直ちに水冷することにより5℃/sec以上の冷却速度で急冷し、600℃未満の低温で巻き取りを実施することが好ましい。高温で熱延を仕上げ、急冷することにより、r値の向上および耐リジング性の改善により好ましい硬質なマルテンサイト相が得られる。
【0016】
中間冷間圧延率:20%以上80%以下
熱延後、熱延焼鈍を施すことなく、中間冷延によりフェライト相に歪を蓄積させる。10%より小さい圧延率では、その効果が得られない。また80%を越える中間冷延を施すと、仕上げ圧延の圧延率が小さくなり、r値に有効な集合組織の発達が得られない。また、冷間圧延時の耳切れ発生の虞も生じる。したがって、中間冷間圧延の圧延率は20%以上80%以下に規定する。
【0017】
中間焼鈍:箱型焼鈍,再結晶温度以上Ac1点以下,均熱1時間以上
中間焼鈍は、マルテンサイトを炭化物とフェライトに再結晶させるためであるから、長時間が必要となる。連続焼鈍炉でこの焼鈍を実施しようとすると、ライン速度を極端に遅くする必要があり、非常に効率が悪く経済的でない。そのため箱型焼鈍炉による長時間焼鈍とする。
中間焼鈍条件は、再結晶温度以上Ac1点以下の温度で行うものとし、少なくとも均熱1時間以上の長時間焼鈍が望ましい。
【0018】
仕上げ冷間圧延および再結晶焼鈍
仕上げ冷間圧延および再結晶焼鈍は、箱型炉による長時間焼鈍により得られたランダムな結晶方位をもつ組織から、r値に有効な{111}集合組織を発達させるために必要である。仕上げ冷間圧延および再結晶焼鈍の条件は、従来のフェライト系ステンレス鋼の製造条件と同じでよい。
【0019】
【実施例】
次に本発明方法を、実施例をもって説明する。
表1に、本発明方法を試みたフェライト系ステンレス鋼の組成を示す。
実施例1および比較例1
表1の鋼種Aの組成を有するスラブを1200℃に加熱した後、熱間圧延にて仕上げ熱延後直ちに水冷をすることにより575℃で巻き取った熱延板、および仕上げ熱延後空冷にて750℃で巻き取った熱延板を供試材とした。
それらの熱延板を実験的に熱延板(板厚4.0mm)→中間冷延(4.0/2.0mm)→中間焼鈍(830℃×9hr)→仕上げ冷延(2.0/0.8mm)→再結晶焼鈍(850℃×0s)を行った。
また、比較のために、前期750℃で巻き取った熱延板を従来の方法、すなわち、熱延板(板厚4.0mm)→熱延板焼鈍(830℃×9hr)→仕上げ冷延(4.0/0.8mm)→再結晶焼鈍(850℃×0s)(1回冷延焼鈍)および熱延板(板厚4.0mm)→熱延板焼鈍(830℃×9hr)→中間冷延(4.0/2.0mm)→中間焼鈍(850℃×0s)→仕上げ冷延(2.0/0.8mm)→再結晶焼鈍(850℃×0s)(2回冷延焼鈍)を行った。
【0020】

