KR100479993B1 - A method for producing a high carbon steel strip with high elongation and hardenability - Google Patents

A method for producing a high carbon steel strip with high elongation and hardenability Download PDF

Info

Publication number
KR100479993B1
KR100479993B1 KR10-1999-0052021A KR19990052021A KR100479993B1 KR 100479993 B1 KR100479993 B1 KR 100479993B1 KR 19990052021 A KR19990052021 A KR 19990052021A KR 100479993 B1 KR100479993 B1 KR 100479993B1
Authority
KR
South Korea
Prior art keywords
steel sheet
steel
heat treatment
temperature
high carbon
Prior art date
Application number
KR10-1999-0052021A
Other languages
Korean (ko)
Other versions
KR20010047691A (en
Inventor
류재화
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0052021A priority Critical patent/KR100479993B1/en
Publication of KR20010047691A publication Critical patent/KR20010047691A/en
Application granted granted Critical
Publication of KR100479993B1 publication Critical patent/KR100479993B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 연성 및 열처리특성이 우수한 고탄소강대의 제조방법에 관한 것으로, 흑연화 촉진원소, 흑연화 억제원소, 및 B,N,Ti을 조정하고, 열간압연조건 및 소둔열처리조건을 적절하게 제어함으로써, 연성 및 소입열처리성이 우수한 고탄소강대의 제조방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method for manufacturing a high carbon steel sheet having excellent ductility and heat treatment characteristics. The present invention relates to a method for producing a high carbon steel sheet, by adjusting graphitization promoting element, graphitization inhibiting element, and B, N, Ti, and appropriately controlling hot rolling conditions and annealing heat treatment conditions. To provide a method of manufacturing high carbon steel sheet having excellent ductility and hardening heat treatment, an object thereof is provided.

본 발명은 중량%로, C: 0.3~0.8%, Si: 0.1~1.5%, Mn: 0.1~0.5%, Al: 0.01~0.1%, N: 0.00065~0.0026%을 함유하고, B은 (0.0005+0.77N)≤B(%)≤(0.003+ 0.77N)을 만족하는 범위에서 첨가되며, 기타 잔부 Fe 및 불가피한 불순물로 이루어지는 강재를, 마무리 압연온도 900℃ 이하, 권취온도를 650℃ 이하로 하여 열연강판으로 제조하고, 제조된 열연강판을 650~710℃의 온도범위에서 소둔하여 페라이트와 흑연으로 이루어지는 것을 특징으로 하는, 연성 및 열처리성이 우수한 고탄소강대의 제조방법 및, The present invention contains, by weight, C: 0.3-0.8%, Si: 0.1-1.5%, Mn: 0.1-0.5%, Al: 0.01-0.1%, N: 0.00065-0.0026%, and B is (0.0005+ 0.77N) ≤B (%) ≤ (0.003+ 0.77N) is added and hot rolled steel with other remaining Fe and unavoidable impurities at finishing rolling temperature of 900 ° C or below and winding temperature of 650 ° C or below. A method of manufacturing a high carbon steel sheet having excellent ductility and heat treatment, characterized in that the steel sheet is manufactured by annealing the produced hot rolled steel sheet at a temperature range of 650 to 710 ° C., and

중량%로, C: 0.3~0.8%, Si: 0.1~1.5%, Mn: 0.1~0.5%, Al: 0.01~0.1%, N: 0.0026~0.015%을 함유하고, Ti은 (N-0.0026)/0.29≤ Ti(%)≤(N-0.00065)/0.29, B은 0.0005+0.77(N-0.29Ti)≤B(%)≤0.003+0.77(N-0.29 Ti)을 만족하는 범위에서 첨가되며, 기타 잔부 Fe 및 불가피한 불순물로 이루어지는 강재를, 마무리압연온도 900℃ 이하, 권취온도를 650℃ 이하로 하여 열연강판으로 제조하고, 제조된 열연강판을 650~710℃의 온도범위에서 소둔하여 페라이트와 흑연으로 이루어지는 것을 특징으로 하는, 연성 및 열처리성이 우수한 고탄소강대의 제조방법에 관한 것을 그 기술적 요지로 한다. By weight%, C: 0.3-0.8%, Si: 0.1-1.5%, Mn: 0.1-0.5%, Al: 0.01-0.1%, N: 0.0026-0.015%, Ti is (N-0.0026) / 0.29≤ Ti (%) ≤ (N-0.00065) /0.29, B is added in the range satisfying 0.0005 + 0.77 (N-0.29Ti) ≤B (%) ≤0.003 + 0.77 (N-0.29 Ti), etc. The steel material consisting of the balance Fe and unavoidable impurities is manufactured into a hot rolled steel sheet with a finish rolling temperature of 900 ° C. or lower and a coiling temperature of 650 ° C. or lower, and the prepared hot rolled steel sheet is annealed at a temperature range of 650 to 710 ° C. to ferrite and graphite. The technical gist of the manufacturing method of the high carbon steel strip excellent in ductility and heat processing property characterized by the above-mentioned.

Description

연성 및 열처리성이 우수한 고탄소강대의 제조방법{A METHOD FOR PRODUCING A HIGH CARBON STEEL STRIP WITH HIGH ELONGATION AND HARDENABILITY} Manufacturing method of high carbon steel sheet with excellent ductility and heat treatment property {A METHOD FOR PRODUCING A HIGH CARBON STEEL STRIP WITH HIGH ELONGATION AND HARDENABILITY}

본 발명은 여러분야의 부품 등에 적용되는 고탄소강대의 제조방법에 관한 것으로, 보다 상세하게는 강성분 을 조정하고, 열간압연조건 및 소둔열처리조건을 적절히 제어함으로써, 연성 및 소입열처리성이 우수한 고탄소강대를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a high carbon steel sheet applied to parts and the like of people, more specifically, by adjusting the steel components, and appropriately controlled hot rolling conditions and annealing heat treatment conditions, high carbon steel excellent in ductility and hardening heat treatment properties It relates to a method of manufacturing a stand.

고탄소강대는 열간압연, 소둔, 성형, 및 열처리(담금질 및 뜨임열처리) 등 일련의 제조공정을 거쳐 최종제품에 이르게 되는데, 최종제품에서 고탄소강은 저탄소강에 비해 고강도,고내구성을 가짐에도 불구하고, 성형전 항복강도가 높고 연신율이 낮아 성형성이 나쁘기 때문에, 고성형성을 요구하는 제품에는 사용이 제한되어 왔다.The high carbon steel strip is subjected to a series of manufacturing processes such as hot rolling, annealing, forming, and heat treatment (quenching and tempering), which leads to the final product. Because of its high yield strength and low elongation before molding, poor moldability, use has been limited to products requiring high forming properties.

