JPS59575B2 - Manufacturing method for high-strength cold-rolled steel sheets with excellent formability - Google Patents

Manufacturing method for high-strength cold-rolled steel sheets with excellent formability

Info

Publication number
JPS59575B2
JPS59575B2 JP9433880A JP9433880A JPS59575B2 JP S59575 B2 JPS59575 B2 JP S59575B2 JP 9433880 A JP9433880 A JP 9433880A JP 9433880 A JP9433880 A JP 9433880A JP S59575 B2 JPS59575 B2 JP S59575B2
Authority
JP
Japan
Prior art keywords
temperature
less
recrystallization
annealing
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9433880A
Other languages
Japanese (ja)
Other versions
JPS5719335A (en
Inventor
修二 中居
精一 杉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9433880A priority Critical patent/JPS59575B2/en
Publication of JPS5719335A publication Critical patent/JPS5719335A/en
Publication of JPS59575B2 publication Critical patent/JPS59575B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 この発明は、成形性のすぐれた高張力冷延鋼板の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-strength cold-rolled steel sheets with excellent formability.

冷延鋼板の製造法は、周知のごとく、熱間仕上圧延機で
圧延した鋼板をダウンコイラで巻取った後、酸洗→冷間
圧延→表面清浄→焼なまし・・・・の各処理工程を経て
冷延鋼板を製造しているが、その材質としては近年リム
ド鋼に変って、アルミキルド鋼が使用されるようになっ
てきた。
As is well known, the manufacturing method for cold-rolled steel sheets involves the following processing steps: pickling, cold rolling, surface cleaning, annealing, etc. after rolling a steel sheet with a hot finishing mill and winding it up with a down coiler. However, in recent years, the material used has changed from rimmed steel to aluminum-killed steel.

これは、高強度鋼素材であると共に成分偏析にもとづく
特性変動が少なく、しかも時効劣化し難い特徴を有する
のみならず、バッチ式焼なまし法ではその材質中に固溶
している窒素Nを焼なまし処理工程中に微細なAlNと
して析出させて成形性(深絞り性)の指数として用いら
れるランクフォード値(以下下値と称す)を高いレベル
に持ちきたすことができるためである。
Not only is this a high-strength steel material, there are few changes in properties due to component segregation, and it is resistant to aging, but the batch annealing method eliminates nitrogen N dissolved in the material. This is because AlN can be precipitated as fine AlN during the annealing process and can bring the Lankford value (hereinafter referred to as lower value), which is used as an index of formability (deep drawability), to a high level.

ところが、連続焼なまし法においては、このアルミキル
ド鋼の特徴であるところの微細なAlNの析出による下
値の向上が一般的に難しい。
However, in the continuous annealing method, it is generally difficult to improve the lower value due to the precipitation of fine AlN, which is a feature of this aluminum killed steel.

これは昇熱速度が速いため、微細AlNの析出後、再結
晶が進行するという順序が逆転又はこれに近い状態にな
ることになる。
Since the heating rate is fast, the order in which recrystallization proceeds after precipitation of fine AlN is reversed or a state similar to this occurs.

これは、連続焼なまし法において、AlNとしての析出
効果が全く得られない上に、再結晶粒成長をも阻害して
いる。
In the continuous annealing method, this does not provide any precipitation effect as AlN, and also inhibits recrystallized grain growth.

そこで、連続焼なまし法における、この下値の向上につ
いては近年、下記に示すような方法が提案されている。
Therefore, in recent years, the following method has been proposed to improve this lower value in the continuous annealing method.

すなわち、1 熱間圧延後の鋼板の巻取りを、高温巻取
りとすることにより、炭化物の凝集及びAlNの大型析
出物の析出を施し、下値の向上と再結晶粒成長を図った
もの。
Namely, 1. The steel sheet after hot rolling is coiled at a high temperature to agglomerate carbides and precipitate large AlN precipitates, thereby improving the lower value and growing recrystallized grains.

2、連続炉での再結晶焼なまし湿度を通常より昇温させ
、その鋼板の組織をフェライト+オーステナイト預域ま
で外淵して集合組織の改善を図り、下値の向上を目指し
もの。
2. Recrystallization annealing in a continuous furnace The humidity is raised above normal to improve the texture of the steel sheet by extending it to the ferrite + austenite deposit zone, with the aim of improving the bottom value.

