JPH0225518A - Production of hot-rolled steel sheet having excellent deep drawability - Google Patents

Production of hot-rolled steel sheet having excellent deep drawability

Info

Publication number
JPH0225518A
JPH0225518A JP17252988A JP17252988A JPH0225518A JP H0225518 A JPH0225518 A JP H0225518A JP 17252988 A JP17252988 A JP 17252988A JP 17252988 A JP17252988 A JP 17252988A JP H0225518 A JPH0225518 A JP H0225518A
Authority
JP
Japan
Prior art keywords
rolling
less
hot
deep drawability
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17252988A
Other languages
Japanese (ja)
Other versions
JPH0668129B2 (en
Inventor
Saiji Matsuoka
才二 松岡
Susumu Sato
進 佐藤
Toshiyuki Kato
俊之 加藤
Kozo Sumiyama
角山 浩三
Takeo Tono
東野 建夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63172529A priority Critical patent/JPH0668129B2/en
Publication of JPH0225518A publication Critical patent/JPH0225518A/en
Publication of JPH0668129B2 publication Critical patent/JPH0668129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To omit cold-rolling process or cold-rolling and annealing process and to produce a thin steel sheet having deep drawability without any inferiority to the ordinary cold-rolled steel sheet by suitably regulating steel components and rolling condition. CONSTITUTION:The steel containing <=0.008wt.% C, <=0.5% Si, <=1.0% Mn, <=0.15% P, <=0.02% S, 0.010-0.10% Al, <=0.008% N, 0.035-0.20, Ti, <=0.001-0.015% Nb and satisfying the inequality of C, N and S contents and added contents of Ti and Nb, is used. After completing the rolling to this steel in the range of <=950 deg.C and >=Ar3 transformation point, while applying lubrication in the temp. range of <=Ar3 transformation point and >=600 deg.C, the rolling is executed at >=80% rolling reduction ratio. After that, the steel sheet is coiled under condition satisfying the relation (FDT)- (CT)<=100 deg.C and (CT)>=600 deg.C between hot rolling finished temp. (FDT) and cooling temp. (CT).

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、自動車用鋼板等に使用される深絞り性に優
れた熱延鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a hot-rolled steel sheet with excellent deep drawability used for automobile steel sheets and the like.

(従来の技術) 従来、自動車用鋼板等に使用される深絞り用薄鋼板には
、その特性として高いランクフォード値(r値)と高い
延性(Ef)が要求される。このような深絞り用鋼板は
、Ar3変態点以上で熱間圧延を終了した後、冷間圧延
により最終板厚の薄板とし、しかる後再結晶焼鈍を施し
て製造する冷延鋼板が一般に使用されていた。しかしな
がら近年、低コスト化を目的として、従来冷延鋼板を使
用していた部材を熱延鋼板で代替しようとする要求が高
まってきた。
(Prior Art) Conventionally, deep drawing thin steel sheets used for automobile steel sheets and the like are required to have a high Lankford value (r value) and high ductility (Ef). Such deep-drawing steel sheets are generally cold-rolled steel sheets that are manufactured by completing hot rolling at an Ar3 transformation point or higher, then cold-rolling the sheet into a thin sheet with the final thickness, and then recrystallizing and annealing the sheet. was. However, in recent years, for the purpose of cost reduction, there has been an increasing demand for replacing members that conventionally used cold-rolled steel sheets with hot-rolled steel sheets.

しかしながら従来の加工用熱延鋼板は、加工性、特に延
性を確保するため、未再結晶フェライト組織ができるの
をさけ、Ar3変態点以上で圧延を終了していた。その
ため、−iにはγ→α変態時に集合組繊がランダム化す
るため、熱延鋼板の深絞り性は冷延鋼板に比べて著しく
劣っていた。
However, in order to ensure workability, especially ductility, in conventional hot-rolled steel sheets for processing, rolling was completed at the Ar3 transformation point or higher to avoid the formation of an unrecrystallized ferrite structure. Therefore, in -i, the assembled fibers become random during the γ→α transformation, so the deep drawability of the hot-rolled steel sheet was significantly inferior to that of the cold-rolled steel sheet.

深絞り性に優れた熱延調板の製造方法はいくつか開示さ
れている。例えば特開昭59−226149号公報では
、C: 0.002 wt%(以下単に%で示す)、S
i : 0.02%、Mn : 0.23%、P : 
0.009%、S:0.008%、Al : 0.02
5%、N : 0.0021%、Ti:0.10%の低
炭素Alキルド鋼を500〜900″Cで潤滑油を施し
つつ76%の圧延にて1.6 ms板厚の鋼帯とするこ
とにより、r=1.21程度の特性を有する薄鋼板の製
造例が示されている。また特開昭62−192539号
公報では、c : o、ooa%、Si : 0.04
%、Mn : 1.53%、P : 0.015%、S
 : 0.004%、Ti:0.068%、Nb : 
0.024%の低炭素Atキルド鋼をAr3〜Arz 
+ 150℃で92%の圧延を施すことにより、r =
1.41程度の特性を有する薄鋼板の製造例が示されて
いる。
Several methods for manufacturing hot-rolled conditioned plates with excellent deep drawability have been disclosed. For example, in JP-A-59-226149, C: 0.002 wt% (hereinafter simply expressed as %), S
i: 0.02%, Mn: 0.23%, P:
0.009%, S: 0.008%, Al: 0.02
5%, N: 0.0021%, Ti: 0.10% low carbon Al killed steel was rolled at 500~900''C with lubricating oil at 76% to form a steel strip with a thickness of 1.6 ms. An example of manufacturing a thin steel plate having the characteristics of r=1.21 is shown in Japanese Patent Laid-Open No. 62-192539, where c: o, ooa%, Si: 0.04.
%, Mn: 1.53%, P: 0.015%, S
: 0.004%, Ti: 0.068%, Nb:
0.024% low carbon At killed steel at Ar3~Arz
By applying 92% rolling at +150 °C, r =
An example of manufacturing a thin steel plate having a characteristic of about 1.41 is shown.

(発明が解決しようとする課題) ところで前記した特開昭59−226149号公報記載
の方法においては、焼鈍処理を施さないものについては
、得られるr値は高々1.21と低いものである。さら
に熱延後再結晶焼鈍を施しても、得られるr値は高々1
.51であり、深絞り性を十分に満たしているとは言い
難い。また特開昭52−192539号公報記載の方法
においては、T域にて熱延を終了し、その後のT→α変
態による変態集合組織を利用しているため、必然的にr
値の異カ性は大きくなり、Δr=−1,2と非常に大き
く、さらに得られるr値にも限度があり、高々1.41
と深絞り性を十分に満たしているとは言い難い。
(Problems to be Solved by the Invention) However, in the method described in Japanese Patent Application Laid-open No. 59-226149, the r value obtained is as low as 1.21 at most when no annealing treatment is performed. Furthermore, even if recrystallization annealing is performed after hot rolling, the r value obtained is at most 1.
.. 51, and it cannot be said that the deep drawability is sufficiently satisfied. In addition, in the method described in JP-A-52-192539, hot rolling is finished in the T region and the transformation texture resulting from the subsequent T→α transformation is utilized, so the r
The difference in value becomes large, Δr=-1.2, which is very large, and there is also a limit to the r value that can be obtained, at most 1.41.
It is difficult to say that the deep drawability is fully satisfied.

