JP4949124B2 - High strength duplex stainless steel sheet with excellent shape freezing property and method for producing the same - Google Patents

High strength duplex stainless steel sheet with excellent shape freezing property and method for producing the same Download PDF

Info

Publication number
JP4949124B2
JP4949124B2 JP2007135088A JP2007135088A JP4949124B2 JP 4949124 B2 JP4949124 B2 JP 4949124B2 JP 2007135088 A JP2007135088 A JP 2007135088A JP 2007135088 A JP2007135088 A JP 2007135088A JP 4949124 B2 JP4949124 B2 JP 4949124B2
Authority
JP
Japan
Prior art keywords
stainless steel
less
shape freezing
steel sheet
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007135088A
Other languages
Japanese (ja)
Other versions
JP2008291282A (en
Inventor
謙 木村
純一 濱田
治彦 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2007135088A priority Critical patent/JP4949124B2/en
Publication of JP2008291282A publication Critical patent/JP2008291282A/en
Application granted granted Critical
Publication of JP4949124B2 publication Critical patent/JP4949124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、強度や衝撃吸収性能が必要な構造用部材、特に自動車、バスのフロントサイドメンバー、ピラー、バンパーなどの衝撃吸収部材並びに足回り部材、鉄道車両の車体、自転車のリムなどの構造部材に用いられる形状凍結性に優れた高強度複相ステンレス鋼板及びその製造方法の発明に関するものである。   The present invention relates to structural members that require strength and shock absorbing performance, particularly shock absorbing members such as automobiles, bus front side members, pillars, and bumpers, as well as suspension members, railway vehicle bodies, and bicycle rims. The invention relates to an invention of a high-strength duplex stainless steel plate excellent in shape freezing used in the invention and a method for producing the same.

近年、環境問題の観点から、自動車、二輪車、バス、鉄道車両などの輸送機器の燃費向上が必須課題になってきている。その解決手段の一つとして、車体の軽量化が積極的に推進されている。車体の軽量化は、部材を形成する素材の軽量化、具体的には素材板厚の薄手化によるものが大きいが、単に素材板厚を薄くしただけでは衝突安全性能が低下する。このため、衝突安全性向上対策として部材を構成する材料の高強度化が進んでおり、高強度鋼板が自動車の衝撃吸収部材に適用されている。高強度鋼板としては金属組織を複相組織としたDP(Dual Phase)鋼やTRIP(TRansformation Induced Plasticity)鋼などがある。これらの鋼種はいずれも文献1にあるように固溶強化鋼や析出強化鋼に比べて優れた衝撃吸収特性を有することが確認されている。   In recent years, from the viewpoint of environmental problems, improvement in fuel consumption of transportation equipment such as automobiles, motorcycles, buses, and railway vehicles has become an essential issue. As one of the solutions, weight reduction of the vehicle body is actively promoted. The weight reduction of the vehicle body is largely due to the weight reduction of the material forming the member, specifically, the reduction of the thickness of the material plate. However, simply reducing the thickness of the material plate reduces the collision safety performance. For this reason, the strengthening of the material which comprises a member is progressing as a collision safety improvement measure, and the high strength steel plate is applied to the impact-absorbing member of a motor vehicle. Examples of the high-strength steel sheet include DP (Dual Phase) steel and TRIP (Transformation Induced Plasticity) steel having a multiphase structure as a metal structure. As described in Document 1, all of these steel types have been confirmed to have superior shock absorption characteristics as compared with solid solution strengthened steel and precipitation strengthened steel.

一方、上記のような高強度鋼板を部材に成形する場合には曲げ成形や深絞り成形が施されるが、このときに強度が高いほど成形後の戻り(以降、スプリングバック)が大きいために所定の形状を得ることが困難であり、これが高強度鋼板を使用する上での大きな課題となっている。高強度鋼板においてスプリングバックを低減する方法については、特許文献1や特許文献2がある。特許文献1では鋼組成及び製造方法によってスプリングバックを小さくした高強度鋼板及びそれを成形する際にクリアランスや樹脂シートなどを適正化することでスプリングバックを低減する成形方法が記載されている。特許文献2及び特許文献3では鋼組成及び製造方法を規定することで製品の集合組織を制御して形状凍結性を向上させる手法が記載されている。しかし、特許文献1〜3に記載されている方法では形状凍結性が不十分であった。特に特許文献2,3のように圧延方向のr値及び圧延方向と直角方向のr値のどちらか片方のみのr値を規定するだけでは、場合によっては、サンプルの板取り方向が規制されて成形時の自由度が低下し、また、r値にして0.7以下では形状凍結性としては不十分であった。
日本塑性加工学会第228回塑性加工シンポジウム(2004)、p15 特開平7−268484号公報 特開2002−97545号公報 特開2004−131754号公報
On the other hand, when forming a high-strength steel sheet as described above into a member, bend forming or deep drawing is performed, but the higher the strength, the greater the return after forming (hereinafter referred to as springback). It is difficult to obtain a predetermined shape, which is a big problem in using a high-strength steel plate. Patent Document 1 and Patent Document 2 are methods for reducing springback in a high-strength steel sheet. Patent Document 1 describes a high-strength steel sheet having a reduced springback by a steel composition and a manufacturing method, and a forming method for reducing springback by optimizing a clearance, a resin sheet, and the like when forming the steel plate. Patent Document 2 and Patent Document 3 describe a technique for improving the shape freezing property by controlling the texture of the product by defining the steel composition and the manufacturing method. However, the methods described in Patent Documents 1 to 3 have insufficient shape freezeability. In particular, as in Patent Documents 2 and 3, only by specifying the r value in the rolling direction or the r value in the direction perpendicular to the rolling direction, the cutting direction of the sample is regulated in some cases. The degree of freedom during molding decreased, and when the r value was 0.7 or less, the shape freezing property was insufficient.
Japan Plasticity Processing Society 228th Plastic Processing Symposium (2004), p15 JP 7-268484 A JP 2002-97545 A JP 2004-131754 A

鋼板自体に良好な形状凍結性を付与する方法はあったがその改善効果が十分ではなく、高強度鋼板を適用する際の障害となっていた。この様な背景を鑑み、本発明は成形時の自由度が高く、形状凍結性に優れた高強度複相ステンレス鋼板及びその製造方法を提供することを目的とする。   Although there was a method of imparting good shape freezing property to the steel plate itself, the improvement effect was not sufficient, which was an obstacle when applying a high strength steel plate. In view of such a background, an object of the present invention is to provide a high-strength duplex stainless steel sheet having a high degree of freedom during forming and excellent shape freezing property, and a method for producing the same.

