JPS5974237A - Production of galvanized steel sheet for deep drawing having excellent formability - Google Patents

Production of galvanized steel sheet for deep drawing having excellent formability

Info

Publication number
JPS5974237A
JPS5974237A JP58163000A JP16300083A JPS5974237A JP S5974237 A JPS5974237 A JP S5974237A JP 58163000 A JP58163000 A JP 58163000A JP 16300083 A JP16300083 A JP 16300083A JP S5974237 A JPS5974237 A JP S5974237A
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
recrystallization
annealing
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58163000A
Other languages
Japanese (ja)
Inventor
Shuji Nakai
中居 修二
Seiichi Sugisawa
杉沢 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP58163000A priority Critical patent/JPS5974237A/en
Publication of JPS5974237A publication Critical patent/JPS5974237A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • C23C2/405Plates of specific length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a galvanized steel sheet for deep drawing having excellent formability by subjecting a cold-rolled steel sheet for the galvanized steel sheet to a continuous annealing treatment under specific conditions then galvanizing the same, coiling the galvanized sheet and subjecting the same to an overaging treatment in a batch furnace. CONSTITUTION:A billet of an aluminum killed steel contg. <0.10% C, <0.20% Si, 0.10-0.40% Mn, <0.03% P, 0.02-0.15% Al, 0.0025-0.020% N is hot-rolled to a plate material which is then coiled at <=600 deg.C. The coiled sheet is pickled and descaled, and is then cold rolled at >=40% draft to a steel sheet having a required thickness. The sheet is held for a short time in the temp. region of 350 deg.C- recrystallization temp., in succession to which the sheet is subjected to a recrystallization annealing treatment at the recrystallization temp. -800 deg.C. Such a steel sheet is galvanized and coiled, and the coil is put in a batch furnace and is subjected to an overaging treatment at 250-450 deg.C. Fine AlN is deposited in the texture and the galvanized steel sheet for deep drawing having excellent formability is obtd.

Description

【発明の詳細な説明】 この発明は、成形性のすぐれた深絞り用亜鉛め・つき鋼
板の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a galvanized steel sheet for deep drawing with excellent formability.

亜鉛めっき鋼板の製造法は、周知のごとく熱間仕上圧延
機で圧延した鋼板をダウンコイラで巻取った後、酸洗−
冷間圧延一表面清浄一めっきの各処理工程を経てめっき
鋼板を製造しているが、深絞り用めっき鋼板となる母材
の冷延鋼板は、近年リムド鋼に変って、アルミキルド鋼
が使用されるようになってきた。これは、高強度鋼素材
であると共に成分偏析にもとづくコイル内の特性変動が
少々<、シかも時効劣化し難い特徴を有するのみならず
、パッチ式焼なまし法でその材質中に固溶している窒素
を焼なまし処理工程中に微細なAl′Nとして析出させ
て成形性(細絞り性の指数として用いられるランクフォ
ード値、以下7値と称す)を非常に高いレベルに持ちき
たすことができるためである。
As is well known, the manufacturing method for galvanized steel sheets is to roll a steel sheet in a hot finishing mill, wind it up in a down coiler, and then pickle it.
Coated steel sheets are manufactured through the following processing steps: cold rolling, surface cleaning, and plating.In recent years, the base cold rolled steel sheets used to make the deep drawing plated steel sheets have been replaced by rimmed steel and aluminum killed steel. It's starting to happen. This is a high-strength steel material that is not only resistant to aging deterioration due to slight fluctuations in characteristics within the coil due to component segregation, but also has the characteristic that it is not easily deteriorated by aging, but it is also resistant to aging deterioration due to the patch annealing method. By precipitating the nitrogen in the form of fine Al'N during the annealing process, the formability (Lankford value used as an index of fine drawability, hereinafter referred to as 7 value) is brought to an extremely high level. This is because it can be done.