3、チタンを添加することにより下値の向上を図ったも
の等がある。
3. There are some products in which the lower value is improved by adding titanium.

しかし、上記1の高温巻取りを行うと、脱スケール性や
表面性状の悪化、結晶粒の粗大化、形状不良などが生じ
、冷延母材としては格落ちする場合が多くなる。
However, when high-temperature winding is performed as described in 1 above, descaling properties and surface properties deteriorate, coarsening of crystal grains, poor shape, etc. occur, and the material is often degraded as a cold-rolled base material.

又、2の再結晶焼なまし湿度を上げると、連続炉に要す
る燃料原単位が増大し、コストアップとなる。
Moreover, if the recrystallization annealing humidity in step 2 is increased, the fuel consumption rate required for the continuous furnace increases, resulting in an increase in cost.

又、3.のチタンを添加すると、チタンは炭素と結合す
るため、チタンの添加時はその際に真空脱炭処理も施さ
ねばならず、その処理とチタンの使用により、ロス1ア
ツプとなるなどの欠点があった。
Also, 3. When titanium is added, titanium combines with carbon, so when adding titanium, a vacuum decarburization treatment must also be performed at that time, and this treatment and the use of titanium have the disadvantage of increasing losses. Ta.

この発明は、これらの方法をとらず、連続焼なまし過程
でのヒートパターンを一部変えることにより、上記の欠
点を解消し得る成形性のすぐれた35〜60 Kty/
mm2クラスの高張力冷延鋼板の製造法を提案するもの
である。
The present invention eliminates these methods and partially changes the heat pattern in the continuous annealing process, thereby eliminating the above-mentioned drawbacks.
This paper proposes a method for manufacturing mm2 class high tensile strength cold rolled steel sheets.

すなわち、この発明は 1 炭素0.15係以下、けい素0.20%以下、マン
ガン0.40〜3.0係、りん0.20係以下、アルミ
ニウム0.02〜0.15%、窒素0.0025〜0.
02%、残部実質的に鉄よりなる鋼を、通常の熱間圧延
を施して600℃以下300℃以上でコイルに巻取り、
酸洗後圧工率40%以上80チ以下で冷間圧延を行った
後、350℃以上再結晶淵度以下好ましくは450〜5
50℃の湿度域に10〜60秒予熱課持し、引続き再結
晶湿度以上850℃以下の湿度域に短時間保持して再結
晶焼なましを行い、次いで250〜450℃の湿度域に
降温して過時効処理を施すこと、および200℃以下に
いったん急冷して再加熱後、250〜450℃の湿度域
で過時効処理を施すことを特徴とする成形性のすぐれた
高張力冷延鋼板の製造法。
That is, this invention has the following properties: 1 Carbon: 0.15% or less, Silicon: 0.20% or less, Manganese: 0.40 to 3.0%, Phosphorus: 0.20% or less, Aluminum: 0.02 to 0.15%, Nitrogen: 0 .0025~0.
02%, the remainder substantially iron, is subjected to normal hot rolling and wound into a coil at a temperature of 600°C or lower and 300°C or higher,
After pickling, cold rolling is performed at a rolling ratio of 40% or more and 80 inches or less, and then a recrystallization depth of 350°C or higher and preferably 450 to 5
Preheating is applied to a humidity range of 50°C for 10 to 60 seconds, followed by recrystallization annealing by holding for a short time in a humidity range above recrystallization humidity and below 850°C, and then the temperature is lowered to a humidity range of 250 to 450°C. A high-strength cold-rolled steel sheet with excellent formability, which is characterized by being subjected to an over-aging treatment at a humidity of 250 to 450 degrees Celsius after being rapidly cooled to 200°C or less and then being reheated. manufacturing method.

2 上記第1項の成分に加えて、さらにクロム0、5
%以下、モリブデン0.3係以下のうちどちらか一方、
又は両方を含有することを特徴とする成形性のすぐれた
高張力冷延鋼板の製造法を要旨とする。
2 In addition to the components in item 1 above, chromium 0, 5
% or less, or less than 0.3% of molybdenum,
The gist of the present invention is a method for manufacturing a high-strength cold-rolled steel sheet with excellent formability, characterized by containing the above-mentioned or both.