この発明は、鋼成分と圧延条件を適切に規制することに
より、冷延工程あるいは冷延−焼鈍工程を省略して、従
来の冷延鋼板と遜色のない深絞り性を有する薄鋼板の製
造法を提供することを目的とする。
This invention provides a method for producing thin steel sheets that have deep drawability comparable to conventional cold-rolled steel sheets by omitting the cold rolling process or the cold rolling-annealing process by appropriately regulating steel components and rolling conditions. The purpose is to provide

(課題を解決するための手段) この発明の基礎となった研究結果からまず述べる。C:
 0.001〜0.008%、Si : 0.01%、
Mn:0.1〜0.6%、P : 0.008〜0.0
1.5%、S : 0.002〜0.02%、N : 
0.001〜0.008%、Ti : 0.01〜0.
20%、Nb:O〜0.007%なる組成の鋼を115
0℃で加熱−均熱後、粗圧延を行い、引き続き全圧下率
:90%の仕上圧延を行った。この時、仕上圧延開始温
度を調整することにより、熱延仕上温度を700℃と一
定にした。そして引き続き700℃−1hrの巻取自己
焼鈍処理を施した。なお、仕上圧延は潤滑圧延とした。
(Means for solving the problem) First, the research results that formed the basis of this invention will be described. C:
0.001-0.008%, Si: 0.01%,
Mn: 0.1-0.6%, P: 0.008-0.0
1.5%, S: 0.002-0.02%, N:
0.001-0.008%, Ti: 0.01-0.
115 steel with a composition of 20%, Nb:O ~ 0.007%
After heating and soaking at 0°C, rough rolling was performed, followed by finish rolling at a total rolling reduction of 90%. At this time, the hot rolling finish temperature was kept constant at 700° C. by adjusting the finish rolling start temperature. Subsequently, the coiled material was subjected to self-annealing treatment at 700° C. for 1 hour. Note that the finish rolling was performed using lubricated rolling.

熱延板のr値におよぼす鋼成分の影響を第1図に示す。Figure 1 shows the influence of steel components on the r value of hot rolled sheets.

r値は鋼成分に強く依存し、 1.2(C/12+N/14+S/32) < (Ti
/48+Nb/93)でかつNb=O1007%添加す
ることにより著しく向上した。
The r value strongly depends on the steel composition, and is 1.2 (C/12+N/14+S/32) < (Ti
/48+Nb/93) and was significantly improved by adding 1007% of Nb=O.

また、C: 0.002%、Si、 : 0.01%、
Mn : 0.1%、P : 0.01%、S ; 0
.010%、N : 0.002%、Ti:0.055
%、Nb : 0.006%なる組成の鋼を1150℃
で加熱−均熱後、粗圧延を行い、引き続き全圧下率:9
0%の仕上圧延を行った。この時、粗圧延開始温度を調
整することにより、粗圧延終了温度(RDT)を105
0〜880℃と変化させた。また、仕上圧延は仕上圧延
開始温度を調整することにより、熱延仕上温度を700
℃と一定にした。そして引き続き、700℃−1hrの
巻取自己焼鈍処理を施した。なお、仕上圧延は潤滑圧延
とした。
Also, C: 0.002%, Si: 0.01%,
Mn: 0.1%, P: 0.01%, S; 0
.. 010%, N: 0.002%, Ti: 0.055
%, Nb: 0.006% steel at 1150°C
After heating and soaking, rough rolling is performed, followed by total rolling reduction: 9
0% finish rolling was performed. At this time, by adjusting the rough rolling start temperature, the rough rolling end temperature (RDT) is set to 105
The temperature was varied from 0 to 880°C. In addition, for finish rolling, by adjusting the finish rolling start temperature, the hot rolling finishing temperature can be adjusted to 700.
The temperature was kept constant at °C. Subsequently, a self-annealing treatment was performed at 700° C. for 1 hr. Note that the finish rolling was performed using lubricated rolling.

熱延板のr値におよぼす粗圧延終了温度の影響を図2に
示す、r値はRDTに強く依存し、RDT≦950℃と
することにより著しく向上した。
FIG. 2 shows the influence of the rough rolling end temperature on the r value of the hot rolled sheet. The r value strongly depends on the RDT, and was significantly improved by setting the RDT≦950°C.

また、CF 0.002%、Si : 0.01%、M
n:0.1%、P:0.01%、S : 0;008%
、N : 0.002%、Ti二0.065%、Nb 
: 0.007%なる組成の鋼を1150“Cで加熱−
均熱後、粗圧延を行い、引き続き全圧下率:90%の仕
上圧延を行った。この時、仕上圧延開始温度を調整する
ことにより、熱延仕上温度を680℃〜750℃と変化
させた。引き続き、650℃〜750℃の温度域でlh
rの巻取自己焼鈍処理を施した。
Also, CF 0.002%, Si: 0.01%, M
n: 0.1%, P: 0.01%, S: 0; 008%
, N: 0.002%, Ti 0.065%, Nb
: Heating steel with a composition of 0.007% at 1150"C.
After soaking, rough rolling was performed, followed by finish rolling at a total rolling reduction of 90%. At this time, the hot rolling finishing temperature was varied from 680°C to 750°C by adjusting the finishing rolling start temperature. Subsequently, lh at a temperature range of 650℃ to 750℃
A self-annealing treatment was applied to the rolled material.

なお、仕上圧延は潤滑圧延とした。Note that the finish rolling was performed using lubricated rolling.

熱延板のr゛値におよぼす巻取り温度の影響を第3図に
示す。r値は(FDT) −(CT)に強く依存し、(
FDT) −(CT)≦ioo ’cとすることにより
著しく向上した。
FIG. 3 shows the influence of the winding temperature on the r' value of the hot rolled sheet. The r value strongly depends on (FDT) − (CT), and (
FDT) - (CT)≦ioo'c, it was significantly improved.