上記課題を解決するために、本発明者らは鋼組成及び製造方法を検討した結果、形状凍結性に優れた高強度ステンレス鋼板を製造するにいたった。通常、形状凍結性は引張強さが高いほど劣化する傾向にある。種々の引張強さを有する板厚2.0mmのステンレス鋼板及び炭素鋼板を下記条件にてハット曲げ成形試験を実施し、図1に例を示したハットサンプルを作製した。   In order to solve the above problems, the present inventors have studied a steel composition and a production method, and as a result, have come to produce a high-strength stainless steel plate excellent in shape freezing property. Usually, the shape freezing property tends to deteriorate as the tensile strength increases. A hat bending test was performed on a stainless steel plate and a carbon steel plate having a thickness of 2.0 mm having various tensile strengths under the following conditions to produce a hat sample shown in FIG.

なお、ここでは便宜上、ハット曲げ成形試験前の試験片をハット曲げ試験片、ハット曲げ成形試験後の試験片をハットサンプルと呼んで区別する。
ハット曲げ試験片のサイズ:50mm×260mm
ポンチ:角型、幅80mm、肩R5mm、
ダイス:角型、幅85mm、肩R5mm
しわ押さえ力:6トン
成形高さ:70mm
潤滑油:JISK2246相当の潤滑油型防錆油であって、SAE−30相当の粘度を持つ精選鉱油を両面塗布
得られたハットサンプルの形状を3次元形状測定機を用いて測定し、点a,b,cより縦壁部の湾曲を「壁反り量:1/ρ」として測定した。点bはサンプルのハットつば部を結んだ線を底辺としたときの全高さの1/2に相当する位置であり、点a及びcは、それぞれ点bより20mm上または下に位置する。壁反り量は、点a,b,cを通る円の半径(mm)の逆数であり、その値が小さいほど形状凍結性が良好であることを示す。
Here, for convenience, the test piece before the hat bending test is called a hat bending test piece, and the test piece after the hat bending test is called a hat sample.
Hat bending test piece size: 50mm x 260mm
Punch: Square shape, width 80mm, shoulder R5mm,
Dice: Square, width 85mm, shoulder R5mm
Wrinkle holding force: 6 tons Molding height: 70mm
Lubricating oil: Lubricating type rust preventive oil equivalent to JISK2246, which is coated on both sides with a selected mineral oil having a viscosity equivalent to SAE-30. The shape of the obtained hat sample is measured using a three-dimensional shape measuring machine, and point a , B, and c, the curvature of the vertical wall portion was measured as “wall warp amount: 1 / ρ”. Point b is a position corresponding to ½ of the total height when the line connecting the hat collar portions of the sample is the base, and points a and c are located 20 mm above or below point b, respectively. The wall warpage amount is the reciprocal of the radius (mm) of the circle passing through the points a, b, and c, and the smaller the value, the better the shape freezing property.

引張試験片とハット曲げ試験片の長手方向が、圧延方向に対し、平行方向および垂直方向になるように、同じ板素材から2方向、引張試験片とハット曲げ試験片を各3枚ずつ採取し、引張試験(r値測定)とハット曲げ成形試験を実施し、それぞれの試験片3枚ずつの平均値をデータとした。なお、引張り試験片とハット曲げ成形試験片の長手方向が互いに平行になる試験片どうしのr値と壁反り量1/ρを対応付けて評価した。上記の条件で得られた壁反り量1/ρは、特別な組織制御をしていない通常の約1.0のr値(r値=1.0±0.2)を有する市販の普通鋼またはフェライト系もしくはオーステナイト系ステンレス鋼板においては、引張強さと良い相関を持ち、図2の点線で示される1/ρ=7.75×10−6[TS]で近似的に表すことができることがわかった。ここで、[TS]は引張り強さ(N/mm)である。すなわち、r値が約1.0の材料では形状凍結性は引張強さによって決定される。一方、本発明のようにステンレス鋼板の中で成分及び製造方法の工夫により圧延方向及び圧延と垂直方向の両方のr値を0.5以下と低減したステンレス鋼では、図2中の黒三角で表されるデータのように1/ρを著しく低くすることができる。形状凍結性の指標である1/ρが、r値約1.0の通常材に比べて30%以上低減できればハット曲げ成形時の形状凍結性不良による不合格品の発生および、それにともなう生産性低下を大幅に抑制でき、その効果が端的に現れることがわかった。例えば、不合格品の発生率が1/10以下となる。このため、1/ρの目標を通常材よりも30%以上低減した図中の実線より下側とすることを目標とした。 Take three tensile test pieces and three hat bend test pieces from the same sheet material so that the longitudinal direction of the tensile test piece and hat bend test piece is parallel and perpendicular to the rolling direction. A tensile test (r value measurement) and a hat bending test were performed, and the average value of each of the three test pieces was used as data. In addition, the r value and the wall warp amount 1 / ρ of the test pieces in which the longitudinal directions of the tensile test piece and the hat bending molded test piece are parallel to each other were evaluated in association with each other. The wall warp amount 1 / ρ obtained under the above conditions is a commercially available ordinary steel having a normal r value of about 1.0 (r value = 1.0 ± 0.2) without special structure control. Or, in a ferritic or austenitic stainless steel sheet, it has a good correlation with tensile strength, and can be expressed approximately by 1 / ρ = 7.75 × 10 −6 [TS] indicated by a dotted line in FIG. It was. Here, [TS] is the tensile strength (N / mm 2 ). That is, in a material having an r value of about 1.0, the shape freezing property is determined by the tensile strength. On the other hand, in the stainless steel in which the r value in both the rolling direction and the rolling and vertical direction is reduced to 0.5 or less by contriving the components and the manufacturing method in the stainless steel plate as in the present invention, the black triangle in FIG. As shown in the data shown, 1 / ρ can be significantly reduced. If 1 / ρ, an index of shape freezing property, can be reduced by 30% or more compared to a normal material having an r value of about 1.0, the generation of rejected products due to shape freezing failure during hat bending and the resulting productivity It was found that the decrease can be greatly suppressed, and the effect appears straightforward. For example, the incidence of rejected products is 1/10 or less. For this reason, the target of 1 / ρ was set to be lower than the solid line in the figure, which was reduced by 30% or more from the normal material.