まず、この発明について具体的に説明すると、第1図及
び第2図に示すように、曲線1a及び2aはこの発明法
の再結晶焼なまし及び過時効処理過程におけるヒートパ
ターンの曲線を示し、曲線1b及び2bは従来法の再結
晶焼なまし及び過時効処理過程におけるヒートパターン
の曲線を示すもので、連続炉においてコイルを連続的に
焼なまし炉の中を通過させながら連続焼なましを行うが
、まず焼なまし初期の段階でいったん350℃以上〜再
結晶益度以下の湿度範囲の焼なまし予熱湿度域PreR
Aで10〜60秒程度短時間課持する。
First, to explain this invention in detail, as shown in FIGS. 1 and 2, curves 1a and 2a show the heat pattern curves in the recrystallization annealing and overaging treatment process of the method of this invention, Curves 1b and 2b show the heat pattern curves in the recrystallization annealing and overaging treatment process of the conventional method, in which the coil is continuously annealed while passing through the annealing furnace continuously. However, first, at the initial stage of annealing, the annealing preheating humidity range PreR is performed in a humidity range of 350°C or higher to less than the recrystallization gain.
Hold A for a short period of about 10 to 60 seconds.

この焼なまし予熱湿度域PreRAを施すことにより、
冷延鋼板中の窒素をAlNとして微細に析出するように
したものである。
By applying this annealing preheating humidity range PreRA,
Nitrogen in the cold rolled steel sheet is finely precipitated as AlN.

すなわち、アルミキルド鋼は冷延後の再結晶焼なまし初
期段階においてAlNを微細に析出させやすく、これに
より再結晶集合組織を改善し、高下値の得られることが
知られている。
That is, it is known that in aluminum killed steel, AlN tends to be finely precipitated in the initial stage of recrystallization annealing after cold rolling, and this improves the recrystallization texture and obtains higher and lower values.

そこで、発明者は連続焼なまし法において、AlNの析
出しやすい湿度域に短時間保持することにより、AlN
゛を十分析出させて集合組織を改善し、下値を向上せし
め、成形性の向上を図るものである。
Therefore, in the continuous annealing method, the inventors developed a method of keeping AlN in a humidity range where AlN tends to precipitate for a short time.
The aim is to improve the texture, improve the lower value, and improve the formability.

そして、その後の湿度過程は通常のヒートパターンと同
様の熱処理を施す。
In the subsequent humidity process, heat treatment is performed in the same manner as in a normal heat pattern.

すなわち、A1変態点近傍の再結晶焼なまし湿度域RA
まで外淵して20〜120秒程度保持し、この間に再結
晶、粒成長の過程を経て軟化させ、成形加工性を向上さ
せるものである。
That is, the recrystallization annealing humidity range RA near the A1 transformation point
The material is held at the outer edge for about 20 to 120 seconds, during which time it is softened through the process of recrystallization and grain growth, thereby improving moldability.

次いで、250〜450℃の過時効処理湿度域OAまで
降温又は200°C以下に冷却した後再加熱して2〜4
分間保持し、時効の発生原因となる固溶炭素を減少させ
る方法である。
Next, the temperature is lowered to the overaging treatment humidity range OA of 250 to 450 °C or cooled to 200 °C or less and then reheated for 2 to 4 hours.
This is a method in which the solid solution carbon, which causes aging, is reduced.

又、第2図はこの発明の他の実施例を示したもので、再
結晶焼なまし後冷却し、再加熱して過時効処理を施す場
合のヒートパターン例を示す曲線である。
Further, FIG. 2 shows another embodiment of the present invention, and is a curve showing an example of a heat pattern when cooling after recrystallization annealing and reheating to perform an overaging treatment.

上記焼なまし予熱湿度域PreRAを350℃以上〜再
結晶温度以下としたのは、350℃未満ではAlNの析
出に必要な熱量が得られず、又再結晶湿度を越えると、
この発明の目的とする「微細A[Nの析出後再結晶させ
、集合組織を改善する」という目的を得ることが困難と
なるためである。
The reason why the above annealing preheating humidity range PreRA was set from 350°C or higher to below the recrystallization temperature is because below 350°C, the amount of heat necessary for AlN precipitation cannot be obtained, and if the recrystallization humidity is exceeded,
This is because it becomes difficult to achieve the object of the present invention, which is to "improve the texture by recrystallizing fine A[N after precipitation".

又、その時間は10秒以上保持すれば、その間に十分A
lNを析出させることができる。
Also, if you hold it for more than 10 seconds, you can get enough A during that time.
IN can be precipitated.