本発明者らは以上の実験結果をもとに、その後研究を重
ねた結果、以下のように鋼の成分組成および製造条件を
規制することにより、深絞り性に優れた熱延鋼板が製造
可能となることを見いだした。その要旨は、 1、  C: 0.008%以下、Si : 0.5%
以下、Mn : 1.0%以下、 P:0.15%以下
、S : 0.02%以下、 Al : 0.010〜
0.10%、N : 0.008%以下、Ti : 0
.035〜0.20%、FJb : 0.001〜0.
015%を含有しかつC,N。
Based on the above experimental results, the present inventors conducted subsequent research and found that it is possible to produce hot-rolled steel sheets with excellent deep drawability by regulating the steel composition and manufacturing conditions as shown below. I found that. The gist is: 1. C: 0.008% or less, Si: 0.5%
Below, Mn: 1.0% or less, P: 0.15% or less, S: 0.02% or less, Al: 0.010~
0.10%, N: 0.008% or less, Ti: 0
.. 035-0.20%, FJb: 0.001-0.
015% and C,N.

Sの量とTiおよびNbの添加量とが、1.2(C/1
2±N/14+S/32) < (Ti/48+Nb/
93)の関係を満足する鋼に、950 ’C以下Ar、
変態点以上の温度域で圧延終了後、Art変態点以下6
00゛C以上の温度域で潤滑を施しつつ、圧下率が80
%以上の圧延を施し、その後熱延仕上温度(FDT)と
巻取り温度(CT)とが、 (FDT) −(CT)5100℃かつ(CT)≧60
0℃の関係を満たす条件下で巻取ることを特徴とする、
深絞り性に優れた熱延鋼板の製造方法。
The amount of S and the amount of Ti and Nb added are 1.2 (C/1
2±N/14+S/32) < (Ti/48+Nb/
93) to the steel that satisfies the relationship: 950'C or less Ar,
After finishing rolling in the temperature range above the transformation point, below the Art transformation point 6
While applying lubrication in the temperature range of 00°C or higher, the reduction rate is 80°C.
% or more, and then the hot rolling finishing temperature (FDT) and coiling temperature (CT) are (FDT) - (CT) 5100°C and (CT) ≧ 60
characterized by winding under conditions that satisfy the relationship of 0°C;
A method for producing hot-rolled steel sheets with excellent deep drawability.

2、  C: 0.008%以下、Si : 0.5%
以下、Mn : 1.0%以下、 P:0.15%以下
、S : 0.02%以下、 At : 0.010〜
0.10%、N : 0.008%以下、Ti : 0
.035〜0.20%、Nb : 0.001〜0.0
15%およびB : 0.0001〜o、ooio%を
含有しかつC,N、Sの量とTiおよびNbの添加量と
が、 1.2 (C/12 + N/14 + S/32) 
< (Ti/48 + Nb/93)の関係を満足する
鋼に、950℃以下Ar、変態点以上の温度域で圧延終
了後、Ar=変態点以下600℃以上の温度域で潤滑を
施しつつ、圧下率が80%以上の圧延を施し、その後熱
延仕上温度(FDT)と巻取り温度(CT)とが、 (FDT) −(CT)5100℃かつ(CT)≧60
0″Cの関係を満たす条件下で巻取ることを特徴とする
、深絞り性に優れた熱延綱板の製造方法。
2. C: 0.008% or less, Si: 0.5%
Below, Mn: 1.0% or less, P: 0.15% or less, S: 0.02% or less, At: 0.010~
0.10%, N: 0.008% or less, Ti: 0
.. 035-0.20%, Nb: 0.001-0.0
15% and B: 0.0001 to 0.00%, and the amounts of C, N, and S and the amounts of Ti and Nb added are 1.2 (C/12 + N/14 + S/32)
< (Ti/48 + Nb/93) After rolling in Ar below 950°C in a temperature range above the transformation point, while applying lubrication in a temperature range above 600°C below Ar = transformation point. , rolling is performed with a reduction ratio of 80% or more, and then the hot rolling finishing temperature (FDT) and coiling temperature (CT) are (FDT) - (CT) 5100°C and (CT) ≧ 60
A method for producing a hot-rolled steel sheet with excellent deep drawability, characterized by winding under conditions satisfying the relationship of 0''C.

3、  C: 0.008%以下、 Si : 0.5
%以下、Mn : 1.0%以下、 P:0.15%以
下、S:0.02%以下、 Al : 0.010〜0
.10%、N : 0.008%以下、Ti : 0.
035〜0.20%、およびNb : 0.001〜0
.015%を含有しかつC2N、Sの量とTiおよびN
bの添加量とが、1.2(C/12+N/14+s/3
2) < (Ti/48+Nb/93)の関係を満足す
る鋼に、950 ”C以下Ar、変態点以上の温度域で
圧延終了後、Ar3変態点以下500゛C以上の温度域
で潤滑を施しつつ、圧下率が80%以上の圧延を施し、
その後再結晶焼鈍を行うことを特徴とする、深絞り性に
優れた熱延鋼板の製造方法。
3. C: 0.008% or less, Si: 0.5
% or less, Mn: 1.0% or less, P: 0.15% or less, S: 0.02% or less, Al: 0.010 to 0
.. 10%, N: 0.008% or less, Ti: 0.
035-0.20%, and Nb: 0.001-0
.. 015% and the amount of CN, S and Ti and N
The amount of b added is 1.2 (C/12+N/14+s/3
2) Steel that satisfies the relationship < (Ti/48+Nb/93) is rolled under Ar below 950°C and at a temperature above the transformation point, and then lubricated at a temperature above 500°C below the Ar3 transformation point. while rolling with a reduction rate of 80% or more,
A method for producing a hot-rolled steel sheet with excellent deep drawability, the method comprising subsequently performing recrystallization annealing.

4、  C: 0.008%以下、Si : 0.5%
以下、Mn : 1.0%以下、 P : 0.15%
以下、S:0.02%以下、 Al : 0.010〜
0.10%、N : 0.008%以下、Ti : 0
.035〜0.20%、Nb : 0.001〜0.0
15%およびB : 0.0001〜o、ooio%を
含有しかつC,N、Sの量とTiおよびNbの添加量と
が、 1.2(C/12+N/14+s/32) < (Ti
/48+Nb/93)の関係を満足する鋼に、950 
”C以下Ar1変態点以上の温度域で圧延終了後、Ar
、変態点以下500℃以上の温度域で潤滑を施しつつ、
圧下率が80%以上の圧延を施し、その後再結晶焼鈍を
行うことを特徴とする、深絞り性に優れた熱延綱板の製
造方法。
4. C: 0.008% or less, Si: 0.5%
Below, Mn: 1.0% or less, P: 0.15%
Below, S: 0.02% or less, Al: 0.010~
0.10%, N: 0.008% or less, Ti: 0
.. 035-0.20%, Nb: 0.001-0.0
15% and B: 0.0001 to 0.00%, and the amounts of C, N, and S and the amounts of Ti and Nb added are 1.2 (C/12+N/14+s/32) < (Ti
/48+Nb/93), 950
``After rolling in the temperature range of C or lower and Ar1 transformation point or higher, Ar
, while applying lubrication at a temperature range of 500°C or higher below the transformation point,
A method for producing a hot-rolled steel sheet with excellent deep drawability, the method comprising rolling with a rolling reduction of 80% or more, followed by recrystallization annealing.

である。It is.

(作 用) 以下、この発明について詳細に説明する。(for production) This invention will be explained in detail below.

(1)鋼成分 この発明においては鋼成分は重要であり、C: 0.0
08%以下、Si : 0.5%以下、Mn : 1.
0%以下、 p:o、ts%以下、S:0.02%以下
、 Al : 0.010〜0.10%、N : 0.
008%以下、Ti : 0.035〜0.20%、N
b : 0.001〜0.015%、で、かつC,N、
Sの量とTiおよびNbの添加量は1.2(C/12+
N/14 +S/32) < (Ti/48+Nb/9
3)でなければならない。さらに、耐2次加工脆性およ
びr値の異方性の改善のために B : 0.0001〜0.0010%添加する必要が
ある。
(1) Steel composition The steel composition is important in this invention, C: 0.0
08% or less, Si: 0.5% or less, Mn: 1.
0% or less, p: o, ts% or less, S: 0.02% or less, Al: 0.010 to 0.10%, N: 0.
008% or less, Ti: 0.035-0.20%, N
b: 0.001 to 0.015%, and C, N,
The amount of S and the amount of Ti and Nb added are 1.2 (C/12+
N/14 +S/32) < (Ti/48+Nb/9
3) Must be. Furthermore, it is necessary to add B: 0.0001 to 0.0010% in order to improve resistance to secondary work brittleness and anisotropy of r value.

鋼成分が上記の条件を満たさなければ、優れた深絞り性
を得ることができない。以下、各々の成分についての限
定理由を説明する。
Unless the steel composition satisfies the above conditions, excellent deep drawability cannot be obtained. Hereinafter, the reasons for limiting each component will be explained.

(a)  C: 0.008%以下 Cは少なければ少ないほど深絞り性が向上するので好ま
しいが、その含有量が0.008%以下ではさほど悪影
響をおよぼさないのでo、oos%以下に限定した。
(a) C: 0.008% or less C is preferable because the less it is, the better the deep drawability is, but if its content is 0.008% or less, it will not have much of a negative effect, so it should be kept at o, oos% or less. Limited.

(b)  Si:0.5%以下 Siは鋼を強化する作用があり、所望の強度に応じて必
要量添加されるが、その添加量が0.5%を越えると深
絞り性に悪影響をおよぼすので0.5%以下に限定した
(b) Si: 0.5% or less Si has the effect of strengthening steel, and is added in the required amount depending on the desired strength, but if the amount added exceeds 0.5%, it has a negative effect on deep drawability. Therefore, it was limited to 0.5% or less.

(C)  Mn : 1.0%以下 Mnは鋼を強化する作用があり、所望の強度に応じて必
要量添加されるが、その添加量が1.Owt%を越える
と深絞り性に悪影響をおよぼすので1.0wt%以下に
限定した。
(C) Mn: 1.0% or less Mn has the effect of strengthening steel, and is added in the necessary amount depending on the desired strength, but if the amount added is 1.0% or less, Mn has the effect of strengthening steel. If it exceeds Owt%, it will have an adverse effect on deep drawability, so it is limited to 1.0wt% or less.

(d)  P : 0.15%以下 Pは鋼を強化する作用があり、所望の強度に応じて必要
量添加されるが、その添加量が0.15%を越えると深
絞り性に悪影響をおよぼすので0.15%以下に限定し
た。
(d) P: 0.15% or less P has the effect of strengthening steel, and is added in the necessary amount depending on the desired strength, but if the amount added exceeds 0.15%, it has a negative effect on deep drawability. Therefore, it was limited to 0.15% or less.

(e)  S : 0.02%以下 Sは少なければ少ないほど深絞り性が向上するので好ま
しいが、その含有量が0.02%以下ではさほど悪影響
をおよぼさないので0.02%以下に限定した。
(e) S: 0.02% or less S is preferable because the smaller the content, the better the deep drawability is.However, if the S content is 0.02% or less, it does not have much of a negative effect, so it should be kept at 0.02% or less. Limited.

げ)  At : 0.010 〜0.10%AIは脱
酸を行い、炭窒化物形成元素の歩留向上のために必要に
応じて添加されるが、0.010%以下だと添加効果が
なく、一方0.10%を越えて添加してもより一層の脱
酸効果は得られないため、0.010〜0.10%に限
定した。
At: 0.010 to 0.10%Al is added as necessary to deoxidize and improve the yield of carbonitride-forming elements, but if it is less than 0.010%, the addition effect will be low. On the other hand, even if it is added in an amount exceeding 0.10%, a further deoxidizing effect cannot be obtained, so it is limited to 0.010 to 0.10%.

(粉 N : 0.008%以下 Nは少なければ少ないほど深絞り性が向上するので好ま
しいが、その含有量が0.008%以下ではさほど悪影
響をおよぼさないので0.008%以下に限定した。
(Powder N: 0.008% or less The smaller the N content, the better the deep drawability is, so it is preferable, but if the content is 0.008% or less, it does not have much of a negative effect, so it is limited to 0.008% or less. did.

(h)  Ti : 0.035〜0.20%Tiは炭
窒化物形成元素であり、鋼中の固溶(C9N)を低減さ
せ、深絞り性に有利な(111)方位を優先的に形成さ
せるために添加されるが、その添加量が0.035%以
下では効果がな(、一方、0.20%を越えて添加して
もそれ以上の効果が望めず、逆に表面品質の低下につな
がるので0.035〜0.20%に限定した。
(h) Ti: 0.035-0.20% Ti is a carbonitride forming element, reduces solid solution (C9N) in steel, and preferentially forms the (111) orientation, which is advantageous for deep drawability. However, if the amount added is less than 0.035%, it has no effect (on the other hand, if it is added more than 0.20%, no further effect can be expected, and on the contrary, it may cause a decrease in surface quality. Therefore, it was limited to 0.035 to 0.20%.

(i)  Nb : 0.001〜0.015%Nbは
炭化物形成元素であり、鋼中の固溶Cを低減させる効果
があるとともに、仕上圧延前組職の微細化に有効である
。すなわち、たとえ鋼中の固溶(C,N)がなくても、
仕上圧延前組織が粗大であると、圧延時に導入されるひ
ずみが蓄積されないため、(111)方位が形成されに
くくなる。
(i) Nb: 0.001 to 0.015% Nb is a carbide-forming element and is effective in reducing solid solution C in steel, as well as in refining the structure before finish rolling. In other words, even if there is no solid solution (C,N) in the steel,
If the structure before finish rolling is coarse, the strain introduced during rolling will not accumulate, making it difficult to form the (111) orientation.