ところが、連続焼なまし法においては、このアルミキル
ド鋼の特徴であるところの微細なAINの析出によるT
値の向上が一般的に難しい。これは昇熱速度が速いため
、微細AINの析出後、再結晶が進行するという順序が
逆又はこれに近い状態になることによる。これは、連続
焼なまし法において、AINとしての析出効果が全く得
られない上に、再結晶粒成長をも阻害しているためであ
る。
However, in the continuous annealing method, T due to the precipitation of fine AIN, which is a characteristic of this aluminum killed steel,
It is generally difficult to improve the value. This is because the heating rate is fast, so the order in which recrystallization proceeds after precipitation of fine AIN is reversed or in a state close to this. This is because, in the continuous annealing method, not only no precipitation effect as AIN is obtained, but also recrystallized grain growth is inhibited.

そこで、連続焼なまし法における、この7値の向上につ
いては、下記に示すような方法が提案されている。
Therefore, the following method has been proposed to improve the seven values in the continuous annealing method.

1、ダウンコイラでの巻取りを、高温巻取シとすること
により、炭化物の凝集及びAINの大型析出物を析出さ
せ、1値の向上と再結晶粒成長を図ったもの0 2、連続焼鈍炉での再結高温なまし温度を通常より高温
に昇温させ、その鋼板の組織をフェライト十オーステナ
イト領域まで昇温して集合組織の改善を図9、T値の向
上を1指したもの。
1. By using a high-temperature winding method for winding with a down coiler, carbide agglomeration and large AIN precipitates are precipitated to improve the value of 1 and recrystallize grain growth.0 2. Continuous annealing furnace The reconsolidation high-temperature annealing temperature is raised to a higher temperature than usual, and the texture of the steel sheet is raised to the ferritic ten austenite region to improve the texture as shown in Figure 9.

3、チタンを添加することによりT値の向上を図ったも
のがある。
3. There are some products in which the T value is improved by adding titanium.

しかし、上記1.の高温巻取シラ行うと、脱スケール性
や表面性状の悪化、結晶粒の粗大化、形状不良などが生
じ、冷延母材としては格落ちする場合が多くなる。又、
2.の再結高温なまし温度を上げると、連続炉に要する
燃料原単位が増大し、能率の低下をきたすと共にコスト
アップとなる。又3、のチタンを添加すると、チタンは
炭素と結合するため、チタンの添加時はその際に真空脱
炭処理も施さねば々らず、その処理とチタンの使用によ
り、コストアップとなるなどの欠点があった。
However, above 1. If high-temperature winding is carried out, descaling properties and surface properties deteriorate, crystal grains become coarser, shape defects occur, and the quality of the material is often degraded as a cold-rolled base material. or,
2. Increasing the reconsolidation high temperature annealing temperature increases the fuel consumption required for continuous furnaces, which reduces efficiency and increases costs. In addition, when titanium is added in step 3, titanium combines with carbon, so when adding titanium, a vacuum decarburization treatment must be performed at that time, and this treatment and the use of titanium increase costs. There were drawbacks.

この発明は、これらの方法をとらず、連続焼なまし過程
でのヒートパターンを一部変えることにより、亜鉛めっ
き鋼板としての母材である冷延鋼板の上記の欠点を解消
し引続き亜鉛めっきを施し、過時効処理を行い成形性の
すぐれた深絞り用亜鉛めっき鋼板の製造法を提案するも
のである。
This invention eliminates the above-mentioned drawbacks of cold-rolled steel sheets, which are the base material for galvanized steel sheets, by partially changing the heat pattern during the continuous annealing process without using these methods. This paper proposes a method for manufacturing galvanized steel sheets for deep drawing with excellent formability through aging and overaging treatment.