さらに別の試験で、熱間圧延および冷間圧延後の焼鈍温度および焼鈍時間を制御することで、ステンレス鋼の集合組織を制御してr値を変化させ、壁反り量1/ρの変化との関係を調査した。すなわち、焼鈍温度を1050℃以上とすることで、フェライト相中の(111)面が板面にほぼ平行となる集合組織の発達によりr値が上昇し、逆に、焼鈍温度を1050℃未満とすることでフェライト相中の(111)面が板面にほぼ平行となる集合組織の発達を抑えることでr値を低くすることができる。1050℃以上では焼鈍時間を長くするほど前記集合組織が発達し、r値は上昇し、ある焼鈍時間以上ではr値の上昇は飽和する。この結果、壁反り量はr値と良い相関を持つことも明らかとなった。引張強さが約900MPa級(850〜950MPa)のステンレス鋼板において成分および熱延板焼鈍および冷延板焼鈍条件をを変化させて製品板を作製し、前記条件で圧延方向と平行方向及び垂直方向にハット曲げ成形試験を実施した後、壁反り量を測定した。r値と壁反り量の相関を図3に示す。r値が0.5よりも高いの場合には壁反り量は図中の点線で示すように(1)式にほぼ従うが、r値が0.5以下となると、1/ρが急激に低下することが分かる。したがって、r値を0.5以下とすることで、飛躍的に良好な形状凍結性が得られる。また、このr値は、板製造時の圧延方向および、それとは垂直方向おいて0.5以下とすることで、板取り方向が規制されず、成形時の自由度高くなる。   In yet another test, by controlling the annealing temperature and annealing time after hot rolling and cold rolling, the texture of the stainless steel is controlled to change the r value, and the wall warp amount 1 / ρ is changed. The relationship was investigated. That is, by setting the annealing temperature to 1050 ° C. or higher, the r value increases due to the development of a texture in which the (111) plane in the ferrite phase is substantially parallel to the plate surface, and conversely, the annealing temperature is less than 1050 ° C. By doing so, the r value can be lowered by suppressing the development of the texture in which the (111) plane in the ferrite phase is substantially parallel to the plate surface. Above 1050 ° C., the longer the annealing time is, the more the texture develops, and the r value increases. Above an annealing time, the increase in r value is saturated. As a result, it became clear that the amount of wall warp has a good correlation with the r value. In a stainless steel plate having a tensile strength of about 900 MPa (850 to 950 MPa), a product plate is produced by changing the components and hot-rolled sheet annealing conditions and cold-rolled sheet annealing conditions. After the hat bending test was conducted, the wall warpage amount was measured. FIG. 3 shows the correlation between the r value and the wall warp amount. When the r value is higher than 0.5, the wall warping amount substantially follows the equation (1) as shown by the dotted line in the figure, but when the r value becomes 0.5 or less, 1 / ρ suddenly increases. It turns out that it falls. Therefore, by making the r value 0.5 or less, a remarkably good shape freezing property can be obtained. Further, by setting the r value to 0.5 or less in the rolling direction at the time of manufacturing the plate and in the direction perpendicular to the rolling direction, the plate taking direction is not restricted, and the degree of freedom in forming becomes high.

