JP2011214058A - High-strength stainless steel wire, and method for producing the same - Google Patents

High-strength stainless steel wire, and method for producing the same Download PDF

Info

Publication number
JP2011214058A
JP2011214058A JP2010082836A JP2010082836A JP2011214058A JP 2011214058 A JP2011214058 A JP 2011214058A JP 2010082836 A JP2010082836 A JP 2010082836A JP 2010082836 A JP2010082836 A JP 2010082836A JP 2011214058 A JP2011214058 A JP 2011214058A
Authority
JP
Japan
Prior art keywords
steel wire
stainless steel
strength
fatigue strength
carbonitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010082836A
Other languages
Japanese (ja)
Inventor
Koji Takano
光司 高野
Haruhiko Kajimura
治彦 梶村
Satohiro Tsuchiyama
聡宏 土山
Setsuo Takagi
節雄 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Nippon Steel Stainless Steel Corp
Original Assignee
Kyushu University NUC
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Nippon Steel and Sumikin Stainless Steel Corp filed Critical Kyushu University NUC
Priority to JP2010082836A priority Critical patent/JP2011214058A/en
Publication of JP2011214058A publication Critical patent/JP2011214058A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength stainless steel wire which also has fatigue strength equal to that of a piano wire while securing corrosion resistance equal to that of SUS304.SOLUTION: The high-strength dual-phase stainless steel wire having excellent fatigue strength is obtained by subjecting a dual-phase stainless steel wire to nitrogen absorbing treatment from the surface, in which chemical composition from the surface layer to 1/8 of the cross-sectional diameter is composed of, by mass, 0.005 to 0.05% C, 0.1 to 3.0% Si, 0.2 to 5.0% Mn, 0.2 to 4.0% Ni, 18 to 30% Cr, ≤3.0% Mo, ≤2.0% Cu and >0.35 to 1.0% N, and the balance Fe with inevitable impurities, the average content of Cr carbonitrides from the surface layer to 1/8 of the cross-sectional diameter is 3.0 to 10.0 mass%, and tensile strength is 1,800 MPa to 3,000 MPa.

Description

本発明は、SUS304並の耐食性を有し、高C鋼のピアノ線並の強度と疲労強度を有するワイヤー、ロープ、ばね等の高強度ステンレス鋼線及びその製造方法に関する。   The present invention relates to a high-strength stainless steel wire such as a wire, rope, spring, etc., which has corrosion resistance comparable to that of SUS304 and has strength and fatigue strength comparable to that of a high C steel piano wire, and a method for producing the same.

ばね用等の高強度ステンレス鋼線は、オーステナイト系ステンレス鋼や準安定オーステナイト系ステンレス鋼を強伸線加工して製造されている(例えば、特許文献1、2を参照)。しかし、上記のステンレス鋼線は、金属組織がピアノ線の共析組織のように微細ではないので、ピアノ線並の強度は得られるものの、ピアノ線並の疲労強度は得られていない。   High-strength stainless steel wires for springs and the like are manufactured by wire-drawing austenitic stainless steel or metastable austenitic stainless steel (see, for example, Patent Documents 1 and 2). However, the stainless steel wire has a metal structure that is not as fine as a eutectoid structure of a piano wire, so that the strength equivalent to that of a piano wire is obtained, but the fatigue strength equivalent to that of a piano wire is not obtained.

特許文献3では、ロープ用等の疲労強度に優れる2相鋼ステンレス鋼線が提案されている。しかし、2相鋼ステンレス鋼線は、高炭素鋼のパーライト鋼に近い疲労強度が得られるが、ピアノ線並の高強度(≧1800MPa)は得られない。   Patent Document 3 proposes a duplex stainless steel wire excellent in fatigue strength for ropes and the like. However, although the duplex stainless steel wire has a fatigue strength close to that of a high carbon steel pearlite steel, it cannot provide a high strength (≧ 1800 MPa) comparable to a piano wire.

特許文献4では、2相鋼ステンレス鋼線材を窒化させた線材が提案されている。しかし、窒化のみではピアノ線並の強度や疲労強度を有する2相鋼ステンレス鋼線材は得られていない。   Patent Document 4 proposes a wire obtained by nitriding a duplex stainless steel wire. However, a duplex stainless steel wire having a strength comparable to that of a piano wire and fatigue strength cannot be obtained by nitriding alone.

特許文献5では、高窒素ステンレス鋼線を熱処理してCr窒化物とフェライトの微細共析組織を有する鋼線が提案されている。しかし、フェライト粒を微細化するための製造工程が複雑であり、また。ピアノ線並の強度と疲労強度を兼ね備えるという点でも課題が残っている。   Patent Document 5 proposes a steel wire having a fine eutectoid structure of Cr nitride and ferrite by heat treatment of a high nitrogen stainless steel wire. However, the manufacturing process for refining ferrite grains is complicated, and also. There is still a problem in that it has both the strength of a piano wire and fatigue strength.

以上のように、従来のステンレス鋼線において、ピアノ線並の機械的性質と疲労強度を合わせ持つ安価なステンレス鋼線は得られていない。   As described above, in the conventional stainless steel wire, an inexpensive stainless steel wire having both mechanical properties and fatigue strength similar to those of a piano wire has not been obtained.

特開2002−146483号JP 2002-146487 A 特開平11−117045号JP 11-1117045 A 特開平9−202942号JP-A-9-202942 特開平2−122064号Japanese Patent Laid-Open No. 2-122064 特開2007−126709号JP 2007-126709 A

本発明は、前記の事情を踏まえてなされたものであって、その目的は、ピアノ線並の強度と疲労強度を有する高強度ステンレス鋼線を、安価に提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide inexpensively a high-strength stainless steel wire having the same strength and fatigue strength as a piano wire.

本発明者らは、前記課題を解決するために、ステンレス鋼線の成分組成、及び製造方法について鋭意検討した。その結果、成分を規定した高N系の微細組織を有する2相ステンレス鋼線に、窒素吸収処理により表層から窒素を吸収させ、その後、オーステナイトから、フェライトとCr炭窒化物からなる組織(以下、適宜、「(フェライト+Cr炭窒化物)」と記す。)へ共析変態させ、表層を微細な複相組織にし、強伸線加工を施すことで、耐食性を確保しながら飛躍的に強度と疲労強度が向上させることができ、ピアノ線並の特性が得られることを見出した。   In order to solve the above-mentioned problems, the present inventors diligently studied the composition of the stainless steel wire and the manufacturing method. As a result, nitrogen is absorbed from the surface layer by nitrogen absorption treatment in a duplex stainless steel wire having a high N-based microstructure that defines the components, and then a structure composed of ferrite and Cr carbonitride (hereinafter referred to as austenite). As appropriate, it is described as “(ferrite + Cr carbonitride)”.) By eutectoid transformation into a fine multi-phase structure on the surface layer and applying strong wire drawing, the strength and fatigue are dramatically improved while ensuring corrosion resistance. It has been found that the strength can be improved and the characteristics of a piano wire can be obtained.

本発明は、上記知見に基づいてなされたものであり、その要旨とするところは以下のとおりである。   This invention is made | formed based on the said knowledge, The place made into the summary is as follows.

(1)表層から断面径の8分の1までの深さの領域が、質量%で、
C :0.005〜0.05%、
Si:0.1〜3.0%、
Mn:0.2〜5.0%、
Ni:0.2〜4.0%、
Cr:18〜30%、
Mo:3.0%以下、
Cu:2.0%以下、及び
N :0.35超〜1.0%、
を含有し、残部がFe及び不可避的不純物からなり、かつ、
表層から断面径の8分の1までの深さの領域のCr炭窒化物の平均含有率が3.0〜10.0質量%であるステンレス鋼線であって、
引張強さが1800〜3000MPaであることを特徴とする疲労強度に優れる高強度複相ステンレス鋼線。
(1) The area of the depth from the surface layer to 1/8 of the cross-sectional diameter is mass%,
C: 0.005 to 0.05%,
Si: 0.1 to 3.0%,
Mn: 0.2 to 5.0%,
Ni: 0.2-4.0%,
Cr: 18-30%
Mo: 3.0% or less,
Cu: 2.0% or less, and N: more than 0.35 to 1.0%,
And the balance consists of Fe and inevitable impurities, and
It is a stainless steel wire having an average content of Cr carbonitride in the region from the surface layer to a depth of 1/8 of the cross-sectional diameter of 3.0 to 10.0% by mass,
A high-strength duplex stainless steel wire excellent in fatigue strength characterized by a tensile strength of 1800 to 3000 MPa.

(2)前記(1)の疲労強度に優れる高強度複相ステンレス鋼線の製造方法であって、
質量%で、
C :0.005〜0.05%、
Si:0.1〜3.0%、
Mn:0.2〜5.0%、
Ni:0.2〜4.0、
Cr:18〜30%、
Mo:3.0%以下、
Cu:2.0%以下、及び、
N :0.15〜0.35%
を含有し、残部がFe及び不可避的不純物からなる、窒素吸収処理用オーステナイト−フェライト系2相ステンレス鋼線に、
1000〜1300℃の窒素雰囲気中で、0.1〜20時間の窒素吸収処理を施し、
その後、窒素吸収処理を施したステンレス鋼線に、600〜900℃で3〜60分間の熱処理を施して、フェライトとCr炭窒化物の2相組織へ共析変態させ、
次いで、前記熱処理を施したステンレス鋼線に、50〜95%の減面率で冷間伸線加工を施すことを特徴とする疲労強度に優れる高強度複相ステンレス鋼線の製造方法。
(2) A method for producing a high-strength duplex stainless steel wire having excellent fatigue strength as described in (1) above,
% By mass
C: 0.005 to 0.05%,
Si: 0.1 to 3.0%,
Mn: 0.2 to 5.0%,
Ni: 0.2-4.0,
Cr: 18-30%
Mo: 3.0% or less,
Cu: 2.0% or less, and
N: 0.15-0.35%
An austenite-ferritic duplex stainless steel wire for nitrogen absorption treatment, the balance consisting of Fe and inevitable impurities,
In a nitrogen atmosphere at 1000 to 1300 ° C., a nitrogen absorption treatment is performed for 0.1 to 20 hours,
Thereafter, the stainless steel wire subjected to nitrogen absorption treatment is subjected to heat treatment at 600 to 900 ° C. for 3 to 60 minutes to eutectoid transformation into a two-phase structure of ferrite and Cr carbonitride,
Next, a method for producing a high-strength duplex stainless steel wire having excellent fatigue strength, characterized by subjecting the heat-treated stainless steel wire to cold drawing at a reduction in area of 50 to 95%.

本発明による疲労強度に優れた高強度ステンレス鋼線は、表層が微細な複相組織を有し、SUS304並の耐食性を維持したまま、高強度で飛躍的に優れた疲労強度を付与でき、ばね、ロープ等用の疲労強度に優れる高強度高耐食性品を安価に提供する効果を発揮する。   The high-strength stainless steel wire with excellent fatigue strength according to the present invention has a fine multiphase structure on the surface layer, and can provide a high-strength and dramatically superior fatigue strength while maintaining the same corrosion resistance as SUS304. It exhibits the effect of inexpensively providing high-strength, high-corrosion-resistant products with excellent fatigue strength for ropes and the like.

本発明の特徴は、成分組成及び製法を限定することによって、鋼線の表面で微細な複相組織を得ることである。初めに、本発明のステンレス鋼線の、成分組成の限定理由について説明する。   The feature of the present invention is to obtain a fine multiphase structure on the surface of the steel wire by limiting the component composition and the production method. First, the reasons for limiting the component composition of the stainless steel wire of the present invention will be described.

Cは、鋼の強度を確保する元素である。Cの含有量が0.005%未満だと、その効果が得られない。Cの含有量が0.05%を超えると、粗大Cr炭化物の生成により耐食性及び伸線加工性が劣化する。そのため、Cの含有量は、0.005〜0.05%とする。好ましくは、0.01〜0.03%である。   C is an element that ensures the strength of steel. If the C content is less than 0.005%, the effect cannot be obtained. When the C content exceeds 0.05%, the corrosion resistance and the wire drawing workability deteriorate due to the formation of coarse Cr carbide. Therefore, the content of C is set to 0.005 to 0.05%. Preferably, it is 0.01 to 0.03%.

Siは、脱酸のために必要な元素である。Siの含有量が0.1%未満だと、その効果は得られない。Siの含有量が3.0%を超えると、硬質化により延性が低下して疲労強度も低下する。そのため、Siの含有量は、0.1〜3.0%とする。好ましくは、0.2〜1.0%である。   Si is an element necessary for deoxidation. If the Si content is less than 0.1%, the effect cannot be obtained. When the content of Si exceeds 3.0%, the ductility is lowered due to hardening, and the fatigue strength is also lowered. Therefore, the content of Si is set to 0.1 to 3.0%. Preferably, it is 0.2 to 1.0%.

Mnは、脱酸のため、及び窒素吸収用鋼線でフェライト+オーステナイトの2相組織を得て窒化を促進させるために必要な元素である。Mnの含有量が0.2%未満だと、その効果は得られない。Mnの含有量が5.0%を超えると、オーステナイトが安定し、オーステナイトから(フェライト+Cr炭窒化物)への共析変態処理を施すときに、共析変態の進行が不十分となるので、微細複相組織が得られなくなり、疲労強度が低下する。そのため、Mnの含有量は、0.2〜5.0%とする。好ましくは0.5〜3.0%である。   Mn is an element necessary for deoxidation and to promote nitriding by obtaining a ferrite + austenite two-phase structure with a steel wire for nitrogen absorption. If the Mn content is less than 0.2%, the effect cannot be obtained. When the content of Mn exceeds 5.0%, austenite is stabilized, and when eutectoid transformation from austenite to (ferrite + Cr carbonitride) is performed, the progress of the eutectoid transformation becomes insufficient. A fine multiphase structure cannot be obtained, and the fatigue strength decreases. Therefore, the Mn content is set to 0.2 to 5.0%. Preferably it is 0.5 to 3.0%.

Niは、窒素吸収用鋼線でフェライト+オーステナイトの複相組織を得て、延性を確保して冷間伸線加工性を確保するために必要な元素である。Niの含有量が0.2%未満だと、その効果は得られない。Niの含有量が4.0%を超えると、オーステナイトが安定し、オーステナイトから(フェライト+Cr炭窒化物)への共析変態処理を施すときに、共析変態の進行が不十分となるので、微細複相組織が得られなくなり、疲労強度が低下する。そのため、Niの含有量は0.2〜4.0%とする。好ましくは0.5〜2.0%である。   Ni is an element necessary for obtaining a dual phase structure of ferrite and austenite with a steel wire for nitrogen absorption, ensuring ductility and ensuring cold drawing workability. If the Ni content is less than 0.2%, the effect cannot be obtained. If the Ni content exceeds 4.0%, austenite is stabilized, and when eutectoid transformation from austenite to (ferrite + Cr carbonitride) is performed, the progress of the eutectoid transformation becomes insufficient. A fine multiphase structure cannot be obtained, and the fatigue strength decreases. Therefore, the Ni content is 0.2 to 4.0%. Preferably it is 0.5 to 2.0%.

Crは、耐食性を確保し、かつ窒素吸収用鋼線でフェライト+オーステナイトの2相組織を得て、延性を確保して冷間伸線加工性を確保するために必要な元素である。Crの含有量が18.0%未満だと、この効果が得られない。Crの含有量が30.0%を超えると、延性が劣化し、疲労強度が逆に劣化する。そのため、Crの含有量は18.0〜30.0%とする。好ましくは20.0〜26.0%である。   Cr is an element necessary for securing corrosion resistance and obtaining a two-phase structure of ferrite and austenite with a steel wire for nitrogen absorption, ensuring ductility and ensuring cold wire workability. If the Cr content is less than 18.0%, this effect cannot be obtained. If the Cr content exceeds 30.0%, ductility deteriorates and fatigue strength deteriorates conversely. Therefore, the content of Cr is set to 18.0 to 30.0%. Preferably it is 20.0 to 26.0%.

Moは、耐食性を向上させ、強度を向上させるのに有効な元素であり、必要に応じて含有させる。Moの含有量が3.0%を超えると、材料が硬質化するばかりか、シグマ相が析出し、疲労強度が著しく劣化する。そのため、Mo含有量の上限は3.0%とする。好ましくは0.1〜1.0%である。   Mo is an element effective for improving the corrosion resistance and improving the strength, and is contained as necessary. If the Mo content exceeds 3.0%, the material will not only harden but also a sigma phase will precipitate and the fatigue strength will deteriorate significantly. Therefore, the upper limit of the Mo content is 3.0%. Preferably it is 0.1 to 1.0%.

Cuは、強度、耐食性を向上させるのに有効な元素であり、必要に応じて含有させる。Cuの含有量が2.0%を超えると、オーステナイトが安定し、オーステナイトから(フェライト+Cr炭窒化物)への共析変態処理を施すときに、共析変態の進行が不十分となるので、微細複相組織が得られなくなり、疲労強度が低下する。そのため、Cu含有量の上限は2.0%にする。好ましくは0.1〜1.0%である。   Cu is an element effective for improving strength and corrosion resistance, and is contained as necessary. If the Cu content exceeds 2.0%, the austenite becomes stable, and when the eutectoid transformation treatment from austenite to (ferrite + Cr carbonitride) is performed, the progress of the eutectoid transformation becomes insufficient. A fine multiphase structure cannot be obtained, and the fatigue strength decreases. Therefore, the upper limit of the Cu content is set to 2.0%. Preferably it is 0.1 to 1.0%.

表層のNは、オーステナイトから(フェライト+Cr炭窒化物)への共析変態により微細複相組織を得て、鋼の強度、疲労強度を確保するために必要であり、その効果を得るために、窒素吸収処理により0.35%を超える量を含有させる。表層のNの含有量が1.0%を越えると、粗大なCr炭窒化物が析出して、延性が低下し、疲労強度が低下する。そのため、表層のNの含有量は、0.35超〜1.0%とする。好ましくは0.4〜0.8%である。   N in the surface layer is necessary to obtain a fine multiphase structure by eutectoid transformation from austenite to (ferrite + Cr carbonitride), and to secure the strength and fatigue strength of steel. An amount exceeding 0.35% is contained by nitrogen absorption treatment. If the N content in the surface layer exceeds 1.0%, coarse Cr carbonitride precipitates, the ductility decreases, and the fatigue strength decreases. Therefore, the N content in the surface layer is set to more than 0.35 to 1.0%. Preferably it is 0.4 to 0.8%.

本発明の鋼線は、所定の化学組成の2相ステンレス鋼線に、高温で表層から窒素吸収させて、その後、オーステナイトから(フェライト+Cr炭窒化物)への共析変態処理を施した鋼線を冷間伸線加工して得られるものである。   The steel wire of the present invention is a steel wire in which a duplex stainless steel wire having a predetermined chemical composition is nitrogen-absorbed from the surface layer at a high temperature and then subjected to eutectoid transformation treatment from austenite to (ferrite + Cr carbonitride). Is obtained by cold drawing.

鋼線の疲労強度は、鋼線の強度に加え、表層の金属組織に大きく影響され、特に、断面径の表層の8分の1までの金属組織に大きく影響される。そのため、本発明では、表層から断面径の8分の1までの金属組織及び金属組織を制御する成分組成を規定する。   In addition to the strength of the steel wire, the fatigue strength of the steel wire is greatly influenced by the metal structure of the surface layer, and is particularly greatly influenced by the metal structure up to 1/8 of the surface layer of the cross-sectional diameter. Therefore, in this invention, the component composition which controls the metal structure and metal structure from surface layer to 1/8 of a cross-sectional diameter is prescribed | regulated.

また、疲労強度に影響を及ぼす因子として、Cr炭窒化物の量、及び、共析変態処理後のラメラ間隔が重要である。   Further, as factors affecting the fatigue strength, the amount of Cr carbonitride and the lamellar spacing after eutectoid transformation treatment are important.

Cr炭窒化物は、オーステナイトから(フェライト+Cr炭窒化物)への共析変態処理によって、表層に、微細(ラメラ間隔が平均1μm以下)に析出させる。Cr炭窒化物の量が3.0%未満では、炭窒化物の析出が不均一となり、疲労強度を満足しない。Cr炭窒化物の量が10.0%を超えると、ラメラ間隔が平均1μmを超える粗大な炭窒化物が析出し、延性が劣化して、疲労強度が低下する。そのため、Cr炭窒化物の量は3.0〜10.0質量%に限定する。Cr炭窒化物量は、成分組成と熱処理の条件によって制御される。   Cr carbonitride is finely deposited on the surface layer (average of lamellar spacing is 1 μm or less) by eutectoid transformation from austenite to (ferrite + Cr carbonitride). If the amount of Cr carbonitride is less than 3.0%, the precipitation of carbonitride becomes non-uniform and fatigue strength is not satisfied. When the amount of Cr carbonitride exceeds 10.0%, coarse carbonitride having an average lamellar spacing exceeding 1 μm is precipitated, ductility is deteriorated, and fatigue strength is reduced. Therefore, the amount of Cr carbonitride is limited to 3.0 to 10.0% by mass. The amount of Cr carbonitride is controlled by the component composition and heat treatment conditions.

疲労強度は、鋼線の引張強さにも大きく影響される。鋼線の引張強さが1800MPa未満では、ピアノ線並の疲労強度が得られない。鋼線の引張強さが3000MPaを超えると、延性が低下し、疲労強度が低下する。そのため、本発明の鋼線では、引張強さを1800〜3000MPaに限定する。   Fatigue strength is also greatly affected by the tensile strength of the steel wire. If the tensile strength of the steel wire is less than 1800 MPa, fatigue strength equivalent to that of a piano wire cannot be obtained. If the tensile strength of the steel wire exceeds 3000 MPa, the ductility decreases and the fatigue strength decreases. Therefore, in the steel wire of the present invention, the tensile strength is limited to 1800 to 3000 MPa.

次に、本発明のステンレス鋼線の製造方法について説明する。   Next, the manufacturing method of the stainless steel wire of this invention is demonstrated.

本発明のステンレス鋼線は、所定の成分組成の2相ステンレス鋼線を、窒素吸収処理、共析変態処理、及び冷間伸線加工を施して得られる。本発明で重要な点は、微細なオーステナイト組織から、(フェライト+Cr炭窒化物)の共析処変態理を施して、微細複相組織を得ることである。   The stainless steel wire of the present invention is obtained by subjecting a two-phase stainless steel wire having a predetermined component composition to nitrogen absorption treatment, eutectoid transformation treatment, and cold drawing. The important point in the present invention is to obtain a fine multiphase structure from a fine austenite structure by performing a eutectoid transformation transformation of (ferrite + Cr carbonitride).

窒素吸収処理用鋼線の金属組織が、オーステナイト単相、又はフェライト単相組織の場合、窒素吸収処理後の組織が粒径で100μm超に粗大化し、共析変態後のフェライト粒径も100μm超と粗大化するので、目標の疲労強度が得られない。   When the metal structure of the steel wire for nitrogen absorption treatment is an austenite single phase or ferrite single phase structure, the structure after nitrogen absorption treatment is coarsened to a particle size of more than 100 μm, and the ferrite particle size after eutectoid transformation is also more than 100 μm. As a result, the target fatigue strength cannot be obtained.

窒素吸収処理用鋼線の金属組織が、オーステナイト+フェライトの2相組織の場合、通常、熱間圧延、伸線加工、熱処理等の鋼線加工工程で、2相組織の結晶粒径が横断面方向に10μm未満と微細化され、窒素吸収処理やCr炭窒化物の析出処理後も、結晶粒径で100μm以下と微細組織が維持されるので、目標の疲労強度が得られる。   When the metal structure of the steel wire for nitrogen absorption treatment is a two-phase structure of austenite + ferrite, the crystal grain size of the two-phase structure is usually in a cross section in the steel wire processing steps such as hot rolling, wire drawing, and heat treatment. Since the microstructure is maintained at a crystal grain size of 100 μm or less even after nitrogen absorption treatment or Cr carbonitride precipitation treatment, the target fatigue strength can be obtained.

この時、窒素吸収処理用鋼線の2相組織のフェライト相率が、10〜90体積%であれば、鋼線の横断面の結晶粒径が10μm以下の微細組織となる。フェライト相率が、20〜80体積%であれば、窒素吸収処理やCr炭窒化物の析出処理後の結晶粒径で50μm以下まで組織が微細化され、疲労強度が向上するので、より好ましい。   At this time, if the ferrite phase ratio of the two-phase structure of the steel wire for nitrogen absorption treatment is 10 to 90% by volume, the crystal grain size of the cross section of the steel wire becomes a fine structure of 10 μm or less. If the ferrite phase ratio is 20 to 80% by volume, the crystal grain size after the nitrogen absorption treatment or Cr carbonitride precipitation treatment is refined to 50 μm or less, and the fatigue strength is more preferable.

したがって、窒素吸収処理用鋼線の金属組織は、オーステナイト+フェライトの複相組織とする。フェライト相率は、成分組成を限定することにより制御される。   Therefore, the metal structure of the steel wire for nitrogen absorption treatment is a double phase structure of austenite + ferrite. The ferrite phase rate is controlled by limiting the component composition.

窒素吸収用処理鋼線のN量は、窒素吸収処理用鋼線でオーステナイト+フェライトの2相組織を得て、共析変態処理時には、オーステナイト組織を分解させ、(フェライト+Cr炭窒化物)の共析変態を促進させて複相微細組織を得るため、0.15%以上が必要である。   The amount of N in the steel wire for nitrogen absorption is obtained by obtaining a two-phase structure of austenite + ferrite with the steel wire for nitrogen absorption treatment, and during eutectoid transformation treatment, the austenite structure is decomposed and the amount of (ferrite + Cr carbonitride) is reduced. In order to promote the eutectic transformation and obtain a multiphase microstructure, 0.15% or more is necessary.

N量が0.15%未満の場合、窒素吸収処理用鋼線がフェライト単相となり、組織が粗大化するので、目標の疲労強度が得られない。N量が0.35%を超えると、窒素の溶解限を超えて、溶製時に窒素のブローホールが発生するので、工業的に製造が困難となる。そのため、窒素吸収用処理鋼線のN量は、0.15〜0.35%とする。好ましくは0.18〜0.30%である。   When the amount of N is less than 0.15%, the steel wire for nitrogen absorption treatment becomes a ferrite single phase and the structure becomes coarse, so that the target fatigue strength cannot be obtained. If the amount of N exceeds 0.35%, the melting limit of nitrogen is exceeded, and nitrogen blowholes are generated during melting, making it difficult to manufacture industrially. Therefore, the N content of the nitrogen-absorbing treated steel wire is 0.15 to 0.35%. Preferably it is 0.18 to 0.30%.

冷間伸線加工後のステンレス鋼線の表層から断面径の8分の1までの平均窒素濃度を0.35超〜1%にするための、本発明のステンレス鋼線の製造方法は、以下のとおりである。   The method for producing a stainless steel wire of the present invention for making the average nitrogen concentration from the surface layer of the stainless steel wire after the cold wire drawing to 1/8 of the cross-sectional diameter more than 0.35 to 1% is as follows. It is as follows.

初めに、窒素吸収処理用オーステナイト+フェライト系2相ステンレス鋼線を、1000〜1300℃の窒素雰囲気中で0.1〜20時間の窒化吸収処理で窒素を鋼材に吸収させる。   First, an austenite for nitrogen absorption treatment + ferritic duplex stainless steel wire is absorbed into the steel by nitrogen absorption treatment for 0.1 to 20 hours in a nitrogen atmosphere at 1000 to 1300 ° C.

窒化吸収処理の温度が1000℃未満では、十分に窒素が鋼材に吸収されない。窒化吸収処理の温度が1300℃を超えると、鋼材中の平衡窒素固溶濃度が低くなるので、鋼材中の窒素濃度が0.35%超に達しない。そのため、窒化吸収処理の温度は、1000〜1300℃に限定する。   When the temperature of the nitriding absorption treatment is less than 1000 ° C., nitrogen is not sufficiently absorbed by the steel material. When the temperature of the nitriding absorption treatment exceeds 1300 ° C., the equilibrium nitrogen solid solution concentration in the steel material becomes low, so the nitrogen concentration in the steel material does not reach more than 0.35%. Therefore, the temperature of the nitriding absorption process is limited to 1000 to 1300 ° C.

窒素吸収処理の時間が0.1時間未満では、十分に窒素が鋼材に吸収されない。窒素吸収処理の時間が20時間を超えると、結晶粒径が100μm超に粗大化するばかりか、共析変態処理後の炭窒化物も粗大化して疲労強度が低下する。そのため、窒素吸収処理の時間は0.1〜20時間に限定する。   If the time of nitrogen absorption treatment is less than 0.1 hour, nitrogen is not sufficiently absorbed by the steel material. When the time of nitrogen absorption treatment exceeds 20 hours, not only the crystal grain size becomes coarser than 100 μm, but also the carbonitride after eutectoid transformation treatment becomes coarser and fatigue strength decreases. Therefore, the nitrogen absorption treatment time is limited to 0.1 to 20 hours.

ここで、窒素雰囲気とは、窒素分圧が0.1〜3atmの酸素を含まない雰囲気である。鋼材表面を活性させて窒素の吸収を促進させるため、水素ガスを含んでもよい。   Here, the nitrogen atmosphere is an atmosphere containing no oxygen having a nitrogen partial pressure of 0.1 to 3 atm. Hydrogen gas may be included to activate the steel surface and promote nitrogen absorption.

窒素吸収処理の後、600〜900℃で3〜60分間の共析変態処理を施して、オーステナイトから(フェライト+Cr炭窒化物)への共析変態を伴って、表層を微細な複相組織にする。   After the nitrogen absorption treatment, a eutectoid transformation treatment is performed at 600 to 900 ° C. for 3 to 60 minutes, and the eutectoid transformation from austenite to (ferrite + Cr carbonitride) is accompanied with a fine multiphase structure. To do.

共析変態処理の温度が、600度未満、又は900℃超であると、共析変態が進行しないため、Cr炭窒化物の析出処理の温度は、600〜900℃に限定する。   If the eutectoid transformation temperature is less than 600 ° C. or more than 900 ° C., the eutectoid transformation does not proceed, so the Cr carbonitride precipitation treatment temperature is limited to 600 to 900 ° C.

共析変態処理時間が3分未満であると、共析変態が不十分となる。共析変態処理時間が60分超であると、Cr炭窒化物が粗大化(ラメラ間隔が平均1μm超)して、目標の疲労強度が得られない。そのため、共析変態処理時間は、3〜60分間に限定する。   If the eutectoid transformation treatment time is less than 3 minutes, the eutectoid transformation becomes insufficient. When the eutectoid transformation treatment time is more than 60 minutes, Cr carbonitrides are coarsened (lamellar spacing is more than 1 μm on average), and the target fatigue strength cannot be obtained. Therefore, the eutectoid transformation treatment time is limited to 3 to 60 minutes.

次いで、上記の共析変態処理の後に、50〜95%の減面率で冷間伸線加工を施して高強度複相ステンレス鋼線を得る。減面率が50%未満の場合、1800MPa以上の強度が得られず、目標の疲労強度が得られない。減面率が95%超の場合、3000MPaを超える強度を示すが、延性が低下するので、目標の疲労強度が得られない。そのため、冷間伸線加工の減面率は、50〜95%に限定する。   Next, after the above eutectoid transformation treatment, cold drawing is performed at a reduction in area of 50 to 95% to obtain a high-strength duplex stainless steel wire. If the area reduction is less than 50%, a strength of 1800 MPa or more cannot be obtained, and the target fatigue strength cannot be obtained. When the area reduction ratio is more than 95%, the strength exceeds 3000 MPa, but the ductility is lowered, so that the target fatigue strength cannot be obtained. Therefore, the area reduction rate of the cold wire drawing is limited to 50 to 95%.

以下、実施例を用いて、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表1に示す成分組成を有する鋼を、150kgの真空溶解炉にて溶解した後、φ180mmの鋳片に鋳造し、その鋳片をφ6mmまで熱間の線材圧延を行い、1050℃で熱間圧延を終了した。その後、1050℃で5分間、水冷の連続熱処理を施して、次いで、酸洗を行い線材とした。その後、通常のプロセスで、φ1.3〜5mmまで1次の冷間伸線加工を施し、Ar雰囲気中で1050℃、5分間のストランド焼鈍を施し、窒素吸収処理用の鋼線とした。   Steel having the composition shown in Table 1 is melted in a 150 kg vacuum melting furnace, cast into a slab of φ180 mm, the slab is hot-rolled to φ6 mm, and hot rolled at 1050 ° C. Ended. Thereafter, water-cooling continuous heat treatment was performed at 1050 ° C. for 5 minutes, and then pickling was performed to obtain a wire. Thereafter, a primary cold wire drawing process was performed to φ1.3 to 5 mm by a normal process, and a strand annealing was performed at 1050 ° C. for 5 minutes in an Ar atmosphere to obtain a steel wire for nitrogen absorption treatment.

Figure 2011214058
Figure 2011214058

得られた窒素吸収処理用の鋼線を、900〜1350℃、1atmの窒素雰囲気中で、0.05〜30時間の、窒素吸収処理を施し、引き続き、500〜1000℃で1〜100分間の、Cr炭窒化物の析出処理を施した。その後、41〜96%の減面率で、φ1.0mmまで2次の冷間伸線加工を施し、製品評価用の鋼線とした。製造条件を表2、表3に記す。   The obtained steel wire for nitrogen absorption treatment was subjected to nitrogen absorption treatment for 0.05 to 30 hours in a nitrogen atmosphere at 900 to 1350 ° C. and 1 atm, and subsequently at 500 to 1000 ° C. for 1 to 100 minutes. Then, precipitation treatment of Cr carbonitride was performed. Thereafter, a secondary cold drawing process was performed up to φ1.0 mm with a reduction in area of 41 to 96% to obtain a steel wire for product evaluation. Production conditions are shown in Tables 2 and 3.

評価は、ストランド焼鈍後の鋼線(窒素吸収処理用素材)及び共析変態処理後のフェライトの結晶粒径、2次の冷間伸線加工後の鋼線の引張強さ、鋼線表層の窒素濃度、鋼線表層の炭窒化物の残渣量及び炭窒化物の平均ラメラ間隔、鋼線の耐食性、並びに疲労強度について行った。評価結果を表2、表3に示す。   Evaluation is based on the steel wire after strand annealing (material for nitrogen absorption treatment) and the crystal grain size of ferrite after eutectoid transformation treatment, the tensile strength of steel wire after secondary cold drawing, The nitrogen concentration, the amount of carbonitride residue on the surface of the steel wire, the average lamellar spacing of the carbonitride, the corrosion resistance of the steel wire, and the fatigue strength were measured. The evaluation results are shown in Tables 2 and 3.

Figure 2011214058
Figure 2011214058

Figure 2011214058
Figure 2011214058

ストランド焼鈍後の鋼線の結晶粒径は、鋼線を横断面に埋め込み研磨して、蓚酸電解エッチングを施し、光学顕微鏡観察により求めた。平均結晶粒径は、画像上に直線を引き、単位長さ当たりの直線上を通過する結晶粒界の個数から求める切断法により測定した。本発明例の窒素吸収処理用の鋼線では、すべて、オーステナイト+フェライトの横断面方向の平均結晶粒径が、10μm以下の微細な複相組織であった。   The crystal grain size of the steel wire after strand annealing was determined by observing an optical microscope by burying and polishing the steel wire in a cross section, performing oxalic acid electrolytic etching. The average crystal grain size was measured by a cutting method in which a straight line was drawn on the image and obtained from the number of crystal grain boundaries passing through the straight line per unit length. All of the steel wires for nitrogen absorption treatment of the examples of the present invention had a fine multiphase structure in which the average crystal grain size in the cross-sectional direction of austenite + ferrite was 10 μm or less.

共析変態処理後のフェライト粒径は、鋼線を横断面に埋め込み研磨して、EBSP(Electron Back Scatter Diffraction Pattern)観察後に、EBSP方位解析システム(TSL、OIM4.0)により、結晶粒界の角度10°以上で結晶粒を表示し、平均結晶粒径を計算した。本発明例の共析変態処理後のフェライトの平均粒径は、すべて100μm以下であった。   The ferrite grain size after the eutectoid transformation treatment is obtained by embedding and polishing a steel wire in a cross section, and after EBSP (Electron Back Scatter Diffraction Pattern) observation, using an EBSP orientation analysis system (TSL, OIM4.0), The crystal grains were displayed at an angle of 10 ° or more, and the average crystal grain size was calculated. The average particle diameters of the ferrites after the eutectoid transformation treatment of the inventive examples were all 100 μm or less.

2次の冷間伸線加工後の鋼線の引張強さは、JIS Z 2241の引張試験で評価した。本発明例の鋼線では、すべて、引張強さは1800〜3000MPaの範囲であった。   The tensile strength of the steel wire after the secondary cold drawing was evaluated by a tensile test of JIS Z 2241. In all the steel wires of the examples of the present invention, the tensile strength was in the range of 1800 to 3000 MPa.

2次の冷間伸線加工後の鋼線表層の窒素濃度は、断面径の表層の8分の1までを酸で溶解して、化学分析で求めた。本発明例の鋼線である、No.2、4、5、8、10、11、17〜25は、表層の窒素濃度が0.35超〜1.0%の範囲であることが確認できた。   The nitrogen concentration of the steel wire surface layer after the secondary cold drawing was determined by chemical analysis by dissolving up to 1/8 of the surface layer of the cross-sectional diameter with an acid. The steel wire of the example of the present invention, No. 2, 4, 5, 8, 10, 11, 17 to 25, it was confirmed that the nitrogen concentration of the surface layer was in the range of more than 0.35 to 1.0%.

2次の冷間伸線加工後の鋼線表層のCr炭窒化物量(質量%)は、次のようにして求めた。初めに、表層を#500研磨した3gの伸線材を、非水溶液中(3%のマレイン酸+1%のテトラメチルアンモニウムクロイド+残部メタノール)で電解(100mV定電圧)して、断面径の表層の8分の1までマトリックスを溶解し、0.2μm穴径のフィルターでろ過して、Cr炭窒化物を抽出した。   The amount (% by mass) of Cr carbonitride in the steel wire surface layer after the secondary cold wire drawing was determined as follows. First, 3 g of wire drawing material whose surface layer was polished by # 500 was electrolyzed (100 mV constant voltage) in a non-aqueous solution (3% maleic acid + 1% tetramethylammonium croid + remaining methanol). The matrix was dissolved to 1/8 and filtered through a 0.2 μm hole diameter filter to extract Cr carbonitride.