すなわち、この発明は炭素0.10%以下、けい素0.
20%以下、マンガン0.10〜0.40%、りん0.
030%以下、アルミニウム0.02〜0.15%、窒
素0.0025〜0.020%、残部実質的に鉄よりな
る鋼を、通常の熱間圧延を施して600℃以下800℃
以上でコイルに巻取り、酸洗後圧下車40%以上80%
以下で冷間圧延を行った後、350℃以上再結晶潟度以
下好ましくは450〜550℃の温度域に107〜60
秒予熱保持し、引続き再結晶温度以上800℃以下の温
度域に短時間保持して再結高温なまし金行い、引続いて
めっきを施した後、コイルに巻取シ、再加熱して250
〜450℃の温度域で過時効処理を施すことを要旨とす
るものである。
That is, this invention has carbon content of 0.10% or less and silicon content of 0.10% or less.
20% or less, manganese 0.10-0.40%, phosphorus 0.
030% or less, aluminum 0.02 to 0.15%, nitrogen 0.0025 to 0.020%, and the remainder substantially iron, and then subjected to normal hot rolling to a temperature of 600°C to 800°C.
Wind it up into a coil, pickle it, and then reduce it to 40% or more and 80%.
After cold rolling in the temperature range of 350°C or higher and recrystallization lagoon or lower, preferably 450 to 550°C, 107 to 60
The coil is preheated for 2 seconds, then held for a short time in a temperature range above the recrystallization temperature and below 800°C to perform recrystallization and high temperature annealing. After plating, the coil is wound and reheated to 250°C.
The gist of this is to perform overaging treatment in a temperature range of ~450°C.

以下、この発明について詳細に説明する。This invention will be explained in detail below.

第1図に示すように、曲線1aはこの発明法の再結高温
なまし過程、めっき過時効処理のヒートパターンの曲線
を示し、曲線1bは従来法の再結高温なまし過程、めっ
き過時効処理のヒートパターンの曲線を示すもので、連
続炉においてコイルを連続的に焼なまし炉の中を通過さ
せ表から連続焼なましを行うが、焼鈍の第1段階として
850℃以上〜再結晶温度以下の温度範囲の焼なまし予
熱温度域(Pre RA )で10〜60秒程度の程度
間予熱保持する。この焼なまし予熱温度域(Pre R
A )を施すことによシ、冷延鋼板中の窒素(N)をA
INとして微細に析出するようにしたものである。
As shown in FIG. 1, curve 1a shows the heat pattern curve of the recrystallization high temperature annealing process and plating overaging treatment of the present method, and curve 1b shows the heat pattern curve of the recrystallization high temperature annealing process and plating overaging treatment of the conventional method. This shows the heat pattern curve of the treatment.In a continuous furnace, the coil is passed through the annealing furnace continuously and annealed continuously from the front. Preheating is maintained for about 10 to 60 seconds in an annealing preheating temperature range (Pre RA ) below the temperature range. This annealing preheating temperature range (Pre R
By applying A), nitrogen (N) in the cold rolled steel sheet can be
It is made to precipitate finely as IN.

すなわち、めっき鋼板の母材となるアルミキルド鋼は冷
延後の再結高温なまし初期段階においてAINを微細に
析出させやすく、これにより再結晶集合組織を改善し、
高7値の得られることが知られている。そこで、発明者
は連続焼なまし法において1.AINの析出しやすい温
度域に短時間保持することにより、AINを十分析出さ
せて集合組織を改善し、7値を向上せしめ、成形性の向
上を図るものである。
In other words, aluminum killed steel, which is the base material of galvanized steel sheets, tends to precipitate fine AIN during the initial stage of recrystallization and high-temperature annealing after cold rolling, which improves the recrystallization texture.
It is known that high 7 values can be obtained. Therefore, the inventor proposed 1. in the continuous annealing method. By keeping the temperature in a temperature range where AIN is easy to precipitate for a short time, AIN is extracted sufficiently, the texture is improved, the 7 value is improved, and the formability is improved.

そして、その後の温度過程は通常のヒートパターンと同
様の熱処理を施す。すなわち、AI変態点近傍の再結高
温なまし温度域(RA) (温度は後述する)まで昇温
して20〜120秒程度保持程度この間に再結晶粒成長
の過程を経て軟化させ、成形性を向上させ引続いてめっ
き処理温度域(M)でめっき処理を施し、次いでコイル
に巻取った後再加熱し250〜450℃の過時効処理温
度域で過時効処理を行い、時効発生原因となる固溶炭素
を減少させる方法である。
Then, the subsequent temperature process is performed in the same manner as in a normal heat pattern. That is, the temperature is raised to the recrystallization high temperature annealing temperature range (RA) near the AI transformation point (the temperature will be described later) and held for about 20 to 120 seconds. The coil is then plated in the plating temperature range (M), then wound into a coil, reheated, and over-aged in the over-aging temperature range of 250 to 450°C to eliminate the cause of aging. This is a method of reducing solid solution carbon.