이러한 고탄소강의 항복강도를 낮추고 연신율을 향상시키기 위해 오랫동안 여러 연구가 진행되어 왔다. 예를 들어, 공개특허공보 소63-317629호 등은, 기존의 고탄소강이 구상화된 세멘타이트 및 페라이트로 구성되어 있어서, 강도가 높고 연신율이 낮다는 것에 착안하여, 구상화된 세멘타이트를 경도가 낮은 흑연으로 변화시켜 흑연 및 페라이트로 구성되는 고탄소강판을 제조함으로써, 항복강도를 낮추고 연신율을 높여 성형성을 향상시키고자 하였다. 그러나, 이 방법에 의하면, 세멘타이트를 흑연으로 변화시키는데 냉간압연이 필요하고, 흑연화 촉진원소인 Ni과 Si 등을 다량 첨가해야 하므로 제조비용이 상승할 뿐 아니라, 생성된 흑연입자가 조대화되어 소입열처리시 흑연의 용해가 신속하게 진행되지 않아 소입열처리성이 저하되는 문제점이 있다. In order to lower the yield strength and improve the elongation of the high carbon steel, many studies have been conducted for a long time. For example, Japanese Patent Laid-Open No. 63-317629 or the like is composed of cementite and ferrite in which high carbon steel is spheroidized. Therefore, attention is paid to high strength and low elongation. By changing to graphite to produce a high carbon steel sheet composed of graphite and ferrite, it was intended to improve the formability by lowering the yield strength and increase the elongation. However, according to this method, cold rolling is required to convert cementite into graphite, and large amounts of Ni and Si, which are graphitization promoting elements, must be added, thereby increasing manufacturing cost and coarsening of the resulting graphite particles. Since the dissolution of graphite does not proceed rapidly during the quenching heat treatment, there is a problem that the quenching heat treatment is deteriorated.

이를 개선하기 위해 공개특허공보 특개평7-97659호 등에서는, 흑연촉진원소인 B(보론)과 Al을 첨가하고 BN와 AlN의 고용온도 이상의 높은 온도에서 열간압연을 행한 후, 300~600℃온도로 가열하여 AlN을 석출시키고, 이어서 680~740℃에서 소둔하여 흑연의 크기를 20㎛ 이하로 하는 공정을 제시하고 있다. 그러나, 이 방법에 의하면, 열간압연온도가 높아 열연강판 표면에 스케일 결함이 다량 발생할 수 있을 뿐 아니라, 후공정이 복잡하여 가격이 상승되는 문제점이 있다. In order to improve this, Japanese Patent Laid-Open No. 7-97659 et al., Added graphite promoting elements B (boron) and Al, and hot-rolled at a temperature higher than the solid solution temperature of BN and AlN, and then 300 to 600 ℃ temperature The AlN is precipitated by heating with annealing and then annealed at 680 to 740 ° C. to bring the size of graphite to 20 μm or less. However, according to this method, the hot rolling temperature is high, so that a large amount of scale defects may occur on the surface of the hot rolled steel sheet, and there is a problem that the post process is complicated and the price is increased.

이런 점에서 기존 고탄소강보다 연성 및 소입열처리성이 우수하면서도 제조비용이 크게 높아지지 않는 소재가 요망되고 있다. In this regard, a material that is superior in ductility and quenching heat treatment to existing high carbon steels but does not significantly increase manufacturing cost is desired.

이에, 본 발명자들은 상기한 종래 기술들의 제반 문제점을 해결하기 위하여, 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 흑연화 촉진원소, 흑연화 억제원소, 및 B,N,Ti을 조정하고, 열간압연조건 및 소둔열처리조건을 적절하게 제어함으로써, 연성 및 소입열처리성이 우수한 고탄소강대의 제조방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors have conducted research and experiments to solve the above-mentioned problems of the prior arts, and based on the results, the present invention provides a graphitization promoting element, a graphitization suppressing element, and The purpose of the present invention is to provide a method for producing a high carbon steel sheet having excellent ductility and quenching heat treatment by adjusting B, N, Ti and appropriately controlling hot rolling conditions and annealing heat treatment conditions.

본 발명은 중량%로, C: 0.3~0.8%, Si: 0.1~1.5%, Mn: 0.1~0.5%, Al: 0.01~0.1%, N: 0.00065~0.0026%을 함유하고, B은 (0.0005+0.77N)≤B(%)≤(0.003+ 0.77N)을 만족하는 범위에서 첨가되며, 기타 잔부 Fe 및 불가피한 불순물로 이루어지는 강재를, 마무리 압연온도 900℃ 이하, 권취온도를 650℃ 이하로 하여 열연강판으로 제조하고, 제조된 열연강판을 650~710℃의 온도범위에서 소둔하여 페라이트와 흑연으로 이루어지는 것을 특징으로 하는 연성 및 열처리성이 우수한 고탄소강대의 제조방법 및, The present invention contains, by weight, C: 0.3-0.8%, Si: 0.1-1.5%, Mn: 0.1-0.5%, Al: 0.01-0.1%, N: 0.00065-0.0026%, and B is (0.0005+ 0.77N) ≤B (%) ≤ (0.003+ 0.77N) is added and hot rolled steel with other remaining Fe and unavoidable impurities at finishing rolling temperature of 900 ° C or below and winding temperature of 650 ° C or below. A method of manufacturing a high carbon steel sheet having excellent ductility and heat treatment, characterized in that the steel sheet is manufactured by annealing the manufactured hot rolled steel sheet at a temperature range of 650 to 710 ° C., and

중량%로, C: 0.3~0.8%, Si: 0.1~1.5%, Mn: 0.1~0.5%, Al: 0.01~0.1%, N: 0.0026~0.015%을 함유하고, Ti은 (N-0.0026)/0.29≤ Ti(%)≤(N-0.00065)/0.29, B은 0.0005+0.77(N-0.29Ti)≤B(%)≤0.003+0.77(N-0.29 Ti)을 만족하는 범위에서 첨가되며, 기타 잔부 Fe 및 불가피한 불순물로 이루어지는 강재를, 마무리압연온도 900℃ 이하, 권취온도를 650℃ 이하로 하여 열연강판으로 제조하고, 제조된 열연강판을 650~710℃의 온도범위에서 소둔하여 페라이트와 흑연으로 이루어지는 것을 특징으로 하는 연성 및 열처리성이 우수한 고탄소강대의 제조방법에 관한 것이다. By weight%, C: 0.3-0.8%, Si: 0.1-1.5%, Mn: 0.1-0.5%, Al: 0.01-0.1%, N: 0.0026-0.015%, Ti is (N-0.0026) / 0.29≤ Ti (%) ≤ (N-0.00065) /0.29, B is added in the range satisfying 0.0005 + 0.77 (N-0.29Ti) ≤B (%) ≤0.003 + 0.77 (N-0.29 Ti), etc. The steel material consisting of the balance Fe and unavoidable impurities is manufactured into a hot rolled steel sheet with a finish rolling temperature of 900 ° C. or lower and a coiling temperature of 650 ° C. or lower, and the prepared hot rolled steel sheet is annealed at a temperature range of 650 to 710 ° C. to ferrite and graphite. It relates to a method for producing a high carbon steel sheet excellent in ductility and heat treatment.

이하, 본 발명에 대하여 상세히 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명의 발명자들은 고탄소강의 흑연화에 영향을 미치는 강중 C,Si,Al,Mn,B,Ti,N량의 작용 및 열간압연과 소둔 등의 제조조건을 종합적으로 연구한 결과, 합금원소와 제조조건을 적절히 조절함으로써 연성 및 소입열처리성이 우수한 강을 제조할 수 있음을 알아냈다. 특히, 본 발명에서는 B,N,Ti 첨가량을 결정하는데 있어서, 다음 관계식들을 토대로 하였다.The inventors of the present invention have comprehensively studied the action of the amount of C, Si, Al, Mn, B, Ti, N in the steel, which affects the graphitization of high carbon steel, and the manufacturing conditions such as hot rolling and annealing. It was found that by controlling the manufacturing conditions appropriately, steel having excellent ductility and hardening heat treatment can be produced. In particular, in the present invention, in determining the amount of B, N, Ti addition, based on the following relations.