本発明の趣旨とするところは、特許請求の範囲に記載した通りの下記内容である。
(1)質量%で、C:0.001〜0.200%、Si:0.01〜3.00%、Mn:0.01〜10.00%、P:0.050%未満、S:0.0001〜0.0100%、Cr:11.0〜30.0%、Ni:0.03〜10.00%、N:0.001〜0.300%を含有し、残部がFe及び不可避的不純物よりなり、かつ、室温における金属組織のオーステナイト相率が5%以上80%未満を有し、残部金属組織がフェライト相または加工誘起マルテンサイト相もしくは不可避的析出相からなり、引張強さが500MPa以上、圧延方向と平行方向のr値r及び圧延方向と垂直方向のr値r90がともに0.5以下であることを特徴とする、形状凍結性に優れた高強度複相ステンレス鋼板。
(2)質量%で、Cu:0.10〜5.00%、Mo:0.10〜5.00%、W:0.10〜5.00%、V:0.10〜5.00%のうち一種または二種以上を含有することを特徴とする、前記(1)に記載の形状凍結性に優れた高強度複相ステンレス鋼板。
(3)質量%で、Ti:0.005〜0.500%、Nb:0.005〜0.500%、B:0.0003〜0.0050%、のうち一種または二種以上を含有することを特徴とする、前記(1)または(2)に記載の形状凍結性に優れた高強度複相ステンレス鋼板。
(4)質量%で、Al:0.003〜0.500%、Mg:0.00001〜0.0050%、Ca:0.00001〜0.0050%のうち一種または二種以上を含有することを特徴とする、前記(1)乃至(3)のいずれか一項に記載の形状凍結性に優れた高強度複相ステンレス鋼板。
(5)前記(1)乃至(4)のいずれか一項に記載のステンレス鋼板を製造するに際し、熱間圧延後に最高到達温度900〜1050℃で保持時間が1〜600sの熱処理を施した後の冷却過程において900℃から600℃の範囲における平均冷却速度を5℃/s以上として冷却した後に圧延率30%以上90%未満の冷間圧延を実施し、しかる後に最高到達温度900〜1050℃で保持時間が1〜600sの熱処理を施した後の冷却過程において900℃から600℃の範囲における平均冷却速度を5℃/s以上として冷却することを特徴とする、形状凍結性に優れた高強度複相ステンレス鋼板の製造方法。
The gist of the present invention is the following contents as described in the claims.
(1) By mass%, C: 0.001 to 0.200%, Si: 0.01 to 3.00%, Mn: 0.01 to 10.00%, P: less than 0.050%, S: 0.0001 to 0.0100%, Cr: 11.0 to 30.0%, Ni: 0.03 to 10.00%, N: 0.001 to 0.300%, the balance being Fe and inevitable The austenite phase ratio of the metal structure at room temperature is 5% or more and less than 80%, and the remaining metal structure is composed of a ferrite phase, a work-induced martensite phase or an inevitable precipitation phase, and has a tensile strength of A high-strength duplex stainless steel sheet excellent in shape freezing property, having 500 MPa or more, r value r 0 in the direction parallel to the rolling direction, and r value r 90 in the direction perpendicular to the rolling direction are both 0.5 or less. .
(2) By mass%, Cu: 0.10 to 5.00%, Mo: 0.10 to 5.00%, W: 0.10 to 5.00%, V: 0.10 to 5.00% 1 type or 2 types or more of these, The high intensity | strength duplex stainless steel plate excellent in the shape freezing property as described in said (1) characterized by the above-mentioned.
(3) By mass%, Ti: 0.005 to 0.500%, Nb: 0.005 to 0.500%, B: 0.0003 to 0.0050%, one kind or two or more kinds are contained. The high-strength duplex stainless steel sheet excellent in shape freezing property as described in (1) or (2) above.
(4) By mass%, Al: 0.003-0.500%, Mg: 0.00001-0.0050%, Ca: 0.00001-0.0050%, containing one or more. The high-strength duplex stainless steel sheet excellent in shape freezing property according to any one of (1) to (3).
(5) When producing the stainless steel plate according to any one of (1) to (4), after performing a heat treatment at a maximum temperature of 900 to 1050 ° C. and a holding time of 1 to 600 s after hot rolling. In the cooling process, the average cooling rate in the range of 900 ° C. to 600 ° C. is cooled to 5 ° C./s or higher, and then cold rolling is performed at a rolling rate of 30% or more and less than 90%. In the cooling process after the heat treatment with a holding time of 1 to 600 s, cooling is performed with an average cooling rate in the range of 900 ° C. to 600 ° C. being 5 ° C./s or more, which is excellent in shape freezing property A method for producing a high strength duplex stainless steel sheet.

本発明によれば、形状凍結性に優れた高強度複相ステンレス鋼板及びその製造方法を提供でき、自動車等の軽量化、環境への負荷軽減などへの貢献が大きく、産業上有用な著しい効果を奏する。   According to the present invention, it is possible to provide a high-strength duplex stainless steel sheet having excellent shape freezing property and a method for producing the same, which contributes significantly to reducing the weight of automobiles and the environment, reducing industrial impact, and the like, an industrially significant effect. Play.

まず、本願発明の限定理由について説明する。
金属組織:室温における金属組織のオーステナイト相率が5%以上で80%未満であることを特徴とする高強度複相ステンレス鋼板とした。
First, the reasons for limiting the present invention will be described.
Metal structure: A high-strength duplex stainless steel sheet characterized in that the austenite phase ratio of the metal structure at room temperature is 5% or more and less than 80%.

オーステナイト相、フェライト相または加工誘起マルテンサイト相からなる複相ステンレス鋼板は、需要家の要求特性に応じて、成分調整によって、容易にそれぞれの相率を適宜制御することで対応でき、強度、延性、靭性、衝撃吸収性能、耐食性、リサイクル性に優れているため、本発明の目的に合致しているためである。   Duplex stainless steel sheets made of austenite, ferrite, or work-induced martensite can be easily controlled by appropriately adjusting the phase ratio according to the characteristics required by the customer. This is because they are excellent in toughness, impact absorption performance, corrosion resistance, and recyclability, and therefore meet the purpose of the present invention.

なお、それぞれの相率の制御は、N量が0.06質量%程度までの場合は、シェフラー組織図(Schaeffler Diagram)を、N量が0.06質量%超0.30質量%以下の場合は、さらに、デュロング組織図(DeLong Diagram)も参考に加えて用い、Cr当量とNi当量のバランスを見ながら、添加成分量を変えることで行うことができる。具体的には、Cr、Mo、Si、Nb量をCr当量の計算に用い、必要に応じて、Ti、V、W量を係数0.5でCr当量計算に加えても良い。一方、Ni、C、N、MnをNi当量の計算に用い、必要に応じて、Cuを係数0.5でNi当量計算に加えても良い。ただし、シェフラー組織図とデュロング組織図は、あくまで溶接金属における組織図であり、本発明のステンレス鋼板の製品の組織にそのまま当てはめることはできない。しかし、最終熱処理後のステンレス鋼板のフェライト相量または、それを冷間加工した後の加工誘起マルテンサイト相量とは、シェフラー組織図またはデュロング組織図が示す組織と定性的な対応が認められ、化学成分制御にあたって、両組織図が重要な指針となる。   Each phase ratio is controlled when the N amount is up to about 0.06% by mass, the Schaeffler Diagram is used, and the N amount is more than 0.06% by mass and not more than 0.30% by mass. Further, a Dulong diagram can be used in addition to the reference, and the amount of the added component can be changed while observing the balance between the Cr equivalent and the Ni equivalent. Specifically, the Cr, Mo, Si, and Nb amounts may be used in the calculation of the Cr equivalent, and the Ti, V, and W amounts may be added to the Cr equivalent calculation with a coefficient of 0.5 as necessary. On the other hand, Ni, C, N, and Mn may be used for the Ni equivalent calculation, and Cu may be added to the Ni equivalent calculation with a coefficient of 0.5 as necessary. However, the Schaeffler organization chart and the Dulong organization chart are organization charts of the weld metal to the last, and cannot be directly applied to the structure of the stainless steel sheet product of the present invention. However, the ferrite phase amount of the stainless steel plate after the final heat treatment, or the work-induced martensite phase amount after cold working it, qualitatively corresponds to the structure shown in the Schaeffler or Dulong structure chart, Both organization charts are important guidelines for chemical composition control.