なお、過時効処理においては、設備の都合上バッチ炉で
過時効処理を行う、いわゆるポストアニ−ル法であって
も基本的にはなんら差異がないため、ボストアニールを
適用してもよい。すなわち、第1図に示すように、再結
晶部な捷し温度域(RA)からめつき処理を施した後、
冷却しコイルに巻取った後、バッチ式加熱炉を用いて2
50〜450℃の過時効処理温度域(OA)に再加熱し
、コールドスポット(最冷点)において80分以上保持
するものである。
Incidentally, in the over-aging treatment, even if the so-called post-annealing method is performed in which the over-aging treatment is carried out in a batch furnace due to equipment limitations, there is basically no difference, so boss annealing may be applied. That is, as shown in Fig. 1, after plating treatment is performed from the recrystallization temperature range (RA),
After cooling and winding into a coil, 2
It is reheated to an overaging treatment temperature range (OA) of 50 to 450°C and held at a cold spot for 80 minutes or more.

上記焼なまし予熱温度域(Pre RA)を350℃以
上再結晶温度以下としたのは、850℃未満ではAIN
の析出に必要な熱量が得られず、又再結晶温度を越える
と、微細AINの析出後再結晶させ、集合組織を改善す
るこの発明の目的を得ることが困難となるからである。
The reason why the above annealing preheating temperature range (Pre RA) is set to 350℃ or higher and lower than the recrystallization temperature is because AIN is lower than 850℃.
This is because if the amount of heat necessary for the precipitation of AIN cannot be obtained and the temperature exceeds the recrystallization temperature, it will be difficult to achieve the object of the present invention, which is to improve the texture by recrystallizing fine AIN after precipitation.

したがって、AINを効率的に析出させるため、焼なま
し予熱温度域(Pre RA)は450〜550℃が最
も好ましく、その時間は10秒以上保持すれば十分AI
Nを析出させることができる。なお、このAIN析出時
間は長いほど好ましいが、設備長さの増大につながるこ
とから、実質的には60秒ぐらいが上限となる。
Therefore, in order to efficiently precipitate AIN, the most preferable annealing preheating temperature range (Pre RA) is 450 to 550°C, and if the temperature is maintained for 10 seconds or more, sufficient AI
N can be precipitated. The longer the AIN deposition time, the more preferable it is, but since this leads to an increase in the length of the equipment, the upper limit is practically about 60 seconds.

上記再結晶部なまし温度域(RA)は再結晶温度以上8
00℃以下、又は通常と同じ700〜850℃の範囲の
いずれでもよいが、炉の燃料原単位を考慮してできるだ
け低い方がよい。この点に関し、後述するT値の向上に
より、再結晶温度以上〜800℃以下で再結晶部なまし
が可能となり、好ましくは650〜750℃がよい。又
、その保持時間は長い方がよいが、設備上許容範囲内の
20〜120秒程度で十程度結高燐なまし処理効果が得
られる。又、過時効処理温度(OA)Vi、通常と同じ
250〜450℃の時効処理に適した温度範囲でよく、
その時間も同じく通常の2〜4分の時効処理時間で十分
である。
The recrystallization part annealing temperature range (RA) above is 8 above the recrystallization temperature.
The temperature may be lower than 00°C or within the same range of 700 to 850°C as usual, but it is better to keep it as low as possible considering the fuel consumption of the furnace. In this regard, by improving the T value, which will be described later, it becomes possible to smooth the recrystallized portion at a temperature above the recrystallization temperature and below 800°C, preferably between 650 and 750°C. The longer the holding time, the better, but a phosphorus annealing treatment effect of about 10 degrees can be obtained with a holding time of about 20 to 120 seconds, which is within the allowable range in terms of equipment. In addition, the overaging treatment temperature (OA) Vi may be in the same temperature range as normal, 250 to 450°C, which is suitable for aging treatment.
Similarly, the usual aging treatment time of 2 to 4 minutes is sufficient.