Figure 0004744033
【0021】
以上の工程で作製された焼鈍板から試験片を採取し、r値の測定、リジング判定を行った。
なお、rおよびΔrはそれぞれ、r=(rL+2rD+rT)/4、Δr=(rL−2rD+rT)/2である。ただし、rL,rDおよびrTは、それぞれ圧延方向,圧延方向に対して45度方向および圧延方向に対して90度方向のr値を示す。
また、耐リジング性の判定は、Aが最も耐リジング性がよいもの、Dが最も耐リジング性が悪いものとし、A,B,C,Dの4段階評価を行った。表2に、耐リジング性の判定基準を示す。
【0022】
Figure 0004744033
【0023】
表3に、製造条件とr、Δrおよびリジング性判定結果を示す。
この結果から、巻き取り温度575℃の熱延板は、熱延板焼鈍なしに冷延しても、r、Δrおよび耐リジング性が向上している。
一方、巻取り温度750℃の熱延板を熱延焼鈍なしに冷延した鋼板は、rおよびΔrは良好なものの、耐リジング性の改善は見られなかった。また、従来工程の2回冷延焼鈍板は、rは良好なものの、Δrが大きく耐リジング性も改善されていなかった。
【0024】
Figure 0004744033
【0025】
実施例2および比較例2
表1の鋼種B,C,Dの組成を有するフェライト系ステンレス鋼スラブを熱間圧延にて仕上げ熱延完了後に水冷もしくは空冷を施すことにより巻取り温度を変え、板厚4mmの熱延板を作製し、供試材とした。
この熱延板を、熱延板→中間冷延→中間焼鈍(830℃×9hr)→仕上げ冷延→再結晶焼鈍を行い、板厚0.8mmの焼鈍板とした(熱延板焼鈍なしで冷延する製造方法)。
また、比較のために、前述の熱延板を従来の製造方法、すなわち、熱延板→熱延板焼鈍(830℃×9hr)→仕上げ冷延→再結晶焼鈍(1回冷延焼鈍の製造方法)および熱延板→熱延板焼鈍(830℃×9hr)→中間冷延→中間焼鈍(850℃×0s)→仕上げ冷延→再結晶焼鈍(850℃×0s)(2回冷延焼鈍の製造方法)で供試材を作製した。
【0026】
上記各製造方法で得られた鋼板を供試材として、下記の方法でr、Δrおよび耐リジング性の評価を行った。
r値:
JIS13B号試験片を用い、15%に引張り歪を与えた後、rL,rDおよびrTを求めた。rL,rDおよびrTは、それぞれ圧延方向,圧延方向に対して45度方向および圧延方向に対して90度方向のr値を示す。上記方法で求めたr値から、rおよびΔrはそれぞれ、r=(rL+2rD+rT)/4、Δr=(rL−2rD+rT)/2で算出した。
【0027】
耐リジング性:
圧延方向から採取したJIS5号試験片に20%の引張り歪を与えた後、耐リジング性の判定を行った。耐リジング性の判定は、Aが最も耐リジング性がよいもの、Dが最も耐リジング性が悪いものとし、A,B,C,Dの4段階評価を行った。前記表2に示した判定基準と同じである。
各鋼種、各製造方法で得られた鋼板の特性値を表4に示す。
【0028】
Figure 0004744033
【0029】
表4に示す結果から、γmaxが20以上70未満で、かつ熱間圧延巻取り温度が600℃未満の熱延板は、熱延板焼鈍を施すことなしに圧延率20%以上80%以下の中間冷間圧延を施したものは、耳切れも生じずに、優れたr、Δrおよび耐リジング性を有していることがわかる。しかし、中間圧延率が5%と低い場合、r値および耐リジング性が不良であり、中間圧延率が85%と高い場合は、耳切れが生じている。また、従来の製造方法である2回冷延焼鈍の製造方法では、rは良好なものの、Δrが大きく耐リジング性も不良であった。さらに、γmaxが11と低い鋼Dでは、熱間圧延巻き取り温度が550℃未満の熱延板を、熱延板焼鈍を施すことなしに圧延率38%の中間冷間圧延を行う製造方法で作製しても、耐リジング性は不良であり、γmaxが77と高い鋼Eでは、熱延板焼鈍を施すことなしに圧延率50%の中間冷延を行うと耳切れが発生していた。
(以下余白)
【0030】
【発明の効果】
以上に説明したように、本発明方法によれば、製鋼コストの増大や熱延鋼板の生産性低下を招くことなく、プレス加工で必要とされる十分なr、Δrを有し、かつ、耐リジング性に優れたフェライト系ステンレス鋼板を得ることができた。[0001]
[Industrial application fields]
The present invention relates to a method for producing a ferritic stainless steel sheet excellent in workability, particularly r, Δr and ridging resistance.
[0002]
[Prior art]
Ferritic stainless steel represented by SUS430 has good corrosion resistance, does not contain expensive Ni, and has economic advantages compared to austenitic stainless steel. in use. However, in recent years, in the press forming process of a stainless steel plate, more severe processing is often performed, and a ferritic stainless steel plate having further excellent workability is desired.
[0003]
The workability of a ferritic stainless steel sheet is generally inferior to that of an austenitic stainless steel sheet, and unique wrinkled surface irregularities called ridging are produced during press forming. Therefore, if the ferritic stainless steel sheet is improved in press workability and ridging resistance, the ferritic stainless steel sheet, which has been difficult to apply in the past, is used where the austenitic stainless steel sheet is severely used. become able to.
[0004]
[Problems to be solved by the invention]