一方、仕上圧延前組織が微細であると、ひずみが蓄積さ
れやすくなり、その結果(111)方位が優先的に形成
され、深絞り性が向上する。さらに、固溶Nbは圧延時
のひずみを蓄積する効果があることも明らかになった。
On the other hand, if the structure before finish rolling is fine, strain is likely to accumulate, and as a result, the (111) orientation is preferentially formed, improving deep drawability. Furthermore, it has been revealed that solid solution Nb has the effect of accumulating strain during rolling.

その含有量が0.001%未満では効果がな(、一方0
.015%を越えると再結晶温度が上昇するのでo、o
oi〜0.015%に限定した。
If the content is less than 0.001%, there is no effect (on the other hand, 0.001%
.. If it exceeds 0.15%, the recrystallization temperature will rise, so o, o
It was limited to oi~0.015%.

(j)  B : 0.0001〜0.0010%Bは
耐2次加工脆性の改善に有効であるとともに、r値の異
方性の改善にも有効である。すなわち、NbとBが共存
した場合には、Nb添加材に比べて結晶粒が微細になり
、その結果、r値の異方性(Δr)が小さくなる。その
添加量が0.0001%未満では効果がなく、一方、0
.0010%を越えると深絞り性が劣化するので0.0
001〜0.0010%に限定した。
(j) B: 0.0001 to 0.0010% B is effective in improving the resistance to secondary work brittleness and is also effective in improving the anisotropy of the r value. That is, when Nb and B coexist, the crystal grains become finer than in the Nb-added material, and as a result, the anisotropy of the r value (Δr) becomes smaller. If the amount added is less than 0.0001%, there is no effect;
.. If it exceeds 0.010%, deep drawability deteriorates, so 0.0
It was limited to 0.001% to 0.0010%.

(資)1.2(C/12+N/14 +S/32) <
 (Ti/48+Nb/93)仕上圧延前に固溶(C,
N)が存在しない場合、圧延−焼鈍後に(111)方位
が優先的に形成され、深絞り性が向上する。この発明で
は、 1.2(C/12+N/14+S/32) < (Ti
/4B+Nb/93)とCおよびNに対して当量以上の
TiおよびNbを添加することにより、仕上圧延前に固
溶(C,N)が存在しなくなることを見いだした。さら
にその時、r値が向上することを明らかにした。そのた
め、1.2(C/12+N/14+S/32) < (
Ti/4B+Nb/93)と限定した。
(Capital) 1.2 (C/12+N/14 +S/32) <
(Ti/48+Nb/93) Solid solution (C,
When N) is not present, the (111) orientation is preferentially formed after rolling and annealing, and deep drawability is improved. In this invention, 1.2 (C/12+N/14+S/32) < (Ti
/4B+Nb/93) and by adding Ti and Nb in an amount equivalent to or more than C and N, it was found that solid solution (C, N) no longer exists before finish rolling. Furthermore, it was revealed that at that time, the r value improved. Therefore, 1.2(C/12+N/14+S/32) < (
Ti/4B+Nb/93).

(2)圧延工程 圧延工程はこの発明において重要であり、粗圧延を95
0℃以下Ar、変態点以上の温度域で終了した後、Ar
=変態点以下600℃以上の温度域で潤滑を施しつつ、
合計圧下率が80%以上で、かつ熱延仕上温度(FDT
)と巻取り温度(CT)とが、(FDT) −(CT)
≦100℃かつ (CT)2600℃なる関係を満たす
条件下で圧延を行うか、あるいは粗圧延を950℃以下
Ar=変態点以上の温度域で終了した後、Ar3変態点
以下500℃以上の温度域で潤滑を施しつつ、合計圧下
率が80%以上の圧延を施した後、再結晶焼鈍を行う必
要である。
(2) Rolling process The rolling process is important in this invention, and rough rolling is
Ar
= While applying lubrication at a temperature range of 600℃ or higher below the transformation point,
The total rolling reduction is 80% or more, and the hot rolling finishing temperature (FDT
) and the winding temperature (CT) are (FDT) - (CT)
Rolling is carried out under conditions that satisfy the relationship: ≦100℃ and (CT)2600℃, or after rough rolling is completed in a temperature range of 950℃ or below Ar=transformation point or above, a temperature of 500℃ or above Ar3 transformation point or below After rolling with a total reduction of 80% or more while applying lubrication in the area, it is necessary to perform recrystallization annealing.

粗圧延を950℃以上の温度域にて終了した場合には、
粗圧延後すなわち仕上圧延前の組織が粗大となるため、
仕上圧延時に導入されるひずみが蓄積されにくくなり、
その結果(111)方位が形成されにくくなる。また、
Ar3変態点未満の温度域にて終了した場合には、粗圧
延時に(1001方位が形成されるため、深絞り性が劣
化する。一方、950℃以下Art変態点以上の温度域
にて粗圧延を終了した場合には、仕上圧延前組織が微細
になるため、仕上圧延時に導入されるひずみが蓄積され
やすくなり、その結果(1111方位が優先的に形成さ
れ、深絞り性が向上する。なお、950”C−Ar3変
態点の範囲の圧下率は、組繊微細化のため50%以上が
望ましい。
If rough rolling is completed in a temperature range of 950°C or higher,
After rough rolling, that is, before finish rolling, the structure becomes coarse;
Strain introduced during finish rolling is less likely to accumulate,
As a result, the (111) orientation becomes difficult to form. Also,
If the process is finished in a temperature range below the Ar3 transformation point, the deep drawability will deteriorate because a (1001 orientation) is formed during rough rolling. When the process is completed, the structure before finish rolling becomes finer, so the strain introduced during finish rolling is more likely to be accumulated, and as a result (1111 orientation is preferentially formed, and deep drawability is improved. , 950'' C-Ar3 transformation point range is desirably 50% or more in order to make the fibers finer.

また、仕上圧延を計、変態点以上の温度域にて終了する
と、T→α変態により集合組織がランダム化し、優れた
深絞り性が得られない。一方、仕上温度を500 ’C
以下に下げても、より一層の深絞り性の向上は望めず、
圧延荷重が増大するのみであるので、圧延温度をAr、
変態点以下500 ’C以上とした。
Furthermore, if finish rolling is completed in a temperature range above the transformation point, the texture becomes random due to T→α transformation, and excellent deep drawability cannot be obtained. Meanwhile, set the finishing temperature to 500'C.
Even if it is lowered below, further improvement in deep drawability cannot be expected.
Since the rolling load only increases, the rolling temperature is changed to Ar,
The temperature was 500'C or more below the transformation point.

また、仕上圧延時の合計圧下率を80%以上にしないと
、圧延時に(111)方位が形成されないため、深絞り
性が劣る。
Further, unless the total rolling reduction during finish rolling is 80% or more, the (111) orientation will not be formed during rolling, resulting in poor deep drawability.