本発明におけるオーステナイト相率に関する限定理由は、オーステナイト相率が5%未満であると鋼板の強度が不十分となる場合および、衝突安全性能が低下する場合があり、一方、オーステナイト相率80%以上の場合には形状凍結性が不良となるためである。オーステナイト相の一部は、冷間加工によって、加工誘起マルテンサイト相へ変態することが望ましい。靭性を高水準に保ちながら強度を増加させる働きおよび、衝撃吸収能が期待できるからである。オーステナイト相以外の残部金属組織の大部分がフェライト相または加工誘起マルテンサイト相である。後述するように、フェライト相の集合組織が、形状凍結性に大きな影響を与える。さらに、不可避的析出相からなるステンレス鋼とする。この理由は、ステンレス鋼板中には添加元素の組み合わせによっては炭化物、硫化物及び窒化物などの析出物が析出したり、脱酸時に生成した酸化物が不可避的に残存したりする場合があるためである。   The reason for the limitation regarding the austenite phase ratio in the present invention is that when the austenite phase ratio is less than 5%, the strength of the steel sheet may be insufficient and the collision safety performance may be lowered, while the austenite phase ratio is 80% or more. In this case, the shape freezing property is poor. It is desirable that a part of the austenite phase is transformed into a work-induced martensite phase by cold working. This is because the work to increase the strength while maintaining the toughness at a high level and the shock absorbing ability can be expected. Most of the remaining metal structure other than the austenite phase is the ferrite phase or the work-induced martensite phase. As will be described later, the texture of the ferrite phase greatly affects the shape freezeability. Furthermore, it is set as the stainless steel which consists of an unavoidable precipitation phase. This is because, depending on the combination of additive elements, precipitates such as carbides, sulfides and nitrides may be deposited in the stainless steel sheet, or oxides generated during deoxidation may inevitably remain. It is.

なお、フェライト相および加工誘起マルテンサイト相は、強磁性を有し、一方、オーステナイト相の常磁性であるので、相率の測定には、電磁気的測定方法を用い、フェライト相および加工誘起マルテンサイト相を体積%で求めることができる。不可避的析出物相の量は無視できるので、オーステナイト相量は、100%からもしくはフェライト相または加工誘起マルテンサイト相の体積%を引いた値となる。なお、フェライト相および加工誘起マルテンサイト相の測定装置では、測定端子の先の半径約1mmの半球内に含まれるフェライト相および加工誘起マルテンサイト相量を測定するので、2mmよりも薄いステンレス鋼板を測定対象にする場合は、2枚以上を密着させて重ね合わせた状態で樹脂に埋め込み、その断面を平面に鏡面研摩したのち、電解研摩を行なって、表面の研摩歪が残存している層10μm程度を溶解除去する。鏡面研摩に起因して、表面に加工誘起マルテンサイト相が新たに生じ、材料本来のフェライト相および加工誘起マルテンサイト相量が正確に測定できないからである。
<引張強さ>
引張強さは500MPa以上とする。これ未満であると高強度部材として必要な強度を満足しないためである。引張強さの上限は特に規定するものではないが、成分および製造方法の組み合わせにより、現在達成できるレベルとしては1800MPaである。引張強さの測定方法は、圧延方向と平行方向にJIS13B引張試験片を用いてJIS Z 2241に準拠した引張試験により測定する。N数は3以上として平均値をとることとする。
<r値>圧延方向と平行方向のr値r及び圧延方向と垂直方向のr値r90がいずれも0.5以下であることとする。
r値が0.5超の場合には良好な形状凍結性が得られない。通常の曲げ加工は圧延方向と平行方向または垂直方向に実施されるため本発明では圧延方向と平行方向r及び垂直方向r90の両者を0.5以下とする。またr値は低いほど形状凍結性は向上するため、下限は特に規定する必要はない。安定的な形状凍結性を確保するためには0.1〜0.5とすることが好ましい。r値の測定方法はJIS13B引張試験片を用いてJIS Z 2254に準拠した試験により測定する。N数は3以上として平均値をとることとする。
The ferrite phase and the work-induced martensite phase have ferromagnetism, while the austenite phase is paramagnetic. Therefore, the phase ratio is measured using an electromagnetic measurement method. The phase can be determined in volume%. Since the amount of inevitable precipitate phase is negligible, the amount of austenite phase is 100% or a value obtained by subtracting the volume% of the ferrite phase or the work-induced martensite phase. In the measurement device for ferrite phase and work-induced martensite phase, the ferrite phase and work-induced martensite phase contained in a hemisphere with a radius of about 1 mm at the tip of the measurement terminal are measured, so a stainless steel plate thinner than 2 mm is used. In the case of a measurement object, two or more sheets are closely adhered and embedded in a resin, and the cross section is mirror-polished to a flat surface, followed by electrolytic polishing, and a layer having a surface polishing strain remaining is 10 μm. Dissolve the extent. This is because a work-induced martensite phase is newly generated on the surface due to mirror polishing, and the amount of ferrite phase and work-induced martensite phase inherent in the material cannot be measured accurately.
<Tensile strength>
The tensile strength is 500 MPa or more. This is because if it is less than this, the strength required for the high-strength member is not satisfied. The upper limit of the tensile strength is not particularly specified, but it is 1800 MPa as a level that can be achieved at present due to the combination of components and production method. The measuring method of tensile strength is measured by a tensile test based on JIS Z 2241 using a JIS 13B tensile test piece in a direction parallel to the rolling direction. The N number is assumed to be 3 or more and an average value is taken.
<R value> The r value r 0 in the direction parallel to the rolling direction and the r value r 90 in the direction perpendicular to the rolling direction are both 0.5 or less.
When the r value exceeds 0.5, good shape freezing property cannot be obtained. Since normal bending is performed in a direction parallel or perpendicular to the rolling direction, in the present invention, both the rolling direction, the parallel direction r 0 and the vertical direction r 90 are set to 0.5 or less. Further, the lower the r value, the more the shape freezing property is improved. Therefore, the lower limit is not particularly required. In order to ensure stable shape freezing property, it is preferably 0.1 to 0.5. The measuring method of r value is measured by a test based on JIS Z 2254 using a JIS 13B tensile test piece. The N number is assumed to be 3 or more and an average value is taken.