첫째, 강중 N량이 0.00065%≤N≤0.0026%일 때는 Ti은 첨가되지 않고, B량은 N의 함수로 다음과 같다.First, when N content in steel is 0.00065% ≤N≤0.0026%, Ti is not added and B content is a function of N as follows.

[관계식1][Relationship 1]

Btot = Bsol + BBN B tot = B sol + B BN

(Btot: 총 첨가될 B량, Bsol: 고용 B량, BBN: BN으로 석출되는 B량)(B tot : total amount of B to be added, B sol : amount of solid solution B, B BN : amount of B precipitated into BN)

여기서, 보론 첨가에 의한 소입열처리성의 향상을 위해서 고용 B량(Bsol)은 적어도 0.0005% 이상이 되어야 하지만, 그 량이 0.003% 이상이 되면 효과가 포화되고 오히려 취성이 발생하기 때문에 0.003% 이하로 한다. 즉,Here, in order to improve the heat treatment heat treatment by boron addition, the amount of solid solution B ( sol ) should be at least 0.0005%, but if the amount is more than 0.003%, the effect is saturated and rather brittle occurs. . In other words,

[관계식2][Relationship 2]

0.0005%≤Bsol≤0.003%0.0005% ≤B sol ≤0.003%

그리고, 보론첨가에 의한 흑연석출로 연성을 높이기 위해서 BN으로 석출되는 B량(BBN)은 적어도 0.0005% 이상이 되어야 하지만, BN석출량이 많아지면 연속주조시 슬라브에서 균열이 발생되기 때문에 BN으로 석출되는 B량은 0.002% 이하로 한다. 즉,And, in order to increase the ductility by the addition of graphite by boron addition, the amount of B (B BN ) precipitated into BN should be at least 0.0005% or more. The amount of B used is made into 0.002% or less. In other words,

[관계식3][Relationship 3]

0.0005%≤BBN≤0.002%0.0005% ≤B BN ≤0.002%

그런데, BN으로 석출되는 B량은 N량에 따라 달라지므로 관계식3을 만족하기 위한 N량(NBN)은 하기 관계식4로 부터 구한다.However, since the amount of B precipitated by BN varies depending on the amount of N, the amount of N (N BN ) for satisfying the relational expression 3 is obtained from the relational expression 4 below.

[관계식4][Relationship 4]

BBN = 0.77NBN B BN = 0.77 N BN

BN형성에 참여하는 NBN량은 관계식4를 관계식3에 대입하면 된다.The amount of N BN participating in BN formation can be substituted by using Equation 4.

[관계식5][Relationship 5]

0.00065%≤NBN≤0.0026%0.00065% ≤N BN ≤0.0026%

따라서, 총 B첨가량(Btot)은 관계식2와 관계식4를 더하여 구한다. 즉,Therefore, the total amount of B addition B tot is obtained by adding relation 2 and relation 4. In other words,

[관계식6][Relationship 6]

0.0005%+0.77NBN≤Btot≤0.003%+0.77NBN 0.0005% + 0.77N BN ≤B tot ≤0.003% + 0.77N BN

즉, 질소량이 관계식5의 범위에서는 첨가되는 총B량은 관계식6이 된다.In other words, the total amount of B added in the range of the relationship (5) becomes the relationship (6).

둘째, 강중 N량이 0.0026%<N<0.015%일 때 Ti을 첨가하여 강중 N을 TiN으로 석출시켜 강중에서 BN으로 석출되는 N량이 관계식5를 만족하도록 하여야 된다. 이를 위해 첨가되는 Ti량은 다음과 같다. Second, when the amount of N in the steel is 0.0026% <N <0.015%, Ti is added to precipitate N in the steel as TiN, so that the amount of N precipitated as BN in the steel satisfies Equation 5. The amount of Ti added for this purpose is as follows.

우선, TiN석출물 형성을 위한 Ti과 N의 관계는 다음과 같다.First, the relationship between Ti and N for forming TiN precipitates is as follows.

[관계식7][Relationship 7]

NTiN = 0.29TiN TiN = 0.29 Ti

BN형성에 참여하는 N량(NBN)이 관계식5를 만족해야 하므로 총N량(Ntot)중에서 Ti첨가에 의해 일부 N은 TiN을 석출하고, BN을 석출하기 위해 남아있는 N량은 다음과 같이 표시된다.Since N amount (N BN ) participating in BN formation should satisfy relation 5, some N precipitates TiN by adding Ti among the total N amount (N tot ), and the remaining N amount to precipitate BN is as follows. Is displayed as:

[관계식8][Relationship 8]

NBN = Ntot- 0.29TiN BN = N tot -0.29 Ti

관계식8을 관계식5에 대입하고, 정리하면 첨가할 Ti량을 정할 수 있다.Substituting Equation 8 into Equation 5 and arranging, the amount of Ti to be added can be determined.

[관계식9][Relationship 9]

(Ntot- 0.0026)/0.29≤Ti≤(Ntot-0.00065)/0.29(N tot -0.0026) /0.29≤Ti≤ (N tot -0.00065) /0.29

관계식8을 관계식6에 대입하면 총 B첨가량(Btot)을 구할 수 있다.Substituting Equation 8 into Equation 6 yields the total B tot .

[관계식10][Relationship 10]

0.0005%+0.77(Ntot-0.29Ti)≤Btot≤0.003%+0.77(Ntot-0.29Ti)0.0005% + 0.77 (N tot -0.29Ti) ≤B tot ≤0.003% + 0.77 (N tot -0.29Ti)

즉, 강중 N량이 0.0026% 이상일 때는 N을 감소하기 위해 첨가되는 Ti량은 관계식9를 만족하도록 해야하며, 연성과 소입열처리성을 만족하기 위한 B첨가량은 관계식10을 만족해야 한다.That is, when the amount of N in steel is 0.0026% or more, the amount of Ti added to reduce N should satisfy the relation 9, and the amount of B added to satisfy the ductility and heat treatment heat treatment should satisfy the relation 10.

이하, 본 발명의 강 성분 한정이유에 대하여 설명한다.Hereinafter, the reason for limitation of the steel component of this invention is demonstrated.

상기 C는 최종제품의 경도를 높이는데 가장 중요한 원소로, 세멘타이트가 흑연으로 변화되는데도 중요한 역할을 한다. C는 그 함량이 적을수록 우수한 연성을 갖지만, 너무 적으면 흑연화하는데 소둔시간이 많이 걸릴뿐 아니라, 열처리후에도 높은 경도를 얻기 힘들기 때문에, 최소량을 0.3% 이상으로 제한하는 것이 바람직하다. 반면, C량이 많을수록 흑연화가 촉진되지만, 너무 많으면 석출된 흑연량이 많아 흑연에서 가공시 균열이 발생될 수 있으므로, 최대량은 0.8%로 설정하였다.The C is the most important element to increase the hardness of the final product, plays an important role in the conversion of cementite to graphite. The smaller the content of C, the better the ductility. However, if the content is too small, the annealing time takes a long time to graphitize and it is difficult to obtain a high hardness even after heat treatment. Therefore, it is preferable to limit the minimum amount to 0.3% or more. On the other hand, the higher the amount of C, the more the graphitization is promoted. However, if the amount is too large, the amount of precipitated graphite is large, so that cracking may occur during processing in the graphite, so the maximum amount is set to 0.8%.