By the way, it is known that the press formability of the ferritic stainless steel sheet depends on the r value. As an index representing the r value, r representing the r value is used. Many attempts have been made to improve the r value. For example, Japanese Patent Application Laid-Open No. 53-48018 proposes a technique for reducing the C and N content as much as possible and improving the r value by adding Ti or Nb. However, this technique takes time for refining in order to reduce the C and N content, and requires the addition of expensive Ti and Nb, so that the raw material cost becomes high and the cost is increased as a whole. End up.
[0005]
In addition, as a method for improving ridging resistance, conventionally, a method of increasing the strain accumulated in the hot rolled sheet by lowering the finish rolling temperature in hot rolling and promoting recrystallization by hot rolled sheet annealing. In addition, for example, a method using so-called delay rolling in which a material is temporarily waited during rolling proposed in Japanese Patent Application Laid-Open No. 62-199721 to increase the pass time is known. In this method, a large strain is applied in a low temperature region, resulting in poor shape and poor biting, and an increase in rolling time, resulting in a decrease in productivity.
[0006]
In this way, a ferritic stainless steel sheet having sufficient deep drawability required for press working and sufficient ridging resistance without incurring an increase in steelmaking costs or a decrease in productivity of hot rolled steel sheets. A manufacturing method has not been established.
The present invention has been devised to solve such a problem, and an object of the present invention is to provide a method capable of producing a ferritic stainless steel sheet having excellent workability at low cost with high productivity.
[0007]
[Means for Solving the Problems]
In order to achieve the object, the method for producing a ferritic stainless steel sheet excellent in workability according to the present invention performs hot rolling on a slab of ferritic stainless steel having a γmax defined by the formula (1) of 20 or more and less than 70. After the application, the steel sheet is rapidly cooled, and the obtained hot rolled sheet is wound at less than 600 ° C. to form a two-phase structure of a ferrite phase and a martensite phase having a large amount of carbon solid solution, and then subjected to hot rolling without annealing. While maintaining the phase structure, intermediate cold rolling at a rolling rate of 20 to 80% is performed to accumulate strain in the ferrite phase, and then annealing is performed in a box furnace to recrystallize the ferrite phase in which strain is accumulated, and at the same time, carbon The martensite phase having a large amount of solid solution is recrystallized into a ferrite phase to randomize the texture, and then finish cold rolling and recrystallization annealing are further performed.

γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo

+ 9Cu-49Ti-50Nb-52Al + 470N + 189 (1)
In the annealing by the box furnace, it is preferable to perform annealing for 1 hour or longer in the temperature range from the recrystallization temperature to Ac1 point, and the annealing after cold rolling is the temperature range from the recrystallization temperature to Ac1 point. It is preferable to carry out using a continuous annealing furnace.
[0008]
[Action]
The present inventors have developed a hot rolling condition for improving the deep drawability and ridging resistance of a ferritic stainless steel sheet without causing an increase in steelmaking cost, a decrease in productivity of the hot rolled steel sheet, and an occurrence of ear cracking during cold rolling. Various investigations were conducted on thermomechanical processing. As a result, the initial purpose is achieved by finely setting and combining the conditions of winding after hot rolling, intermediate cold rolling and intermediate annealing, and finishing cold rolling and finishing annealing under the conditions described in this claim. Could be achieved.
[0009]
The relationship between the fine thermomechanical treatment conditions and the workability improvement of the steel sheet will be described.
In the process of cooling the hot-rolled stainless steel plate from the hot-rolling coil temperature to room temperature, when the steel plate is in the temperature range of 600 to 800 ° C., Cr-based carbide is likely to precipitate.
In a steel sheet such as SUS430 in which the hot rolling temperature range is (ferrite + austenite), austenite undergoes martensitic transformation during cooling. If the coiling temperature after hot rolling is high and 600 ° C. or higher, carbides precipitate from austenite during cooling after hot rolling, and then undergo martensitic transformation.
[0010]
However, when it is wound at a temperature lower than 600 ° C., martensite transformation is performed in a state where carbon is dissolved in austenite, so that hard martensite is formed and the austenite phase in a state where carbon is dissolved is martensite transformed. The starting temperature Ms point is lowered and recovery of transformation dislocation (self-tempering) due to the generated martensitic transformation is less likely to occur.
Therefore, what is wound at a temperature lower than 600 ° C. is a steel plate having hard martensite with a large amount of carbon solid solution and a large number of dislocations, as compared with that wound at 600 ° C. or higher.
[0011]
That is, the structure of the steel sheet during hot rolling in the method of the present invention is characterized by a two-phase structure of a hard martensite phase and a ferrite phase with a large amount of carbon solid solution. Since the ferrite phase is much softer than the martensite phase, strain is accumulated in the soft ferrite phase when processing is performed by intermediate rolling. By annealing this for a long time in a box furnace, recrystallization of the ferrite phase in which strain has accumulated is promoted, and for a long time annealing in the box furnace, the martensite phase sufficiently precipitates carbides, Recrystallize in ferrite phase. Here, since the ferrite phase in which a large amount of strain is accumulated unevenly recrystallizes, the texture is randomized.
[0012]
In general, ridging is considered to be caused by an aggregate (colony) of crystal grains having a close crystal orientation existing in a cold-rolled annealed sheet. The origin of the colony is said to be coarse unrecrystallized crystals extending in the rolling direction formed by the solidified columnar crystals remaining after hot rolling annealing. The non-recrystallized ferrite grains are considered to form colonies on the steel sheet because the crystal orientation dispersion due to recrystallization is small even during annealing after cold rolling. Therefore, it is considered that the ridging resistance was improved by the randomization of the texture after annealing in the box furnace because no colonies remained.
[0013]
In addition, by randomizing the texture after annealing in the box furnace, the {100} colony that lowers the r value that tends to remain in the normal process is also randomized, without the adverse effect of the {100} colony, The finish cold rolling and recrystallization annealing develop a {111} texture effective for the r value. In addition, since the texture is randomized after annealing in a box furnace, the proportion of large-angle boundaries in the grain boundaries is large relative to the normal process material with colonies, and recrystallization nuclei such as triple points in the large-angle boundaries. Since it is considered that there are many sites that are likely to become, {111} texture effective for the r value is likely to develop.
[0014]
Next, each of the specific means of the method of the present invention will be described in detail.