抽出したCr炭窒化物を乾燥した後、質量測定により、Cr炭窒化物の総質量%を算出した。X線回折の同定より、抽出物は実質的にCr炭化物とCr窒化物であることを確認した。本発明例の鋼線である、No.2、4、5、8、10、11、17〜25は、Cr炭窒化物の平均含有率が3〜10質量%の範囲内であることが確認できた。   After drying the extracted Cr carbonitride, the total mass% of Cr carbonitride was calculated by mass measurement. From the identification of X-ray diffraction, it was confirmed that the extract was substantially Cr carbide and Cr nitride. The steel wire of the example of the present invention, No. 2, 4, 5, 8, 10, 11, 17 to 25, it was confirmed that the average content of Cr carbonitride was in the range of 3 to 10% by mass.

2次の冷間伸線加工後の鋼線表層の炭窒化物の平均ラメラ間隔は、鋼線を横断面に埋め込み研磨後に王水によりエッチングし、SEM(走査型電子顕微鏡)にて倍率10000倍で組織観察し、その画像を画像解析することで求めた。平均ラメラ間隔は、10視野でラメラ間隔を測定し、その平均値をとした。本発明の鋼線である、No.2、4、5、8、10、11、17〜25の表層の炭窒化物の平均ラメラ間隔は、すべて1μm以下と微細であることが確認できた。   The average lamellar spacing of carbonitrides on the surface layer of the steel wire after the secondary cold drawing is embedded in the cross-section of the steel wire, etched with aqua regia, polished, and magnified 10,000 times with a SEM (scanning electron microscope) It was obtained by observing the tissue and analyzing the image. The average lamella spacing was determined by measuring the lamella spacing in 10 fields of view. The steel wire of the present invention, No. It was confirmed that the average lamellar spacing of the carbonitrides on the surface layer of 2, 4, 5, 8, 10, 11, 17 to 25 was all as fine as 1 μm or less.

2次の冷間伸線加工後の鋼線の耐食性は、鋼線の表層を#500で研磨後、JIS Z 2371の塩水噴霧試験に従い、100時間噴霧試験を実施し、発銹するか否かで評価した。無発銹及び点錆レベルであれば耐食性を○、流れ錆、前面発銹の場合は、耐食性を×とした。本発明の鋼線は、すべて良好な耐食性を有していた。   The corrosion resistance of the steel wire after the secondary cold drawing is determined by whether the surface layer of the steel wire is polished with # 500 and then sprayed for 100 hours according to the salt spray test of JIS Z 2371. It was evaluated with. In the case of non-foaming and spot rust levels, the corrosion resistance was evaluated as “○”. All the steel wires of the present invention had good corrosion resistance.

2次の冷間伸線加工後の鋼線の疲労強度は、2次伸線加工後の鋼線を用いて、中村式疲労試験を行い評価した。評価は、回転数4000rpmで繰り返し応力振幅させ、1×10回で破断しない上限の応力を求め、ピアノ線並の疲労強度である500MPa以上なら○、500MPa未満であれば×とした。本発明の鋼線である、No.2、4、5、8、10、11、17〜25の疲労強度は、いずれも500MPa以上であり、良好であった。 The fatigue strength of the steel wire after the secondary cold drawing was evaluated by performing a Nakamura fatigue test using the steel wire after the secondary drawing. Evaluation was made by repeating the stress amplitude at a rotational speed of 4000 rpm to obtain the upper limit stress that does not break at 1 × 10 7 times. The steel wire of the present invention, No. The fatigue strengths of 2, 4, 5, 8, 10, 11, and 17 to 25 were all 500 MPa or more and were good.

本発明によれば、SUS304と同等の高耐食性を確保したまま、ピアノ線と同等又は同等以上の疲労強度を有する高強度ステンレス鋼線を提供できる。本発明のステンレス鋼線を用いれば、ワイヤー、ロープ、バネ等の高強度製品を安価に提供することができ、産業上極めて有用である。   According to the present invention, it is possible to provide a high-strength stainless steel wire having fatigue strength equivalent to or higher than that of a piano wire while ensuring high corrosion resistance equivalent to that of SUS304. If the stainless steel wire of this invention is used, high strength products, such as a wire, a rope, and a spring, can be provided at low cost, and it is very useful industrially.

Claims (2)

表層から断面径の8分の1までの深さの領域が、質量%で、
C :0.005〜0.05%、
Si:0.1〜3.0%、
Mn:0.2〜5.0%、
Ni:0.2〜4.0%、
Cr:18〜30%、
Mo:3.0%以下、
Cu:2.0%以下、及び
N :0.35超〜1.0%、
を含有し、残部がFe及び不可避的不純物からなり、かつ、
表層から断面径の8分の1までの深さの領域のCr炭窒化物の平均含有率が3.0〜10.0質量%であるステンレス鋼線であって、
引張強さが1800〜3000MPaであることを特徴とする疲労強度に優れる高強度複相ステンレス鋼線。
The area of the depth from the surface layer to 1/8 of the cross-sectional diameter is mass%,
C: 0.005 to 0.05%,
Si: 0.1 to 3.0%,
Mn: 0.2 to 5.0%,
Ni: 0.2-4.0%,
Cr: 18-30%
Mo: 3.0% or less,
Cu: 2.0% or less, and N: more than 0.35 to 1.0%,
And the balance consists of Fe and inevitable impurities, and
It is a stainless steel wire having an average content of Cr carbonitride in the region from the surface layer to a depth of 1/8 of the cross-sectional diameter of 3.0 to 10.0% by mass,
A high-strength duplex stainless steel wire excellent in fatigue strength characterized by a tensile strength of 1800 to 3000 MPa.
請求項1に記載の疲労強度に優れる高強度複相ステンレス鋼線の製造方法であって、
質量%で、
C :0.005〜0.05%、
Si:0.1〜3.0%、
Mn:0.2〜5.0%、
Ni:0.2〜4.0、
Cr:18〜30%、
Mo:3.0%以下、
Cu:2.0%以下、及び、
N :0.15〜0.35%
を含有し、残部がFe及び不可避的不純物からなる、窒素吸収処理用オーステナイト−フェライト系2相ステンレス鋼線に、
1000〜1300℃の窒素雰囲気中で、0.1〜20時間の窒素吸収処理を施し、
その後、窒素吸収処理を施したステンレス鋼線に、600〜900℃で3〜60分間の熱処理を施して、フェライトとCr炭窒化物の2相組織へ共析変態させ、
次いで、前記熱処理を施したステンレス鋼線に、50〜95%の減面率で冷間伸線加工を施すことを特徴とする疲労強度に優れる高強度複相ステンレス鋼線の製造方法。
A method for producing a high-strength duplex stainless steel wire having excellent fatigue strength according to claim 1,
% By mass
C: 0.005 to 0.05%,
Si: 0.1 to 3.0%,
Mn: 0.2 to 5.0%,
Ni: 0.2-4.0,
Cr: 18-30%
Mo: 3.0% or less,
Cu: 2.0% or less, and
N: 0.15-0.35%
An austenite-ferritic duplex stainless steel wire for nitrogen absorption treatment, the balance consisting of Fe and inevitable impurities,
In a nitrogen atmosphere at 1000 to 1300 ° C., a nitrogen absorption treatment is performed for 0.1 to 20 hours,
Thereafter, the stainless steel wire subjected to nitrogen absorption treatment is subjected to heat treatment at 600 to 900 ° C. for 3 to 60 minutes to eutectoid transformation into a two-phase structure of ferrite and Cr carbonitride,
Next, a method for producing a high-strength duplex stainless steel wire having excellent fatigue strength, characterized by subjecting the heat-treated stainless steel wire to cold drawing at a reduction in area of 50 to 95%.
JP2010082836A 2010-03-31 2010-03-31 High-strength stainless steel wire, and method for producing the same Withdrawn JP2011214058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082836A JP2011214058A (en) 2010-03-31 2010-03-31 High-strength stainless steel wire, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082836A JP2011214058A (en) 2010-03-31 2010-03-31 High-strength stainless steel wire, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2011214058A true JP2011214058A (en) 2011-10-27