この人lNの析出時間は長いほど好ましいが、設備長さ
の増大につながることから、実質的には60秒ぐらいが
上限となる。
Although it is preferable that the precipitation time of this 1N be as long as possible, since it leads to an increase in the length of the equipment, the practical upper limit is about 60 seconds.

上記再結黒焼なまし湿度域RAは、再結晶温度以下85
0℃以下でよいが、炉の燃料原単位を考慮してできるだ
け低い方がよい。
The above recrystallization black annealing humidity range RA is below the recrystallization temperature 85
The temperature may be 0°C or lower, but it is better to keep it as low as possible considering the fuel consumption rate of the furnace.

この点に関し、フエライ[一相組織鋼の場合は後述する
下値の向上により650〜750℃の湿度範囲でよい。
In this regard, in the case of single-phase structure steel, the humidity range may be 650 to 750°C due to the improvement in the lower value described below.

又その保持時間は長い方がよいが、設備上許容範囲内の
20〜120秒程度で十分再結黒焼なまし処理効果が得
られる。
Although the longer the holding time, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the longer the holding time is, the more the effect of the recursive black annealing treatment can be obtained.

一方フエライト+マルテンサイトの複合組織を有するい
わゆる二相組織鋼の場合再結黒焼なまし湿度はフェライ
ト(α)+オーステナイト(γ)域で均熱保持し、γ相
への成分元素濃化を図るため、750〜850°Cが必
要である。
On the other hand, in the case of so-called dual-phase steel that has a composite structure of ferrite and martensite, the re-black annealing humidity is maintained uniformly in the ferrite (α) + austenite (γ) region, and the component elements are concentrated into the γ phase. Therefore, a temperature of 750 to 850°C is required.

その保持時間は長い方がよいが設備上許容範囲内の20
〜120秒程度でその効果が得られる。
The longer the retention time, the better, but it is within the allowable range for the equipment.
The effect can be obtained in about 120 seconds.

又、過時効処理湿度OAは、通常と同じ250〜450
℃の時効処理に適した湿度範囲でよく、その時間も通常
と同じの2〜4分の時効処理時間で十分である。
In addition, the overaging treatment humidity OA is 250 to 450, which is the same as normal.
The humidity range suitable for aging treatment at .degree. C. is sufficient, and the aging treatment time of 2 to 4 minutes, which is the same as usual, is sufficient.

上記焼なまし炉内における焼なましの予熱操作は、炉内
の湿度調整を行うことにより、容易にこの発明の焼なま
し予熱帯を設けることができる。
For the preheating operation for annealing in the annealing furnace, the annealing preheating zone of the present invention can be easily provided by adjusting the humidity inside the furnace.

このように、再結黒焼なまし時のヒートパターンを一部
変えるのみで、成品の下値が向上し、成形性がすぐれ、
ひずみ時効の発生を抑制した高品質の成品を製造するこ
とができる。
In this way, by only partially changing the heat pattern during re-black annealing, the down value of the finished product is improved, the formability is excellent,
It is possible to produce high-quality products that suppress the occurrence of strain aging.

この下値の向上に伴い、下記に示す種々の問題も解消さ
れる。
Along with this improvement in the lower value, various problems described below will also be resolved.

すなわち、ダウンコイラでの750℃前後の高淵巻取り
を要せず、コイルの巻取湿度を600℃以下にしても確
実に7値の向上を図ることができる。
In other words, it is possible to reliably improve the value of 7 even if the winding humidity of the coil is 600° C. or lower without requiring high winding at around 750° C. in a down coiler.

したがって、高温巻取りにより生じる脱スケール性、表
面性状の悪化や結晶粒の粗大化、形状不良などを抑制す
ることができ、最適なる冷延母材を得ることができる。
Therefore, it is possible to suppress descaling properties, deterioration of surface properties, coarsening of crystal grains, poor shape, etc. caused by high-temperature winding, and it is possible to obtain an optimal cold-rolled base material.

又、再結黒焼なまし湿度域RAは、通常集合組織の改善
を図って下値を向上し得るように、短時間内に700〜
850℃まで外淵しているが、この発明法においては予
熱段階を新たに設けて下値を向上し得るものであるから
、フェライト−相組織鋼の場合再結黒焼なまし湿度域R
Aを650〜750℃程度まで下げることができる。
In addition, the reconsolidation black annealing humidity range RA is usually 700~700 within a short time so that the lower value can be improved by improving the texture.
However, in the method of this invention, a new preheating step is provided to improve the lower value, so in the case of ferritic phase steel, the re-solidification black annealing humidity range R
A can be lowered to about 650 to 750°C.