上記炉内における焼なましの予熱操作は、炉内の温度調
整を行うことにより、容易にこの発明の焼なまし予熱過
程を設けることができる。
The annealing preheating process of the present invention can be easily performed by adjusting the temperature inside the furnace.

このように、再結晶部なまし時のヒートパターンを一部
変えるのみで、成品の7値が向上し、成形性がすぐれ、
ひずみ時効の発生を抑制した高品質の成品を製造するこ
とができる0このT値の向上に伴い、下記に示す種々の
問題も解消される。
In this way, by only partially changing the heat pattern during annealing of the recrystallized part, the 7 value of the finished product is improved, the formability is excellent,
It is possible to produce high-quality products in which the occurrence of strain aging is suppressed.As the T value improves, the various problems described below are also resolved.

すなわち、ダウンコイラでの750℃程度の高温巻取9
を要せず、コイルの巻取温度を660u以下にしても確
実に7値の向上を図ることができる。したがって、高温
巻取りにより生じる脱スケール、表面性状の悪化や結晶
粒の粗大化、形状不良などを抑制することができ、最適
なるめっき用冷延母材を得ることができる。
In other words, high-temperature winding of about 750°C in a down coiler9
7 value can be reliably improved even if the coil winding temperature is set to 660 u or less. Therefore, it is possible to suppress descaling, deterioration of surface properties, coarsening of crystal grains, poor shape, etc. caused by high-temperature winding, and it is possible to obtain an optimal cold-rolled base material for plating.

又、再結晶部なまし温度域(RA)は、通常集合組織の
改善を図って7値を向上し得るように、短時間内に70
0〜850tまで昇温しでいるが、この発明法において
は予熱段階を新たに設けて7値を向上し得るものである
から、再結晶部なまし温度域(RA)を650〜750
′c程度まで下げることができる。このため、連続炉に
おける燃料原単位を確実に低減できる。又、チタンの添
加や真空脱炭処理なども要せず、的確に7値の向上を得
ることができる。
In addition, the annealing temperature range (RA) of the recrystallized part is normally set to 70% within a short time so that the texture can be improved and the 7 value can be improved.
However, in this invention method, a new preheating stage is provided to improve the 7 value, so the annealing temperature range (RA) of the recrystallization part is increased from 650 to 750 t.
It can be lowered to about 'c'. Therefore, the fuel consumption rate in the continuous reactor can be reliably reduced. Furthermore, it is possible to accurately improve the value of 7 without requiring the addition of titanium or vacuum decarburization.

又、この発明のアルミキルド鋼冷延鋼板は、例えば連続
鋳造法又は造塊法にょシ製造したアルミキルド鋼冷延鋼
板のゼンジミア式連続亜鉛めっき用鋼板が対象となる。
Further, the cold-rolled aluminum-killed steel sheet of the present invention is applicable to a Sendzimir continuous galvanizing steel sheet of an aluminum-killed cold-rolled steel sheet produced by, for example, a continuous casting method or an ingot-forming method.

この発明において、鋼の化学成分を限定したのは次の理
由による。
In this invention, the chemical composition of the steel is limited for the following reason.

炭素は、絞υ性を向上させるため低い方が望ましく、炭
素が0.10%を越えると、強度上昇に伴なう延性の低
下及び粗粒化による絞り住処性の劣化が著しくなるため
、0.10%以下とした。
It is desirable that the carbon content be low in order to improve the drawability.If the carbon content exceeds 0.10%, the ductility decreases due to the increase in strength and the deterioration of the drawability due to coarse grains becomes significant. .10% or less.

けい累は、0.20%を越えると、鋼板表面に焼なまし
時に着色し、又スケールによる表面欠陥となるため02
0%以下がよい。
If it exceeds 0.20%, the steel plate surface will be colored during annealing and surface defects due to scale will occur.
0% or less is preferable.

マンガンは、絞り性を向上させるため低い方が望ましい
が、010%10%未赤熱脆性の危険があり、又製造も
困難である。0.40%を越えると、再結晶集合組織が
劣化し、絞り性の著しい低下をきたすので、マンガンは
0.10〜0.40%が好ましい。
A lower amount of manganese is desirable in order to improve drawability, but there is a risk of 010%10% red heat embrittlement, and manufacturing is also difficult. If it exceeds 0.40%, the recrystallized texture will deteriorate and the drawability will be significantly reduced, so the manganese content is preferably 0.10 to 0.40%.