以下、成分に関する限定理由を述べる。なお「%」は質量%を示す。
<C>
Cは耐食性を低下させる場合があるため、その上限を0.200%とした。下限は製錬時の脱炭にかかる負荷を考慮して0.001%とした。安定的に製造できる範囲として好ましくは0.005〜0.080%である。
Si:Siは多量に添加すると製造時の耳割れを発生し、圧延負荷を増大することから上限を3.00%とした。下限は製鋼段階での付加を考慮すると0.01%である。
Mn:MnもSi同様に多量に添加すると製造時の耳割れを誘発し、またMn警戒財物を析出させて耐食性を劣化させる。そこでMnの上限を10.00%とした。下限は、精錬段階で大きな負荷がかからずに低減出来るレベルとして0.01%とした。
<P>
Pは多量に存在すると冷間プレス成型時に割れを生じさせる等、冷間加工性を低下させるため、0.050%未満とする。好ましくは、0.040%未満である。
S:Sは多量に存在すると硫化物を生成して腐食の基点となるため、低い方が好ましく、上限を0.0100%とした。低い方が好ましいが、脱硫にかかる精錬段階での負荷を考慮し、下限を0.0001%とした。
<Cr>
Crは耐食性を向上させる元素である。また本発明においては金属組織(オーステナイト相およびフェライト相の比率)を制御する上で重要な役割を持つ。そのような観点から下限は11.0%とした。また多量に添加すると金属間化合物を生成して製造時に割れを誘発するため、上限を30.0%とした。
<Ni>
NiはCr同様に金属組織制御に重要な役割を持つ。くわえて靭性を向上させる元素であるため、下限を0.03%とした。多量の添加によりオーステナイト相率が増加しすぎたり、原料コストの増加を招くため10.00%を上限とした。
<N>
Nは高温でオーステナイト相に濃化し、オーステナイト相率を調整するために重要な役割をもち、また耐食性を向上させる元素であるため、下限を0.001%とした。ただし多量の添加により、材料を硬質化して製造時の割れを生じさせる。また、製鋼時に多量のNを添加する為のN含有ガスの加圧設備等が必要となって大幅な製造コスト増加を招くことから上限を0.300%とした。
Hereinafter, the reasons for limitation regarding the components will be described. “%” Indicates mass%.
<C>
Since C may lower the corrosion resistance, the upper limit was made 0.200%. The lower limit was set to 0.001% in consideration of the load on decarburization during smelting. The range that can be stably produced is preferably 0.005 to 0.080%.
Si: If Si is added in a large amount, it will cause cracks during production and increase the rolling load, so the upper limit was made 3.00%. The lower limit is 0.01% considering the addition at the steelmaking stage.
Mn: If Mn is added in a large amount like Si, it will cause cracking at the time of manufacture, and Mn alarming property will be precipitated to deteriorate the corrosion resistance. Therefore, the upper limit of Mn is set to 10.00%. The lower limit was set to 0.01% as a level that can be reduced without applying a large load at the refining stage.
<P>
If P is present in a large amount, cracking is caused during cold press molding, and the cold workability is lowered. Therefore, the P content is less than 0.050%. Preferably, it is less than 0.040%.
S: When S is present in a large amount, sulfide is generated and becomes a starting point of corrosion. Therefore, the lower one is preferable, and the upper limit is set to 0.0100%. Although the lower one is preferable, the lower limit is set to 0.0001% in consideration of the load at the refining stage for desulfurization.
<Cr>
Cr is an element that improves the corrosion resistance. In the present invention, it plays an important role in controlling the metal structure (ratio of austenite phase and ferrite phase). From such a viewpoint, the lower limit was made 11.0%. Further, when added in a large amount, an intermetallic compound is formed and cracks are induced during production, so the upper limit was made 30.0%.
<Ni>
Ni, like Cr, has an important role in controlling the metal structure. In addition, it is an element that improves toughness, so the lower limit was made 0.03%. The upper limit is set to 10.00% because the austenite phase ratio increases excessively or the raw material cost increases due to the addition of a large amount.
<N>
N is an element that concentrates in the austenite phase at high temperatures and plays an important role in adjusting the austenite phase ratio, and also improves the corrosion resistance, so the lower limit was made 0.001%. However, a large amount of addition hardens the material and causes cracks during production. In addition, an N 2 -containing gas pressurizing facility for adding a large amount of N during steelmaking is required, which causes a significant increase in production cost, so the upper limit was made 0.300%.

また次の元素を選択的に添加しても良い。
Cu、Mo、W及びV:Cu、Mo、W及びVは耐食性を向上させる元素であり、これらの向上を目的とする場合には一種または二種以上を組み合わせて添加しても良い。その効果は0.10%以上で発揮されることからこれを下限とする。ただし、多量の添加は製造時の圧延負荷を増大させて製造疵を生成させやすいため、上限を5.00%とした。
Ti、Nb及びB:Ti、Nb及びBは成形性を向上させる元素であり、必要に応じて一種または二種以上を組み合わせて添加しても良い。成形性向上効果が発揮されるのはTi:0.005%、Nb:0.005%、B:0.0003%以上であるためこれを下限とした。多量の添加は製造疵の増加ならびに熱間加工性の低下を招くため、Ti:0.500%、Nb:0.500%、B:0.0050%を上限とした。
Al、Mg及びCa:Al、Mg及びCaは精錬時に脱酸や脱硫を目的として添加される場合がある。効果が発揮されるのはAl:0.003%、Mg:0.0001%、Ca:0.0001%であり、これを下限とした。また多量の添加は製造疵の増加ならびに原料コストの増加を招くためAl:0.500%、Mg:0.0050%、Ca:0.0050%を上限とした。
以下は製造方法に関する限定理由を説明する。
熱延板の焼鈍および冷延板の焼鈍:熱延板の焼鈍および冷延板の焼鈍の両方において、最高到達温度が900℃未満では熱処理においてオーステナイト相量が十分確保できないため製品の強度低下が生じ、形状凍結性が劣化する場合がある。また1050℃以上の場合は、フェライト相の再結晶が促進されて、特に冷延板焼鈍時の集合組織において、形状凍結性を劣化させる結晶方位が優勢になる。すなわち、フェライト相中に、板面に(111)面がほぼ平行に発達してr値が上昇し、製品の形状凍結性が著しく劣化する。このため、熱延板の焼鈍および冷延板の焼鈍の温度範囲を両方とも、900℃以上1050℃未満とした。なお、確実に前記集合組織を抑えるには、熱延板の焼鈍および冷延板の焼鈍の温度範囲を両方とも、900℃以上1025℃未満とするのが望ましい。また、焼鈍時の最高到達温度における保持時間が1s未満であると未再結晶の領域が多量に残存し製品の延性低下を生じやすい。一方、保持時間が600s以上であると、再結晶が進み過ぎて板面に平行にフェライト相の(111)面が発達してr値が上昇し、形状凍結性が劣化する。さらに、冷却過程において900℃から600℃の範囲における平均冷却速度を5℃/s以上とする必要がある。冷却速度が5℃/s未満であると、オーステナイト相の相率が低下してフェライト相の相率が上昇し、また炭窒物が析出し、析出強化を生じさせ、良好な形状凍結性は得られないからである。冷却速度を5℃/s以上とするには気水冷却または強制空冷を行うことが望ましい。この冷却過程においてはオーステナイト相の相率を制御することがポイントであるため、冷却速度の測定範囲はオーステナイト相の相率が変化しやすく、また拡散速度が速い600℃から900℃の範囲とした。
冷間圧延:圧延率が30%未満であると、冷間圧延後の焼鈍後にフェライト相の再結晶が十分に進行せず、未再結晶領域が多量に残存し、延性を損なう上、良好な形状凍結性が得られないため、これを下限とした。また90%超の圧延をするには圧延機への負荷が極めて大きくなるため、これを上限とした。圧延機への負荷、圧延疵の派生抑制を考慮した場合、最適な冷延率は40〜75%である。
Further, the following elements may be selectively added.
Cu, Mo, W, and V: Cu, Mo, W, and V are elements that improve corrosion resistance, and in order to improve these, one or a combination of two or more may be added. Since the effect is exhibited at 0.10% or more, this is the lower limit. However, since the addition of a large amount tends to increase the rolling load at the time of production and produce production soot, the upper limit was made 5.00%.
Ti, Nb, and B: Ti, Nb, and B are elements that improve formability, and may be added singly or in combination of two or more as required. Since the effect of improving the formability is Ti: 0.005%, Nb: 0.005%, and B: 0.0003% or more, this is set as the lower limit. Addition of a large amount leads to an increase in production soot and a decrease in hot workability, so Ti: 0.500%, Nb: 0.500%, B: 0.0050% was made the upper limit.
Al, Mg and Ca: Al, Mg and Ca may be added for the purpose of deoxidation and desulfurization during refining. The effect is exhibited by Al: 0.003%, Mg: 0.0001%, and Ca: 0.0001%, which were set as lower limits. Moreover, since addition of a large amount leads to an increase in production soot and an increase in raw material cost, Al: 0.500%, Mg: 0.0050%, Ca: 0.0050% was made the upper limit.
The following explains the reasons for limitation regarding the manufacturing method.
Hot-rolled sheet annealing and cold-rolled sheet annealing: In both hot-rolled sheet annealing and cold-rolled sheet annealing, if the maximum temperature reached is less than 900 ° C, the austenite phase amount cannot be secured sufficiently during heat treatment, resulting in a decrease in product strength. May occur and shape freezeability may deteriorate. When the temperature is 1050 ° C. or higher, the recrystallization of the ferrite phase is promoted, and the crystal orientation that deteriorates the shape freezing property becomes dominant particularly in the texture during cold-rolled sheet annealing. That is, in the ferrite phase, the (111) plane develops almost parallel to the plate surface and the r value rises, and the shape freezeability of the product is significantly deteriorated. For this reason, both the temperature range of annealing of a hot-rolled sheet and annealing of a cold-rolled sheet was made into 900 to 1050 degreeC. In addition, in order to suppress the said texture reliably, it is desirable that both the temperature range of annealing of a hot-rolled sheet and annealing of a cold-rolled sheet shall be 900 degreeC or more and less than 1025 degreeC. In addition, if the holding time at the highest temperature reached during annealing is less than 1 s, a large amount of unrecrystallized region remains and the ductility of the product tends to decrease. On the other hand, if the holding time is 600 s or more, recrystallization proceeds too much, and the (111) plane of the ferrite phase develops parallel to the plate surface, the r value increases, and the shape freezing property deteriorates. Furthermore, the average cooling rate in the range of 900 ° C. to 600 ° C. in the cooling process needs to be 5 ° C./s or more. When the cooling rate is less than 5 ° C./s, the phase ratio of the austenite phase decreases and the phase ratio of the ferrite phase increases, and carbonitride precipitates, causing precipitation strengthening, and good shape freezing property is It is because it cannot be obtained. In order to set the cooling rate to 5 ° C./s or higher, it is desirable to perform air-water cooling or forced air cooling. Since the point is to control the phase ratio of the austenite phase in this cooling process, the measurement range of the cooling rate is set to a range of 600 ° C. to 900 ° C. where the phase rate of the austenite phase is easily changed and the diffusion rate is fast. .
Cold rolling: If the rolling rate is less than 30%, the recrystallization of the ferrite phase does not proceed sufficiently after annealing after cold rolling, and a large amount of unrecrystallized region remains, and the ductility is impaired and good. Since shape freezing property was not obtained, this was made the lower limit. Moreover, since the load to a rolling mill becomes very large when rolling over 90%, this was made the upper limit. When considering the load on the rolling mill and the suppression of derivation of the rolling mill, the optimum cold rolling rate is 40 to 75%.