さらに、仕上圧延時に潤滑圧延を行わないと、ロールと
鋼板との間の摩擦力により、鋼板表層部に付加的剪断力
が働き、その結果、鋼板表層部に深絞り性に好ましくな
い(110)方位が優先的に形成されるために、深絞り
性が劣化する。そのため、潤滑圧延は必要である。
Furthermore, if lubrication rolling is not performed during finish rolling, additional shearing force will act on the surface layer of the steel sheet due to the frictional force between the rolls and the steel sheet, which will result in poor deep drawability of the surface layer of the steel sheet (110). Since the orientation is preferentially formed, deep drawability deteriorates. Therefore, lubricated rolling is necessary.

なお、圧延後再結晶焼鈍を施さない巻取り自己焼鈍材で
は、巻取り温度が600 ’C以上でないと再結晶が完
了しないため、CT≧600 ’Cとした。また、深絞
り性の向上には圧延温度は低い方が、また巻取り温度は
高い方が有利である。そのため、熱延仕上温度(FDT
)と巻取り温度(CT)とが(FDT) −(CT)5
100℃を満たす条件下で圧延を施す必要がある。
In addition, in a coiled self-annealed material that is not subjected to recrystallization annealing after rolling, recrystallization is not completed unless the coiling temperature is 600'C or higher, so CT≧600'C was set. Furthermore, in order to improve deep drawability, it is advantageous to have a low rolling temperature and a high winding temperature. Therefore, the hot rolling finishing temperature (FDT
) and the winding temperature (CT) are (FDT) - (CT)5
It is necessary to perform rolling under conditions that satisfy 100°C.

なお、熱間圧延後、再結晶焼鈍を施すものについては、
巻取り自己焼鈍は必要ないため、熱延終了温度を500
℃以上とし、さらに、巻取り温度も低温でよい。
In addition, for those that undergo recrystallization annealing after hot rolling,
Since winding and self-annealing is not required, the hot rolling finish temperature is set at 500.
℃ or more, and the winding temperature may also be low.

熱延後の再結晶焼鈍は、連続焼鈍あるいは箱型焼鈍のど
ちらでもよい。焼鈍温度は、550〜950’Cの範囲
が適する。また加熱速度も10’C/hr〜50’C/
Sの範囲でよい。
Recrystallization annealing after hot rolling may be continuous annealing or box annealing. The annealing temperature is suitably in the range of 550 to 950'C. The heating rate is also 10'C/hr to 50'C/hr.
A range of S is sufficient.

(実施例) 表1に示す組成になる鋼スラブを1150℃で加熱−均
熱後、950℃−Ar3変態点の温度域で圧下率85%
の粗圧延を行った後、仕上圧延を行った。この時の粗圧
延終了温度(RDT) 、仕上圧延終了温度(FDT)
 、Arz変態点以下600℃以上の温度域での圧下率
、巻取温度(CT)および潤滑の有無および酸洗後の熱
延板の材料特性を表2に併せて示す、なお引張特性はJ
IS 5号引張試験片を使用して測定し、またr値は1
5%引張予ひずみを与えた後、3点法にて測定し、L方
向(圧延方向)、D方向(圧延方向に45°方向)およ
びC方向(圧延方向に90°方向)の平均値および異方
性 r−(rL+2 re +rc )/4、Δr−(r+
−2ro +rc) /2として求めた。耐2次加工脆
性の評価としては、限界絞り比3.8にて加工した円筒
型サンプルを一50℃に冷却した後、圧潰試験を行い、
脆性割れの発生の有無にて評価した。
(Example) A steel slab having the composition shown in Table 1 was heated at 1150℃ and after soaking, the rolling reduction was 85% in the temperature range of 950℃-Ar3 transformation point.
After performing rough rolling, finish rolling was performed. Rough rolling end temperature (RDT) and finishing rolling end temperature (FDT) at this time
Table 2 also shows the rolling reduction, coiling temperature (CT), presence or absence of lubrication, and material properties of the hot-rolled sheet after pickling in the temperature range of 600°C or more below the Arz transformation point.The tensile properties are J
Measured using IS No. 5 tensile test piece, and r value is 1
After applying 5% tensile prestrain, measurements were made using a three-point method, and the average values in the L direction (rolling direction), D direction (45° direction to the rolling direction), and C direction (90° direction to the rolling direction) and Anisotropy r-(rL+2 re +rc )/4, Δr-(r+
-2ro +rc) /2. For evaluation of secondary processing brittleness resistance, a cylindrical sample processed at a critical drawing ratio of 3.8 was cooled to -50°C, and then a crushing test was performed.
Evaluation was made based on the presence or absence of brittle cracking.

この発明に従って製造した熱延鋼板は、比較例に比べて
優れた深絞り性と耐2次加工脆性を有することが分かる
It can be seen that the hot rolled steel sheet manufactured according to the present invention has excellent deep drawability and secondary work brittleness resistance compared to the comparative example.

また、表1に示す組成になる鋼スラブを1150℃にて
加熱−均熱後、上記と同様の粗圧延を行った後、仕上圧
延を行った。この時の粗圧延終了温度(RDT) 、仕
上圧延終了温度(FDT) 、Arz変態点以下500
℃以上の温度域での圧下率、巻取温度(CT)および潤
滑の有無を表3に示す。圧延板は酸洗後、N1111〜
15については830℃、60sの急速加熱焼鈍を、又
No、 16〜20については750℃,5hrの箱型
焼鈍を施した。
Further, steel slabs having the compositions shown in Table 1 were heated and soaked at 1150°C, rough rolled in the same manner as above, and then finished rolled. At this time, the rough rolling end temperature (RDT), finish rolling end temperature (FDT), 500 below the Arz transformation point
Table 3 shows the rolling reduction rate, coiling temperature (CT), and presence or absence of lubrication in the temperature range of .degree. C. or higher. After pickling, the rolled plate is N1111~
No. 15 was subjected to rapid heating annealing at 830°C for 60 seconds, and Nos. 16 to 20 were subjected to box-type annealing at 750°C for 5 hours.

焼鈍後の熱延板の材料特性を表3に併せて示す。Table 3 also shows the material properties of the hot rolled sheet after annealing.

この発明によって製造した熱延鋼板は、比較例に比べて
優れた深絞り性と耐2次加工脆性を有することが分かる
It can be seen that the hot rolled steel sheet manufactured according to the present invention has excellent deep drawability and secondary work brittleness resistance compared to the comparative example.