すんは、o、oao%を越えると、その固溶強化により
延性が低下するので、o、os6%以下とする0アルミ
ニウムは、AINの析出に必要で、0.02%未満では
効果が少な(,0,15%を純えるとスラブ加熱時のA
INの固溶化が不完全となり、再結晶粒の微細化により
延性が低下するため、0.02〜0,15%がよい。
If it exceeds o, oao%, the ductility decreases due to its solid solution strengthening, so the o, os of 6% or less aluminum is necessary for the precipitation of AIN, and if it is less than 0.02%, it has little effect ( , 0.15%, A when heating the slab
Since the solid solution of IN becomes incomplete and the ductility decreases due to the refinement of recrystallized grains, 0.02 to 0.15% is preferable.

窒素は、伸びを向上させるためには少ない方がよいが、
0.0025%未満ではAINの析出が不十分であり、
0.020%を越えると伸びが低下し、アルミニウムと
相撲ってスラブ加熱時のAINの固溶化が不完全となる
ため、0.0025〜0.020%七した。
It is better to have less nitrogen in order to improve elongation, but
If it is less than 0.0025%, precipitation of AIN is insufficient,
If it exceeds 0.020%, the elongation will decrease and the AIN will compete with the aluminum, making the solid solution of AIN incomplete when the slab is heated.

又、熱間仕上圧延後の巻取温度を600℃以下800℃
売上としたのは、600℃を越えると、巻取後の冷却中
に大型のAINが析出してしまい、本来の目的であると
ころの(Pre RA )での微細なAINのM「出が
不可能となり、800℃以下では巻取時の銅帯強度が高
く、巻取が困難となり製造上の不具合を生じた9、水冷
却のための水量を増大または能率の低下をきたすととも
に、300℃以下としても絞り性向上に対する効果は変
らないからである。
In addition, the coiling temperature after hot finish rolling should be 600℃ or less and 800℃.
The reason for the sales is that when the temperature exceeds 600°C, large AIN will precipitate during cooling after winding, and the original purpose (Pre RA) of fine AIN will not come out. At temperatures below 800°C, the strength of the copper strip during winding is high, making winding difficult and causing manufacturing defects9, increasing the amount of water for cooling or reducing efficiency, and This is because the effect on improving drawing performance remains the same.

又、酸洗して表面を脱スケール処理した鋼板を、圧下率
40%以上80%以下で冷間圧延を行なうのは、通常の
冷延鋼板と同様で成品の寸法精度、形状性の向上の他再
結晶集合組織を改善するためであり、80%以上の圧下
は圧延全荷重が大きくなり作業性の低下、板厚精度平坦
などの劣化をもたらし、又冷延鋼板として必要な板厚精
度、形状性を確保するためには40%以上の圧下率が必
要であり、又40%以下では良好な絞り性が得られない
からである。
In addition, cold rolling a steel plate whose surface has been descaled by pickling at a reduction rate of 40% to 80% is the same as for ordinary cold rolled steel plates, and improves the dimensional accuracy and shape of the finished product. The purpose of this is to improve the recrystallization texture.If the reduction exceeds 80%, the total rolling load will increase, resulting in a decrease in workability and deterioration in the flatness of the thickness accuracy, which is necessary for cold-rolled steel sheets. This is because a rolling reduction ratio of 40% or more is required to ensure shapeability, and good drawability cannot be obtained if it is less than 40%.

〔実施例1〕 次に、深絞り用冷延鋼板の製造過程を例にとってこの発
明法と従来法とを比較した実施結果を第1表に示し、か
つその成品の組成と焼なまし処理条件とを併せ示した。
[Example 1] Next, Table 1 shows the results of comparing the method of this invention and the conventional method using the manufacturing process of cold-rolled steel sheets for deep drawing as an example, and also shows the composition of the product and annealing treatment conditions. and are shown together.