상기 Si은 흑연화를 촉진하는 가장 중요한 원소로, 너무 적은량 함유되면 흑연화에 장시간이 소요되기 때문에, 0.1% 이상 함유시킨다. 그러나, Si량이 너무 많으면 흑연화는 상당히 촉진되지만, Si은 고용강화효과가 큰 원소로 기지가 경화되어 연성이 오히려 저하되기 때문에, 1.5% 이하로 제한하는 것이 바람직하다.Si is the most important element for promoting graphitization, and if it is contained in a small amount, it takes a long time to graphitize, so that it is contained 0.1% or more. However, if the amount of Si is too large, graphitization is considerably promoted, but Si is hardly known as an element having a high solid solution strengthening effect, so that ductility is lowered.

상기 Mn은 열처리시 경화능을 향상시켜 강의 강도를 높이고, 열간가공성을 향상시키는 중요한 원소이지만, 흑연화를 억제하기 때문에 연성을 저해하는 원소이기도 하다. Mn이 적을수록 흑연화에는 유리하지만, 강도와 열간가공성에 문제가 있기 때문에, 0.1% 이상 함유시킨다. 그러나, 너무 많으면 흑연화가 억제되기 때문에, 상한을 0.5%로 제한한다.Mn is an important element that improves the hardenability during heat treatment to increase the strength of the steel and improves the hot workability, but is also an element that inhibits ductility because it inhibits graphitization. The smaller the Mn, the better the graphitization. However, since the Mn is problematic in strength and hot workability, the content is 0.1% or more. However, if too much, graphitization is suppressed, the upper limit is limited to 0.5%.

상기 Al은 흑연화를 촉진하는 원소이지만, 0.005% 이하로 첨가되면 흑연화를 촉진시키는 효과가 거의 없기 때문에, 0.005% 이상 함유시킨다. 그리고, 0.1% 이상에서는 흑연화 촉진효과가 거의 포화되고, 강중 개재물량이 증가하여 강판이 연성이 저하될 염려가 있기 때문에, 0.1% 이하로 제한하였다.Al is an element which promotes graphitization, but if it is added in an amount of 0.005% or less, since Al has little effect of promoting graphitization, it is contained in 0.005% or more. At 0.1% or more, the graphitization promoting effect is almost saturated, and the amount of inclusions in the steel increases, which may lower the ductility of the steel sheet.

상기 N는 B과 반응하여 보론나이트라이드(BN)을 형성하여, 흑연의 핵생성 위치로 작용한다. 이 때, N량이 너무 적으면 BN의 형성이 어렵기 때문에, 0.00065% 이상 함유시킨다. 반면, N함유량이 너무 많으면, 석출되는 BN량이 슬라브에서 균열을 발생시키므로 0.0026% 이하로 제한하였다. 한편, Ti이 첨가되는 경우는 Ti이 N와 반응하여 TiN을 석출하여 강중 N량을 감소시키기 때문에 N량이 많이 첨가되어도 문제가 없으나, Ti량이 많이 첨가되어 연속주조성이 나빠지고, 다량의 TiN이 존재하여 강판의 연성이 저하되는 문제가 있기 때문에, N량은 0.015% 이하로 제한하는 것이 바람직하다.N reacts with B to form boron nitride (BN), which acts as a nucleation site of graphite. At this time, if the amount of N is too small, since it is difficult to form BN, it is made to contain 0.00065% or more. On the other hand, if the N content is too large, the amount of BN precipitated was limited to 0.0026% or less because cracking occurs in the slab. On the other hand, when Ti is added, Ti reacts with N to precipitate TiN to reduce the amount of N in the steel, so even if a large amount of N is added, there is no problem. Since there exists a problem that the ductility of a steel plate exists and it exists, it is preferable to restrict N amount to 0.015% or less.

상기 B은 N와 반응하여 BN를 석출시키는데, 이것은 흑연의 핵생성 위치로 작용하여 흑연화속도를 높이고 흑연을 미세하게 분포시킬 뿐 아니라, 고용상태로 존재할 경우 소입열처리성을 높이는데 가장 중요한 역할을 한다. B첨가의 효과는 N량과 함께 고려해야 하는데, 최소 첨가량은 0.0005%+0.77NBN 이상이며, 최대첨가량은 0.03%+0.77NBN 이하이다. B이 너무 많이 첨가되면 슬라브제조시 균열이 발생될 염려도 있고, B이 너무 적으면 흑연의 핵생성이 어려울 뿐 아니라, 소입열처리성을 얻기도 어렵다.The B reacts with N to precipitate BN, which acts as a nucleation site of graphite, which increases the graphitization rate and finely distributes the graphite, and plays the most important role in enhancing the heat treatment heat treatment in the solid state. do. The effect of the addition of B should be considered together with the amount of N. The minimum amount is more than 0.0005% + 0.77N BN , the maximum amount is less than 0.03% + 0.77N BN . If too much B is added, cracks may be generated during slab manufacture. If too little B is used, nucleation of graphite is difficult, and hardening heat treatment is difficult to obtain.

상기 Ti은 강중 질소와 반응하여 TiN을 석출시킴으로써 B가 고용상태로 존재하게 하여 소입열처리성을 향상시키는 역할을 한다. 따라서, 첨가되는 Ti량은 N량에 따라 달라지는데, 상한은 (Ntot- 0.00065)/0.29이고, 하한은 (Ntot-0.0026)/0.29이다.The Ti reacts with nitrogen in the steel to precipitate TiN so that B exists in a solid solution and serves to improve the heat treatment heat treatment. Therefore, the amount of Ti added depends on the amount of N, with an upper limit of (N tot -0.00065) /0.29 and a lower limit of (N tot -0.0026) /0.29.

이하, 본 발명에서 사용하는 제조조건에 대하여 설명한다.Hereinafter, the manufacturing conditions used by this invention are demonstrated.

고탄소강의 흑연화는 조직이 미세할수록 촉진되기 때문에, 열간압연공정에 있어서 조직을 미세화시키는 것이 중요하다. 열연강판에서의 조직미세화는 마무리압연온도와 권취온도에 가장 크게 의존하는데, 마무리압연온도와 권취온도가 높을수록 조직이 조대화되어 흑연화가 어려워진다. 따라서, 흑연화를 촉진시키기 위해 마무리압연온도를 900℃ 이하, 권취온도를 650℃ 이하로 제한하였다.Graphitization of high carbon steel is accelerated as the structure becomes finer, so it is important to make the structure finer in the hot rolling process. The microstructure of the hot rolled steel sheet is most dependent on the finish rolling temperature and the winding temperature. The higher the finishing rolling temperature and the winding temperature, the more coarse the structure becomes and the more difficult the graphitization is. Therefore, in order to promote graphitization, the finishing rolling temperature was limited to 900 ° C. or lower and the winding temperature to 650 ° C. or lower.