Family

ID=44944109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082836A Withdrawn JP2011214058A (en) 2010-03-31 2010-03-31 High-strength stainless steel wire, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2011214058A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160005324A (en) * 2014-06-11 2016-01-14 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 High-strength dual phase structure stainless steel wire material, high-strength dual phase structure stainless steel wire, and method for production the same and spring part
WO2018175483A1 (en) * 2017-03-20 2018-09-27 Apple Inc. Steel compositions and solution nitriding of stainless steel thereof
CN110983191A (en) * 2019-12-31 2020-04-10 九牧厨卫股份有限公司 High-corrosion-resistance stainless steel plate, stainless steel trough and preparation method thereof
CN111057967A (en) * 2019-12-31 2020-04-24 九牧厨卫股份有限公司 High-corrosion-resistance and scratch-resistance stainless steel plate, stainless steel trough and preparation method thereof
CN112143966A (en) * 2019-06-26 2020-12-29 苹果公司 Nitrided stainless steel with high strength and high ductility
JPWO2021256128A1 (en) * 2020-06-19 2021-12-23
WO2022243000A1 (en) * 2021-05-21 2022-11-24 Nv Bekaert Sa A straight stainless steel wire for flexible card clothing

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160005324A (en) * 2014-06-11 2016-01-14 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 High-strength dual phase structure stainless steel wire material, high-strength dual phase structure stainless steel wire, and method for production the same and spring part
KR101600251B1 (en) * 2014-06-11 2016-03-04 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 High-strength dual phase structure stainless steel wire material, high-strength dual phase structure stainless steel wire, and method for production the same and spring part
JP2021063299A (en) * 2017-03-20 2021-04-22 アップル インコーポレイテッドApple Inc. Steel compositions and solid solution nitriding of stainless steel thereof
CN109642297A (en) * 2017-03-20 2019-04-16 苹果公司 The Solid Solution Nitriding of steel compositions and its stainless steel
JP2019529697A (en) * 2017-03-20 2019-10-17 アップル インコーポレイテッドApple Inc. Solid composition nitriding of steel composition and its stainless steel
AU2018237087B2 (en) * 2017-03-20 2020-01-23 Apple Inc. Steel compositions and solution nitriding of stainless steel thereof
WO2018175483A1 (en) * 2017-03-20 2018-09-27 Apple Inc. Steel compositions and solution nitriding of stainless steel thereof
US11021782B2 (en) 2017-03-20 2021-06-01 Apple Inc. Steel compositions and solution nitriding of stainless steel thereof
CN112143966A (en) * 2019-06-26 2020-12-29 苹果公司 Nitrided stainless steel with high strength and high ductility
CN110983191A (en) * 2019-12-31 2020-04-10 九牧厨卫股份有限公司 High-corrosion-resistance stainless steel plate, stainless steel trough and preparation method thereof
CN111057967A (en) * 2019-12-31 2020-04-24 九牧厨卫股份有限公司 High-corrosion-resistance and scratch-resistance stainless steel plate, stainless steel trough and preparation method thereof
JPWO2021256128A1 (en) * 2020-06-19 2021-12-23
JP7095811B2 (en) 2020-06-19 2022-07-05 Jfeスチール株式会社 Alloy pipe and its manufacturing method
WO2022243000A1 (en) * 2021-05-21 2022-11-24 Nv Bekaert Sa A straight stainless steel wire for flexible card clothing

Similar Documents

Publication Publication Date Title
JP5177323B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
EP3173501B1 (en) Low alloy oil-well steel pipe
JP4324225B1 (en) High strength cold-rolled steel sheet with excellent stretch flangeability
EP2942415A1 (en) Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method therefor
JP2006241528A (en) Steel for high strength spring having excellent cold workability and quality stability
JP2006118000A (en) Lightweight high strength steel having excellent ductility and its production method
JP2007302974A (en) High strength steel plate having excellent delayed fracture resistance and method for producing the same
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
KR20170107057A (en) High-strength cold-rolled steel plate and method for producing same
JP2011214058A (en) High-strength stainless steel wire, and method for producing the same
EP3208358A1 (en) Low alloy steel pipe for oil wells
KR20200039611A (en) Carburizing steel sheet, and manufacturing method of carburizing steel sheet
US11499204B2 (en) Martensitic stainless steel sheet, method for manufacturing same, and spring member
WO2017009938A1 (en) Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and production methods therefor
JP4677883B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same
CN111868282A (en) Steel plate
JP2005060820A (en) High strength steel sheet for line pipe excellent in anti-hic (hydrogen induced cracking) characteristic and its manufacturing method
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP6699711B2 (en) High-strength steel strip manufacturing method
JP2010024497A (en) High strength cold rolled steel sheet having excellent elongation and stretch-flangeability
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP6206423B2 (en) High strength stainless steel plate excellent in low temperature toughness and method for producing the same
JP4321434B2 (en) Low alloy steel and manufacturing method thereof
JP2003231919A (en) Production method for stainless steel wire
JP2010018863A (en) High-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance and workability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604