(発明の効果) この発明によれば、冷延工程あるいは冷延−焼鈍工程を
省略しても、冷延鋼板と同等の深絞り性に優れた熱延鋼
板の製造が可能となり、従来の冷延鋼板の製造に比べて
大幅なコストダウンが実現可能となる。
(Effect of the invention) According to the present invention, even if the cold rolling process or the cold rolling-annealing process is omitted, it is possible to manufacture a hot rolled steel sheet with excellent deep drawability equivalent to that of a cold rolled steel sheet, and Significant cost reductions can be achieved compared to manufacturing rolled steel sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、熱延鋼板のr値におよぼす鋼成分の影響を示
したグラフ、 第2図は、熱延鋼板のr値におよぼす粗圧延終了温度の
影響を示したグラフ、 第3図は、熱延鋼板のr値におよぼす巻取り温度の影響
を示したグラフである。 第1図 12(ル・pIth)−(”Aす9會)第2図 kDT(τ)
Figure 1 is a graph showing the influence of steel components on the r-value of hot-rolled steel sheets, Figure 2 is a graph showing the influence of the rough rolling end temperature on the r-value of hot-rolled steel sheets, and Figure 3 is , is a graph showing the influence of the winding temperature on the r value of a hot rolled steel sheet. Figure 1 12 (Le pIth) - ("Asu9 meeting) Figure 2 kDT (τ)

Claims (1)

【特許請求の範囲】 1、C:0.008wt%以下、Si:0.5wt%以
下、Mn:1.0wt%以下、P:0.15wt%以下
、S:0.02wt%以下、Al:0.010〜0.1
0wt%、N:0.008wt%以下、Ti:0.03
5〜0.20wt%およびNb:0.001〜0.01
5wt%、を含有しかつC、N、Sの量とTiおよびN
bの添加量とが、1.2(C/12+N/14+S/3
2)<(Ti/48+Nb/93)を満足する鋼に、9
50℃以下Ar_3変態点以上の温度域で圧延終了後、
Ar_3変態点以下600℃以上の温度域で潤滑を施し
つつ、圧下率が80%以上の圧延を施し、その後熱延仕
上温度(FDT)と巻取り温度(CT)とが、 (FDT)−(CT)≦100℃かつ(CT)≧600
℃になる関係を満たす条件下で巻取ることを特徴とする
、深絞り性に優れた熱延鋼板の製造方法。 2、C:0.008wt%以下、Si:0.5wt%以
下、Mn:1.0wt%以下、P:0.15wt%以下
、S:0.02wt%以下、Al:0.010〜0.1
0wt%、N:0.008wt%以下、Ti:0.03
5〜0.20wt%、Nb:0.001〜0.015w
t%およびB:0.0001〜0.0010wt%を含
有しかつC、N、Sの量とTiおよびNbの添加量とが
、 1.2(C/12+N/14+S/32)<(Ti/4
8+Nb/93)を満足する鋼に、950℃以下Ar_
3変態点以上の温度域で圧延終了後、Ar_3変態点以
下600℃以上の温度域で潤滑を施しつつ、圧下率が8
0%以上の圧延を施し、その後熱延仕上温度(FD丁)
と巻取り温度(CT)とが (FDT)−(CT)≦100℃ かつ(CT)≧60
0℃になる関係を満たす条件下で巻取ることを特徴とす
る、深絞り性に優れた熱延鋼板の製造方法。 3、C:0.008wt%以下、Si:0.5wt%以
下、Mn:1.0wt%以下、P:0.15wt%以下
、S:0.02wt%以下、Al:0.010〜0.1
0wt%、N:0.008wt%以下、Ti:0.03
5〜0.20wt%およびNb:0.001〜0.01
5wt%を含有し、かつC、N、Sの量とTiおよびN
bの添加量とが、1.2(C/12+N/14+S/3
2)<(Ti/48+Nb/93)を満足する鋼に、9
50℃以下Ar_3変態点以上の温度域で圧延終了後、
Ar_3変態点以下500℃以上の温度域で潤滑を施し
つつ、圧下率が80%以上の圧延を施し、その後再結晶
焼鈍を行うことを特徴とする、深絞り性に優れた熱延鋼
板の製造方法。 4、C:0.008wt%以下、Si:0.5wt%以
下、Mn:1.0wt%以下、P:0.15wt%以下
、S:0.02wt%以下、Al:0.010〜0.1
0wt%、N:0.008wt%以下、Ti:0.03
5〜0.20wt%、Nb:0.001〜0.015w
t%およびB:0.0001〜0.0010wt%を含
有し、かつC、N、Sの量とTiおよびNbの添加量と
が、 1.2(C/12+N/14+S/32)<(Ti/4
8+Nb/93)を満足する鋼に、950℃以下Ar_
3変態点以上の温度域で圧延終了後、Ar_3変態点以
下500℃以上の温度域で潤滑を施しつつ、圧下率が8
0%以上の圧延を施し、その後再結晶焼鈍を行うことを
特徴とする、深絞り性に優れた熱延鋼板の製造方法。
[Claims] 1. C: 0.008wt% or less, Si: 0.5wt% or less, Mn: 1.0wt% or less, P: 0.15wt% or less, S: 0.02wt% or less, Al: 0.010-0.1
0wt%, N: 0.008wt% or less, Ti: 0.03
5-0.20wt% and Nb: 0.001-0.01
5 wt%, and the amount of C, N, S and Ti and N
The amount of b added is 1.2 (C/12+N/14+S/3
2) For steel that satisfies <(Ti/48+Nb/93), 9
After rolling in a temperature range of 50°C or lower and Ar_3 transformation point or higher,
While applying lubrication in a temperature range of 600°C or higher below the Ar_3 transformation point, rolling is performed at a rolling reduction of 80% or more, and then the hot rolling finishing temperature (FDT) and coiling temperature (CT) are (FDT) - ( CT)≦100℃ and (CT)≧600
A method for producing a hot-rolled steel sheet with excellent deep drawability, which is characterized by winding under conditions that satisfy the relationship: °C. 2, C: 0.008 wt% or less, Si: 0.5 wt% or less, Mn: 1.0 wt% or less, P: 0.15 wt% or less, S: 0.02 wt% or less, Al: 0.010 to 0. 1
0wt%, N: 0.008wt% or less, Ti: 0.03
5-0.20wt%, Nb: 0.001-0.015w
t% and B: 0.0001 to 0.0010 wt%, and the amounts of C, N, and S and the amounts of Ti and Nb added are 1.2 (C/12 + N/14 + S/32) < (Ti/ 4
8+Nb/93), Ar_
After finishing rolling in a temperature range of 3 transformation point or higher, the reduction rate is 8 while applying lubrication in a temperature range of 600°C or higher below Ar_3 transformation point.
0% or more rolling, then hot rolling finishing temperature (FD)
and the winding temperature (CT) are (FDT)-(CT)≦100°C and (CT)≧60
A method for producing a hot-rolled steel sheet with excellent deep drawability, characterized by winding under conditions that satisfy the relationship of 0°C. 3. C: 0.008 wt% or less, Si: 0.5 wt% or less, Mn: 1.0 wt% or less, P: 0.15 wt% or less, S: 0.02 wt% or less, Al: 0.010 to 0. 1
0wt%, N: 0.008wt% or less, Ti: 0.03
5-0.20wt% and Nb: 0.001-0.01
5 wt%, and the amount of C, N, S and Ti and N
The amount of b added is 1.2 (C/12+N/14+S/3
2) For steel that satisfies <(Ti/48+Nb/93), 9
After rolling in a temperature range of 50°C or lower and Ar_3 transformation point or higher,
Manufacture of a hot-rolled steel sheet with excellent deep drawability, characterized by rolling with a rolling reduction of 80% or more while applying lubrication in a temperature range of 500°C or more below the Ar_3 transformation point, followed by recrystallization annealing. Method. 4, C: 0.008 wt% or less, Si: 0.5 wt% or less, Mn: 1.0 wt% or less, P: 0.15 wt% or less, S: 0.02 wt% or less, Al: 0.010 to 0. 1
0wt%, N: 0.008wt% or less, Ti: 0.03
5-0.20wt%, Nb: 0.001-0.015w
t% and B: 0.0001 to 0.0010wt%, and the amounts of C, N, and S and the amounts of Ti and Nb added are 1.2(C/12+N/14+S/32)<(Ti /4
8+Nb/93), Ar_
After finishing rolling in a temperature range of 3 transformation point or higher, the reduction rate is 8 while applying lubrication in a temperature range of 500°C or higher below Ar_3 transformation point.
A method for producing a hot-rolled steel sheet with excellent deep drawability, the method comprising rolling at 0% or more and then recrystallizing annealing.
JP63172529A 1988-07-13 1988-07-13 Method for producing hot rolled steel sheet with excellent deep drawability Expired - Fee Related JPH0668129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172529A JPH0668129B2 (en) 1988-07-13 1988-07-13 Method for producing hot rolled steel sheet with excellent deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172529A JPH0668129B2 (en) 1988-07-13 1988-07-13 Method for producing hot rolled steel sheet with excellent deep drawability

Publications (2)

Publication Number Publication Date
JPH0225518A true JPH0225518A (en) 1990-01-29
JPH0668129B2 JPH0668129B2 (en) 1994-08-31

Family

ID=15943609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172529A Expired - Fee Related JPH0668129B2 (en) 1988-07-13 1988-07-13 Method for producing hot rolled steel sheet with excellent deep drawability

Country Status (1)

Country Link
JP (1) JPH0668129B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574814A2 (en) * 1992-06-08 1993-12-22 Kawasaki Steel Corporation High-strength cold-rolled steel sheet excelling in deep drawability and method of producing the same
KR100347571B1 (en) * 1997-07-18 2002-10-25 주식회사 포스코 A production method of hot-rolled steel strips with excellent deep drawabilty
CN102459677A (en) * 2009-06-24 2012-05-16 杰富意钢铁株式会社 High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193221A (en) * 1983-04-15 1984-11-01 Nippon Steel Corp Rreparation of cold rolled steel plate used in ultra-deep drawing having extremely excellent secondary processability
JPS613844A (en) * 1984-06-18 1986-01-09 Nippon Steel Corp Manufacture of hot rolled steel sheet superior in formability
JPS61119621A (en) * 1984-11-16 1986-06-06 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing
JPS61133322A (en) * 1984-11-30 1986-06-20 Nippon Steel Corp Production of thin steel sheet having excellent formability
JPS61246344A (en) * 1985-04-22 1986-11-01 Kawasaki Steel Corp Cold rolled steel sheet for super drawing excelling in resistance to secondary operation brittleness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193221A (en) * 1983-04-15 1984-11-01 Nippon Steel Corp Rreparation of cold rolled steel plate used in ultra-deep drawing having extremely excellent secondary processability
JPS613844A (en) * 1984-06-18 1986-01-09 Nippon Steel Corp Manufacture of hot rolled steel sheet superior in formability
JPS61119621A (en) * 1984-11-16 1986-06-06 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing
JPS61133322A (en) * 1984-11-30 1986-06-20 Nippon Steel Corp Production of thin steel sheet having excellent formability
JPS61246344A (en) * 1985-04-22 1986-11-01 Kawasaki Steel Corp Cold rolled steel sheet for super drawing excelling in resistance to secondary operation brittleness

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574814A2 (en) * 1992-06-08 1993-12-22 Kawasaki Steel Corporation High-strength cold-rolled steel sheet excelling in deep drawability and method of producing the same
EP0574814A3 (en) * 1992-06-08 1997-01-29 Kawasaki Steel Co High-strength cold-rolled steel sheet excelling in deep drawability and method of producing the same
KR100347571B1 (en) * 1997-07-18 2002-10-25 주식회사 포스코 A production method of hot-rolled steel strips with excellent deep drawabilty
CN102459677A (en) * 2009-06-24 2012-05-16 杰富意钢铁株式会社 High-strength seamless steel tube for use in oil wells, which has excellent resistance to sulfide stress cracking and production method for same

Also Published As

Publication number Publication date
JPH0668129B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
JPH07268461A (en) Production of ferritic stainless steel strip reduced in inplane anisotropy
JPH09310157A (en) Austenitic stainless hot rolled steel sheet excellent in deep drawability and its production
JP3484805B2 (en) Method for producing ferritic stainless steel strip with low in-plane anisotropy and excellent strength-elongation balance
JP3493722B2 (en) Method for producing ferritic stainless steel strip with excellent stretch formability
JP2503224B2 (en) Method for manufacturing thick cold-rolled steel sheet with excellent deep drawability
JPH0225518A (en) Production of hot-rolled steel sheet having excellent deep drawability
JP3379826B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same
JPH11302739A (en) Production of ferritic stainless steel excellent in surface property and small in anisotropy
JP3852138B2 (en) Method for producing a steel plate material for cans having excellent ridging resistance and deep drawability after cold rolling and annealing
JPH02141529A (en) Production of hot rolled steel sheet for deep drawing having excellent surface characteristic
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JPH03150316A (en) Production of cold rolled steel sheet for deep drawing
JP2840459B2 (en) Manufacturing method of hot rolled steel sheet with excellent deep drawability
JP2971192B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JPH0583609B2 (en)
JPH03140417A (en) Production of hot rolled steel plate excellent in deep drawability
JPH0247222A (en) Production of cold-rolled steel sheet for super deep drawing
JP3401290B2 (en) Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability
JPH0892656A (en) Production of cold rolled steel sheet excellent in deep drawability
JPH062069A (en) High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability
JP3301633B2 (en) Method for producing high-strength cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent deep drawability
JP3843478B2 (en) Manufacturing method of thin steel sheet with excellent deep drawability
JPH0730411B2 (en) Method for producing hot rolled steel sheet with excellent deep drawability
JPH01188626A (en) Manufacture of cold rolled steel sheet having superior burning hardenability and press formability
JPH01177321A (en) Manufacture of cold rolled steel sheet excellent in deep drawability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees