JP2007138210A - Steel sheet for high strength line pipe in with reduced lowering of yield stress caused by bauschinger effect and its production method - Google Patents

Steel sheet for high strength line pipe in with reduced lowering of yield stress caused by bauschinger effect and its production method Download PDF

Info

Publication number
JP2007138210A
JP2007138210A JP2005331182A JP2005331182A JP2007138210A JP 2007138210 A JP2007138210 A JP 2007138210A JP 2005331182 A JP2005331182 A JP 2005331182A JP 2005331182 A JP2005331182 A JP 2005331182A JP 2007138210 A JP2007138210 A JP 2007138210A
Authority
JP
Japan
Prior art keywords
temperature
steel sheet
less
yield stress
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005331182A
Other languages
Japanese (ja)
Other versions
JP4677883B2 (en
Inventor
Toyohisa Shingu
豊久 新宮
Shigeru Endo
茂 遠藤
Nobuyuki Ishikawa
信行 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005331182A priority Critical patent/JP4677883B2/en
Publication of JP2007138210A publication Critical patent/JP2007138210A/en
Application granted granted Critical
Publication of JP4677883B2 publication Critical patent/JP4677883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet for a high strength line pipe in which the lowering of the yield stress in the steel sheet before being formed into a steel pipe to the yield stress in the circumferential direction of the steel pipe after being formed into the steel pipe caused by Bauschinger effect is reduced; and to provide its production method. <P>SOLUTION: A steel having a componential composition comprising, by mass, 0.03 to 0.06% C, 0.01 to 0.5% Si, 0.5 to 2.0% Mn and ≤0.08% Al, and, if required, comprising one or more kinds selected from Mo, Ti, Nb, V, Cu, Ni, Cr and B, and the balance Fe with inevitable impurities, and in which the volume fraction of the second phase structure in its metallic structure is ≤3%, and the difference in Vickers hardness between the surface layer and the central part of the sheet thickness is ≤40 is hot-rolled at a rolling finishing temperature of an Ar<SB>3</SB>transformation point or above in order to form a steel sheet. The steel sheet is thereafter subjected to accelerated cooling from an Ar<SB>3</SB>transformation point or above to 300 to 600°C at a cooling rate of ≥5°C/s, and is immediately reheated, and also, the difference in temperature between the surface of the steel sheet and the central part of the sheet thickness upon the end of the heating is controlled to ≥20°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、石油や天然ガスに使用される高強度ラインパイプ用鋼板およびその製造方法として好適な、バウシンガー効果による、鋼管に成形する前の鋼板の降伏応力から鋼管に成形した後の鋼管周方向の降伏応力の低下が小さい高強度ラインパイプ用鋼板及びその製造方法に関する。   The present invention is a steel plate for a high-strength line pipe used for oil and natural gas and a steel pipe circumference after being formed into a steel pipe from the yield stress of the steel plate before being formed into a steel pipe due to the Bauschinger effect, which is suitable as a manufacturing method thereof. The present invention relates to a steel plate for a high-strength line pipe with a small decrease in yield stress in the direction and a method for producing the same.

一般に、鋼板に冷間で引張もしくは圧縮歪みを付与し、その後、逆方向に歪みを付与すると、バウシンガー効果により降伏応力が鋼板ままのそれと比較し低下する。バウシンガー効果は、最初の変形段階にセメンタイト、パーライト、島状マルテンサイト(以下、MA)等の硬質第2相、介在物、粒界等で発生する局所的な歪勾配による逆応力の発生がその原因とされている。   In general, when a tensile or compressive strain is applied to a steel sheet in a cold state, and then a strain is applied in the opposite direction, the yield stress is reduced compared to that of the steel sheet due to the Bauschinger effect. The Bausinger effect is caused by the occurrence of reverse stress due to local strain gradients that occur in hard second phases such as cementite, pearlite, and island martensite (hereinafter referred to as MA), inclusions, and grain boundaries in the initial deformation stage. It is the cause.

現在のラインパイプ用鋼板は、高強度、高靭性に優れたベイナイト組織を得るため、一般的に制御圧延と加速冷却のプロセスで製造される。加速冷却鋼板では、加速冷却後にベイナイトのラス間や未変態オーステナイト部にCが濃化し、加速冷却後の空冷段階でC濃化部がセメンタイトやMAへと変態するため、ベイナイトのマトリクスに硬質第2相が存在する組織となる。   In order to obtain a bainite structure excellent in high strength and high toughness, current steel plates for line pipes are generally manufactured by controlled rolling and accelerated cooling processes. In the accelerated cooling steel sheet, C is concentrated between the lath of bainite and in the untransformed austenite part after accelerated cooling, and the C concentrated part is transformed into cementite and MA in the air cooling stage after accelerated cooling. The structure has two phases.

また、一般的に加速冷却鋼板は、表面の冷却速度が板厚中央部と比較し速くなるため、表面硬度と板厚中央部硬度の差が大きくなる。この様な硬質第2相の存在や板厚方向の強度不均一は、UOE鋼管成型時や管周方向引張試験片矯正時の局所的な歪み勾配の原因となり、鋼管周方向の降伏強度はバウシンガー効果によって鋼板の降伏強度と比較して低下する。   In general, the accelerated cooling steel sheet has a surface cooling rate that is higher than that of the central part of the plate thickness, so that the difference between the surface hardness and the central part hardness of the plate thickness increases. The existence of such a hard second phase and uneven strength in the plate thickness direction cause local strain gradients during UOE steel pipe molding and pipe circumferential direction tensile specimen correction, and the yield strength in the steel pipe circumferential direction is The singer effect lowers the yield strength of the steel sheet.

この降伏強度低下代を見込んでパイプ原板の強度は高めに設計する必要があり、バウシンガー効果による降伏強度低下を低減することは鋼板の強度設計緩和に繋がり、合金元素低減によるコスト削減、溶接熱影響部靭性の向上が期待される。   In consideration of this yield strength reduction allowance, it is necessary to design the strength of the original pipe plate to be high, and reducing the yield strength reduction due to the Bauschinger effect leads to the relaxation of the steel strength design, reducing the cost by reducing alloy elements, welding heat Improvement of toughness of affected area is expected.

バウシンガー効果による降伏強度低下を抑制する技術として、低C−高Cr系成分組成の鋼を用いる方法が知られている(例えば、特許文献1参照)。しかし、この方法では、多量のCr添加による溶接性の低下やコスト上昇を招く。   As a technique for suppressing a decrease in yield strength due to the Bauschinger effect, a method using steel having a low C-high Cr composition is known (see, for example, Patent Document 1). However, this method causes a decrease in weldability and a cost increase due to the addition of a large amount of Cr.

多量のCr添加に依存しない方法として、制御圧延終了温度と加速冷却停止温度を規定し、鋼板の降伏比、降伏伸びを最適化する方法が知られている(例えば、特許文献2参照)。しかし、この方法では、鋼板の降伏比を90%以上と高くする必要があり、鋼管の成形性が低下し、生産性の低下を招く。   As a method that does not depend on the addition of a large amount of Cr, a method is known in which the controlled rolling end temperature and the accelerated cooling stop temperature are defined, and the yield ratio and yield elongation of the steel sheet are optimized (see, for example, Patent Document 2). However, in this method, it is necessary to increase the yield ratio of the steel sheet to 90% or more, which deteriorates the formability of the steel pipe and causes a decrease in productivity.

また、表面硬さ等の点から目的とする組織はフェライト組織で、強度を得るために添加する合金成分を多くすることが必要で、溶接性劣化やHAZ靭性劣化が懸念される。
特公昭53−25801号公報 特開2000−212680号公報
In addition, the target structure is a ferrite structure in terms of surface hardness and the like, and it is necessary to increase the amount of alloy components to be added in order to obtain strength, and there is concern about deterioration in weldability and HAZ toughness.
Japanese Patent Publication No.53-25801 JP 2000-212680 A

上述したように、従来の技術では、溶接熱影響部の靭性劣化、生産性低下、コスト上昇を招くことなく、バウシンガー効果による降伏強度低下が小さい鋼板を製造することは困難であった。   As described above, with the conventional technology, it has been difficult to produce a steel sheet with a small decrease in yield strength due to the Bauschinger effect without incurring toughness deterioration, productivity reduction, and cost increase in the weld heat affected zone.

そこで、本発明は、溶接熱影響部の靭性を劣化させることなく、高生産性、低コストで製造できる、バウシンガー効果による降伏強度低下が小さい鋼板及びその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a steel plate that can be produced at high productivity and low cost without deteriorating the toughness of the heat affected zone, and a method for producing the same, with a small decrease in yield strength due to the Bauschinger effect. .

本発明者らは前記課題を解決するために、鋼板のミクロ組織およびミクロ組織を達成するための製造方法、特に制御圧延後の加速冷却、冷却速度5℃/s以上、とその後の再加熱という製造プロセスについて鋭意検討し、以下の知見を得た。
すなわち、鋼板のミクロ組織中の硬質第2相であるセメンタイト、パーライト、MAを減少させ、さらに表層部と板厚中心部の硬度差を小さくし板厚方向に均一な強度分布とすることで、鋼管成型段階や引張試験片矯正時に硬質相周辺で発生する局所的な歪勾配を緩和しバウシンガー効果による降伏応力低下を抑制することが可能である。
In order to solve the above-mentioned problems, the inventors of the present invention have a microstructure of a steel sheet and a manufacturing method for achieving the microstructure, particularly accelerated cooling after controlled rolling, a cooling rate of 5 ° C./s or more, and subsequent reheating. We have earnestly examined the manufacturing process and obtained the following knowledge.
That is, by reducing cementite, pearlite, MA, which are the hard second phase in the microstructure of the steel sheet, and further reducing the hardness difference between the surface layer part and the sheet thickness center part to obtain a uniform strength distribution in the sheet thickness direction, It is possible to relieve the local strain gradient generated around the hard phase at the time of steel pipe molding and tensile specimen correction, and to suppress the yield stress drop due to the Bauschinger effect.

また、加速冷却後直ちに表層部が板厚中心部より高温になるように再加熱することが重要で、このような加熱を実施する装置として誘導加熱装置が好ましく、生産性を低減させることなく、上記鋼板の製造が可能であることも見出した。   In addition, it is important to reheat so that the surface layer part becomes higher than the center part of the plate thickness immediately after accelerated cooling, and an induction heating apparatus is preferable as an apparatus for carrying out such heating, without reducing productivity, It has also been found that the steel sheet can be manufactured.

尚、本発明のバウシンガー効果による降伏応力低下が小さいとは、バウシンガー効果を、10φ丸棒試験片を1/4厚位置から採取し1〜3%の圧縮予歪みを導入した後、引張を行い、引張時の0.5%耐力を圧縮時の0.5%耐力で除した値を耐力比として評価し、耐力比が0.8以上を降伏応力低下が小さいとした。   In addition, the yield stress reduction by the Bauschinger effect of the present invention is small. The 10% round bar test piece was sampled from the 1/4 thickness position and the compression pre-strain of 1 to 3% was introduced. The value obtained by dividing the 0.5% proof stress during tension by the 0.5% proof stress during compression was evaluated as the proof stress ratio.

本発明は得られた知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1 質量%で、C:0.03〜0.06%、Si:0.01〜0.5%、Mn:0.5〜2.0%、Al:0.08%以下を含有し、残部Feおよび不可避的不純物からなり、金属組織中の第2相組織の体積分率が3%以下であり、表層と板厚中心部のビッカース硬度差が40以内であることを特徴とするバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。
The present invention has been made based on further studies based on the obtained knowledge, that is, the present invention,
1% by mass, C: 0.03 to 0.06%, Si: 0.01 to 0.5%, Mn: 0.5 to 2.0%, Al: 0.08% or less, the balance A Bausinger effect characterized by comprising Fe and inevitable impurities, having a volume fraction of the second phase structure in the metal structure of 3% or less, and having a Vickers hardness difference of 40 or less between the surface layer and the center of the plate thickness. Steel sheet for high-strength line pipes with low yield stress reduction due to the

2 更に、質量%で、Mo:0.05〜0.4%、Ti:0.005〜0.04%、Nb:0.005〜0.06%、V:0.005〜0.07%の中から選ばれる1種又は2種以上を含有することを特徴とする1に記載のバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。   2 Further, by mass, Mo: 0.05 to 0.4%, Ti: 0.005 to 0.04%, Nb: 0.005 to 0.06%, V: 0.005 to 0.07% The steel plate for high-strength line pipes having a small yield stress drop due to the Bauschinger effect according to 1, which contains one or more selected from among the above.

3 更に、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下、B:0.005%以下の中から選ばれる1種又は2種以上を含有することを特徴とする1または2に記載のバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。   3 Further, by mass%, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, B: 0.005% or less A steel sheet for high-strength line pipes, which contains a small drop in yield stress due to the Bauschinger effect according to 1 or 2.

4 更に、質量%で、Ca:0.001〜0.005%、Mg:0.005%以下、REM:0.02%以下の中から選ばれる1種又は2種以上を含有することを特徴とする1乃至3のいずれか一つに記載のバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。   4 Further, it is characterized by containing one or more selected from Ca: 0.001 to 0.005%, Mg: 0.005% or less, REM: 0.02% or less in mass%. A steel plate for a high-strength line pipe with a low yield stress reduction due to the Bauschinger effect according to any one of 1 to 3.

5 1乃至4のいずれか一つに記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar変態点温度以上の圧延終了温度で熱間圧延し鋼板とした後、Ar変態点以上の温度から5℃/s以上の冷却速度で300〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で鋼板表面温度600℃以上、板厚中心部温度550〜700℃まで再加熱を行い、且つ加熱終了時の鋼板表面と板厚中心部の温度差が20℃以上であることを特徴とするバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板の製造方法。 5 1 to a steel having the component composition according to any one of 4, was heated to a temperature of 1000 to 1300 ° C., after the hot rolled steel sheet at Ar 3 transformation point temperature or more rolling end temperature, Ar Accelerated cooling is performed from a temperature of 3 transformation points or higher to 300 to 600 ° C. at a cooling rate of 5 ° C./s or more, and immediately after that, a steel sheet surface temperature of 600 ° C. or more at a temperature rising rate of 0.5 ° C./s or more. A high-strength line with low yield stress reduction due to the Bausinger effect, characterized in that the temperature difference between the steel plate surface and the thickness center at the end of heating is 20 ° C. or more. Manufacturing method of steel plate for pipes.

本発明によれば、バウシンガー効果による降伏応力の低下が小さい、すなわち、鋼管に成形する前の鋼板の降伏応力からの鋼管に成形した後に低下する鋼管周方向の降伏応力の低下量が小さい鋼板を、溶接熱影響部の靭性を劣化させたり、生産性を低下させることなく、低コストで製造することが可能で産業上極めて有用である。   According to the present invention, the decrease in yield stress due to the Bauschinger effect is small, that is, the steel sheet has a small decrease in yield stress in the circumferential direction of the steel pipe that decreases after forming into the steel pipe from the yield stress of the steel sheet before forming into the steel pipe. Can be manufactured at a low cost without degrading the toughness of the weld heat affected zone or reducing the productivity, which is extremely useful industrially.

本発明に係るバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板の成分組成、ミクロ組織および板厚方向の硬度特性を規定する。   The component composition, microstructure, and hardness characteristic in the plate thickness direction of the steel plate for high-strength line pipes with low yield stress reduction due to the Bauschinger effect according to the present invention are defined.

[ミクロ組織]
本発明では、金属組織中の第2相組織の体積分率を3%以下とする。本発明において第2相組織はセメンタイトやMA等の硬質相であり、その周辺に発生する局所的な歪勾配による逆応力の発生を防止し、バウシンガー効果による降伏応力低下を抑制するため金属組織中において体積分率を3%以下とする。
[Micro structure]
In the present invention, the volume fraction of the second phase structure in the metal structure is set to 3% or less. In the present invention, the second phase structure is a hard phase such as cementite or MA, and the metal structure prevents the occurrence of reverse stress due to the local strain gradient generated around the second phase structure and suppresses the yield stress reduction due to the Bauschinger effect. The volume fraction is 3% or less.

3%を超えると、バウシンガー効果による降伏応力低下が増大し、鋼板の強度設計を高くする必要があるため、合金コスト等の製造コスト上昇を招く。バウシンガー効果軽減の観点から、より好ましくは1%以下とする。   If it exceeds 3%, the yield stress drop due to the Bauschinger effect will increase, and it will be necessary to increase the strength design of the steel sheet, leading to an increase in manufacturing costs such as alloy costs. From the viewpoint of reducing the Bausinger effect, it is more preferably 1% or less.

[板厚方向の硬度特性]
鋼板表面と板厚中心部のビッカース硬度差は40以内とする。鋼板表面と板厚中心部の硬度差を少なくすることで、鋼管成型やサンプル矯正時の歪み分布が均一となり、局所的な歪み勾配が軽減され、バウシンガー効果を抑制することが出来る。より均一な歪み分布を得る観点から、さらに好適には30以内とする。
[Hardness characteristics in thickness direction]
The difference in Vickers hardness between the steel plate surface and the center of the plate thickness is 40 or less. By reducing the difference in hardness between the steel plate surface and the center of the plate thickness, the strain distribution during steel pipe molding and sample correction becomes uniform, the local strain gradient is reduced, and the Bausinger effect can be suppressed. From the viewpoint of obtaining a more uniform strain distribution, it is more preferably within 30.

[成分組成]
以下の説明において%で示す単位は全て質量%とする。
[Ingredient composition]
In the following description, all units represented by% are mass%.


C:0.03〜0.06%とする。Cは焼き入れ性を高め強度確保に重要な元素であるが、0.03%未満では十分な強度が確保できない。また、0.06%を超える添加は、組織中のMAやセメンタイトの体積分率を増加させバウシンガー効果を大きくするため、C含有量を0.03〜0.06%に規定する。
C
C: Set to 0.03 to 0.06%. C is an element that enhances the hardenability and is important for securing the strength, but if it is less than 0.03%, sufficient strength cannot be secured. Addition exceeding 0.06% increases the volume fraction of MA and cementite in the structure and increases the Bauschinger effect, so the C content is regulated to 0.03 to 0.06%.

Si
Si:0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えるとMA体積分率の増加や溶接性劣化が起こるため、Si含有量を0.01〜0.5%に規定する。さらに好適には、0.01〜0.3%である。
Si
Si: 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, the MA volume fraction increases and weldability deteriorates. It is specified to be 0.01 to 0.5%. More preferably, it is 0.01 to 0.3%.

Mn
Mn:0.5〜2.0%とする。Mnは強度、靭性向上に有効な元素であるが、0.5%未満ではその効果が十分でなく、2.0%を超えると焼き入れ性が高まりMA体積分率の増加、表面硬度の上昇、溶接性劣化を招くため、Mn含有量を0.5〜2.0%に規定する。MA生成抑制の観点から、さらに好適には0.5〜1.5%とする。
Mn
Mn: 0.5 to 2.0%. Mn is an element effective for improving strength and toughness. However, if it is less than 0.5%, the effect is not sufficient, and if it exceeds 2.0%, the hardenability increases and the MA volume fraction increases and the surface hardness increases. In order to cause weldability deterioration, the Mn content is specified to be 0.5 to 2.0%. From a viewpoint of MA production | generation suppression, it is 0.5 to 1.5% more suitably.

Al
Al:0.08%以下とする。Alは脱酸剤として添加されるが、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al含有量は0.08%以下に規定する。好ましくは、0.01〜0.08%とする。
Al
Al: 0.08% or less. Al is added as a deoxidizer, but if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates, so the Al content is specified to be 0.08% or less. Preferably, the content is 0.01 to 0.08%.

以上が基本成分組成であるが、鋼板の強度靱性をさらに改善する目的で、以下に示すMo、Ti、Nb、Vの1種又は2種以上を含有することが可能である。   The above is the basic component composition, but it is possible to contain one or more of Mo, Ti, Nb, and V shown below for the purpose of further improving the strength toughness of the steel sheet.

Mo
Moは焼き入れ性を向上し強度上昇に大きく寄与する元素である。しかし、0.05%未満ではその効果が得られず、0.4%を超える添加はMA体積分率の増加や溶接熱影響部靭性の劣化を招くため、Moを添加する場合は、含有量を0.05〜0.4%に規定する。さらに好適には0.3%以下とする。
Mo
Mo is an element that improves hardenability and greatly contributes to an increase in strength. However, if less than 0.05%, the effect cannot be obtained, and addition exceeding 0.4% leads to an increase in the MA volume fraction and deterioration of the weld heat affected zone toughness. Is specified to be 0.05 to 0.4%. More preferably, it is 0.3% or less.

Ti
TiはTiNのピニング効果により加熱時のオーステナイトの粗大化を抑制し、母材や溶接熱影響部の靭性を改善するために有効な元素である。しかし、0.005%未満では効果が無く、0.04%を超える添加はTiNが粗大化し、逆に溶接熱影響部靭性の劣化を招くため、Tiを添加する場合は、含有量は0.005〜0.04%に規定する。さらに、Ti含有量を0.02%未満にすると、より優れた靭性を示す。
Ti
Ti is an effective element for suppressing the austenite coarsening during heating due to the pinning effect of TiN and improving the toughness of the base metal and the weld heat affected zone. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.04%, TiN becomes coarse and conversely deteriorates the weld heat affected zone toughness. Therefore, when Ti is added, the content is 0.0. It is specified to be 005 to 0.04%. Furthermore, when the Ti content is less than 0.02%, more excellent toughness is exhibited.

Nb
Nbは制御圧延の効果を高め、組織細粒化により強度、靭性を向上させる元素である。しかし、0.005%未満では効果がなく、0.06%を超えると溶接熱影響部の靭性が劣化するため、Nbを添加する場合は、含有量は0.005〜0.06%に規定する。
Nb
Nb is an element that enhances the effect of controlled rolling and improves strength and toughness by refining the structure. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.06%, the toughness of the weld heat affected zone deteriorates. Therefore, when Nb is added, the content is specified to be 0.005 to 0.06%. To do.


Vは強度上昇に寄与する元素である。しかし、0.005%未満では効果がなく、0.07%を超えると溶接熱影響部の靭性が劣化するため、Vを添加する場合は、含有量は0.005〜0.07%に規定する。
V
V is an element contributing to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.07%, the toughness of the weld heat-affected zone deteriorates. Therefore, when V is added, the content is defined as 0.005 to 0.07%. To do.

さらに、鋼板の強度靱性を向上させる場合、以下に示すCu、Ni、Cr、B、Ca、Mg、REM、Nの1種又は2種以上を含有してもよい。   Furthermore, when improving the strength toughness of a steel plate, you may contain 1 type (s) or 2 or more types of Cu, Ni, Cr, B, Ca, Mg, REM, and N shown below.

Cu
Cuは靭性の改善と強度の上昇に有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加すると溶接性の劣化やMA体積分率の増加を招くため、添加する場合は1.0%を上限とする。
Cu
Cu is an element effective for improving toughness and increasing strength. In order to obtain the effect, it is preferable to add 0.1% or more, but adding a large amount causes deterioration of weldability and an increase in the MA volume fraction. .

Ni
Niは靭性の改善と強度の上昇に有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加するとコスト的に不利になり、また、溶接熱影響部靱性が劣化するため、添加する場合は1.0%を上限とする。
Ni
Ni is an element effective for improving toughness and increasing strength. In order to obtain the effect, it is preferable to add 0.1% or more, but adding a large amount is disadvantageous in terms of cost, and the weld heat affected zone toughness deteriorates. Is the upper limit.

Cr
CrはMnと同様に低Cでも十分な強度を得るために有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加すると溶接性が劣化やMA体積分率の増加を招くため、添加する場合は1.0%を上限とする。
Cr
Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. In order to obtain the effect, it is preferable to add 0.1% or more, but adding a large amount causes deterioration of weldability and an increase in the MA volume fraction. .


Bは強度上昇、HAZ靭性改善に寄与する元素である。その効果を得るためには、0.0005%以上添加することが好ましいが、0.005%を超えて添加すると溶接性を劣化させるため、添加する場合は0.005%以下とする。
B
B is an element contributing to strength increase and HAZ toughness improvement. In order to obtain the effect, it is preferable to add 0.0005% or more, but if added over 0.005%, the weldability is deteriorated, so when added, the content is made 0.005% or less.


本発明においてNは不可避的不純物として扱うが、0.007%を越えると、溶接熱影響部靭性が劣化するため、好ましくは0.007%以下に制限する。
N
In the present invention, N is treated as an inevitable impurity. However, if it exceeds 0.007%, the weld heat affected zone toughness deteriorates, so the content is preferably limited to 0.007% or less.

さらに、Ti量とN量の比であるTi/Nを最適化することで、TiN粒子により溶接熱影響部のオーステナイト粗大化を抑制し、良好な溶接熱影響部靭性を得ることが出来るため、好ましくはTi/Nを2〜8、さらに好ましくは2〜5とする。
Ca
製鋼プロセスにおいて、脱酸反応支配でCaSを確保して靭性改善効果を得るためにCaを0.001%以上添加することが好ましいが、0.005%を超えて添加すると粗大CaOが発生しやすく靭性が低下するうえ、取鍋のノズル閉塞の原因となり生産性を阻害するので、添加する場合は0.005%以下とする。
Furthermore, by optimizing Ti / N which is the ratio of Ti amount and N amount, it is possible to suppress austenite coarsening of the weld heat affected zone by TiN particles, and to obtain good weld heat affected zone toughness, Preferably Ti / N is set to 2-8, more preferably 2-5.
Ca
In the steelmaking process, it is preferable to add 0.001% or more of Ca in order to secure CaS by controlling the deoxidation reaction and obtain a toughness improving effect. However, if it exceeds 0.005%, coarse CaO is likely to be generated. In addition to a decrease in toughness, this causes clogging of the nozzle of the ladle and impedes productivity, so when added, the content is made 0.005% or less.

Mg
Mgはアルミナクラスター(Al)を、Al、Mg系酸化物として微細分散させることで母材靭性向上に寄与する元素である。0.005%を越える添加では酸化物の増加により母材靭性の低下が起こるため、添加する場合は0.005%以下とする。
Mg
Mg is an element that contributes to improving the toughness of the base material by finely dispersing alumina clusters (Al 2 O 3 ) as Al and Mg-based oxides. When the amount exceeds 0.005%, the base material toughness is lowered due to an increase in oxides. When added, the amount is made 0.005% or less.

REM
REMは、MnSの形態制御に有効な元素であり、母材靭性の向上に寄与する。0.02%以上の添加は、REMの酸硫化物が過剰に生成し、母材靭性を劣化させるため、添加する場合は0.02%以下とする。
REM
REM is an effective element for controlling the morphology of MnS and contributes to the improvement of the base material toughness. Addition of 0.02% or more causes excessive generation of REM oxysulfide and deteriorates the toughness of the base metal.

上記以外の残部はFeおよび不可避的不純物とする。   The balance other than the above is Fe and inevitable impurities.

次に、本発明に係る高強度鋼板の好適な製造方法について説明する。製造方法においては、スラブ加熱温度、熱間圧延、加速冷却、および加速冷却後の再加熱条件を規定する。   Next, the suitable manufacturing method of the high strength steel plate which concerns on this invention is demonstrated. In the manufacturing method, slab heating temperature, hot rolling, accelerated cooling, and reheating conditions after accelerated cooling are defined.

加熱温度、圧延終了温度、冷却停止温度の温度は鋼板の平均温度とする。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを考慮して、計算により求めたものである。   The heating temperature, rolling end temperature, and cooling stop temperature are the average temperature of the steel sheet. The average temperature is obtained by calculation based on the surface temperature of the slab or steel plate, taking into account parameters such as plate thickness and thermal conductivity.

また、冷却速度は、冷却開始後、冷却停止温度(300〜600℃)まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度とする。
[スラブ加熱温度]
スラブ加熱温度:1000〜1300℃とする。加熱温度が1000℃未満では十分な強度が得られず、1300℃を超えると母材靭性が劣化するため、1000〜1300℃とする。
[熱間圧延条件]
熱間圧延は圧延終了温度:Ar変態点温度以上とする。本発明では硬質相の少ない均一な組織とすることが重要であるが、圧延終了温度がAr変態点温度未満であると、初析フェライトが生成し冷却後の金属組織がフェライトとベイナイトの混合組織となるため、圧延終了温度はAr変態点温度以上とする。
[加速冷却条件]
圧延終了後、Ar変態点温度以上から直ちに5℃/s以上の冷却速度で加速冷却する。冷却開始温度がAr温度未満となると初析フェライトが生成し混合組織となるためバウシンガー効果が大きくなり、さらに強度不足を招く。
The cooling rate is an average cooling rate obtained by dividing the temperature difference required for cooling to the cooling stop temperature (300 to 600 ° C.) by the time required for the cooling after the start of cooling.
[Slab heating temperature]
Slab heating temperature: 1000-1300 ° C. If the heating temperature is less than 1000 ° C., sufficient strength cannot be obtained, and if it exceeds 1300 ° C., the base material toughness deteriorates, so the temperature is set to 1000 to 1300 ° C.
[Hot rolling conditions]
The hot rolling is performed at a rolling end temperature: Ar 3 transformation point temperature or higher. In the present invention, it is important to have a uniform structure with few hard phases. However, if the rolling end temperature is lower than the Ar 3 transformation point temperature, proeutectoid ferrite is formed, and the metal structure after cooling is a mixture of ferrite and bainite. Since it becomes a structure, the rolling end temperature is set to the Ar 3 transformation point temperature or higher.
[Accelerated cooling conditions]
Immediately after the end of rolling, accelerated cooling is performed at a cooling rate of 5 ° C./s or higher immediately above the Ar 3 transformation temperature. When the cooling start temperature is lower than the Ar 3 temperature, pro-eutectoid ferrite is generated and becomes a mixed structure, so that the Bauschinger effect is increased and the strength is further insufficient.

また冷却速度が5℃/s未満では冷却時に硬質相であるパーライトが生成するため、冷却開始をAr変態点温度以上、圧延終了後の冷却速度を5℃/s以上に規定する。 Further, when the cooling rate is less than 5 ° C./s, pearlite which is a hard phase is generated at the time of cooling. Therefore, the cooling start is defined as the Ar 3 transformation point temperature or more, and the cooling rate after the rolling is finished is 5 ° C./s or more.

加速冷却停止温度:300〜600℃とする。加速冷却停止温度が300℃未満では冷却中に島状マルテンサイトが生成し、その後の再加熱で分解しても凝集したセメンタイトが生成する。さらに、300℃未満となると表面硬度が上昇する。   Accelerated cooling stop temperature: 300 to 600 ° C. If the accelerated cooling stop temperature is less than 300 ° C., island martensite is generated during cooling, and aggregated cementite is generated even if decomposed by subsequent reheating. Further, when the temperature is less than 300 ° C., the surface hardness increases.

一方、600℃を超えると加速冷却停止時の未変態オーステナイト分率が高くなり、再加熱後の空冷時にMAやパーライトが生成する。このような凝集したセメンタイトやパーライトは局所的な歪勾配の原因となり、鋼管成型時のバウシンガー効果による降伏応力低下が大きくなるため、加速冷却停止温度を300〜600℃に規定する。好ましくは350〜550℃であり、より好ましくは400〜530℃である。   On the other hand, if it exceeds 600 ° C., the untransformed austenite fraction at the time of accelerated cooling stop increases, and MA and pearlite are generated during air cooling after reheating. Such agglomerated cementite and pearlite cause local strain gradients, and a decrease in yield stress due to the Bauschinger effect at the time of steel pipe molding becomes large, so the accelerated cooling stop temperature is regulated to 300 to 600 ° C. Preferably it is 350-550 degreeC, More preferably, it is 400-530 degreeC.

冷却方法については製造プロセスによって任意の冷却設備を用いることが可能であり、例えば水冷方式の加速冷却設備が利用できる。
[加速冷却後の再加熱条件]
前述したように、加速冷却材におけるセメンタイトやMAといった硬質相は、加速冷却後の空冷時にCが濃化した未変態オーステナイトやベイナイトラス間で生成する。
本発明では、加速冷却直後の再加熱中に微細な炭窒化物を析出させ、Cを消費することで、未変態オーステナイトへのC濃化を抑え、MAやセメンタイトの生成を抑制する。
As a cooling method, any cooling equipment can be used depending on the manufacturing process, and for example, a water-cooled accelerated cooling equipment can be used.
[Reheating conditions after accelerated cooling]
As described above, hard phases such as cementite and MA in the accelerated coolant are generated between untransformed austenite and bainite lath in which C is concentrated during air cooling after accelerated cooling.
In the present invention, fine carbonitride is precipitated during reheating immediately after accelerated cooling and C is consumed, thereby suppressing C concentration to untransformed austenite and suppressing formation of MA and cementite.

さらに、再加熱時に鋼板表面温度を板厚中心部温度より高くすることで、表面を軟化させることが可能であり、均一な板厚方向の硬度分布が得られる。   Furthermore, by making the steel plate surface temperature higher than the plate thickness center temperature during reheating, the surface can be softened and a uniform hardness distribution in the plate thickness direction can be obtained.

そのため、加速冷却後直ちに0.5℃/s以上の昇温速度で鋼板表面温度600℃以上、板厚中心部温度550〜700℃まで再加熱を行い、且つ加熱終了時の鋼板表面と板厚中心部の温度差を20℃以上とする。
冷却後は、Cが濃化したベイナイトのラス間や未変態オーステナイト部が、空冷によりセメンタイトやMAへと変態するため、180秒以内に直ちに加熱を開始する必要がある。好ましくは、120秒以内である。
Therefore, immediately after accelerated cooling, reheating is performed to a steel plate surface temperature of 600 ° C. or higher and a plate thickness center temperature of 550 to 700 ° C. at a temperature rising rate of 0.5 ° C./s or more. The temperature difference at the center is set to 20 ° C. or more.
After cooling, between the lath of bainite enriched with C and the untransformed austenite part are transformed into cementite and MA by air cooling, so heating needs to be started immediately within 180 seconds. Preferably, it is within 120 seconds.

昇温速度が0.5℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またパーライト変態が生じるため、バウシンガー効果が大きくなる。   When the rate of temperature rise is less than 0.5 ° C./s, it takes a long time to reach the target reheating temperature, so that the production efficiency is deteriorated and pearlite transformation occurs, so that the Bausinger effect is increased.

板厚中心部の再加熱温度が550℃未満ではセメンタイトや炭窒化物の十分な析出が得られずMAが生成する。700℃を超えるとセメンタイトの凝集、粗大化が起こるため、再加熱の温度域を550〜700℃に規定する。   If the reheating temperature at the center of the plate thickness is less than 550 ° C., sufficient precipitation of cementite and carbonitride cannot be obtained and MA is generated. When the temperature exceeds 700 ° C., agglomeration and coarsening of cementite occur. Therefore, the reheating temperature range is defined as 550 to 700 ° C.

更に、鋼板表面温度が600℃未満であり、鋼板表面と板厚中心部の温度差が20℃未満であると、表面硬度を低下させることが出来ず、表面が硬化した不均一な板厚方向硬度分布となりバウジンガー効果が大きくなるので、鋼板表面温度を600℃以上、且つ鋼板表面と板厚中心部の温度差を20℃以上とする。再加熱後の冷却過程は特に規定しないが、空冷とすることが望ましい。   Furthermore, when the steel sheet surface temperature is less than 600 ° C. and the temperature difference between the steel sheet surface and the center of the plate thickness is less than 20 ° C., the surface hardness cannot be reduced and the surface is hardened in an uneven thickness direction. Since the hardness distribution is increased and the Baudinger effect is increased, the steel plate surface temperature is set to 600 ° C. or higher, and the temperature difference between the steel plate surface and the plate thickness center portion is set to 20 ° C. or higher. The cooling process after reheating is not particularly defined, but it is desirable to use air cooling.

加速冷却後の再加熱を行うための設備として、冷却設備の下流側に加熱装置を設置する。加熱装置としては、鋼板表面と板厚中央部で温度差を発生させることが容易な誘導加熱装置を用いる事が好ましい。   As equipment for performing reheating after accelerated cooling, a heating device is installed on the downstream side of the cooling equipment. As the heating device, it is preferable to use an induction heating device that can easily generate a temperature difference between the surface of the steel plate and the central portion of the plate thickness.

上述した製造方法を実施する設備として、圧延ラインの上流から下流側に向かって熱間圧延機、冷却装置、誘導加熱装置、ホットレベラーを逐次配置したものが好適である。   As equipment for carrying out the manufacturing method described above, it is preferable to sequentially arrange a hot rolling mill, a cooling device, an induction heating device, and a hot leveler from the upstream side to the downstream side of the rolling line.

誘導加熱装置あるいは他の熱処理装置を、圧延設備である熱間圧延機およびその出側に配置される冷却装置と同一ライン上に設置する事によって、圧延、加速冷却終了後迅速に再加熱処理が行えるので、加速冷却後の鋼板温度を過度に低下させることなく加熱することが可能である。   By installing an induction heating device or other heat treatment device on the same line as the hot rolling mill that is the rolling equipment and the cooling device arranged on the outlet side, the reheating treatment can be performed quickly after the completion of rolling and accelerated cooling. Since it can be performed, it is possible to heat the steel sheet after accelerated cooling without excessively reducing the steel sheet temperature.

上述した製造方法と成分組成の組み合わせにより製造した本発明鋼板では金属組織中の島状マルテンサイト分率が3%以下、更に表面と板厚中央部の硬度差として40以下が得られる。   In the steel sheet of the present invention manufactured by a combination of the above-described manufacturing method and component composition, the island-like martensite fraction in the metal structure is 3% or less, and further, a hardness difference of 40 or less is obtained as the hardness difference between the surface and the center of the plate thickness.

図1に本発明鋼板(0.05mass%C−1.4mass%Mn−0.01mass%Ti−0.04mass%Nb)を走査型電子顕微鏡(SEM)で観察したミクロ組織を示す。   FIG. 1 shows a microstructure of a steel sheet of the present invention (0.05 mass% C-1.4 mass% Mn-0.01 mass% Ti-0.04 mass% Nb) observed with a scanning electron microscope (SEM).

図1はナイタールエッチング後に電解エッチングを施した試料の観察結果で、セメンタイト(矢印で示す)は電解エッチングで溶解されるため黒く穴状で観察され、MAはベイナイトラス間に針上に存在したり粒界付近に塊状に存在し白く浮きだって観察される。 図1から明らかなように、ベイナイト組織中のセメンタイトやMAの硬質相はほとんど観察されない。   Fig. 1 shows the results of observation of a sample that had been subjected to electrolytic etching after nital etching. Cementite (indicated by an arrow) was observed as a black hole because it was dissolved by electrolytic etching, and MA was present on the needle between the bainite laths. It is observed as a lump in the vicinity of the grain boundary. As is apparent from FIG. 1, the cementite and MA hard phases in the bainite structure are hardly observed.

表1に示す化学成分の鋼(鋼種A〜L)を連続鋳造法によりスラブとし、板厚18、26mmの厚鋼板(No.1〜21)を製造した。   Steels (steel types A to L) having chemical components shown in Table 1 were made into slabs by a continuous casting method, and thick steel plates (Nos. 1 to 21) having a thickness of 18 and 26 mm were manufactured.

加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の冷却設備を用いて加速冷却を行い、誘導加熱炉を用いて再加熱を行った。誘導加熱炉は冷却設備と同一ライン上に設置した。   After the heated slab was rolled by hot rolling, it was immediately subjected to accelerated cooling using a water-cooling type cooling facility, and then reheated using an induction heating furnace. The induction heating furnace was installed on the same line as the cooling equipment.

各鋼板(No.1〜21)の製造条件を表2に示す。なお、加熱温度、圧延終了温度、冷却開始および停止温度は鋼板の平均温度とした。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータ、計算により求めた。   Table 2 shows the production conditions of each steel plate (No. 1 to 21). The heating temperature, rolling end temperature, cooling start and stop temperature were the average temperature of the steel sheet. The average temperature was determined from the surface temperature of the slab or steel plate by parameters and calculations such as plate thickness and thermal conductivity.

加速冷却速度は、加速冷却開始後、加速冷却停止温度まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度とした。   The accelerated cooling rate was an average cooling rate obtained by dividing the temperature difference required for cooling to the accelerated cooling stop temperature by the time required for the cooling after the accelerated cooling was started.

再加熱昇温速度は、加速冷却後、板厚中心部の再加熱温度までの再加熱に必要な温度差を再加熱するのに要した時間で割った平均昇温速度とした。   The reheating temperature increase rate was the average temperature increase rate divided by the time required to reheat the temperature difference required for reheating up to the reheating temperature at the center of the plate thickness after accelerated cooling.

再加熱終了時の鋼板表面温度は、放射温度計で測定し、鋼板板厚中心部温度は、鋼板の表面温度より、板厚、熱伝導率等のパラメータ、計算により求めた。   The steel plate surface temperature at the end of reheating was measured with a radiation thermometer, and the steel plate thickness center temperature was determined from the surface temperature of the steel plate by parameters such as plate thickness and thermal conductivity, and calculation.

以上の条件で製造した鋼板を用い、表面と板厚中心部の硬度差測定、引張特性測定、バウシンガー試験を実施した。測定結果を表2に併せて示す。   Using the steel plate manufactured under the above conditions, a hardness difference measurement, a tensile property measurement, and a Bausinger test were conducted between the surface and the center of the plate thickness. The measurement results are also shown in Table 2.

硬度差は、荷重10kgfのビッカース硬さの値で表層の硬度(鋼板幅方向断面の表面から板厚中心方向1mmの位置の硬度)と板厚中心部の硬度の差を示している。   The hardness difference is a value of a Vickers hardness with a load of 10 kgf, and indicates a difference between the hardness of the surface layer (the hardness at a position 1 mm from the surface of the cross section in the width direction of the steel sheet) and the hardness at the center of the thickness.

引張特性は、圧延垂直方向の全厚引張試験片を2本採取し、引張試験を行い、引張特性を測定し、その平均値で評価した。引張強度540MPa以上を本発明に必要な強度とした。   Tensile properties were obtained by collecting two full thickness tensile test specimens in the vertical direction of rolling, performing a tensile test, measuring the tensile properties, and evaluating the average value. The tensile strength of 540 MPa or more was determined as the strength required for the present invention.

バウシンガー試験は、10φ丸棒試験片を1/4厚位置から採取し1〜3%の圧縮予歪みを導入した後、引張を行い、引張時の0.5%耐力を圧縮時の0.5%耐力で除した値を耐力比として評価した。   In the Bau Singer test, a 10φ round bar test piece was sampled from a 1/4 thickness position, and after introducing a compression pre-strain of 1 to 3%, tension was performed, and 0.5% proof stress during tension was reduced to 0. The value divided by the 5% yield strength was evaluated as the yield ratio.

耐力比が高いほどバウシンガー効果による降伏応力低下が小さいと評価でき、耐力比が0.8以上を本発明に必要な値とした。溶接熱影響部(HAZ)靭性については、再現熱サイクル装置によって入熱40kJ/cmに相当する熱履歴を加えた試験片を用いてシャルピー試験を行った。試験温度−10℃でのシャルピー吸収エネルギーが100J以上を良好とした。   It can be evaluated that the yield stress reduction due to the Bauschinger effect is smaller as the yield strength ratio is higher, and the yield strength ratio is set to a value necessary for the present invention of 0.8 or more. For the weld heat affected zone (HAZ) toughness, a Charpy test was performed using a test piece to which a heat history corresponding to a heat input of 40 kJ / cm was added by a reproducible thermal cycle apparatus. Charpy absorption energy at a test temperature of −10 ° C. was 100 J or more.

第2相体積分率は、倍率1000倍で組織観察した5枚のSEM写真の画像解析から面積分率を平均して求め、鋼板中に均一に第2相が分散していると仮定して、体積分率とした。   The second phase volume fraction is obtained by averaging the area fraction from image analysis of five SEM photographs observed at a magnification of 1000 times, and it is assumed that the second phase is uniformly dispersed in the steel sheet. And volume fraction.

表2において、本発明例であるNo.1〜9はいずれも、化学成分および製造方法が本発明の範囲内であり、引張強度540MPa以上の高強度で、第2相の体積分率も1%未満であり耐力比も0.8以上であった。   In Table 2, all of Nos. 1 to 9, which are examples of the present invention, have chemical components and production methods within the scope of the present invention, have a high tensile strength of 540 MPa or more, and a volume fraction of the second phase is 1 %, And the proof stress ratio was 0.8 or more.

No.10〜16は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、第2相体積分率か硬度差のいずれかが満足できず、耐力比が0.8未満となっている。   Nos. 10 to 16 have chemical components within the scope of the present invention, but because the production method is outside the scope of the present invention, either the second phase volume fraction or the hardness difference cannot be satisfied, and the yield strength ratio Is less than 0.8.

No.17〜21は化学成分が本発明の範囲外であるため第2相体積分率が3%を超しており、耐力比も0.8未満となっている。   In Nos. 17 to 21, since the chemical component is outside the scope of the present invention, the second phase volume fraction exceeds 3%, and the proof stress ratio is also less than 0.8.

本発明の鋼板を走査型電子顕微鏡(SEM)で観察した写真。The photograph which observed the steel plate of the present invention with the scanning electron microscope (SEM).

Claims (5)

質量%で、C:0.03〜0.06%、Si:0.01〜0.5%、Mn:0.5〜2.0%、Al:0.08%以下を含有し、残部Feおよび不可避的不純物からなり、金属組織中の第2相組織の体積分率が3%以下であり、表層と板厚中心部のビッカース硬度差が40以内であることを特徴とするバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。   In mass%, C: 0.03 to 0.06%, Si: 0.01 to 0.5%, Mn: 0.5 to 2.0%, Al: 0.08% or less, and the balance Fe And the inevitable impurities, the volume fraction of the second phase structure in the metal structure is 3% or less, and the difference in Vickers hardness between the surface layer and the thickness center is within 40. Steel plate for high-strength line pipe with low yield stress reduction. 更に、質量%で、Mo:0.05〜0.4%、Ti:0.005〜0.04%、Nb:0.005〜0.06%、V:0.005〜0.07%の中から選ばれる1種又は2種以上を含有することを特徴とする請求項1に記載のバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。   Further, in terms of mass%, Mo: 0.05 to 0.4%, Ti: 0.005 to 0.04%, Nb: 0.005 to 0.06%, V: 0.005 to 0.07% The steel sheet for high-strength line pipes having a low yield stress reduction due to the Bauschinger effect according to claim 1, comprising one or more selected from the inside. 更に、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下、B:0.005%以下、の中から選ばれる1種又は2種以上を含有することを特徴とする請求項1または請求項2に記載のバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。   Further, by mass%, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, B: 0.005% or less The steel sheet for high-strength line pipes containing a small yield stress drop by the Bauschinger effect according to claim 1 or 2, wherein the steel sheet is contained. 更に、質量%で、Ca:0.001〜0.005%、Mg:0.005%以下、REM:0.02%以下の中から選ばれる1種又は2種以上を含有することを特徴とする請求項1乃至3のいずれか一つに記載のバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。   Furthermore, it is characterized by containing one or more selected from Ca: 0.001 to 0.005%, Mg: 0.005% or less, and REM: 0.02% or less in mass%. A steel plate for a high-strength line pipe, wherein the yield stress drop due to the Bauschinger effect according to any one of claims 1 to 3 is small. 請求項1乃至4のいずれか一つに記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar変態点温度以上の圧延終了温度で熱間圧延し鋼板とした後、Ar変態点以上の温度から5℃/s以上の冷却速度で300〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で鋼板表面温度600℃以上、板厚中心部温度550〜700℃まで再加熱を行い、且つ加熱終了時の鋼板表面と板厚中心部の温度差が20℃以上であることを特徴とするバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板の製造方法。 After heating the steel having the component composition according to any one of claims 1 to 4 to a temperature of 1000 to 1300 ° C and hot rolling at a rolling end temperature equal to or higher than the Ar 3 transformation point temperature, Accelerated cooling is performed from a temperature not lower than the Ar 3 transformation point to 300 to 600 ° C. at a cooling rate of 5 ° C./s or higher, and immediately after that, the steel sheet surface temperature is 600 ° C. or higher at a heating rate of 0.5 ° C./s or higher. Reheating to a center temperature of 550 to 700 ° C., and the difference in temperature between the steel sheet surface and the thickness center at the end of heating is 20 ° C. or more, and the strength is small in yield stress reduction due to the Bauschinger effect Manufacturing method of steel plate for line pipe.
JP2005331182A 2005-11-16 2005-11-16 Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same Active JP4677883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331182A JP4677883B2 (en) 2005-11-16 2005-11-16 Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331182A JP4677883B2 (en) 2005-11-16 2005-11-16 Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007138210A true JP2007138210A (en) 2007-06-07
JP4677883B2 JP4677883B2 (en) 2011-04-27

Family

ID=38201449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331182A Active JP4677883B2 (en) 2005-11-16 2005-11-16 Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same

Country Status (1)

Country Link
JP (1) JP4677883B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189973A (en) * 2007-02-02 2008-08-21 Jfe Steel Kk Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance
JP2008208439A (en) * 2007-02-27 2008-09-11 Jfe Steel Kk Method for producing high toughness high tensile strength steel sheet excellent in strength-elongation balance
JP2009275261A (en) * 2008-05-15 2009-11-26 Jfe Steel Corp Welded steel-pipe superior in crushing resistance and manufacturing method therefor
JP2012241269A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High compressive strength steel pipe and method for producing the same
JP2012241268A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High compressive strength steel pipe and method for producing the same
CN103215420A (en) * 2012-12-31 2013-07-24 西安石油大学 Obtaining method of large deformation pipe line steel double phase structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949050A (en) * 1995-05-30 1997-02-18 Kobe Steel Ltd High strength hot rolled steel sheet small in deterioration in yield strength after forming, pipe formed by using the same and production of high strength hot rolled steel sheet
JP2002256380A (en) * 2001-03-06 2002-09-11 Sumitomo Metal Ind Ltd Thick high tensile strength steel plate having excellent brittle crack propagation arrest property and weld zone property and production method therefor
JP2002327212A (en) * 2001-02-28 2002-11-15 Nkk Corp Method for manufacturing sour resistant steel sheet for line pipe
JP2004269964A (en) * 2003-03-07 2004-09-30 Jfe Steel Kk Method for producing high strength steel sheet
JP2005076050A (en) * 2003-08-28 2005-03-24 Jfe Steel Kk Method for manufacturing high-strength steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949050A (en) * 1995-05-30 1997-02-18 Kobe Steel Ltd High strength hot rolled steel sheet small in deterioration in yield strength after forming, pipe formed by using the same and production of high strength hot rolled steel sheet
JP2002327212A (en) * 2001-02-28 2002-11-15 Nkk Corp Method for manufacturing sour resistant steel sheet for line pipe
JP2002256380A (en) * 2001-03-06 2002-09-11 Sumitomo Metal Ind Ltd Thick high tensile strength steel plate having excellent brittle crack propagation arrest property and weld zone property and production method therefor
JP2004269964A (en) * 2003-03-07 2004-09-30 Jfe Steel Kk Method for producing high strength steel sheet
JP2005076050A (en) * 2003-08-28 2005-03-24 Jfe Steel Kk Method for manufacturing high-strength steel sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189973A (en) * 2007-02-02 2008-08-21 Jfe Steel Kk Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance
JP2008208439A (en) * 2007-02-27 2008-09-11 Jfe Steel Kk Method for producing high toughness high tensile strength steel sheet excellent in strength-elongation balance
JP2009275261A (en) * 2008-05-15 2009-11-26 Jfe Steel Corp Welded steel-pipe superior in crushing resistance and manufacturing method therefor
JP2012241269A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High compressive strength steel pipe and method for producing the same
JP2012241268A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High compressive strength steel pipe and method for producing the same
CN103215420A (en) * 2012-12-31 2013-07-24 西安石油大学 Obtaining method of large deformation pipe line steel double phase structure

Also Published As

Publication number Publication date
JP4677883B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP5098256B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same
EP2484792B1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
JP5266791B2 (en) High strength steel plate of X100 grade or more excellent in SR resistance and deformation performance and method for producing the same
JP5278188B2 (en) Thick steel plate with excellent resistance to hydrogen-induced cracking and brittle crack propagation
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
WO2013147197A1 (en) High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
JP4066905B2 (en) Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP7155702B2 (en) Thick steel plate for sour linepipe and its manufacturing method
WO2014132627A1 (en) Thick steel plate and production method for thick steel plate
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP4677883B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP4254551B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP5348382B2 (en) A steel plate for high toughness linepipe with a low yield stress reduction due to the Bauschinger effect and a method for producing the same.
JP2005314796A (en) High strength hot rolled steel sheet having excellent elongation property, stretch flange property and tensile fatigue property, and its production method
JP2009275261A (en) Welded steel-pipe superior in crushing resistance and manufacturing method therefor
JP4419695B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4412098B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP2005060837A (en) High-strength steel sheet superior in hic resistance and toughness in weld heat-affected zone for line pipe, and manufacturing method therefor
JP2004003015A (en) High-strength steel sheet for line pipe superior in hic resistance, and manufacturing method therefor
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4677883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250