このため、連続炉における燃料原単位を確実に低減でき
る。
Therefore, the fuel consumption rate in the continuous reactor can be reliably reduced.

又、チタンの添加や真空脱炭処理なども要せず、きわめ
て簡単かつ確実に7値の向上を得ることができる。
Moreover, there is no need for addition of titanium or vacuum decarburization, and it is possible to obtain an improvement in the value of 7 very easily and reliably.

又、この発明のアルミキルド鋼冷延鋼板は、例えば連続
鋳造法又は造塊法により製造した高張力冷延鋼板、二相
組織高張力冷延鋼板などが対象となる。
Further, the cold-rolled aluminum-killed steel sheet of the present invention is applicable to, for example, a high-strength cold-rolled steel sheet manufactured by a continuous casting method or an ingot-forming method, a high-strength cold-rolled steel sheet with a two-phase structure, and the like.

この発明において、鋼の化学成分を限定したのは次の理
由による。
In this invention, the chemical composition of the steel is limited for the following reason.

炭素は、強度を得るために必要な元素であるが、炭素が
0.15%を越えると、溶接性が悪化するため、0.1
5受以下とした。
Carbon is an element necessary to obtain strength, but if carbon exceeds 0.15%, weldability deteriorates, so 0.1%
It was set as 5 or less.

けい素は、0.20%を越えると、鋼板表面に焼なまし
時に着色し、又スケールによる表面欠陥となるため、0
.20%以下とした。
If silicon exceeds 0.20%, it will color the surface of the steel sheet during annealing and cause surface defects due to scale.
.. It was set to 20% or less.

マンガンは、強度を得るために必要な元素であるが、0
.40%未満では目標とする強度を得るには十分でなく
、フェライト−相鋼の場合はマンガン量は0.40〜1
.50%が適しているが、一方フエライ1+マルテンサ
イV二相鋼の場合のマンガン量は1.5係以上が必要で
あるが、3,0係を越えると溶製が困難であり、かつコ
スト高となるため、0.40〜3.0%とした。
Manganese is an element necessary to obtain strength, but 0
.. If it is less than 40%, it is not sufficient to obtain the target strength, and in the case of ferrite-phase steel, the amount of manganese is 0.40 to 1.
.. 50% is suitable, but on the other hand, in the case of Ferrai 1 + Martensi V dual-phase steel, the manganese content must be 1.5% or more, but if it exceeds 3.0%, it is difficult to melt and the cost is high. Therefore, it was set to 0.40 to 3.0%.

りんは、高張力化に必要であるが、0.20%を越える
と、二次加工脆化の危険性があり、又スポット溶接性が
劣化するため、0.20%以下とした。
Phosphorus is necessary to increase the tensile strength, but if it exceeds 0.20%, there is a risk of secondary work embrittlement and spot weldability deteriorates, so it is set to 0.20% or less.

アルミニウムは、AINの析出に必要で、0.02係未
満では効果が少なく、0.15%を越えるとスラブ加熱
時のAlNの固溶化が不完全となり、結晶粒の微細化に
より延性が低下するため、0.02〜0.15係とした
Aluminum is necessary for the precipitation of AIN, and if it is less than 0.02%, it will have little effect, and if it exceeds 0.15%, the solid solution of AlN will be incomplete when heating the slab, and the ductility will decrease due to the refinement of crystal grains. Therefore, the ratio was set at 0.02 to 0.15.

窒素は、伸びを向上させるためには少ない方がよいが、
0.0025%未満ではAlNの析出が不十分であり、
0.02%を越えると伸びが低下し、アルミニウムと相
俟ってスラブ加熱時のAlNの固溶化が不完全となるた
め、0.0025〜0.02係とした。
It is better to have less nitrogen in order to improve elongation, but
If it is less than 0.0025%, precipitation of AlN is insufficient;
If it exceeds 0.02%, the elongation decreases, and together with aluminum, the solid solution of AlN becomes incomplete during heating of the slab, so the ratio was set at 0.0025 to 0.02.

クロムは、強度向上のため及び二相組織化にあたり、マ
ンガン量の低減に有効であるが、0.5%を越えると、
添加のわりにこれらの効果の上昇が少ない上むしろ集合
組織を劣化させるので、0.50係以下とした。
Chromium is effective in reducing the amount of manganese in order to improve strength and form a two-phase structure, but if it exceeds 0.5%,
The increase in these effects is small in spite of its addition, and it actually deteriorates the texture, so the coefficient was set to 0.50 or less.

又、モリブデンも同様の理由により0.30%以下とし
た。
Moreover, molybdenum was also set to 0.30% or less for the same reason.

熱間仕上圧延後の巻取湿度600℃以下300℃以上の
は、600℃を越えると、巻取後の冷却中に大型のAl
Nが析出してしまい、本来の目的であるところの予熱温
度域PreRAでの微細なAlNの析出が不可能となる
ため、600°C以下とした。
Coiling humidity after hot finish rolling is 600℃ or lower.
Since N precipitates and it becomes impossible to precipitate fine AlN in the preheating temperature range PreRA, which is the original purpose, the temperature was set to 600°C or less.

又、300℃以下では巻取時の銅帯強度が強く、巻取が
困難となり、製造上の不具合を生じたり、水冷却のため
の水量を増大、または能率の低下をきたす。
Further, at temperatures below 300° C., the strength of the copper strip during winding is strong, making winding difficult, resulting in production defects, an increase in the amount of water for cooling, or a decrease in efficiency.

一方で300℃以下としても、絞り性向**上に対する
効果は変らない。
On the other hand, even if the temperature is 300°C or lower, the effect on the drawing property** remains the same.

又、冷間圧下率を40%以上80係以下としたのは、通
常の冷延鋼板と同様で成品寸法精度、形状性の向上の他
、再結晶集合組織を改善するためであり、80係以上の
圧下は圧延全荷重が大きくなり作業性の低下、板厚精度
平担などの劣化をもたらし、又、冷延鋼板として必要な
板厚精度、形状性を確保するためには40係以上の圧下
率が必要であり、圧下率40係以下では良好な絞り性が
得られないからである。
In addition, the reason why the cold rolling reduction ratio is set to 40% or more and 80% or less is to improve the recrystallization texture as well as improve the dimensional accuracy and shape of the product, as is the case with ordinary cold rolled steel sheets. A reduction of more than 40% increases the total rolling load, resulting in decreased workability and deterioration of plate thickness accuracy.In addition, in order to ensure the plate thickness accuracy and shape required for cold-rolled steel sheets, it is necessary to This is because a rolling reduction ratio is necessary, and if the rolling reduction ratio is less than 40 factors, good drawing properties cannot be obtained.

〔実施例 1〕 次に、高張力冷延鋼板試料AI、2,3.8と、二相組
織高張力冷延鋼板試料A4,5,6,7゜9の製造過程
を例にとってこの発明法と従来法とを比較した実施結果
を第1表に示し、その成品の組成と焼なまし処理条件も
併せて示した。
[Example 1] Next, this invention method will be explained by taking as examples the manufacturing processes of high-tensile cold-rolled steel sheet samples AI, 2, 3.8 and dual-phase structure high-tensile cold-rolled steel sheet samples A4, 5, 6, 7゜9. Table 1 shows the results of a comparison between the conventional method and the conventional method, and also shows the composition of the product and annealing treatment conditions.

上記第1表よりわかるごとく、この発明法によるもの試
料A1〜7は従来法によるもの試料A8゜9に比べてい
ずれも下値が大幅に向上することが認められる。
As can be seen from Table 1 above, it is recognized that samples A1 to A7 produced by the method of the present invention all have significantly improved lower values compared to samples A8 and 9 produced by the conventional method.

これは、この発明法のAlNを析出させるという予熱焼
なまし操作が7値の向上に著しく貢献したものである。
This is because the preheating annealing operation of precipitating AlN in the method of this invention significantly contributed to the improvement of the 7 value.

この発明は上記のごとく、連続焼なまし法において所定
の焼なまし高温度まで急熱せずに、予熱過程を経て、再
結黒焼なまし処理を施すことにより、アルキミルド鋼の
高張力冷延鋼板の製造に最も適した再結黒焼なまし法で
高強度を有し、かつ、成形性にすぐれた高張力冷延鋼板
を低コストで、しかも容易に製造できるものである。
As mentioned above, this invention is capable of producing a high-strength cold-rolled steel sheet made of alkymild steel by performing a reconsolidation black annealing treatment after a preheating process without rapidly heating to a predetermined high annealing temperature in the continuous annealing method. A high tensile strength cold rolled steel sheet with high strength and excellent formability can be easily manufactured at low cost using the reconsolidation black annealing method most suitable for manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の再結黒焼なまし過程のヒートパター
ンを示す図表、第2図はこの発明の他の再結黒焼なまし
過程のヒートパターンの実施例を示す表図である。 PreRA・・・・・・焼なまし予熱湿度域、RA・・
・・・・再結黒焼なまし湿度域、OA・・・・・・過時
効処理温度域、1a、2a・・・・・・この発明法の再
結黒焼なまし過程におけるヒートパターンの曲線flJ
、 1 b 、 2b・・・・・・従来法の再結黒焼な
まし過程におけるヒートパターンの曲線例。
FIG. 1 is a diagram showing a heat pattern of the reconsolidation black annealing process of the present invention, and FIG. 2 is a diagram showing an example of the heat pattern of another reconsolidation black annealing process of the present invention. PreRA...Annealing preheating humidity range, RA...
・・・Reconsolidation black annealing humidity range, OA・・・Overaging treatment temperature range, 1a, 2a・・・Curve flJ of heat pattern in the reconsolidation black annealing process of this invention method
, 1b, 2b...Examples of heat pattern curves in the conventional method of reconsolidation black annealing process.

Claims (1)

【特許請求の範囲】 1 炭素0.15%以下、けい素0.20%以下、マン
ガン0.40〜30%、りん0620係以下、アルミニ
ウム0.02〜0.15係、窒素0.0025〜0.0
2%、残部実質的に鉄よりなる鋼を、通常の熱間圧延を
施して600℃以下300℃以上でコイルに巻取り、酸
洗後圧工率40チ以上80係以下で冷間圧延を行った後
、350℃以上再結晶温度以下の温度域に10〜60秒
予熱保持し、引続き再結晶温度以上850℃以下の温度
域に短時間保持して再結晶焼なましを行い、引続いて2
50〜450℃の過時効処理温度に降温、過時効処理を
施すこと、および200℃以下にいったん急冷して再加
熱後、250〜450℃の温度域で過時効処理を施すこ
とを特徴とする成形性のすぐれた高張力冷延鋼板の製造
法。 2 炭素0.15%以下、けい素o、2o%以下、マン
ガン0.40〜3.0係、りん0.20%以下、アルミ
ニウム0.02〜0.15%、窒素0.0025〜0.
02%にさらにクロム0.5%以下とモリブデン0.3
係以下のうちの1種又は2種を含有させ、残部実質的に
鉄よりなる鋼を、通常の熱間圧延を施して600℃以下
300℃以上でコイルに巻取り、酸洗後圧工率40係以
上80係以下で冷間圧延を行った後、350°C以上再
結晶湿度以下の調度域に10〜60秒予熱保持し、引続
き再結晶温度以上850℃以下の温度域に短時間保持し
て再結晶焼なましを行い、引続いて250〜450℃の
過時効処理温度に降温、過時効処理を施すこと、および
200℃以下にいったん急冷して再加熱後250〜45
0℃の温度域で過時効処理を施すことを特徴とする成形
性のすぐれた高張力冷延鋼板の製造法。
[Claims] 1 Carbon 0.15% or less, silicon 0.20% or less, manganese 0.40 to 30%, phosphorus 0.620% or less, aluminum 0.02 to 0.15%, nitrogen 0.0025% to 0.0
2%, the remainder being substantially iron, is subjected to normal hot rolling, wound into a coil at a temperature of 600°C or lower and 300°C or higher, and after pickling, cold rolled at a rolling rate of 40 or more and 80 or less. After that, preheating is held for 10 to 60 seconds in a temperature range of 350°C or higher and below the recrystallization temperature, followed by recrystallization annealing by holding it for a short time in a temperature range of 850°C or higher, above the recrystallization temperature, and then te2
It is characterized by lowering the temperature to an overaging treatment temperature of 50 to 450°C and performing an overaging treatment, and once rapidly cooling to 200°C or less, reheating, and then performing an overaging treatment at a temperature range of 250 to 450°C. A method for manufacturing high-strength cold-rolled steel sheets with excellent formability. 2 Carbon 0.15% or less, silicon o, 2o% or less, manganese 0.40 to 3.0%, phosphorus 0.20% or less, aluminum 0.02 to 0.15%, nitrogen 0.0025 to 0.
0.2% plus 0.5% or less chromium and 0.3% molybdenum
A steel containing one or two of the following, with the remainder substantially made of iron, is subjected to normal hot rolling and wound into a coil at a temperature of 600°C or lower and 300°C or higher, and after pickling, the rolling rate is After cold rolling at 40 to 80 modulus, preheat and hold for 10 to 60 seconds in a temperature range of 350°C or higher and below recrystallization humidity, and then hold for a short time in a temperature range of 850°C or higher than recrystallization temperature. Then, the temperature is lowered to an overaging treatment temperature of 250 to 450°C, and an overaging treatment is performed, and after being rapidly cooled to 200°C or less and reheated, the temperature is 250 to 450°C.
A method for producing a high-strength cold-rolled steel sheet with excellent formability, which is characterized by performing an over-aging treatment in a temperature range of 0°C.
JP9433880A 1980-07-09 1980-07-09 Manufacturing method for high-strength cold-rolled steel sheets with excellent formability Expired JPS59575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9433880A JPS59575B2 (en) 1980-07-09 1980-07-09 Manufacturing method for high-strength cold-rolled steel sheets with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9433880A JPS59575B2 (en) 1980-07-09 1980-07-09 Manufacturing method for high-strength cold-rolled steel sheets with excellent formability

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP15353383A Division JPS5956528A (en) 1983-08-22 1983-08-22 Manufacture of high-tension cold-rolled steel plate with superior formability
JP15353483A Division JPS59133324A (en) 1983-08-22 1983-08-22 Manufacture of high-tension cold-rolled steel plate with superior formability

Publications (2)

Publication Number Publication Date
JPS5719335A JPS5719335A (en) 1982-02-01
JPS59575B2 true JPS59575B2 (en) 1984-01-07

Family

ID=14107495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9433880A Expired JPS59575B2 (en) 1980-07-09 1980-07-09 Manufacturing method for high-strength cold-rolled steel sheets with excellent formability

Country Status (1)

Country Link
JP (1) JPS59575B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346673B2 (en) * 1985-09-20 1991-07-16 Honda Motor Co Ltd

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591395A (en) * 1983-05-05 1986-05-27 Armco Inc. Method of heat treating low carbon steel strip
KR100398383B1 (en) * 1998-12-10 2004-02-14 주식회사 포스코 Manufacturing method of high strength cold rolled steel sheet with excellent formability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346673B2 (en) * 1985-09-20 1991-07-16 Honda Motor Co Ltd

Also Published As

Publication number Publication date
JPS5719335A (en) 1982-02-01

Similar Documents

Publication Publication Date Title
US5078809A (en) Method for producing cold-rolled steel sheet
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JPS631374B2 (en)
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JP2671726B2 (en) Manufacturing method of cold rolled steel sheet for ultra deep drawing
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPS5974237A (en) Production of galvanized steel sheet for deep drawing having excellent formability
JPS5858413B2 (en) Manufacturing method for high-tensile galvanized steel sheets with excellent formability
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
JPS59133324A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
JP2560168B2 (en) Method for producing cold-rolled steel sheet excellent in paint bake hardenability at low temperature
JP2807994B2 (en) Manufacturing method of cold rolled steel sheet for deep printing
JPS5974236A (en) Production of galvanized steel sheet for deep drawing having excellent formability
JPH05171351A (en) Cold rolled steel sheet for deep drawing having non-aging characteristic and excellent in baking hardenability and its production
JPH01191748A (en) Manufacture of cold rolled steel sheet for press forming excellent in material homogeneity in coil
JPS61264136A (en) Manufacture of al killed steel sheet for deep drawing with very low carbon content having reduced in-plane anisotropy
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
KR100504369B1 (en) Low carbon cold rolled steel sheets and its manufacturing method having low plastic deformation and anisotropy index
KR910003878B1 (en) Making process for black plate
JPS6240319A (en) Manufacture of steel sheet having superior deep drawability by continuous annealing
KR20010017609A (en) Low carbon cold rolled with low plastic deformation ratio and anisotropic coefficient
JP2000199031A (en) Cold rolled steel sheet excellent in workability and its production
JPS5980727A (en) Manufacture of cold rolled steel sheet with high drawability by continuous annealing
KR100829682B1 (en) Manufacturing method for high strength cold rolled steel sheet with good elongation