(以下余白) 上記第1表よシ、こ′の発明法のものは、従来法のもの
に比べて引張強さは大差ないが、7値を大幅に向上する
ことができ、成形性にすぐれた深絞り用めっき鋼板が得
られることがわかる。なお、−−過時効処理をバッチ炉
に よシ800℃×14時間のボストアニールを実施した場
合も第1表に示すこの発明法のものと同等の諸性質のも
のを得ることができた。
(Leaving space below) According to Table 1 above, the tensile strength of this invented method is not much different than that of the conventional method, but it can significantly improve the 7 value and has excellent formability. It can be seen that a plated steel sheet for deep drawing can be obtained. Note that even when the overaging treatment was carried out in a batch furnace and Bost annealing was carried out at 800° C. for 14 hours, it was possible to obtain properties equivalent to those of the method of this invention shown in Table 1.

この発明は上記のごとく、連続焼なまし法において、予
熱過程と再結晶焼なまし処理の2段階処理を施すことに
よシ、アルミキルド鋼深絞p用亜鉛めっき鋼板を容易に
製造できるものである0
As described above, this invention enables the easy production of galvanized steel sheets for deep drawing of aluminum killed steel by performing a two-step process of preheating and recrystallization annealing in the continuous annealing method. Some 0

【図面の簡単な説明】[Brief explanation of the drawing]

#!1図はこの発明の再結晶焼なまし及びめっき処理、
過時効処理の各過程のヒートパターンを従来と比較して
示す図表である。 PreRA  :焼なまし予熱温度域、RA:再結晶焼
なまし温度域、 M  :めっき処理温度域、 OA=過時効処理温度域、 Ia:この発明法の再結晶焼なまし めっき処理、過時効処理の過 程におけるヒートパターンの 曲線例、 11):従来法の再結晶焼なましめつ き処理、過時効処理の過程に おけるヒートパターンの曲線 例0 出願人   住友金属工業株式会社
#! Figure 1 shows the recrystallization annealing and plating treatment of this invention,
It is a chart showing the heat pattern of each process of over-aging treatment in comparison with the conventional one. PreRA: Annealing preheating temperature range, RA: Recrystallization annealing temperature range, M: Plating processing temperature range, OA=Overaging processing temperature range, Ia: Recrystallization annealing plating processing of this invention method, overaging Example of curve of heat pattern in process of treatment, 11): Example of curve of heat pattern in process of conventional recrystallization annealing treatment and overaging treatment 0 Applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 炭素0.10%以下、けい素0.20%以下、マンガン
0.10〜0.40%、りんo、oao%以下、アルミ
ニウム002〜0.15%、窒素0.0025〜0.0
20%、残部は実質的に鉄及び不可避的不純物よりなる
鋼を通常の熱間圧延を施し、600℃以下の温度でコイ
ルに巻取り、酸洗後圧工率40%以上で冷間圧延を行っ
た後、850℃以上再結晶温度以下の温度域に短時間予
熱保持し、引続き再結晶温度以上800℃以下の温度域
に短時間保持して再結高部なましを行い、引続きめつき
処理を施し、次いでコイルに巻取った後バッチ炉で再加
熱し250〜450℃の温度域で過時効処理を施すこと
を特徴とする成形性のすぐれた深絞り用亜鉛めっき鋼板
の製造法。
Carbon 0.10% or less, silicon 0.20% or less, manganese 0.10-0.40%, phosphorus o, oao% or less, aluminum 002-0.15%, nitrogen 0.0025-0.0
20%, the remainder being substantially iron and unavoidable impurities, is subjected to normal hot rolling, wound into a coil at a temperature of 600°C or less, and after pickling, cold rolled at a rolling rate of 40% or more. After that, preheating is held for a short time in a temperature range of 850°C or more and below the recrystallization temperature, and then held for a short time in a temperature range of above the recrystallization temperature and below 800°C to annealing the recrystallized high part, followed by plating. 1. A method for producing a galvanized steel sheet for deep drawing with excellent formability, which comprises applying the treatment, then winding it into a coil, reheating it in a batch furnace, and subjecting it to an overaging treatment in a temperature range of 250 to 450°C.
JP58163000A 1983-09-05 1983-09-05 Production of galvanized steel sheet for deep drawing having excellent formability Pending JPS5974237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58163000A JPS5974237A (en) 1983-09-05 1983-09-05 Production of galvanized steel sheet for deep drawing having excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58163000A JPS5974237A (en) 1983-09-05 1983-09-05 Production of galvanized steel sheet for deep drawing having excellent formability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9433780A Division JPS593528B2 (en) 1980-07-09 1980-07-09 Manufacturing method of galvanized steel sheet for deep drawing with excellent formability