γ max : 20 or more and less than 70 In the present invention, the hot-rolled sheet is composed of a two-phase structure of a ferrite phase and a martensite phase, and sufficient strain is accumulated in the ferrite phase in the intermediate cold rolling process. Development of texture after recrystallization in combination with fine recrystallization into ferrite phase by precipitation as solid solution carbon carbide in martensite phase promoted recrystallization of ferrite band and present in a predetermined amount Is trying to control. For this purpose, at least a 20% by volume martensite phase is required, and in order to make this level of martensite phase appear, γ max needs to be 20 or more. If it is less than 20, the amount of martensite is small. As a result, the recrystallized structure is not sufficiently developed and the r value and ridging resistance cannot be improved.
On the other hand, in order to increase γ max , the content of austenite-forming elements such as C, N, Mn, or Ni may be increased. However, increasing the content of these elements increases the hardness of the steel material and the cost. In addition, when a hot-rolled sheet having a high γ max is cold-rolled without being subjected to hot-rolled sheet annealing, the edge cut occurs, so γ max is defined to be less than 70.
[0015]
Winding temperature after hot rolling: less than 600 ° C. As described above, in the present invention, the hot rolled coiled plate has a two-phase structure of a ferrite phase and a martensite phase, and the structure is effectively used. There is a feature in doing. In order to appropriately martensite transform the γ phase generated during heating and during the hot rolling process during hot rolling, the coiling temperature needs to be less than 600 ° C. When the coiling temperature is 600 ° C. or more, the produced γ phase is precipitated in the austenite during cooling after coiling by hot rolling, and then martensite transforms but softens by self-tempering, improving workability. The effect of is not obtained.
Moreover, it is preferable that the hot rolling completes the finish rolling at a high temperature of 800 ° C. or higher, immediately cools with water at a cooling rate of 5 ° C./sec or more, and winds at a low temperature of less than 600 ° C. . By finishing hot rolling at a high temperature and quenching, a hard martensite phase that is preferable for improving r value and ridging resistance can be obtained.
[0016]
Intermediate cold rolling ratio: 20 % or more and 80% or less After hot rolling, strain is accumulated in the ferrite phase by intermediate cold rolling without performing hot rolling annealing. If the rolling rate is less than 10%, the effect cannot be obtained. If intermediate cold rolling exceeding 80% is performed, the rolling ratio of finish rolling becomes small, and the development of a texture effective for the r value cannot be obtained. In addition, there is a risk of the occurrence of ear breakage during cold rolling. Therefore, the rolling rate of intermediate cold rolling is specified as 20 % or more and 80% or less.
[0017]
Intermediate annealing: Box annealing, Recrystallization temperature to Ac1 point or less, Soaking for 1 hour or more Intermediate annealing is for recrystallization of martensite into carbide and ferrite, and thus requires a long time. If this annealing is performed in a continuous annealing furnace, the line speed needs to be extremely slow, which is very inefficient and not economical. Therefore, the annealing is performed for a long time using a box-type annealing furnace.
The intermediate annealing conditions are performed at a temperature not lower than the recrystallization temperature and not higher than the Ac1 point, and long-term annealing of at least 1 hour soaking is desirable.
[0018]
Finish cold rolling and recrystallization annealing Finish cold rolling and recrystallization annealing are effective {111} for the r value from the structure with random crystal orientation obtained by long-term annealing in a box furnace. Necessary for developing texture. The conditions for finish cold rolling and recrystallization annealing may be the same as those for conventional ferritic stainless steel.
[0019]
【Example】
Next, the method of the present invention will be described with examples.
Table 1 shows the composition of the ferritic stainless steel for which the method of the present invention was attempted.
Example 1 and Comparative Example 1
A slab having the composition of steel type A shown in Table 1 is heated to 1200 ° C, and then hot-rolled by hot rolling immediately after finishing hot rolling, and then rolled up at 575 ° C and air-cooled after finishing hot rolling. A hot-rolled sheet wound up at 750 ° C. was used as a test material.
These hot-rolled plates were experimentally hot-rolled (plate thickness: 4.0 mm) → intermediate cold-rolled (4.0 / 2.0 mm) → intermediate annealing (830 ° C. × 9 hr) → finished cold-rolled (2.0 / 0.8 mm) → recrystallization annealing (850 ° C. × 0 s) was performed.
For comparison, a hot-rolled sheet wound at 750 ° C. in the previous period is subjected to a conventional method, that is, hot-rolled sheet (sheet thickness: 4.0 mm) → hot-rolled sheet annealing (830 ° C. × 9 hr) → finish cold rolling ( 4.0 / 0.8 mm) → recrystallization annealing (850 ° C. × 0 s) (one cold rolling annealing) and hot rolled sheet (sheet thickness: 4.0 mm) → hot rolled sheet annealing (830 ° C. × 9 hr) → intermediate cooling Elongation (4.0 / 2.0 mm) → Intermediate annealing (850 ° C. × 0 s) → Finish cold rolling (2.0 / 0.8 mm) → Recrystallization annealing (850 ° C. × 0 s) (Two cold rolling annealing) went.
[0020]
Figure 0004744033
[0021]
A test piece was collected from the annealed plate produced in the above steps, and the r value was measured and ridging was determined.