또한, 흑연화를 위한 소둔온도를 650~710℃로 제어하는데, 그 이유는 온도가 너무 낮으면 탄소의 확산속도가 느려 흑연화 진행속도가 느리고, 온도가 너무 높으면, 탄소가 오스테나이트에 고용되어 흑연화가 일어나지 않기 때문이다.In addition, the annealing temperature for graphitization is controlled to 650 ~ 710 ℃, because if the temperature is too low, the diffusion rate of carbon is slow, the graphitization progress is slow, if the temperature is too high, carbon is dissolved in austenite This is because graphitization does not occur.

이상, 상기 조건에 따라 제조된 강판을 이용하여 부품을 가공한 후, 통상의 열처리조건인 800~900℃에서 적당한 시간동안 유지한 후, 유냉 또는 수냉을 거쳐 마르텐사이트로 변태시킨 후, 제품에 요구되는 경도에 맞게 뜨임처리를 행하여 연성 및 열처리성이 우수한 고장력강대를 제조한다.After processing the parts by using the steel sheet manufactured according to the above conditions, and maintained at 800 ~ 900 ℃, which is a normal heat treatment condition for a suitable time, and then transformed to martensite through oil-cooled or water-cooled, and then required by the product Tempering treatment is performed to the hardness to produce high tensile steel with excellent ductility and heat treatment.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예1)Example 1

합금성분이 고탄소강의 연성 및 강도에 미치는 영향을 살펴보기 위해, 하기 표1과 같이 조성되는 모든 강종을 1200℃로 가열하여 2시간 동안 유지한 후, 마무리압연온도를 850℃, 권취온도를 600℃로 하여 두께 5mm의 열간압연강판을 제조하였다. 이와 같이 제조된 열연강판을 산세하고, 비산화성 분위기,680℃에서 15시간 동안 소둔하였다. 이와 같이 제조된 소둔강판으로부터 인장시편을 가공하여 인장시험을 행하고, 그 결과를 표2에 나타내었다.In order to examine the effect of the alloy component on the ductility and strength of the high carbon steel, all the steel grades as shown in Table 1 are heated to 1200 ℃ and maintained for 2 hours, the finish rolling temperature is 850 ℃, winding temperature 600 A hot rolled steel sheet having a thickness of 5 mm was prepared at ℃. The hot rolled steel sheet thus prepared was pickled and annealed in a non-oxidizing atmosphere at 680 ° C. for 15 hours. The tensile test was carried out by processing the tensile test specimen from the annealed steel sheet thus prepared, and the results are shown in Table 2.

강종Steel grade 화학성분(wt%)Chemical composition (wt%) CC SiSi MnMn AlAl NN BB TiTi 발명강1Inventive Steel 1 0.50.5 0.20.2 0.20.2 0.0540.054 0.00210.0021 0.00280.0028 발명강2Inventive Steel 2 0.70.7 0.20.2 0.20.2 0.050.05 0.00180.0018 0.0030.003 발명강3Invention Steel 3 0.50.5 0.60.6 0.20.2 0.050.05 0.00160.0016 0.00310.0031 발명강4Inventive Steel 4 0.50.5 1.01.0 0.30.3 0.0450.045 0.0020.002 0.00250.0025 발명강5Inventive Steel 5 0.50.5 0.20.2 0.20.2 0.050.05 0.0050.005 0.00300.0030 0.010.01 비교강1Comparative Steel 1 0.50.5 0.20.2 0.80.8 0.0540.054 0.0020.002 0.00250.0025 비교강2Comparative Steel 2 0.50.5 2.02.0 0.20.2 0.050.05 0.0020.002 0.00240.0024 비교강3Comparative Steel 3 0.50.5 0.20.2 0.20.2 0.0520.052 0.0020.002 00 비교강4Comparative Steel 4 0.50.5 0.20.2 0.20.2 0.0450.045 0.0020.002 0.0010.001 비교강5Comparative Steel 5 0.50.5 0.20.2 0.20.2 0.0510.051 0.0050.005 0.0020.002 0.020.02

강종Steel grade 소둔강판의 기계적 성질Mechanical Properties of Annealed Steel Sheet 연신율(%)Elongation (%) 항복강도(kg/㎟)Yield strength (kg / ㎡) 인장강도(kg/㎟)Tensile Strength (kg / ㎡) 발명강1Inventive Steel 1 4444 1515 3535 발명강2Inventive Steel 2 4343 1414 3434 발명강3Invention Steel 3 4242 1717 3838 발명강4Inventive Steel 4 4141 1818 4040 발명강5Inventive Steel 5 4444 1515 3434 비교강1Comparative Steel 1 3030 3939 5959 비교강2Comparative Steel 2 3535 2323 4545 비교강3Comparative Steel 3 3232 3535 5555 비교강4Comparative Steel 4 4444 1515 3434 비교강5Comparative Steel 5 3131 3434 5353

상기 표2의 결과를 살펴보면 다음과 같다.Looking at the results of Table 2 as follows.

먼저, 발명강(1) 보다 C량이 많은 발명강(2)의 기계적 성질은 발명강(1)과 거의 동일함을 알 수 있다.First, it can be seen that the mechanical properties of the invention steel (2) having a larger amount of C than the invention steel (1) are almost the same as the invention steel (1).

발명강(1)~(4) 및 비교강(2)은 Si의 영향을 살펴본 것으로, Si이 증가함에 따라 연신율은 감소되고, 강도는 증가함을 알 수 있다. 그 이유는 Si이 흑연화는 촉진하지만, Si은 고용강화효과가 큰 원소로 Si량이 증가함에 따라 페라이트의 경도가 높아지기 때문이다.Invented steels (1) to (4) and comparative steels (2) examined the influence of Si, it can be seen that as the Si increases, the elongation decreases, the strength increases. The reason for this is that Si promotes graphitization, but Si is an element having a large solid solution strengthening effect. As the amount of Si increases, the hardness of ferrite increases.

비교강(1)은 발명강(1)과 비교시, Mn이 다량 첨가되었는데, Mn이 증가함에 따라 연신율은 감소되고 강도는 증가함을 알 수 있다. 그 이유는 Mn가 세멘타이트를 안정화시켜서 흑연화를 억제하기 때문이다. Compared with the inventive steel (1), the comparative steel (1) was added a large amount of Mn, it can be seen that as Mn increases, the elongation is reduced and the strength is increased. This is because Mn stabilizes cementite and inhibits graphitization.

발명강(1)과 비교강(3),(4)는 B의 영향을 살펴본 것으로, B이 첨가되지 않은 비교강(3)의 경우에는 연신율은 감소되고, 강도는 상당히 증가함을 알 수 있다. 이것은 B이 강중 존재하는 N와 반응하여 BN으로 석출하고, 석출된 BN이 흑연의 핵생성위치로 작용하는데, B가 없으면 흑연화가 일어나지 않기 때문이다. 반면, B이 소량 첨가된 비교강(4)에서는 BN가 형성되기 때문에, 연신율이 증가하였으나, 이후 논의되겠지만, B가 고용상태로 존재하지 않기 때문에 소입열처리성은 저하된다.Invented steels (1) and comparative steels (3) and (4) examined the effects of B. In comparison steel (3) without B, the elongation is decreased and the strength is considerably increased. . This is because B reacts with N present in the steel and precipitates as BN, and the precipitated BN acts as a nucleation site of graphite, but without B, graphitization does not occur. On the other hand, in the comparative steel 4 to which B was added in small amounts, elongation was increased because BN was formed, but as will be discussed later, quench heat treatment is lowered because B is not in solid solution.

발명강(1), 발명강(5) 및 비교강(5)는 Ti과 N의 효과를 복합적으로 살펴본 것으로, 발명강(5)와 같이 N가 많은 경우에는 Ti을 소량 첨가해도 BN 석출에 의해 흑연량이 증가하여 연성이 높아지지만, 비교강(5)와 같이 Ti을 과량 첨가하게 되면, N가 TiN으로 석출되어 BN석출이 억제되기 때문에 연신율이 낮다.Invention steel (1), invention steel (5), and comparative steel (5) examine the effects of Ti and N in combination. When N is large, like invention steel (5), even if a small amount of Ti is added, Although the amount of graphite increases and the ductility increases, when an excessive amount of Ti is added as in Comparative Steel 5, elongation is low because N precipitates as TiN and BN precipitation is suppressed.

상기 표2에 나타난 바와 같이, 본 발명의 규정범위내의 발명강과 비교강(4)는 연신율 40% 이상, 항복강도 20kg/㎟ 이하, 인장강도 40kg㎟ 이하로 연성이 매우 우수함을 알 수 있다.As shown in Table 2, the inventive steel and the comparative steel (4) within the prescribed range of the present invention can be seen that the ductility is very excellent at elongation of 40% or more, yield strength 20kg / mm 2 or less, tensile strength 40kg mm 2 or less.

(실시예2)Example 2

합금성분이 연성 및 열처리특성에 미치는 영향을 살펴보기 위해, 표1의 강들을 1200℃로 가열하여 2시간 동안 유지한 후, 마무리압연온도를 850℃, 권취온도를 600℃로 하여 두께 4mm의 열간압연강판을 제조하였다. 이와 같이 제조된 열연강판을 산세하고, 비산화성 분위기에서 680℃, 20시간 동안 소둔하였다. 그 후, 통상의 열처리 조건인 870℃에서 20분 동안 유지한 다음, 60℃의 기름에 유냉을 하는 담금질 열처리를 실시하였다. 유냉을 마친 후 400℃에서 1시간 동안 뜨임열처리를 행하고, 표면경도를 측정하여, 그 결과를 표3에 나타내었다.In order to examine the effect of the alloy composition on the ductility and heat treatment characteristics, the steels of Table 1 were heated to 1200 ℃ and maintained for 2 hours, and then the finish rolling temperature was 850 ℃ and the coiling temperature was 600 ℃. A rolled steel sheet was produced. The hot rolled steel sheet thus prepared was pickled and annealed at 680 ° C. for 20 hours in a non-oxidizing atmosphere. Thereafter, the mixture was maintained at 870 占 폚 for 20 minutes, and then quenched and quenched to oil at 60 占 폚. After oil cooling, tempering was performed for 1 hour at 400 ° C., surface hardness was measured, and the results are shown in Table 3.

강종Steel grade 연신율(%)Elongation (%) 경도(HRC)Hardness (HRC) 고용B량(wt%)Employment B amount (wt%) BN으로 석출되는 B량(wt%)B amount precipitated by BN (wt%) 총B량Total amount of B 발명강1Inventive Steel 1 4444 4343 0.00120.0012 0.00160.0016 0.00280.0028 발명강2Inventive Steel 2 4343 4747 0.00160.0016 0.00140.0014 0.0030.003 발명강3Invention Steel 3 4242 4444 0.00190.0019 0.00120.0012 0.00310.0031 발명강4Inventive Steel 4 4141 4545 0.00100.0010 0.00150.0015 0.00250.0025 발명강5Inventive Steel 5 4444 4343 0.00140.0014 0.00160.0016 0.00300.0030 비교강1Comparative Steel 1 3030 4444 0.00100.0010 0.00150.0015 0.00250.0025 비교강2Comparative Steel 2 3535 4646 0.00090.0009 0.00150.0015 0.00240.0024 비교강3Comparative Steel 3 3232 3737 00 00 00 비교강4Comparative Steel 4 4444 3636 00 0.0010.001 0.0010.001 비교강5Comparative Steel 5 3131 4444 0.00200.0020 00 0.0020.002

상기 표3의 결과를 각 합금 원소에 따라 나누어 살펴보면 다음과 같다.Looking at the results of Table 3 divided by each alloy element as follows.

상기 표3에 알 수 있는 바와 같이, 발명강(1)보다 C함량이 많은 발명강(2)의 경도는 높다. 발명강(1),(3),(4) 및 비교강(2)는 Si의 영향을 살펴본 것으로, Si이 증가함에 따라 경화능이 높아지기 때문에 경도가 증가함을 알 수 있다.As can be seen from Table 3, the hardness of the invention steel (2) having a higher C content than that of the invention steel (1) is high. Invented steels (1), (3), (4) and comparative steels (2) to look at the effect of Si, it can be seen that the hardness increases because the hardenability increases as Si increases.

비교강(1)은 Mn이 과량 첨가된 강으로, 경화능이 증가하여 경도가 높지만, 연신율이 낮아 연성이 좋지 않았다.Comparative steel (1) is a steel in which Mn is excessively added, and the hardenability is increased and the hardness is high, but the elongation is low, the ductility is not good.

발명강(1)과 비교강(3) 및 비교강(4)는 B의 영향을 살펴본 것으로, B이 첨가되지 않은 비교강(3)의 경우 경화능이 저하되어 경도가 낮고, B이 극소량 첨가되어 있으나 고용 B량이 없는 비교강(4)의 경도는 낮다.Invention steel (1), comparative steel (3) and comparative steel (4) is to examine the influence of B, the comparative steel (3) without B is hardened ability is low, the hardness is low, very small amount of B is added However, the hardness of the comparative steel (4) having no solid solution B is low.

발명강(1),(5)와 비교강(5)는 Ti과 N의 효과를 복합적으로 살펴본 것으로, N이 많은 경우에는 Ti를 소량 첨가해도 고용 B량이 존재하기 때문에, 경도는 높음을 알 수 있다.The invention steels (1) and (5) and the comparative steel (5) looked at the effects of Ti and N in combination. In the case of high N, the hardness is high because a solid solution of B exists even if a small amount of Ti is added. have.

상기 표3에 나타난 바와 같이, 본 발명에서 규정하는 화학성분을 만족하는 발명강은 연신율이 40% 이상이고 열처리 경도도 HRC 40 이상으로, 연성과 열처리경도가 동시에 우수한 반면, 비교강은 연성이 낮거나 또는 열처리경도가 낮은 것을 알 수 있다. As shown in Table 3, the invention steel that satisfies the chemical composition specified in the present invention has an elongation of 40% or more and a heat treatment hardness of HRC 40 or more, while at the same time excellent in ductility and heat treatment hardness, comparative steel has a low ductility Or low heat treatment hardness.

연성과 관련해서는 BN의 석출과 직접적인 관계가 있는데, 즉, BN이 석출되지 않으면 흑연이 석출되지 않기 때문에, 높은 연성을 얻을 수 없다. 또한, 열처리경도는 고용 B량과 직접 관련이 있는데, 고용 B량이 없는 경우에는 소입열처리성이 저하되어 열처리후의 경도가 낮다.In terms of ductility, there is a direct relationship with precipitation of BN, that is, high ductility cannot be obtained because graphite does not precipitate unless BN is precipitated. In addition, the heat treatment hardness is directly related to the amount of solid solution B. In the absence of the amount of solid solution B, the hardening heat treatment property is lowered and the hardness after heat treatment is low.

(실시예3)Example 3

열간압연조건이 고탄소강의 연성에 미치는 영향에 있어서, 마무리압연온도와 권취온도가 가장 중요하기 때문에, 그 영향에 대해서 살펴보았다.In the effect of hot rolling condition on the ductility of high carbon steel, the finishing rolling temperature and winding temperature are the most important.

우선, 마무리압연온도의 영향을 살펴보기 위해 표1의 발명강(1)을 1200℃로 가열하여 2시간 동안 유지한 후, 권취온도를 600℃로 일정하게 두고 마무리압연온도를 950, 900, 850, 800℃로 변화시켜 가면서, 두께 5mm의 열간압연강판을 제조하였다. 이와 같이 제조된 열연강판을 산세하고, 비산화성 분위기에서 680℃,5시간동안 소둔하였다. 이와 같이 제조된 강판으로부터 인장시편을 가공하여 인장시험을 행하고, 그 결과를 도1에 나타내었다. 도1에 나타난 바와 같이, 마무리압연온도가 900℃ 이하인 경우에 있어서 연신율은 거의 일정하게 높았으나, 900℃ 이상에서는 감소하고 있는데, 그 이유는 마무리압연온도가 높으면 조직이 조대화되고, 이에 따라 세멘타이트의 분해속도가 느려져 흑연화속도가 크게 저하되기 때문이다. First, in order to examine the effect of the finish rolling temperature, the invention steel (1) of Table 1 was heated to 1200 ° C. and maintained for 2 hours, and then the winding temperature was constant at 600 ° C. and the finish rolling temperature was 950, 900, 850. While changing to, 800 ℃, a hot rolled steel sheet having a thickness of 5mm was prepared. The hot rolled steel sheet thus prepared was pickled and annealed at 680 ° C. for 5 hours in a non-oxidizing atmosphere. The tensile test was performed by processing the tensile test specimen from the steel sheet thus manufactured, and the results are shown in FIG. As shown in Fig. 1, when the finish rolling temperature is 900 ° C. or less, the elongation is almost constant, but decreases above 900 ° C., because the finish rolling temperature is high, and the structure becomes coarse. This is because the rate of graphitization is greatly reduced due to the slow decomposition rate of the tight.

다음으로, 권취온도의 영향을 살펴보기 위해 표1의 발명강(1)을 1200℃로 가열하여 2시간동안 유지한 후 마무리압연온도를 850℃로 일정하게 두고 권취온도를 700, 650, 600, 550℃로 변화시켜 가면서 두께 5mm의 열간압연강판을 제조하였다. 이와 같이 제조된 열연강판을 산세하고, 비산화성 분위기에서 680℃,5시간 동안 소둔하였다. 이와 같이 제조된 강판으로부터 인장시편을 가공하여 인장시험을 행하고, 그 결과를 도2에 나타내었다. 도2에서 알 수 있는 바와 같이, 권취온도가 650℃ 이하에서는 연신율이 거의 일정하게 높지만, 650℃ 이상에서는 감소하고 있다. 이것은, 650℃ 이상의 권취온도에서는 펄라이트 조직이 조대화되어 세멘타이트의 분해속도가 느려져서, 흑연화속도가 크게 저하되기 때문이다.Next, in order to examine the effect of the coiling temperature, the invention steel (1) of Table 1 was heated to 1200 ° C. and maintained for 2 hours. A hot rolled steel sheet having a thickness of 5 mm was manufactured while changing to 550 ° C. The hot rolled steel sheet thus prepared was pickled and annealed at 680 ° C. for 5 hours in a non-oxidizing atmosphere. A tensile test was performed on the tensile test piece from the steel sheet thus manufactured, and the results are shown in FIG. 2. As can be seen from Fig. 2, the elongation is almost constant high at the coiling temperature of 650 DEG C or lower, but is decreasing at 650 DEG C or higher. This is because the pearlite structure becomes coarse at the winding temperature of 650 ° C. or higher, the decomposition rate of cementite is slowed, and the graphitization rate is greatly reduced.

따라서, 우수한 고탄소강판을 얻기 위해서는 마무리압연온도를 900℃ 이하, 권취온도를 650℃ 이하로 하는 것이 바람직함을 알 수 있다. Therefore, in order to obtain an excellent high carbon steel sheet, it can be seen that it is desirable to set the finishing rolling temperature to 900 ° C. or lower and the winding temperature to 650 ° C. or lower.

(실시예4)Example 4

소둔온도가 고탄소강의 연성에 미치는 영향을 알아보기 위해 표1의 발명강(1)을 1200℃로 가열하여 2시간 동안 유지한 후 압연마무리 온도를 850℃, 권취온도를 600℃로 하여 두께 5mm의 열간압연강판을 제조하였다. 이와 같이 제조된 열연강판을 산세하고, 비산화성 분위기, 590~740℃에서 15시간 동안 소둔하였다. 이와 같이 제조된 강판으로부터 인장시편을 가공하여 인장시험을 행하고, 그 결과를 도3에 나타내었다. 도3에 나타난 바와 같이, 소둔온도가 650℃ 이하 또는 710℃ 이상일 경우에는 연신율이 낮고, 소둔온도가 650~710℃ 사이에서 일정하게 높은 연신율을 가짐을 알 수 있다. 그 이유는, 소둔온도가 650℃ 이하이면 탄소의 확산속도가 느려 흑연화 진행속도가 느리고, 710℃ 이상이면 탄소가 오스테나이트에 고용되어 흑연화가 일어나기 어렵기 때문이다. In order to investigate the effect of the annealing temperature on the ductility of high carbon steel, the invention steel (1) of Table 1 was heated to 1200 ° C and maintained for 2 hours, and then the rolling finish temperature was 850 ° C and the winding temperature was 600 ° C. The hot rolled steel sheet was prepared. The hot rolled steel sheet thus prepared was pickled and annealed in a non-oxidizing atmosphere at 590 to 740 ° C. for 15 hours. The tensile test was carried out by processing the tensile test specimen from the steel sheet thus manufactured, and the results are shown in FIG. As shown in FIG. 3, when the annealing temperature is below 650 ° C. or above 710 ° C., the elongation is low, and the annealing temperature has a constant high elongation between 650 and 710 ° C. The reason is that if the annealing temperature is 650 ° C. or lower, the diffusion rate of carbon is slow and graphitization progresses slowly. If the annealing temperature is 710 ° C. or higher, carbon is dissolved in austenite and graphitization hardly occurs.

따라서, 소둔온도는 650~710℃로 하는 것이 바람직하다.Therefore, it is preferable that annealing temperature shall be 650-710 degreeC.

이상에서 설명한 바와 같이, 본 발명으로 제조된 고탄소강판은 성형전의 연성이 우수하여 성형이 쉽고, 성형후 통상의 열처리를 통해 경도 및 강도를 쉽게 높일 수 있기 때문에, 이제까지 부품성형의 어려움으로 사용이 제한되었던 분야에까지 적용될 수 있다. 따라서, 본 발명에 의하면, 부품산업 발전에 크게 기여할 수 있는 효과가 있다. As described above, the high carbon steel sheet manufactured by the present invention has excellent ductility before molding, and is easy to mold, and since it is easy to increase hardness and strength through normal heat treatment after molding, it has been difficult to use due to the difficulty of molding parts until now. Applicable to areas that have been limited. Therefore, according to the present invention, there is an effect that can greatly contribute to the development of the parts industry.

도1은 압연마무리온도에 따른 연신율의 변화를 나타내는 그래프.1 is a graph showing the change in elongation according to the rolling finish temperature.

도2는 권취온도에 따른 연신율의 변화를 나타내는 그래프.2 is a graph showing the change in elongation according to the coiling temperature.

도3은 소둔온도에 따른 연신율의 변화를 나타내는 그래프.3 is a graph showing a change in elongation according to annealing temperature.

Claims (2)

삭제delete 중량%로, C: 0.3~0.8%, Si: 0.1~1.5%, Mn: 0.1~0.5%, Al: 0.01~0.1%, N: 0.0026~0.015%을 함유하고, Ti는 (N-0.0026)/0.29≤Ti(%)≤(N-0.00065)/0.29, B는 0.0005+0.77(N-0.29Ti)≤B(%)≤0.003+0.77(N-0.29Ti)을 만족하는 범위에서 첨가되며, 잔부 Fe 및 불순물로 이루어지는 강재를, 마무리압연온도 900℃ 이하, 권취온도를 650℃ 이하로 하여 열연강판으로 제조하고, 제조된 열연강판을 650~710℃의 온도범위에서 소둔하여 페라이트와 흑연으로 이루어지는 것을 특징으로 하는 연성 및 열처리성이 우수한 고탄소강대의 제조방법.By weight, C: 0.3-0.8%, Si: 0.1-1.5%, Mn: 0.1-0.5%, Al: 0.01-0.1%, N: 0.0026-0.015%, Ti is (N-0.0026) / 0.29≤Ti (%) ≤ (N-0.00065) /0.29, B is added in a range satisfying 0.0005 + 0.77 (N-0.29Ti) ≤B (%) ≤0.003 + 0.77 (N-0.29Ti) The steel material consisting of Fe and impurities is manufactured into a hot rolled steel sheet with a finish rolling temperature of 900 ° C. or lower and a coiling temperature of 650 ° C. or lower, and the resulting hot rolled steel sheet is annealed at a temperature range of 650 to 710 ° C. to form ferrite and graphite. A method of manufacturing high carbon steel sheet having excellent ductility and heat treatment.
KR10-1999-0052021A 1999-11-23 1999-11-23 A method for producing a high carbon steel strip with high elongation and hardenability KR100479993B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0052021A KR100479993B1 (en) 1999-11-23 1999-11-23 A method for producing a high carbon steel strip with high elongation and hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0052021A KR100479993B1 (en) 1999-11-23 1999-11-23 A method for producing a high carbon steel strip with high elongation and hardenability

Publications (2)

Publication Number Publication Date
KR20010047691A KR20010047691A (en) 2001-06-15
KR100479993B1 true KR100479993B1 (en) 2005-03-30

Family

ID=19621272

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0052021A KR100479993B1 (en) 1999-11-23 1999-11-23 A method for producing a high carbon steel strip with high elongation and hardenability

Country Status (1)

Country Link
KR (1) KR100479993B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100815748B1 (en) * 2001-12-12 2008-03-20 주식회사 포스코 Method of manufacturing high carbon tool steel strip for thick plate with high hardenability and impact resistance
KR100851805B1 (en) * 2006-12-27 2008-08-13 주식회사 포스코 Manufacturing method of high carbon steel sheet superior in impact toughness

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052551A (en) * 1983-08-31 1985-03-25 Sumitomo Metal Ind Ltd Steel having high ductility and high workability and its production
JPH04124216A (en) * 1990-09-12 1992-04-24 Sumitomo Metal Ind Ltd Production of high carbon steel sheet having superior formability
JPH08269541A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Production of hot rolled high carbon steel plate excellent in hardenability and workability
JPH10330876A (en) * 1997-05-29 1998-12-15 Nkk Corp High carbon steel excellent in hardenability at low-temperature short-time heating
KR19990038338A (en) * 1997-11-04 1999-06-05 이구택 Manufacturing method of high carbon steel sheet with excellent ductility

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052551A (en) * 1983-08-31 1985-03-25 Sumitomo Metal Ind Ltd Steel having high ductility and high workability and its production
JPH04124216A (en) * 1990-09-12 1992-04-24 Sumitomo Metal Ind Ltd Production of high carbon steel sheet having superior formability
JPH08269541A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Production of hot rolled high carbon steel plate excellent in hardenability and workability
JPH10330876A (en) * 1997-05-29 1998-12-15 Nkk Corp High carbon steel excellent in hardenability at low-temperature short-time heating
KR19990038338A (en) * 1997-11-04 1999-06-05 이구택 Manufacturing method of high carbon steel sheet with excellent ductility
KR100328043B1 (en) * 1997-11-04 2002-05-10 이구택 A Method of Manufacturing High carbon steel strip

Also Published As

Publication number Publication date
KR20010047691A (en) 2001-06-15

Similar Documents

Publication Publication Date Title
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
KR101128942B1 (en) Fine spheroidal graphite steel sheet with excellent heat treatmentability and manufacturing method thereof
US6660105B1 (en) Case hardened steel excellent in the prevention of coarsening of particles during carburizing thereof, method of manufacturing the same, and raw shaped material for carburized parts
KR101390612B1 (en) Method for producing hot-rolled high carbon steel sheet
KR100722394B1 (en) Steel having superior spheroidized annealing and method making of the same
EP2868764B1 (en) Steel sheet for soft nitriding and method for manufacturing the same
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
KR102131530B1 (en) Steel wire rod having excellent spheroidizing heat treatment properties and method of manufacturing the same
KR102222614B1 (en) Cold-rolled steel sheet having high resistance for hydrogen embrittlement and manufacturing method thereof
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
KR100479993B1 (en) A method for producing a high carbon steel strip with high elongation and hardenability
KR102153196B1 (en) High carbon boron added steel and manufacturing method thereof
KR100328043B1 (en) A Method of Manufacturing High carbon steel strip
KR102131529B1 (en) Steel wire rod having excellent spheroidizing heat treatment properties and method of manufacturing the same
JP2518873B2 (en) Steel plate for heat treatment
KR101353551B1 (en) High carbon hot/cold rolled steel coil and manufactureing method thereof
KR100900646B1 (en) Method of manufacturing high Si added high carbon wire rod
JPS589816B2 (en) Manufacturing method of non-thermal rolled steel bar
JPS6137333B2 (en)
JP2618933B2 (en) Steel plate for heat treatment
JPH1088237A (en) Production of cold rolled high carbon steel strip
KR100627484B1 (en) Method of manufacturing graphite steel rod for machine structural use having lower decarburized surface property
KR100823600B1 (en) High carbon steel sheet superior in isotropy and manufacturing method thereof
KR100363193B1 (en) A method for manufacturing bolts having high strength and elongation
KR100363192B1 (en) A method for manufacturing high strength bolts

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140321

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150316

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180314

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee