JP2009030078A - High workability ferritic stainless steel sheet excellent in ridging resistance, and producing method therefor - Google Patents

High workability ferritic stainless steel sheet excellent in ridging resistance, and producing method therefor Download PDF

Info

Publication number
JP2009030078A
JP2009030078A JP2007192109A JP2007192109A JP2009030078A JP 2009030078 A JP2009030078 A JP 2009030078A JP 2007192109 A JP2007192109 A JP 2007192109A JP 2007192109 A JP2007192109 A JP 2007192109A JP 2009030078 A JP2009030078 A JP 2009030078A
Authority
JP
Japan
Prior art keywords
less
steel sheet
stainless steel
ferritic stainless
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007192109A
Other languages
Japanese (ja)
Inventor
Masaharu Hatano
正治 秦野
Hiroyuki Miyamoto
博之 宮本
Noriyuki Jinbo
規之 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp, Doshisha Co Ltd filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2007192109A priority Critical patent/JP2009030078A/en
Publication of JP2009030078A publication Critical patent/JP2009030078A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Extrusion Of Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high workability ferritic stainless steel sheet excellent in a ridging resistance and a producing method therefor, with which a texture of the product sheet and a working texture before the last annealing, are regulated to control this regulation in a cold process or a warm process after hot-rolling. <P>SOLUTION: To the ferritic stainless steel composed of by mass% of ≤0.03% C, 10-25% Cr, ≤0.030% N, ≤0.35% Ti, ≤0.1% Al, before cold-rolling, plastic working for passing through a course having the angle to the moving direction of the steel sheet is applied. Thus, in the case of setting an X-ray random strength ratio of ä001}<110> plane and ä111}<110> plane in the sheet plane at the center of the sheet thickness of the working texture structure for applying the last annealing to respectively Ia and Ib, these are regulated to be Ia≥5 and Ia/Ib>1 and the texture structure of the product sheet is made to be <0.1 mm the maximum length in ä001} and ä112} plane directional ranges and the existence ratio thereof is made to be 10-50 area%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐リジング性に優れた高加工性フェライト系ステンレス鋼板とその製造方法に関するものである。   The present invention relates to a highly workable ferritic stainless steel sheet having excellent ridging resistance and a method for producing the same.

フェライト系ステンレス鋼板は、厨房機器、家電製品、電子機器など幅広い分野で使用されている。しかしながら、オ−ステナイト系ステンレス鋼板に比べ、加工性に劣るため、用途が限定される場合があった。   Ferritic stainless steel sheets are used in a wide range of fields such as kitchen equipment, home appliances, and electronic equipment. However, since the processability is inferior to that of an austenitic stainless steel sheet, the application may be limited.

近年、精錬技術の向上により極低炭素・窒素化が可能となり、更にTiやNbなどの安定化元素の添加により、加工性と耐食性を高めたフェライト系ステンレス鋼板は広範囲の加工用途へ適用されつつある。これは、フェライト系ステンレス鋼が屋内環境において良好な耐食性を有し、多量のNiを添加するオ−ステナイト系ステンレス鋼よりも経済性に優れるためである。   In recent years, ferritic stainless steel sheets with improved workability and corrosion resistance have been applied to a wide range of processing applications through the addition of stabilizing elements such as Ti and Nb. is there. This is because ferritic stainless steel has good corrosion resistance in an indoor environment and is more economical than austenitic stainless steel to which a large amount of Ni is added.

従来、フェライト系ステンレス鋼板の加工後の表面品質は、鋼板をプレス成形した時に圧延方向に沿って生じる微細な凹凸、いわゆるリジングと呼ばれる現象によって著しく劣化する。リジングの成因は必ずしも明確ではないが、圧延方向に沿って配列した類似の結晶方位を持つコロニーが存在し、各コロニー間の塑性変形挙動の差に基づいて発生するものと理解されている。ここで、コロニーは凝固組織の粗大粒に由来して形成されるところが大きいと考えられている。   Conventionally, the surface quality after processing of a ferritic stainless steel sheet is significantly deteriorated by a phenomenon called so-called ridging, that is, fine irregularities generated along the rolling direction when the steel sheet is press-formed. Although the origin of ridging is not necessarily clear, it is understood that colonies having similar crystal orientations arranged along the rolling direction exist and are generated based on the difference in plastic deformation behavior between the colonies. Here, it is considered that colonies are largely formed from coarse particles of solidified tissue.

リジングは、上述したようなフェライト系ステンレス鋼の極低炭素・窒素化により顕在化しやすい場合がある。すなわち、凝固組織で粗大粒が形成しやすくなり、リジングの成因となる{001}面方位のコロニーが生じやすくなるためである。   Ridging may be easily manifested by the extremely low carbon / nitrogenation of the ferritic stainless steel as described above. That is, coarse grains are easily formed in the solidified structure, and colonies having a {001} plane orientation that is a cause of ridging are easily generated.

これまで、炭素や窒素を低減したフェライト系ステンレス鋼の耐リジング性改善ついては、凝固組織の粗大粒を微細化・ランダム方位化することを主眼として、下記の対策が有効な手段と考えられている。
(1)凝固段階での微細化・ランダム方位化
(2)熱間圧延工程での微細化・ランダム方位化
Up to now, the improvement of ridging resistance of ferritic stainless steel with reduced carbon and nitrogen has been considered to be an effective means with the following measures as the main aim of refining coarse grains in a solidified structure and random orientation. .
(1) Refinement and random orientation in the solidification stage (2) Refinement and random orientation in the hot rolling process

(1)は、リジングの成因となる粗大粒を初期から細かくしておく考え方に基づいている。古くから、特許文献1などのように、粗大柱状晶の等軸微細化、ランダム方位化を目的とした電磁攪拌、凝固核の接種、鋳造温度を低下することが開示されている。近年では、例えば、特許文献2,特許文献3,特許文献4のように、成分と凝固核の接種方法により介在物を規定することで凝固組織を微細化する技術が開示されている。   (1) is based on the idea of keeping coarse particles that cause ridging fine from the beginning. For a long time, as disclosed in Patent Document 1 and the like, it has been disclosed that electromagnetic stirrer, inoculation of solidification nuclei, and casting temperature for the purpose of equiaxial refinement and random orientation of coarse columnar crystals have been disclosed. In recent years, for example, as disclosed in Patent Document 2, Patent Document 3, and Patent Document 4, a technique for refining a solidified structure by defining inclusions by a method of inoculating components and solidified nuclei has been disclosed.

(2)は、リジングの成因となる粗大粒を熱間圧延での再結晶と加工歪により破壊する考え方に基づいている。例えば、特許文献5,特許文献6,特許文献7には、圧延温度,歪速度,圧下率,摩擦係数等の関係を詳細に規定する製造技術が開示されている。   (2) is based on the idea of breaking coarse grains that are the cause of ridging by recrystallization in hot rolling and processing strain. For example, Patent Document 5, Patent Document 6, and Patent Document 7 disclose manufacturing techniques that define in detail the relationship between rolling temperature, strain rate, rolling reduction, friction coefficient, and the like.

一方、フェライト系ステンレス鋼板の加工性向上は、深絞り性すなわちr値を向上させる考え方に基づいている。例えば、特許文献8および特許文献9には、熱間圧延条件を規定してr値を向上させる製造技術が開示されている。   On the other hand, improvement of workability of ferritic stainless steel sheet is based on the idea of improving deep drawability, that is, r value. For example, Patent Document 8 and Patent Document 9 disclose manufacturing techniques for improving the r value by defining hot rolling conditions.

また、フェライト系ステンレス鋼板のr値と集合組織とは密接な関係にあり、特許文献10,特許文献11,特許文献12には集合組織を規定してr値を向上させる技術が開示されている。特許文献10と特許文献11は、r値の向上に有効な{111}面方位を多く生成させ,r値の低下要因となり得る{001}面方位を低減する考え方に基づいている。具体的には、{111}面と{001}面のX線積分強度比{111}/{001}が特許文献10では5以上,特許文献11では15以上と規定している。一方、特許文献12は、上述の強度比を高めることに加え,r値の面内異方性を低減するために{111}<112>面と{111}<011>面の強度比を規定している。   Further, the r value and the texture of the ferritic stainless steel sheet are closely related, and Patent Literature 10, Patent Document 11, and Patent Literature 12 disclose techniques for improving the r value by defining the texture. . Patent Document 10 and Patent Document 11 are based on the idea of generating a large number of {111} plane orientations effective for improving the r value and reducing the {001} plane orientation that can be a cause of a decrease in the r value. Specifically, the X-ray integral intensity ratio {111} / {001} between the {111} plane and the {001} plane is defined as 5 or more in Patent Document 10 and 15 or more in Patent Document 11. On the other hand, Patent Document 12 specifies the intensity ratio of the {111} <112> plane and the {111} <011> plane in order to reduce the in-plane anisotropy of the r value in addition to increasing the above-described intensity ratio. is doing.

上述した通り、耐リジング性の向上には、凝固組織に由来して形成するコロニーを凝固あるいは熱間圧延の段階で微細化・ランダム方位化することが有効である。一方、r値の向上については、集合組織をコントロールして、{111}面方位の存在量を増加させ,{001}面方位の存在量を低減することが効果的である。すなわち、従来技術は、凝固組織に由来したコロニーの要因となり得る{001}面方位を徹底的に低減することによって耐リジング性とr値の向上を達成するものである。   As described above, to improve the ridging resistance, it is effective to make the colonies formed from the solidified structure finer and randomly oriented at the stage of solidification or hot rolling. On the other hand, for improving the r value, it is effective to control the texture to increase the abundance of the {111} plane orientation and reduce the abundance of the {001} plane orientation. That is, the prior art achieves improvement in ridging resistance and r value by thoroughly reducing the {001} plane orientation that can be a factor of colonies derived from the solidified tissue.

特開昭50−123294号公報JP 50-123294 A 特開平10−324956号公報Japanese Patent Laid-Open No. 10-324956 特開2000−192199号公報JP 2000-192199 A 特開2001−294991号公報JP 2001-294991 A 特公平4−9851号公報Japanese Examined Patent Publication No. 4-9851 特開平7−310122号公報JP 7-310122 A 特開平10−280046号公報JP-A-10-280046 特開昭62−77423号公報JP 62-77423 A 特開平7−268485号公報JP-A-7-268485 特開平3−81036公報JP-A-3-81036 特開2002−285300公報JP 2002-285300 A 特開2005−163139公報JP 2005-163139 A

前述のように、フェライト系ステンレス鋼は極低炭素・窒素化により、凝固組織に由来するコロニーを生じやすい場合がある。すなわち、熱延鋼板においても{001}面方位のコロニーが残存する場合がある。言い換えると、凝固あるいは熱間圧延の工程において数多くの制約を課す従来技術の対策は、必ずしも有効に作用しない場合も発生する。そのような場合、熱間圧延以降の工程において、上述のコロニーの影響を低減・無害化する有効な先行技術は未だ出現していないのが現状である。   As described above, ferritic stainless steel tends to generate colonies derived from a solidified structure due to extremely low carbon and nitrogenation. That is, a colony having a {001} plane orientation may remain even in a hot-rolled steel sheet. In other words, the measures of the prior art that impose many restrictions in the solidification or hot rolling process may not always work effectively. In such a case, in the current process after hot rolling, no effective prior art has yet emerged that reduces or renders the above-mentioned colony effects harmless.

本発明は、炭素や窒素を低減して凝固組織に由来するコロニーの影響が熱延鋼板に残存しやすいフェライト系ステンレス鋼についても、熱間圧延以降においてその影響を低減・無害化することを目的とする。   The purpose of the present invention is to reduce and render harmless after the hot rolling of ferritic stainless steel, in which the influence of colonies derived from the solidified structure by reducing carbon and nitrogen is likely to remain in the hot-rolled steel sheet. And

すなわち、本発明は、製品板の集合組織ならびに最終焼鈍前の加工集合組織を規定し,それを熱間圧延以降の冷間あるいは温間工程においてコントロールすることにより、上記課題を解決し、耐リジング性に優れた高加工性フェライト系ステンレス鋼板とその製造方法を提供する。
(1)質量%にて、C:0.03%以下、Si:1%以下、Mn:1%以下、P:0.05%以下、S:0.01%以下、Cr:10〜25%、N:0.030%以下、Ti:0.35%以下、Al:0.1%以下、残部がFeおよび不可避的不純物からなり、板厚中心の板面において、{001}および{112}面方位領域の最大長さが0.1mm未満でかつそれら存在が10〜50面積%であり,圧延方向に対し0°,45°,90°の平均r値が1.6以上かつΔr値が0.5以下であることを特徴とする耐リジング性に優れた高加工性フェライト系ステンレス鋼板。
(2)前記鋼の最終焼鈍に供する加工集合組織が、板厚中心の板面において{001}<110>面および{111}<110>面のX線ランダム強度比をそれぞれIa,Ibとした場合、Ia≧5かつIa/Ib>1の関係を満足することを特徴とする(1)に記載の耐リジング性に優れた高加工性フェライト系ステンレス鋼板。
(3)圧延方向に対して伸び歪16%を付与した後のリジング高さが5μm以下であることを特徴とする(1)または(2)に記載の耐リジング性に優れた高加工性フェライト系ステンレス鋼板。
(4)前記鋼が、さらに質量%にて、Mg:0.005%以下、Nb:1%以下、Mo:2%以下、Ni:2%以下、Cu:2%以下、B:0.005%以下の1種または2種以上含有していることを特徴とする(1)から(3)のいずれかに記載の耐リジング性に優れた高加工性フェライト系ステンレス鋼板。
(5)(1)または(4)に記載の鋼成分を有するフェライト系ステンレス鋼スラブを熱間圧延して熱延板とし,次いで焼鈍と冷間圧延を繰り返す鋼板の製造方法において、鋼板の移動方向に対して角度のついた経路を通過する塑性加工を施した後、冷間圧延を施して焼鈍することを特徴とする(1)から(4)のいずれかに記載の耐リジング性に優れた高加工性フェライト系ステンレス鋼板の製造方法。
(6)(1)または(4)に記載の鋼成分を有するフェライト系ステンレス鋼スラブを熱間圧延して熱延板とし,次いで焼鈍と冷間圧延を繰り返す鋼板の製造方法において、鋼板の移動方向に対して角度のついた経路を通過する塑性加工を施した後、焼鈍を行い、次いで冷間圧延を施して焼鈍することを特徴とする(1)から(4)のいずれかに記載の耐リジング性に優れた高加工性フェライト系ステンレス鋼板の製造方法。
That is, the present invention solves the above-mentioned problems by defining the texture of the product plate and the processed texture before final annealing, and controlling it in the cold or warm process after hot rolling. The present invention provides a highly workable ferritic stainless steel sheet having excellent properties and a method for producing the same.
(1) In mass%, C: 0.03% or less, Si: 1% or less, Mn: 1% or less, P: 0.05% or less, S: 0.01% or less, Cr: 10-25% N: 0.030% or less, Ti: 0.35% or less, Al: 0.1% or less, the balance being Fe and unavoidable impurities, and {001} and {112} The maximum length of the plane orientation region is less than 0.1 mm and the presence thereof is 10 to 50 area%, the average r value of 0 °, 45 °, 90 ° with respect to the rolling direction is 1.6 or more, and the Δr value is A highly workable ferritic stainless steel sheet having excellent ridging resistance, characterized by being 0.5 or less.
(2) The processed texture to be subjected to the final annealing of the steel has the X-ray random intensity ratios of the {001} <110> plane and the {111} <110> plane as Ia and Ib, respectively, in the plate surface at the plate thickness center. The high workability ferritic stainless steel sheet having excellent ridging resistance according to (1), wherein the relationship of Ia ≧ 5 and Ia / Ib> 1 is satisfied.
(3) The high workability ferrite having excellent ridging resistance according to (1) or (2), wherein the ridging height after applying an elongation strain of 16% in the rolling direction is 5 μm or less Stainless steel sheet.
(4) The steel is further in mass%, Mg: 0.005% or less, Nb: 1% or less, Mo: 2% or less, Ni: 2% or less, Cu: 2% or less, B: 0.005 % High-workability ferritic stainless steel sheet having excellent ridging resistance according to any one of (1) to (3).
(5) In the method of manufacturing a steel sheet, which is hot-rolled by hot rolling the ferritic stainless steel slab having the steel component described in (1) or (4), and then repeating annealing and cold rolling, the movement of the steel sheet It is excellent in ridging resistance according to any one of (1) to (4), characterized in that it is annealed after being subjected to plastic working passing through a path that is angled with respect to the direction. A method for producing a highly workable ferritic stainless steel sheet.
(6) In the method of manufacturing a steel sheet, the ferritic stainless steel slab having the steel component described in (1) or (4) is hot-rolled to form a hot-rolled sheet, and then subjected to annealing and cold rolling. According to any one of (1) to (4), the plastic working that passes through a path that is angled with respect to the direction is performed, and then annealing is performed, followed by cold rolling and annealing. A method for producing a highly workable ferritic stainless steel sheet having excellent ridging resistance.

以下、上記(1)〜(4)の鋼板に係わる発明及び(5)、(6)の製造方法に係わる発明をそれぞれ本発明という。また、(1)〜(6)の発明を合わせて、本発明ということがある。   Hereinafter, the inventions related to the steel sheets (1) to (4) and the inventions related to the manufacturing methods (5) and (6) are referred to as the present invention. The inventions (1) to (6) may be collectively referred to as the present invention.

以上に説明したように、本発明のフェライト系ステンレス鋼板は、製品板の集合組織ならびに最終焼鈍前の加工集合組織を規定することにより、耐リジング性とr値の両者を向上させることが出来る。このフェライト系ステンレス鋼板は、本発明の製造方法によって、熱間圧延以降の製造工程において目的とする集合組織にコントロールすることができる。   As described above, the ferritic stainless steel sheet of the present invention can improve both ridging resistance and r value by defining the texture of the product sheet and the processed texture before the final annealing. This ferritic stainless steel sheet can be controlled to the target texture in the manufacturing process after hot rolling by the manufacturing method of the present invention.

本発明者らは、前記した課題を解決するために、炭素や窒素を低減したフェライト系ステンレス鋼板のリジングやr値に及ぼす製品板の集合組織ならびに最終焼鈍前の加工集合組織の影響について鋭意研究を行い、本発明を完成させた。以下にその代表的な実験結果について説明する。   In order to solve the above-mentioned problems, the present inventors have intensively studied the influence of the texture of the product plate and the processed texture before the final annealing on the ridging and r value of the ferritic stainless steel sheet with reduced carbon and nitrogen. To complete the present invention. The typical experimental results will be described below.

Figure 2009030078
Figure 2009030078

表1に成分を示すフェライト系ステンレス鋼の4mm厚実機熱延板を用いて、熱延板焼鈍を行い酸洗した。次に、熱延焼鈍板は、図1に示すような120°の角度のついた経路を持つダイス中を通過させる塑性加工を行った。押し出し方向は、圧延方向とした。その後、焼鈍あるいは焼鈍することなく1回および2回の冷間圧延により0.6mm厚冷延板とした。2回の冷間圧延の場合は、中間材を2mm厚とした。冷延板は、最終焼鈍と酸洗を行い、リジング高さとr値の評価ならびに集合組織の調査・解析に供した。焼鈍温度はいずれも920℃で実施した。   Using hot rolled sheets of 4 mm thick actual ferritic stainless steel having the components shown in Table 1, hot rolled sheet annealing was performed and pickling was performed. Next, the hot-rolled annealed plate was subjected to plastic working by passing through a die having a path with an angle of 120 ° as shown in FIG. The extrusion direction was the rolling direction. Thereafter, a cold rolled sheet having a thickness of 0.6 mm was formed by cold rolling once and twice without annealing or annealing. In the case of cold rolling twice, the intermediate material was 2 mm thick. The cold-rolled sheet was subjected to final annealing and pickling, and was subjected to ridging height and r-value evaluation and texture investigation / analysis. The annealing temperature was all performed at 920 ° C.

比較材として、4mm厚熱延板から、図1に示す塑性加工を施さない、1回および中間焼鈍を含む2回の冷間圧延により0.6mm厚の冷延焼鈍板を製造した。2回の冷間圧延は、中間材を2mm厚とした。   As a comparative material, a 0.6 mm thick cold-rolled annealed sheet was manufactured from a 4 mm-thick hot-rolled sheet by two cold rollings including one time and intermediate annealing without applying the plastic working shown in FIG. In the cold rolling twice, the intermediate material was 2 mm thick.

リジング高さは、JIS5号試験片を採取して,圧延方向に16%の伸び歪を付与し,2次元粗さ測定器により表面プロファイルを測定し,最大の凹凸高さとした。r値は、圧延方向に対し、0°,45°,90°方向にJIS13B引張試験片を採取し,16%伸び歪での値を求めた。平均r値とΔr値は、次式により平均r値を計算した。
平均r=(r+2r45°+r90°)/4,
Δr=(r−2r45°+r90°)/2
For the ridging height, a JIS No. 5 test piece was sampled, an elongation strain of 16% was applied in the rolling direction, the surface profile was measured with a two-dimensional roughness measuring instrument, and the maximum unevenness height was obtained. For the r value, JIS13B tensile test pieces were sampled in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction, and the values at 16% elongation strain were obtained. The average r value and Δr value were calculated by the following formula.
Average r = (r 0 ° + 2r 45 ° + r 90 ° ) / 4
Δr = (r 0 ° -2r 45 ° + r 90 ° ) / 2

最終焼鈍材は、板厚中心の板面においてEBSP法により倍率100の視野で結晶方位マップを測定し,結晶粒毎の方位を確認して{001}および{112}面方位からなる領域を同一色で表示できる。以下、この同一色で表示された{001}および{112}面方位からなる領域を、{001}面方位領域のように呼ぶことにする。このようなEBSP法による測定を行って{001}および{112}面方位領域の最大長さと面積率を求めた。0.6mm厚冷間圧延材は、板厚中心の板面においてX線回折により結晶粒方位分布関数(ODF)を測定し,{001}<110>面および{111}<110>面のX線ランダム強度比を求めた。   For the final annealed material, the crystal orientation map is measured at a magnification of 100 on the plate surface at the center of the plate thickness by the EBSP method, the orientation for each crystal grain is confirmed, and the region composed of {001} and {112} plane orientations is the same. Can be displayed in color. Hereinafter, a region composed of {001} and {112} plane orientations displayed in the same color will be referred to as a {001} plane orientation region. Measurement by such an EBSP method was performed to determine the maximum length and area ratio of the {001} and {112} plane orientation regions. The 0.6 mm thick cold-rolled material was measured for the grain orientation distribution function (ODF) by X-ray diffraction on the plate surface at the center of the plate thickness, and X on the {001} <110> plane and the {111} <110> plane. The line random intensity ratio was determined.

Figure 2009030078
Figure 2009030078

表2は、上述した実験結果を示したものである。表2から明らかなように、符号1〜符号4は、図1に示すようなダイスを通過させる塑性加工を行ったものであり、比較材の符号5と符号6よりも、平均r値は高くΔr値は低く,リジング高さは小さい。   Table 2 shows the experimental results described above. As is clear from Table 2, the reference numerals 1 to 4 are obtained by performing plastic working through which a die as shown in FIG. 1 is passed, and the average r value is higher than the reference numerals 5 and 6 of the comparative material. The Δr value is low and the ridging height is small.

符号1〜符号4の集合組織は、冷延焼鈍板の板厚中心の板面において{001}および{112}面方位領域の最大長さが小さくかつそれら面積率が大きい。さらに、最終焼鈍に供する冷間圧延材の加工集合組織において{001}<110>面のX線ランダム強度比も大きいという特徴を持つ。   In the textures of reference numerals 1 to 4, the maximum length of the {001} and {112} plane orientation regions is small and the area ratio is large on the plate surface at the center of the thickness of the cold-rolled annealed plate. Furthermore, the working texture of the cold-rolled material subjected to final annealing has a feature that the X-ray random intensity ratio of the {001} <110> plane is also large.

一方、符号5,6は、{001}および{112}面方位領域の面積率が小さくても、{001}や{112}面方位領域の最大長さは0.1mmを超えており,圧延方向に対して複数の結晶粒が連なったコロニ−として観察される。符号1〜符号4の{001}および{112}面方位領域の最大長さは0.1mm未満であり、符号3および符号4では{001}および{112}面方位領域が結晶粒径に近いサイズで分布しているという特徴を持つ。   On the other hand, the reference numerals 5 and 6 indicate that the maximum length of the {001} and {112} plane orientation regions exceeds 0.1 mm even though the area ratio of the {001} and {112} plane orientation regions is small. It is observed as a colony in which a plurality of crystal grains are connected in the direction. The maximum length of the {001} and {112} plane orientation regions of reference numerals 1 to 4 is less than 0.1 mm. In reference numerals 3 and 4, the {001} and {112} plane orientation regions are close to the crystal grain size. It has the feature of being distributed in size.

上述した符号1〜4は、図2および図3から明らかなように、従来技術の考え方において、r値や耐リジング性の低下要因と理解されているα−fiberと呼ばれている{001}および{112}面方位領域の存在量が多いにも関らず,高いr値と小さな塑性異方性(Δr)ならびに良好な耐リジング性を有している。その理由について考察するために、EBSP法ならびにX線回折法に加えて,TEM(透過型電子顕微鏡)を用いた詳細な組織解析を行い、下記の新しい知見を得た。   As is apparent from FIGS. 2 and 3, the above-described symbols 1 to 4 are called α-fiber {001}, which is understood as a factor of decrease in r value and ridging resistance in the concept of the prior art. In addition, although the abundance of the {112} plane orientation region is large, it has a high r value, a small plastic anisotropy (Δr), and good ridging resistance. In order to consider the reason, in addition to the EBSP method and the X-ray diffraction method, detailed structural analysis using a TEM (transmission electron microscope) was performed, and the following new findings were obtained.

(a)鋼板の移動方向に対して角度の付いた経路を通過する塑性加工を施すと、冷延素材には、転位密度の高い変形帯が導入されるとともに、集合組織の変化を生じる。
(b)変形帯は、{001}面方位のコロニー中にも導入される。ここで、コロニーとは板面からEBSP方位マップを測定した際、{001}面方位領域の最大長さが0.1mmを越えるものを呼ぶことにする。コロニー状も同じく0.1mmを超えていることを意味するものとする。
(c)集合組織は、{110}<001>と{112}<111>の方位が新たに出現するという変化を生じる。
(d)次いで冷間圧延すると、{001}面および{112}面方位領域からなるコロニーは変形帯によって分断される。
(e)冷間圧延後の加工集合組織は、{111}<112>と{001}<110>が発達するという特徴を持つ。
(f)冷間圧延後に{001}<110>が発達する要因は、冷延素材に出現した{112}<111>方位に由来する冷延集合組織であると考えられる。
(g)続いて最終焼鈍すると、変形帯は再結晶の核生成サイトとして作用して{001}面方位領域に由来するコロニーは分断・粉砕される。すなわち、凝固組織に由来する{001}面方位領域は、コロニー状に連なることなく、結晶粒単位に近い大きさで分散されることになる。
(h)最終焼鈍後の再結晶集合組織は、冷延集合組織に基づいて、{111}<112>〜{554}<225>が主方位として発達し,{001}〜{112}<110>方位も副方位として比較的多く存在することになる。
(i)耐リジング性は、{001}〜{112}<110>面方位領域がコロニー状に連なることなく、結晶粒単位に近い大きさで分散することにより向上したと推察する。また、コロニーの影響を無害化して耐リジング性を向上させるには、冷間圧延前に中間焼鈍を実施することも効果的である。
(j)r値は、母地の集合組織として{111}<112>〜{554}<225>方位が発達することにより向上したと推察する。さらに、{112}方位も比較的多く存在することは45°方位のr値向上に寄与し、面内異方性Δr値の低減にも有効である。
(A) When plastic working that passes through an angled path with respect to the moving direction of the steel sheet is performed, a deformation band having a high dislocation density is introduced into the cold-rolled material, and the texture changes.
(B) The deformation zone is also introduced into a colony having a {001} plane orientation. Here, the colony refers to a colony whose maximum length of the {001} plane orientation region exceeds 0.1 mm when the EBSP orientation map is measured from the plate surface. The colony shape also means that it exceeds 0.1 mm.
(C) The texture is changed such that {110} <001> and {112} <111> appear newly.
(D) Next, when cold-rolling, the colony consisting of the {001} plane and {112} plane orientation region is divided by the deformation band.
(E) The processed texture after cold rolling is characterized in that {111} <112> and {001} <110> develop.
(F) It is considered that the factor that {001} <110> develops after cold rolling is a cold-rolled texture derived from the {112} <111> orientation that appears in the cold-rolled material.
(G) Subsequently, when the final annealing is performed, the deformation band acts as a nucleation site for recrystallization, and the colonies derived from the {001} plane orientation region are divided and pulverized. That is, the {001} plane orientation region derived from the solidified structure is dispersed in a size close to a crystal grain unit without being continuous in a colony shape.
(H) Based on the cold-rolled texture, {111} <112> to {554} <225> develop as main orientations in the recrystallized texture after the final annealing, and {001} to {112} <110 There are relatively many azimuths as sub-azimuths.
(I) It is inferred that the ridging resistance was improved by dispersing the {001} to {112} <110> plane orientation regions in a size close to a crystal grain unit without being continuous in a colony shape. Moreover, in order to make the influence of a colony harmless and to improve ridging resistance, it is also effective to perform intermediate annealing before cold rolling.
(J) It is presumed that the r value is improved by the development of the {111} <112> to {554} <225> orientation as the texture of the matrix. Furthermore, the presence of a relatively large amount of {112} orientation contributes to the improvement of the r value in the 45 ° orientation, and is effective in reducing the in-plane anisotropy Δr value.

前記(1)〜(6)の本発明は、上記(a)〜(j)の知見に基づいて完成されたものである。   The present inventions (1) to (6) have been completed based on the findings (a) to (j).

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".

(A)成分の限定理由を以下に説明する。   (A) The reason for limitation of a component is demonstrated below.

Cは、成形性と耐食性を劣化させるため、その含有量は少ないほど良いため、上限を0.03%とする。但し、過度の低減は精錬コストの増加に繋がるため、下限は0.001%が好ましい。より好ましくは、耐食性や製造コストを考慮して0.002〜0.005%とする。   Since C deteriorates moldability and corrosion resistance, the lower the content, the better. Therefore, the upper limit is made 0.03%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.001%. More preferably, it is 0.002 to 0.005% in consideration of corrosion resistance and manufacturing cost.

Siは、脱酸元素として添加される場合がある。しかし、固溶強化元素であり、伸びの低下抑制からその含有量は少ないほど良いため、上限を1%とする。但し、過度の低減は精錬コストの増加に繋がるため、下限は0.01%が好ましい。より好ましくは、加工性や製造コストを考慮して0.03〜0.30%とする。   Si may be added as a deoxidizing element. However, since it is a solid solution strengthening element and its content is preferably as small as possible from the suppression of the decrease in elongation, the upper limit is made 1%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.01%. More preferably, it is 0.03 to 0.30% in consideration of workability and manufacturing cost.

Mnは、Siと同様、固溶強化元素であるため、その含有量は少ないほど良い。伸びの低下抑制から上限を1%とする。但し、過度の低減は精錬コストの増加に繋がるため、下限は0.01%が好ましい。より好ましくは、加工性と製造コストを考慮して0.03〜0.30%とする。   Since Mn is a solid solution strengthening element like Si, the smaller the content, the better. The upper limit is made 1% in order to suppress the decrease in elongation. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.01%. More preferably, it is 0.03 to 0.30% in consideration of workability and manufacturing cost.

Pは、SiやMnと同様、固溶強化元素であるため、その含有量は少ないほど良い。伸びの低下抑制から上限を0.05%とする。但し、過度の低減は精錬コストの増加に繋がるため、下限は0.005%が好ましい。より好ましくは、製造コストと加工性を考慮して0.010〜0.030%とする。   Since P is a solid solution strengthening element like Si and Mn, the smaller the content, the better. The upper limit is made 0.05% in order to suppress the decrease in elongation. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.005%. More preferably, considering the manufacturing cost and workability, the content is made 0.010 to 0.030%.

Sは、不純物元素であり、熱間加工性や耐食性を阻害するため、その含有量は少ないほど良い。そのため、上限は0.01%とする。但し、過度の低減は精錬コストの増加に繋がるため、下限は0.0001が好ましい。より好ましくは、耐食性や製造コストを考慮して0.0010〜0.0050%とする。   S is an impurity element and inhibits hot workability and corrosion resistance, so the smaller the content, the better. Therefore, the upper limit is made 0.01%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.0001. More preferably, it is 0.0010 to 0.0050% in consideration of corrosion resistance and manufacturing cost.

Crは、耐食性を確保するための必須元素であり、下限を10%とする。但し、25%超の添加は靱性低下により製造性が阻害され、伸びも劣化する。好ましくは、耐食性および製造性と加工性を考慮して16〜19%とする。   Cr is an essential element for ensuring corrosion resistance, and its lower limit is 10%. However, addition over 25% impairs manufacturability due to a decrease in toughness and degrades elongation. Preferably, considering the corrosion resistance and manufacturability and workability, the content is made 16 to 19%.

Nは、Cと同様に成形性と耐食性を劣化させるため、その含有量は少ないほど良いため、上限を0.030%とする。但し、過度の低下は凝固時にフェライト粒生成の核となるTiNが析出せず、凝固組織が柱状晶化し、製品板成形時の耐リジング性が劣化する懸念がある。そのため、下限は0.001%が好ましい。より好ましくは、製造コストと耐食性を考慮して0.005〜0.015%とする。   N, like C, deteriorates moldability and corrosion resistance, so the lower the content, the better. Therefore, the upper limit is made 0.030%. However, excessive reduction may cause TiN which becomes the nucleus of ferrite grain formation at the time of solidification, the solidified structure becomes columnar crystals, and the ridging resistance at the time of product plate forming may be deteriorated. Therefore, the lower limit is preferably 0.001%. More preferably, considering the manufacturing cost and the corrosion resistance, the content is made 0.005 to 0.015%.

Tiは、C,N,S,Pと結合して耐食性、耐粒界腐食性および成形性を向上させるとともに、凝固組織の微細化に寄与する。そのため、下限は0.05%が好ましい。一方、Tiも固溶強化元素であり、過度の添加は伸びの低下に繋がるため、上限を0.35%とする。より好ましくは、溶接部の粒界腐食性や成形性を考慮して0.10〜0.20%とする。   Ti combines with C, N, S, and P to improve corrosion resistance, intergranular corrosion resistance, and formability, and contributes to refinement of a solidified structure. Therefore, the lower limit is preferably 0.05%. On the other hand, Ti is also a solid solution strengthening element, and excessive addition leads to a decrease in elongation, so the upper limit is made 0.35%. More preferably, it is 0.10 to 0.20% in consideration of the intergranular corrosion property and formability of the welded portion.

Alは、脱酸元素として有効な元素である。但し、過度の添加は成形性、溶接性および表面品質の劣化をもたらすため、上限を0.1%とする。好ましくは、精錬コストを考慮して0.01〜0.05%とする。   Al is an effective element as a deoxidizing element. However, excessive addition causes deterioration of formability, weldability and surface quality, so the upper limit is made 0.1%. Preferably, considering the refining cost, 0.01 to 0.05%.

Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する他、TiNの晶出核として作用する。TiNは凝固過程においてフェライト相の凝固核となり、TiNの晶出を促進させることで、凝固時にフェライト相を微細生成させることができる。凝固組織を微細化させることにより、製品のリジングなどの粗大凝固組織に由来する方位粒を低減できる他、成形性の向上をもたらす。そのため、添加する場合は0.005%以下とする。0.0050%を超えると溶接性が劣化する。TiNの晶出核となるMg酸化物の溶鋼中での積極的な形成は、0.0001%から安定して発現する。より好ましくは、精錬コストを考慮して0.0002〜0.0020%とする。   Mg forms Mg oxide with Al in molten steel and acts as a deoxidizer, and also acts as a crystallization nucleus of TiN. TiN becomes a solidification nucleus of the ferrite phase in the solidification process, and by facilitating crystallization of TiN, the ferrite phase can be finely formed during solidification. By refining the solidified structure, orientation grains derived from a coarse solidified structure such as ridging of the product can be reduced, and the moldability is improved. Therefore, when adding, it is 0.005% or less. If it exceeds 0.0050%, the weldability deteriorates. Aggressive formation in the molten steel of Mg oxide, which becomes a crystallization nucleus of TiN, appears stably from 0.0001%. More preferably, considering the refining cost, the content is made 0.0002 to 0.0020%.

Nbは、成形性と耐食性を向上させる元素であり、添加する場合は1%以下とする。1%を超えると材料強度を上昇させて延性の低下をもたらす。その効果は、0.01%から安定して発現する。より好ましくは、製造性や成形性と耐食性を考慮して0.05〜0.6%とする。   Nb is an element that improves moldability and corrosion resistance. When Nb is added, the Nb content is 1% or less. If it exceeds 1%, the material strength is increased and ductility is reduced. The effect appears stably from 0.01%. More preferably, it is made 0.05 to 0.6% in consideration of manufacturability, moldability and corrosion resistance.

Mo、Ni、Cuは耐食性を向上させる元素であり、添加する場合は2.0%以下とする。2.0%を超えると成形性、特に延性の低下をもたらす。その効果は、0.1%から安定して発現する。より好ましくは、製造性や延性を考慮して0.3〜1.5%とする。   Mo, Ni, and Cu are elements that improve the corrosion resistance, and when added, the content is made 2.0% or less. If it exceeds 2.0%, the moldability, particularly the ductility, is lowered. The effect appears stably from 0.1%. More preferably, it is 0.3 to 1.5% in consideration of manufacturability and ductility.

Bは、2次加工性を向上させる元素であり、Ti添加鋼への添加は有効である。添加する場合は0.005%以下とする。0.005%を超えると延性の低下をもたらす。その効果は、0.0001%から安定して発現する。より好ましくは、精錬コストや延性を考慮して0.0003〜0.0030%とする。   B is an element that improves secondary workability, and addition to Ti-added steel is effective. When added, the content is 0.005% or less. If it exceeds 0.005%, the ductility is lowered. The effect appears stably from 0.0001%. More preferably, considering the refining cost and ductility, the content is made 0.0003 to 0.0030%.

(B)集合組織に関する限定理由を以下に説明する。   (B) The reason for limitation regarding the texture will be described below.

本発明のフェライト系ステンレス鋼板は、(A)項で述べた成分を有し、耐リジング性と加工性を向上させるために、集合組織を規定したものである。すなわち、[1]耐リジング性向上の視点から{001}や{112}面方位領域がコロニー状に連なることなく結晶粒単位に近い大きさで分散させる,[2]r値向上の視点から母地の{111}<112>〜{554}<225>方位を発達させるものである。   The ferritic stainless steel sheet of the present invention has the components described in the item (A) and defines a texture in order to improve ridging resistance and workability. That is, [1] From the viewpoint of improving ridging resistance, the {001} and {112} plane orientation regions are dispersed in a size close to the crystal unit without being connected in a colony form. [2] From the viewpoint of improving the r value The {111} <112> to {554} <225> orientation of the ground is developed.

最終焼鈍板は、前記したように、EBSP法により結晶方位マップを測定し,結晶粒毎の方位と分散状態を把握する。ここで得られた方位マップから、各方位領域の最大長さや面積率を求めることができる。   As described above, the final annealed plate measures the crystal orientation map by the EBSP method and grasps the orientation and dispersion state of each crystal grain. From the orientation map obtained here, the maximum length and area ratio of each orientation region can be obtained.

EBSP法は、例えば、顕微鏡;鈴木清一,Vol.39,No.2,121〜124に記載されているように、結晶方位マップを表示し,{001},{112}面方位の面積%を求めることができる。測定に供する試料は、板厚中心部の板面に平行な面とする。測定倍率は、×100〜500,ステップ間隔は焼鈍材で10μm,加工材で0.2μmとすることが好ましい。   The EBSP method is described in, for example, a microscope; Seiichi Suzuki, Vol. 39, no. 2, 121-124, a crystal orientation map is displayed, and the area% of {001}, {112} plane orientation can be obtained. The sample used for measurement is a plane parallel to the plate surface at the center of the plate thickness. The measurement magnification is preferably x100 to 500, and the step interval is preferably 10 μm for the annealed material and 0.2 μm for the processed material.

最終焼鈍板の集合組織は、{001}および{112}面方位領域のコロニーを分断・破壊するために、それら方位を結晶粒単位に近い大きさで分散させる。従って、{001}および{112}面方位領域の最大長さは0.1mm未満とする。好ましくは0.05mm以下,より好ましくは0.03mm以下である。上述した方位領域は、EBSP法で得られる方位マップにおいて、圧延方向に複数の結晶粒が連なった形態を有している場合が多い。そのため、{001}および{112}面方位領域の最大長さは、圧延方向に伸張した長辺の長さとして定義する。前記(b)で定義したように、EBSP方位マップにおいて、{001}および{112}面方位領域の結晶粒が圧延方向に連なって0.1mmを超えるものをコロニーあるいはコロニー状と呼ぶことにする。また、板面からEBSPで方位解析すると、{001}および{112}面方位領域は、圧延方向に<110>を向いている場合が多い。{001}および{112}面方位領域は、圧延方向に<100>から<110>の範囲を向いているものを含むものとする。   The texture of the final annealed plate is dispersed in a size close to a crystal grain unit in order to sever and break colonies in the {001} and {112} plane orientation regions. Therefore, the maximum length of the {001} and {112} plane orientation regions is less than 0.1 mm. Preferably it is 0.05 mm or less, More preferably, it is 0.03 mm or less. The orientation region described above often has a form in which a plurality of crystal grains are continuous in the rolling direction in an orientation map obtained by the EBSP method. Therefore, the maximum length of the {001} and {112} plane orientation regions is defined as the length of the long side extended in the rolling direction. As defined in (b) above, in the EBSP orientation map, the crystal grains in the {001} and {112} plane orientation regions that are continuous in the rolling direction and exceed 0.1 mm are referred to as colonies or colonies. . Further, when azimuth analysis is performed from the plate surface by EBSP, the {001} and {112} plane orientation regions often face <110> in the rolling direction. The {001} and {112} plane orientation regions include those that face the range of <100> to <110> in the rolling direction.

上述のような最大長さにコントル−ルした{001}および{112}面方位領域の面積率は、[1]耐リジング性向上の視点から、50面積%以下とする。好ましくは40面積%以下である。また、集合組織のコントロールは、熱間圧延以降の塑性加工により実施するため、上記面積率の下限を10%とする。耐リジング性向上に有効な塑性加工を導入することを目的として、15〜40%の範囲が好ましい。   The area ratio of the {001} and {112} plane orientation regions controlled to the maximum length as described above is set to 50 area% or less from the viewpoint of [1] ridging resistance improvement. Preferably it is 40 area% or less. Further, since the texture is controlled by plastic working after hot rolling, the lower limit of the area ratio is set to 10%. The range of 15 to 40% is preferable for the purpose of introducing plastic working effective for improving ridging resistance.

以上のように規定する集合組織とするために、最終焼鈍に供する加工集合組織は、{001}<110>面および{111}<110>面のX線ランダム強度比をIa,Ibとした場合、Ia≧5かつIa/Ib>1を満たすものとする。Ia<5,Ia/Ib<1の場合、前記(a)〜(j)に述べた手法での{001}および{112}面方位領域のコロニー分断・破壊が不十分となる。   In order to obtain the texture defined as described above, the processed texture subjected to the final annealing is the case where the X-ray random intensity ratio of the {001} <110> plane and the {111} <110> plane is Ia and Ib , Ia ≧ 5 and Ia / Ib> 1. In the case of Ia <5, Ia / Ib <1, colony division / destruction in the {001} and {112} plane orientation regions by the method described in the above (a) to (j) is insufficient.

上記に記載のX線ランダム強度比は、X線回折法による結晶粒方位分布関数(ODFと呼称される)から求めることができる。この関数は、例えば、軽金属;井上博史,Vol.42,No.6,358〜367に記載されているように、材料座標系に対して結晶粒の方位を一義的に指定する三つの変数(ψ1,φ,ψ2)である。この関数を求めればオイラ−角(ψ1,φ,ψ2)の方位を持つ結晶粒の存在量を知ることができる。ここでは、上述のODFを、X線回折から測定した{200}面,{110}面,{211}面の極点図から決定した。   The X-ray random intensity ratio described above can be obtained from a crystal grain orientation distribution function (referred to as ODF) by an X-ray diffraction method. This function is described in, for example, light metals; Hiroshi Inoue, Vol. 42, no. 6, 358 to 367, there are three variables (ψ1, φ, ψ2) that uniquely specify the crystal grain orientation with respect to the material coordinate system. By obtaining this function, the abundance of crystal grains having Euler angles (ψ1, φ, ψ2) can be known. Here, the above-mentioned ODF was determined from pole figures of {200} plane, {110} plane, and {211} plane measured from X-ray diffraction.

具体的には、ψ2=45°断面上において、{001}<110>は(0°,0°)および(90°,0°),{111}<110>は(0°,54.7°)および(60°,54.7°)の強度によりその存在量を知ることができる。また同解析において、{111}<112>は(30°,54.7°)および(90°,54.7°),{112}<110>は(0°,34.7°)として関連する方位の存在量も知ることができる。   Specifically, on the cross section ψ2 = 45 °, {001} <110> is (0 °, 0 °) and (90 °, 0 °), and {111} <110> is (0 °, 54.7). The abundance can be known from the intensity of (°) and (60 °, 54.7 °). In the same analysis, {111} <112> is related as (30 °, 54.7 °) and (90 °, 54.7 °), and {112} <110> is related as (0 °, 34.7 °). You can also know the abundance of the azimuth.

最終焼鈍板の集合組織は{001}〜{112}面方位領域のコロニー分断・破壊に加えて、[2]r値向上の視点から母地の{111}<112>〜{554}<225>方位を発達させる必要がある。最終焼鈍板において{111}<112>のX線ランダム強度比をIcとした場合、上述の解析において、好ましくはIc>5,より好ましくはIc>10とする。   The texture of the final annealed plate is {111} <112>-{554} <225 of the matrix from the viewpoint of improving the [2] r value in addition to colony division / destruction in the {001}-{112} plane orientation region > Direction needs to be developed. When the X-ray random intensity ratio of {111} <112> in the final annealed plate is Ic, in the above analysis, preferably Ic> 5, more preferably Ic> 10.

本発明に規定する集合組織とした場合、前述の方法でリジング高さと平均r値およびΔr値を測定すると、リジング高さは5μm以下,平均r値は1.6以上,Δr値は0.5以下とできる。より好ましくは、リジング高さ3μm以下,平均r値2.0以上,Δr値0.3以下とする。これら特性は、{111}方位を発達させる冷間圧延と焼鈍を繰り返す製造方法においても達成することは容易でない。   In the case of the texture defined in the present invention, when the ridging height, the average r value and the Δr value are measured by the method described above, the ridging height is 5 μm or less, the average r value is 1.6 or more, and the Δr value is 0.5. The following can be done. More preferably, the ridging height is 3 μm or less, the average r value is 2.0 or more, and the Δr value is 0.3 or less. These characteristics are not easy to achieve even in a manufacturing method in which cold rolling and annealing for developing the {111} orientation are repeated.

(C)製造方法   (C) Manufacturing method

前記(A)項に記載の成分を有するフェライト系ステンレス鋼において、最終焼鈍板および加工後に前記(B)項に記載の集合組織とするためには、以下の製造条件が好ましい。   In the ferritic stainless steel having the component described in the item (A), the following manufacturing conditions are preferable in order to obtain the texture described in the item (B) after the final annealing plate and processing.

本製造に供する熱延板は、前記(A)の成分を有していれば、その組織を特に限定するものではない。本発明の集合組織を形成するには、熱延板あるいは熱延焼鈍板を用いて冷間圧延前に、鋼板の移動方向に対して角度のついた経路を冷間あるいは温間で通過する塑性加工を施すことが好ましい。   As long as the hot-rolled sheet used for the production has the component (A), the structure is not particularly limited. In order to form the texture of the present invention, before cold rolling using a hot-rolled sheet or a hot-rolled annealed sheet, plasticity that passes through a path that is angled with respect to the moving direction of the steel sheet in a cold or warm manner. It is preferable to apply processing.

上記の塑性加工は、例えば図1に示すような角度の付いた経路を持つダイス中を通過させる方法がある。この方法は、ECAP(Equal-channel angular pressing)法とも呼ばれ、図1に示すようにφ=90〜170°の角度で交差する等断面の2つのチャンネル2を有するダイス1中に材料4を通し、プランジャー3で押し出し、単純剪断変形を与えるものである。押し出し方向は、特に規定するものではないが、圧延方向と一致させることが好ましい。押し出し角度は、図1に示す模式図において、φ=90〜170°の範囲とする。本発明に規定する集合組織とするには、φ=90〜150°の範囲が好ましい。より好ましくはφ=90〜120°である。   As the plastic working, there is a method of passing through a die having an angled path as shown in FIG. This method is also called an ECAP (Equal-channel angular pressing) method. As shown in FIG. 1, a material 4 is placed in a die 1 having two channels 2 having an equal cross section intersecting at an angle of φ = 90 to 170 °. It is extruded through the plunger 3 to give a simple shear deformation. The extrusion direction is not particularly specified, but it is preferable to match the rolling direction. The extrusion angle is in the range of φ = 90 to 170 ° in the schematic diagram shown in FIG. In order to obtain the texture defined in the present invention, a range of φ = 90 to 150 ° is preferable. More preferably, φ = 90 to 120 °.

前項記載の塑性加工は、1回以上行うものとし,耐リジング性向上効果を得るために複数回実施しても良い。塑性加工後の焼鈍は実施しても良い。加工温度は、常温でもよいが,常温〜400℃までの温間で実施しても良い。   The plastic working described in the previous section is performed once or more, and may be performed a plurality of times in order to obtain the effect of improving ridging resistance. Annealing after plastic working may be performed. The processing temperature may be normal temperature, but may be performed at a temperature from normal temperature to 400 ° C.

上述の方法により、冷延素材へ転位密度の高い変形帯を導入した後、焼鈍あるいは焼鈍をすることなく、冷間圧延を行う。冷間圧下率は、特に規定するものではないが、冷延焼鈍板を整粒化するために50%以上とすることが好ましい。   After introducing a deformation zone having a high dislocation density into the cold-rolled material by the above method, cold rolling is performed without annealing or annealing. The cold rolling reduction is not particularly specified, but is preferably 50% or more in order to regulate the size of the cold-rolled annealed plate.

冷間圧延前後に実施する焼鈍は、コロニーの分断・破壊を目的とした再結晶を目的としており、750℃以上、1000℃未満が好ましい。750℃未満では、導入した変形帯を核生成サイトとして生かすことが困難である。焼鈍温度は、より好ましくは800℃以上、さらに好ましくは850℃以上とする。一方、1000℃を超える焼鈍では、結晶粒が粗大化し,製品板の表面性状に悪影響を与える場合がある。そのため、焼鈍温度は1000℃未満、950℃以下とすることがより好ましい。   The annealing performed before and after the cold rolling is aimed at recrystallization for the purpose of dividing and destroying the colonies, and is preferably 750 ° C. or higher and lower than 1000 ° C. If it is less than 750 degreeC, it is difficult to make use of the introduced deformation zone as a nucleation site. The annealing temperature is more preferably 800 ° C. or higher, and further preferably 850 ° C. or higher. On the other hand, when the annealing temperature exceeds 1000 ° C., the crystal grains become coarse, which may adversely affect the surface properties of the product plate. Therefore, the annealing temperature is more preferably less than 1000 ° C. and 950 ° C. or less.

本発明の製造方法を実施して、本発明の集合組織としたフェライト系ステンレス鋼板の実施例を以下に述べる。   An example of a ferritic stainless steel sheet having the texture of the present invention by carrying out the manufacturing method of the present invention will be described below.

Figure 2009030078
Figure 2009030078

表3に成分を示すフェライト系ステンレス鋼鋳片250mm厚を溶製し、熱間圧延を行い板厚3.8mmの熱延鋼板とした。これら熱延鋼板を用いて、冷間圧延に先立ち図1に示すような塑性加工を実施して、0.5〜2.0mmの冷延焼鈍板を製造した。塑性加工は、図1に示すダイスの角度φ,ダイスの通過させる回数(パス数),パス後の焼鈍条件を変化させて実施した。   250 mm thick ferritic stainless steel slabs having the components shown in Table 3 were melted and hot-rolled to obtain hot-rolled steel sheets having a thickness of 3.8 mm. Using these hot-rolled steel sheets, plastic working as shown in FIG. 1 was performed prior to cold rolling to produce cold-rolled annealed sheets of 0.5 to 2.0 mm. The plastic working was performed by changing the angle φ of the die shown in FIG. 1, the number of times the die passes (number of passes), and the annealing conditions after the pass.

比較のために、本発明の規定から外れる成分の熱延鋼板を用いて上述の塑性加工を実施して冷延焼鈍板を製造した。さらに、本発明で規定する成分の熱延鋼板を用いて上述のような塑性加工を実施しないで、焼鈍と冷間圧延を繰り返す製造方法で0.5〜1.0mmの冷延焼鈍板を製造した。   For comparison, a cold-rolled annealed plate was manufactured by performing the above-described plastic working using a hot-rolled steel plate having a component that does not fall within the scope of the present invention. Furthermore, a cold-rolled annealed sheet having a thickness of 0.5 to 1.0 mm is manufactured by a manufacturing method in which annealing and cold rolling are repeated without performing the above-described plastic working using the hot-rolled steel sheet having the components specified in the present invention. did.

得られた冷延焼鈍板から、各種試験片を採取して、リジング高さと平均r値,Δr値ならびに集合組織を評価した。リジング高さは、JIS5号引張試験片を採取し,圧延方向に16%の伸び歪を付与し,2次元表面粗さ測定器により評価した最大の凹凸とした。平均r値とΔr値は、圧延方向に対し、0°,45°,90°方向にJIS13B引張試験片を採取し,16%伸び歪での各方向のr値を求め、次式により計算した。
平均r=(r+2r45°+r90°)/4,
Δr=(r−2r45°+r90°)/2
Various test pieces were collected from the obtained cold-rolled annealed plate, and the ridging height, average r value, Δr value and texture were evaluated. The ridging height was the maximum unevenness obtained by taking a JIS No. 5 tensile test piece, giving an elongation strain of 16% in the rolling direction, and evaluating it with a two-dimensional surface roughness measuring instrument. The average r value and Δr value were obtained by taking JIS13B tensile specimens in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction, obtaining the r value in each direction at 16% elongation strain, and calculating by the following formula. .
Average r = (r 0 ° + 2r 45 ° + r 90 ° ) / 4
Δr = (r 0 ° -2r 45 ° + r 90 ° ) / 2

集合組織は、冷間圧延板と冷延焼鈍板の板厚中心の板面においてEBSP法ならびにX線回折法により評価した。EBSP法では、×100視野で結晶方位マップを測定し,結晶粒毎の方位を確認して{001}および{112}面方位領域の最大長さと面積率を求めた。方位領域のサイズは、観察される視野における長辺の長さとした。冷間圧延板は、X線回折により結晶粒方位分布関数(ODF)を測定し,{001}<110>面および{111}<110>面のX線ランダム強度比を求めた。   The texture was evaluated by the EBSP method and the X-ray diffraction method on the plate surface at the center of the thickness of the cold-rolled plate and the cold-rolled annealed plate. In the EBSP method, a crystal orientation map was measured with a x100 field of view, and the orientation for each crystal grain was confirmed to determine the maximum length and area ratio of {001} and {112} plane orientation regions. The size of the azimuth area was the length of the long side in the observed visual field. The cold-rolled sheet was measured for the crystal grain orientation distribution function (ODF) by X-ray diffraction, and the X-ray random intensity ratio of the {001} <110> plane and the {111} <110> plane was determined.

製造条件と冷延焼鈍板の特性ならびに集合組織の関係を表4に示す。   Table 4 shows the relationship between the manufacturing conditions, the properties of the cold-rolled annealed sheet, and the texture.

Figure 2009030078
Figure 2009030078

製造No.1〜7は、本発明の成分を有し,本発明で規定する集合組織を満たすものである。本発明の集合組織は、冷間圧延に先立ち本発明の製造方法で述べた塑性加工を実施してコントロールしたものである。これら本発明例は、リジング高さ5μm以下,平均r値1.6以上,Δr値0.5以下を満たす。   Production No. 1-7 have the component of this invention, and satisfy | fill the texture prescribed | regulated by this invention. The texture of the present invention is controlled by performing the plastic working described in the production method of the present invention prior to cold rolling. These examples of the present invention satisfy a ridging height of 5 μm or less, an average r value of 1.6 or more, and a Δr value of 0.5 or less.

上記の本発明例は、製造No.9〜13に示す冷間圧延と焼鈍を繰り返す製造方法で得られる鋼板と比較し,リジング高さが大きく低減されている。さらに、製造No1,3,4は、リジング高さ3μm以下,平均r値2.0以上,Δr値0.3以下を満たすものであり、冷間圧延と焼鈍を繰り返して{111}方位を発達させる製造方法において達成することも容易でないことが分かる。   The above-mentioned example of the present invention is manufactured by No. Compared with the steel plate obtained by the manufacturing method which repeats cold rolling and annealing shown in 9 to 13, the ridging height is greatly reduced. Further, production Nos. 1, 3 and 4 satisfy a ridging height of 3 μm or less, an average r value of 2.0 or more, and an Δr value of 0.3 or less, and develop a {111} orientation by repeating cold rolling and annealing. It can be seen that this is not easy to achieve in the manufacturing method.

製造No.8は、本発明の規定から外れる成分であり、良好な耐リジング性を有するものの,本発明で規定する高いr値を得ることは出来ない。   Production No. 8 is a component deviating from the definition of the present invention, and although it has good ridging resistance, a high r value specified by the present invention cannot be obtained.

本発明によれば、炭素や窒素を低減して凝固組織に由来するコロニーの影響が熱延鋼板に残存しやすいフェライト系ステンレス鋼についても、熱間圧延以降の工程において集合組織をコントロールして、優れた耐リジング性を有する高加工性フェライト系ステンレス鋼板を製造することが出来る。   According to the present invention, the ferritic stainless steel in which the influence of colonies derived from the solidified structure by reducing carbon and nitrogen is likely to remain in the hot-rolled steel sheet also controls the texture in the process after hot rolling, A highly workable ferritic stainless steel sheet having excellent ridging resistance can be produced.

冷間圧延に先立ち実施する塑性加工の模式図であり、(a)は斜視図、(b)は斜視断面図である。It is a schematic diagram of the plastic working implemented prior to cold rolling, (a) is a perspective view, (b) is a perspective sectional view. {001},{112}面方位領域の面積率とr値の関係Relationship between area ratio of {001}, {112} plane orientation region and r value {001},{112}面方位領域の面積率とリジング高さの関係Relationship between area ratio of {001}, {112} plane orientation region and ridging height

符号の説明Explanation of symbols

1 ダイス
2 チャンネル
3 プランジャー
4 材料
1 Die 2 Channel 3 Plunger 4 Material

Claims (6)

質量%にて、C:0.03%以下、Si:1%以下、Mn:1%以下、P:0.05%以下、S:0.01%以下、Cr:10〜25%、N:0.030%以下、Ti:0.35%以下、Al:0.1%以下、残部がFeおよび不可避的不純物からなり、板厚中心の板面において、{001}および{112}面方位領域の最大長さが0.1mm未満でかつそれら存在が10〜50面積%であり、圧延方向に対し0°,45°,90°の平均r値が1.6以上かつΔr値が0.5以下であることを特徴とする耐リジング性に優れた高加工性フェライト系ステンレス鋼板。   In mass%, C: 0.03% or less, Si: 1% or less, Mn: 1% or less, P: 0.05% or less, S: 0.01% or less, Cr: 10 to 25%, N: 0.030% or less, Ti: 0.35% or less, Al: 0.1% or less, the balance is made of Fe and inevitable impurities, and the {001} and {112} plane orientation regions in the plate surface at the plate thickness center The maximum length is less than 0.1 mm and the presence thereof is 10 to 50 area%, the average r value of 0 °, 45 °, and 90 ° with respect to the rolling direction is 1.6 or more and the Δr value is 0.5. A highly workable ferritic stainless steel sheet with excellent ridging resistance, characterized by the following: 前記鋼の最終焼鈍に供する加工集合組織が、板厚中心の板面において{001}<110>面および{111}<110>面のX線ランダム強度比をそれぞれIa,Ibとした場合、Ia≧5かつIa/Ib>1の関係を満足することを特徴とする請求項1に記載の耐リジング性に優れた高加工性フェライト系ステンレス鋼板。   When the texture of the steel subjected to the final annealing of the steel is Ia and Ib when the X-ray random intensity ratios of the {001} <110> plane and the {111} <110> plane are Ia and Ib, respectively, in the plate thickness center plate The high workability ferritic stainless steel sheet having excellent ridging resistance according to claim 1, wherein the relationship of ≧ 5 and Ia / Ib> 1 is satisfied. 圧延方向に対して伸び歪16%を付与した後のリジング高さが5μm以下であることを特徴とする請求項1または2に記載の耐リジング性に優れた高加工性フェライト系ステンレス鋼板。   The high workability ferritic stainless steel sheet having excellent ridging resistance according to claim 1 or 2, wherein the ridging height after applying an elongation strain of 16% in the rolling direction is 5 µm or less. 前記鋼が、さらに質量%にて、Mg:0.005%以下、Nb:1%以下、Mo:2%以下、Ni:2%以下、Cu:2%以下、B:0.005%以下の1種または2種以上含有していることを特徴とする請求項1から3のいずれかに記載の耐リジング性に優れた高加工性フェライト系ステンレス鋼板。   The steel is further in mass%, Mg: 0.005% or less, Nb: 1% or less, Mo: 2% or less, Ni: 2% or less, Cu: 2% or less, B: 0.005% or less. The high workability ferritic stainless steel sheet excellent in ridging resistance according to any one of claims 1 to 3, which is contained in one kind or two or more kinds. 請求項1または4に記載の鋼成分を有するフェライト系ステンレス鋼スラブを熱間圧延して熱延板とし,次いで焼鈍と冷間圧延を繰り返す鋼板の製造方法において、鋼板の移動方向に対して角度のついた経路を通過する塑性加工を施した後、冷間圧延を施して焼鈍することを特徴とする請求項1から4のいずれかに記載の耐リジング性に優れた高加工性フェライト系ステンレス鋼板の製造方法。   5. A method of manufacturing a steel sheet in which a ferritic stainless steel slab having the steel component according to claim 1 or 4 is hot-rolled to form a hot-rolled sheet, and then repeatedly annealed and cold-rolled, and the angle with respect to the moving direction of the steel sheet. 5. A highly workable ferritic stainless steel with excellent ridging resistance according to claim 1, wherein the steel is cold-rolled and annealed after being subjected to plastic working passing through a path with a mark. A method of manufacturing a steel sheet. 請求項1または4に記載の鋼成分を有するフェライト系ステンレス鋼スラブを熱間圧延して熱延板とし,次いで焼鈍と冷間圧延を繰り返す鋼板の製造方法において、鋼板の移動方向に対して角度のついた経路を通過する塑性加工を施した後、焼鈍を行い、次いで冷間圧延を施して焼鈍することを特徴とする請求項1から4のいずれかに記載の耐リジング性に優れた高加工性フェライト系ステンレス鋼板の製造方法。   5. A method of manufacturing a steel sheet in which a ferritic stainless steel slab having the steel component according to claim 1 or 4 is hot-rolled to form a hot-rolled sheet, and then repeatedly annealed and cold-rolled, and the angle with respect to the moving direction of the steel sheet. 5. An excellent ridging resistance according to claim 1, wherein annealing is performed after plastic processing passing through a path with a mark, followed by cold rolling and annealing. Manufacturing method of workable ferritic stainless steel sheet.
JP2007192109A 2007-07-24 2007-07-24 High workability ferritic stainless steel sheet excellent in ridging resistance, and producing method therefor Withdrawn JP2009030078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192109A JP2009030078A (en) 2007-07-24 2007-07-24 High workability ferritic stainless steel sheet excellent in ridging resistance, and producing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192109A JP2009030078A (en) 2007-07-24 2007-07-24 High workability ferritic stainless steel sheet excellent in ridging resistance, and producing method therefor

Publications (1)

Publication Number Publication Date
JP2009030078A true JP2009030078A (en) 2009-02-12

Family

ID=40400899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192109A Withdrawn JP2009030078A (en) 2007-07-24 2007-07-24 High workability ferritic stainless steel sheet excellent in ridging resistance, and producing method therefor

Country Status (1)

Country Link
JP (1) JP2009030078A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147211A1 (en) * 2014-03-26 2015-10-01 新日鐵住金ステンレス株式会社 Rolled ferritic stainless-steel plate, process for producing same, and flange component
WO2016064226A1 (en) * 2014-10-22 2016-04-28 (주)포스코 High strength and high ductility ferritic stainless steel sheet and method for producing same
CN105874092A (en) * 2014-01-08 2016-08-17 杰富意钢铁株式会社 Ferritic stainless steel and method for producing same
JP2019065319A (en) * 2017-09-28 2019-04-25 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet and manufacturing method therefor, and member for fuel reformer and combustion chamber
CN111330986A (en) * 2020-04-07 2020-06-26 宿迁市河海大学研究院 Efficient integrated processing method for preparing high-strength high-toughness magnesium alloy sheet with controllable double-peak structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105874092A (en) * 2014-01-08 2016-08-17 杰富意钢铁株式会社 Ferritic stainless steel and method for producing same
WO2015147211A1 (en) * 2014-03-26 2015-10-01 新日鐵住金ステンレス株式会社 Rolled ferritic stainless-steel plate, process for producing same, and flange component
JP2015187290A (en) * 2014-03-26 2015-10-29 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for flange, method for producing the same, and flange component
KR20160123371A (en) * 2014-03-26 2016-10-25 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Rolled ferritic stainless-steel plate, process for producing same, and flange component
US10648053B2 (en) 2014-03-26 2020-05-12 Nippon Steel & Sumikin Stainless Steel Corporation Rolled ferritic stainless steel sheet, method for producing the same, and flange part
WO2016064226A1 (en) * 2014-10-22 2016-04-28 (주)포스코 High strength and high ductility ferritic stainless steel sheet and method for producing same
CN107109581A (en) * 2014-10-22 2017-08-29 Posco公司 High intensity, the ferrite series stainless steel plate of high ductibility and its manufacture method
JP2019065319A (en) * 2017-09-28 2019-04-25 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet and manufacturing method therefor, and member for fuel reformer and combustion chamber
CN111330986A (en) * 2020-04-07 2020-06-26 宿迁市河海大学研究院 Efficient integrated processing method for preparing high-strength high-toughness magnesium alloy sheet with controllable double-peak structure

Similar Documents

Publication Publication Date Title
CN102770571B (en) Steel sheet and method for producing steel sheet
EP3434802B1 (en) Ferritic-austenitic stainless steel excellent in corrosion resistance and workability
CN102741441B (en) Steel wire with excellent cold forging characteristics and manufacturing process thereof
JP5156293B2 (en) Ferritic / austenitic stainless steel with excellent corrosion resistance and workability and manufacturing method thereof
EP2410068B1 (en) Duplex stainless steel plate having excellent press moldability
JP5219689B2 (en) Ferritic stainless steel sheet with low surface roughness and manufacturing method thereof
JP6064896B2 (en) Steel material with excellent fatigue crack propagation characteristics, method for producing the same, and method for determining steel materials with excellent fatigue crack propagation characteristics
CN104245971A (en) High strength cold rolled steel sheet and method of producing such steel sheet
WO2019221286A1 (en) Steel plate and enameled product
JP2016510361A (en) 780 MPa class cold rolled duplex steel and method for producing the same
TWI499465B (en) High-toughness and high-corrosion resistance hot rolled ferritic stainless steel sheet
WO2017043660A1 (en) Steel sheet and enameled product
WO2014132627A1 (en) Thick steel plate and production method for thick steel plate
EP3438313A1 (en) Nb-containing ferritic stainless steel sheet and manufacturing method therefor
JP2019039037A (en) Steel sheet and method for manufacturing the same
EP3239335B1 (en) Ferritic stainless steel having excellent ductility and method for manufacturing same
JP3451830B2 (en) Ferritic stainless steel sheet excellent in ridging resistance and workability and method for producing the same
EP2784168B1 (en) Steel material for welding
JP2009030078A (en) High workability ferritic stainless steel sheet excellent in ridging resistance, and producing method therefor
JP2011214058A (en) High-strength stainless steel wire, and method for producing the same
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method
JP2020059880A (en) Steel material and method for manufacturing the same
JP2017145487A (en) Ferrite austenite stainless steel sheet excellent in moldability and manufacturing method therefor
JP2007138210A (en) Steel sheet for high strength line pipe in with reduced lowering of yield stress caused by bauschinger effect and its production method
JP2005133155A (en) High strength and high toughness non-heat-treated bar steel, and its production method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005