Note that r and Δr are r = (r L + 2r D + r T ) / 4 and Δr = (r L −2r D + r T ) / 2, respectively. However, r L, r D and r T are respectively the rolling direction, showing the r value of 90 degree direction relative to the 45 ° direction and the rolling direction to the rolling direction.
The determination of ridging resistance was evaluated by a four-step evaluation of A, B, C, and D, with A being the best ridging resistance and D being the worst ridging resistance. Table 2 shows criteria for determining ridging resistance.
[0022]
Figure 0004744033
[0023]
Table 3 shows the production conditions, r, Δr, and ridging property determination results.
From this result, even when the hot-rolled sheet having a winding temperature of 575 ° C. is cold-rolled without hot-rolled sheet annealing, r, Δr, and ridging resistance are improved.
On the other hand, a steel sheet obtained by cold rolling a hot-rolled sheet having a coiling temperature of 750 ° C. without hot-rolling annealing did not show improvement in ridging resistance although r and Δr were good. Further, the conventional cold-rolled two-time annealed sheet had a good r but a large Δr, and the ridging resistance was not improved.
[0024]
Figure 0004744033
[0025]
Example 2 and Comparative Example 2
A ferritic stainless steel slab having the composition of steel types B, C, and D shown in Table 1 is finished by hot rolling, and after completion of hot rolling, the coiling temperature is changed by water cooling or air cooling to obtain a hot rolled sheet having a thickness of 4 mm. It produced and it was set as the test material.
This hot-rolled sheet was subjected to hot-rolled sheet → intermediate cold-rolled → intermediate annealing (830 ° C. × 9 hr) → finish cold-rolling → recrystallization annealing to obtain an annealed sheet having a thickness of 0.8 mm (without hot-rolled sheet annealing) Cold rolled production method).
For comparison, the above-described hot-rolled sheet is manufactured by the conventional manufacturing method, that is, hot-rolled sheet → hot-rolled sheet annealing (830 ° C. × 9 hr) → finish cold rolling → recrystallization annealing (manufacturing of one cold-rolled annealing) Method) and hot-rolled sheet → hot-rolled sheet annealing (830 ° C. × 9 hr) → intermediate cold rolling → intermediate annealing (850 ° C. × 0 s) → finish cold rolling → recrystallization annealing (850 ° C. × 0 s) (twice cold-rolled annealing) The test material was produced by the production method of
[0026]
Using the steel sheet obtained by each of the above production methods as a test material, r, Δr, and ridging resistance were evaluated by the following methods.
r value:
Using a JIS No. 13B test piece, 15% was subjected to tensile strain, and then r L , r D and r T were determined. r L , r D, and r T indicate r values in the rolling direction, the 45 degree direction with respect to the rolling direction, and the 90 degree direction with respect to the rolling direction, respectively. From the r value obtained by the above method, r and Δr were calculated as r = (r L + 2r D + r T ) / 4 and Δr = (r L −2r D + r T ) / 2, respectively.
[0027]
Ridging resistance:
A 20% tensile strain was applied to a JIS No. 5 specimen taken from the rolling direction, and then ridging resistance was determined. In the determination of ridging resistance, A was the one with the best ridging resistance and D was the one with the lowest ridging resistance, and A, B, C, and D were evaluated in four stages. The determination criteria are the same as those shown in Table 2.
Table 4 shows the characteristic values of the steel sheets obtained by each steel type and each manufacturing method.
[0028]
Figure 0004744033
[0029]
From the results shown in Table 4, a hot rolled sheet having a γmax of 20 or more and less than 70 and a hot rolling coiling temperature of less than 600 ° C. has a rolling rate of 20 % or more and 80% or less without performing hot rolling sheet annealing. It can be seen that the material subjected to the intermediate cold rolling has excellent r, Δr and ridging resistance without the occurrence of edge cutting. However, when the intermediate rolling rate is as low as 5%, the r value and the ridging resistance are poor, and when the intermediate rolling rate is as high as 85%, the edge is cut off. In the conventional cold rolling annealing method, which is a conventional manufacturing method, r is good, but Δr is large and ridging resistance is poor. Further, in steel D having a low γmax of 11, a hot rolled sheet having a hot rolling coiling temperature of less than 550 ° C. is subjected to an intermediate cold rolling with a rolling rate of 38% without subjecting the hot rolled sheet to annealing. Even when fabricated, the ridging resistance was poor, and in Steel E having a high γmax of 77, when the intermediate cold-rolling at a rolling rate of 50% was performed without performing the hot-rolled sheet annealing, the edge cutting occurred.
(The following margin)
[0030]
【The invention's effect】
As described above, according to the method of the present invention, it has sufficient r and Δr required for pressing without causing an increase in steelmaking cost and a decrease in productivity of hot-rolled steel sheets, and has a high resistance to resistance. A ferritic stainless steel sheet having excellent ridging properties could be obtained.

Claims (2)

式(1)によって定義されるγmaxが20以上70未満であるフェライト系ステンレス鋼のスラブに熱間圧延を施した後急冷し、得られた熱延板を600℃未満で巻き取り、フェライト相と炭素固溶量の多いマルテンサイト相の2相組織とした後、熱延板焼鈍を施すことなく、2相組織のまま圧延率20〜80%の中間冷間圧延を行ってフェライト相に歪を蓄積し、その後、箱型炉による焼鈍を施し、歪が蓄積されたフェライト相を再結晶させると同時に炭素固溶量の多いマルテンサイト相をフェライト相へ再結晶させて集合組織をランダム化した後、さらに仕上げ冷間圧延と再結晶焼鈍を行うことを特徴とする加工性に優れるフェライト系ステンレス鋼板の製造方法。

γmax=420C−11.5Si+7Mn+23Ni−11.5Cr−12Mo

+9Cu−49Ti−50Nb−52Al+470N+189・・・・・・(1)
The slab of ferritic stainless steel whose γmax defined by the formula (1) is 20 or more and less than 70 is hot-rolled and then rapidly cooled, and the obtained hot rolled sheet is wound at less than 600 ° C. After forming a two-phase structure of a martensite phase with a large amount of carbon solid solution, intermediate cold rolling with a rolling rate of 20 to 80% is performed without subjecting the hot-rolled sheet annealing to strain the ferrite phase. Accumulated and then annealed in a box furnace to recrystallize the ferrite phase with accumulated strain and at the same time recrystallize the martensite phase with a large amount of carbon solid solution into the ferrite phase to randomize the texture And a method for producing a ferritic stainless steel sheet having excellent workability, characterized by further performing finish cold rolling and recrystallization annealing.

γmax = 420C-11.5Si + 7Mn + 23Ni-11.5Cr-12Mo

+ 9Cu-49Ti-50Nb-52Al + 470N + 189 (1)
箱型炉による焼鈍が、再結晶温度以上Ac1点以下の温度範囲で均熱1時間以上の焼鈍であり、冷延後の焼鈍が、再結晶温度以上Ac1点以下の温度範囲での連続焼鈍炉を用いた焼鈍である請求項1に記載の加工性に優れるフェライト系ステンレス鋼板の製造方法。  Annealing in a box furnace is annealing for 1 hour or more in the temperature range from the recrystallization temperature to the Ac1 point, and annealing after cold rolling is a continuous annealing furnace in the temperature range from the recrystallization temperature to the Ac1 point. The method for producing a ferritic stainless steel sheet having excellent workability according to claim 1, wherein the ferritic stainless steel sheet is excellent in workability.
JP2001262934A 2001-08-31 2001-08-31 Manufacturing method of ferritic stainless steel sheet with excellent workability Expired - Lifetime JP4744033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001262934A JP4744033B2 (en) 2001-08-31 2001-08-31 Manufacturing method of ferritic stainless steel sheet with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001262934A JP4744033B2 (en) 2001-08-31 2001-08-31 Manufacturing method of ferritic stainless steel sheet with excellent workability

Publications (2)

Publication Number Publication Date
JP2003073741A JP2003073741A (en) 2003-03-12
JP4744033B2 true JP4744033B2 (en) 2011-08-10

Family

ID=19089762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001262934A Expired - Lifetime JP4744033B2 (en) 2001-08-31 2001-08-31 Manufacturing method of ferritic stainless steel sheet with excellent workability

Country Status (1)

Country Link
JP (1) JP4744033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170078822A (en) 2014-12-11 2017-07-07 제이에프이 스틸 가부시키가이샤 Stainless steel and production method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4721917B2 (en) * 2005-01-24 2011-07-13 新日鐵住金ステンレス株式会社 Low carbon low nitrogen ferritic stainless steel sheet with small in-plane anisotropy during molding and excellent ridging resistance and rough skin resistance, and method for producing the same
JP5019857B2 (en) * 2006-11-24 2012-09-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for clad pan with small in-plane anisotropy and excellent deep drawability and method for producing the same
KR101921595B1 (en) * 2016-12-13 2018-11-26 주식회사 포스코 Ferritic stainless steel having excellent ridging property and excellent in surface quality and method of manufacturing the same
JP6878061B2 (en) * 2017-03-15 2021-05-26 日鉄ステンレス株式会社 Ti-containing ferritic stainless steel hot-rolled steel strip
JP7241545B2 (en) * 2019-01-11 2023-03-17 日鉄ステンレス株式会社 Ferritic stainless steel sheet and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098328A (en) * 1999-09-24 2001-04-10 Kawasaki Steel Corp Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098328A (en) * 1999-09-24 2001-04-10 Kawasaki Steel Corp Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170078822A (en) 2014-12-11 2017-07-07 제이에프이 스틸 가부시키가이샤 Stainless steel and production method therefor
US10626486B2 (en) 2014-12-11 2020-04-21 Jfe Steel Corporation Stainless steel and production method therefor

Also Published As

Publication number Publication date
JP2003073741A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
JP3125978B2 (en) Method for producing high carbon steel strip with excellent workability
JP3468048B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent formability
JP4744033B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent workability
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
JPH0770650A (en) Production of cold rolled steel sheet extremely excellent in deep drawability
JPH07310122A (en) Production of ferritic stainless steel strip having excellent bulging formability
JPH10280047A (en) Production of ferritic stainless steel sheet excellent in roping resistance
KR100771832B1 (en) Method for producing ferritic stainless steel sheets having excellent ridging property
JP2000256749A (en) Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance
JP3144228B2 (en) Method for producing high-chromium cold-rolled steel strip excellent in ridging resistance and workability and method for producing hot-rolled steel strip for the material
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
JP3917320B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JP2000256750A (en) Manufacture of ferritic stainless steel sheet excellent in ridging resistance
JPH09256064A (en) Production of ferritic stainless steel thin sheet excellent in roping characteristic
JPH0564212B2 (en)
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPS5974237A (en) Production of galvanized steel sheet for deep drawing having excellent formability
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPH0225518A (en) Production of hot-rolled steel sheet having excellent deep drawability
JPS5980727A (en) Manufacture of cold rolled steel sheet with high drawability by continuous annealing
JPS6326179B2 (en)
JPH01188626A (en) Manufacture of cold rolled steel sheet having superior burning hardenability and press formability
JPH08109416A (en) Production of baking-hardened-type cold rolled steel sheet excellent in formability
JPH01188627A (en) Manufacture of cold rolled steel sheet having superior burning hardenability and press formability

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4744033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term