Publications (1)

Publication Number Publication Date
JPS5974237A true JPS5974237A (en) 1984-04-26

Family

ID=15765290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58163000A Pending JPS5974237A (en) 1983-09-05 1983-09-05 Production of galvanized steel sheet for deep drawing having excellent formability

Country Status (1)

Country Link
JP (1) JPS5974237A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102472A (en) * 1989-10-02 1992-04-07 Armco Steel Company, L.P. Cold reduced non-aging deep drawing steel and method for producing
WO2003074751A1 (en) 2002-03-01 2003-09-12 Jfe Steel Corporation Surface treated steel plate and method for production thereof
JP2009035877A (en) * 2007-07-31 2009-02-19 Alinco Inc Scaffolding board
CN102758129A (en) * 2012-06-19 2012-10-31 河北钢铁股份有限公司邯郸分公司 Method for manufacturing non-spangle galvanized sheet DX54D+Z from aluminum killed steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593528A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Common use controlling system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593528A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Common use controlling system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102472A (en) * 1989-10-02 1992-04-07 Armco Steel Company, L.P. Cold reduced non-aging deep drawing steel and method for producing
WO2003074751A1 (en) 2002-03-01 2003-09-12 Jfe Steel Corporation Surface treated steel plate and method for production thereof
EP1482066A1 (en) * 2002-03-01 2004-12-01 Kawasaki Steel Corporation Surface treated steel plate and method for production thereof
EP1482066A4 (en) * 2002-03-01 2008-12-31 Jfe Steel Corp Surface treated steel plate and method for production thereof
JP2009035877A (en) * 2007-07-31 2009-02-19 Alinco Inc Scaffolding board
CN102758129A (en) * 2012-06-19 2012-10-31 河北钢铁股份有限公司邯郸分公司 Method for manufacturing non-spangle galvanized sheet DX54D+Z from aluminum killed steel

Similar Documents

Publication Publication Date Title
US3936324A (en) Method of making high strength cold reduced steel by a full continuous annealing process
JPS631374B2 (en)
JPS5974237A (en) Production of galvanized steel sheet for deep drawing having excellent formability
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
EP1022347A1 (en) Method for producing raw plate for surface treatment plate for can using continuous annealing
JPS5974236A (en) Production of galvanized steel sheet for deep drawing having excellent formability
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPS5858413B2 (en) Manufacturing method for high-tensile galvanized steel sheets with excellent formability
JPS59133324A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
JP3446001B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability
JP2560168B2 (en) Method for producing cold-rolled steel sheet excellent in paint bake hardenability at low temperature
JPS61264136A (en) Manufacture of al killed steel sheet for deep drawing with very low carbon content having reduced in-plane anisotropy
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JPS5974234A (en) Production of cold-rolled steel sheet for deep drawing having excellent formability
JPS6126724A (en) Manufacture of dead soft base sheet for surface treatment by continuous annealing
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JP2000087147A (en) Production of extra-thin steel sheet for two-piece can excellent in intra-plane anisotropy and uniformity of intra-plane anisotropy in coil
JPH05171351A (en) Cold rolled steel sheet for deep drawing having non-aging characteristic and excellent in baking hardenability and its production
JPS5974235A (en) Production of cold-rolled steel sheet for deep drawing having excellent formability
JPS6240319A (en) Manufacture of steel sheet having superior deep drawability by continuous annealing
JPS593527B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing with excellent formability
JPH05222460A (en) Production of cold rolled steel sheet excellent in press formability
JP2506684B2 (en) Manufacturing method of thin steel sheet with excellent deep drawability by continuous annealing
JPH08311557A (en) Production of ferritic stainless steel sheet free from ridging