なお、冷延板の焼鈍を実施した後にさらに冷延及び焼鈍を実施する、所謂2回冷延としても良い。その場合の冷間圧延及び焼鈍条件は上記にしたがうこととする。さらに最終焼鈍後に形状矯正、強度調整等を目的として調質圧延を実施しても良い。   In addition, it is good also as what is called 2 times cold rolling which implements cold rolling and annealing after implementing cold-rolled sheet annealing. The cold rolling and annealing conditions in that case shall follow the above. Furthermore, temper rolling may be performed after final annealing for the purpose of shape correction, strength adjustment, and the like.

以下に、実施例により具体的に説明する。表1に示す化学組成の鋼を溶製、熱間圧延した。熱延板を種々の条件で焼鈍、冷間圧延、焼鈍を施した後,2.0mm厚みの製品板とした。得られた製品板を用いて引張試験、r値測定試験、形状凍結性評価試験を実施した。形状凍結性の評価は、前述と同様のハット曲げ成形試験を実施し、壁そり量1/ρを求めた。「課題を解決するための手段」において述べた理由により、壁反り量1/ρが素材の引張強さTS(N/mm)より計算される下記式
1/ρ=7.75×10−6×[TS]
よりも30%以上低い場合に形状凍結性が良好であると判断した。
Hereinafter, specific examples will be described. Steels having chemical compositions shown in Table 1 were melted and hot-rolled. The hot-rolled sheet was annealed, cold-rolled, and annealed under various conditions, and then a 2.0 mm-thick product sheet was obtained. Using the obtained product plate, a tensile test, an r value measurement test, and a shape freezing property evaluation test were performed. For the evaluation of the shape freezing property, a hat bending test similar to that described above was performed, and the wall warp amount 1 / ρ was determined. For the reason described in “Means for Solving the Problems”, the wall warp amount 1 / ρ is calculated from the tensile strength TS (N / mm 2 ) of the material. 1 / ρ = 7.75 × 10 − 6 x [TS]
It was judged that the shape freezing property was good when it was lower by 30% or more.

表2に製造条件、製品組織のオーステナイト相率及び各種特性を示す。実施例より明らかなように本発明例は壁反り量が低く、極めて良好な形状凍結性を示す。   Table 2 shows the manufacturing conditions, the austenite phase ratio of the product structure, and various characteristics. As is apparent from the examples, the examples of the present invention have a low amount of wall warp and exhibit extremely good shape freezing properties.

Figure 0004949124
Figure 0004949124

Figure 0004949124
Figure 0004949124

ハット形状サンプルの断面模式図である。It is a cross-sectional schematic diagram of a hat-shaped sample. ハット成形後の壁反り量「1/ρ」と引張強さTSとの関係を示す図である。It is a figure which shows the relationship between wall curvature amount "1 / (rho)" after hat shaping | molding, and tensile strength TS. 引張強さが約900MPa(850〜950MPa)の材料における壁反り量「1/ρ」とr値の関係を示す図である。It is a figure which shows the relationship between wall curvature amount "1 / (rho)" and r value in the material whose tensile strength is about 900 MPa (850-950 MPa).

Claims (5)

質量%で、
C:0.001〜0.200%、
Si:0.01〜3.00%、
Mn:0.01〜10.00%、
P:0.050%未満、
S:0.0001〜0.0100%、
Cr:11.0〜30.0%、
Ni:0.03〜10.00%、
N:0.001〜0.300%を含有し、残部がFe及び不可避的不純物よりなり、かつ、室温における金属組織のオーステナイト相率が5%以上80%未満であり、残部金属組織がフェライト相または加工誘起マルテンサイト相もしくは不可避的析出相からなり、引張強さが500MPa以上、圧延方向と平行方向のr値r及び圧延方向と垂直方向のr値r90がともに0.5以下であることを特徴とする、形状凍結性に優れた高強度複相ステンレス鋼板。
% By mass
C: 0.001 to 0.200%,
Si: 0.01 to 3.00%,
Mn: 0.01 to 10.00%,
P: less than 0.050%,
S: 0.0001 to 0.0100%,
Cr: 11.0-30.0%,
Ni: 0.03 to 10.00%,
N: 0.001 to 0.300% is contained, the balance is Fe and inevitable impurities, the austenite phase ratio of the metal structure at room temperature is 5% or more and less than 80%, and the balance metal structure is the ferrite phase or consists strain-induced martensite phase or unavoidable precipitated phases, a tensile strength of more than 500 MPa, the rolling direction and parallel to the direction of the r value r 0 and the rolling direction and the vertical direction of r value r 90 is at both 0.5 or less A high-strength duplex stainless steel sheet with excellent shape freezing properties.
質量%で、
Cu:0.10〜5.00%、
Mo:0.10〜5.00%、
W:0.10〜5.00%、
V:0.10〜5.00%のうち一種または二種以上を含有することを特徴とする、請求項1に記載の形状凍結性に優れた高強度複相ステンレス鋼板。
% By mass
Cu: 0.10 to 5.00%,
Mo: 0.10 to 5.00%,
W: 0.10 to 5.00%,
The high-strength duplex stainless steel sheet excellent in shape freezing property according to claim 1, characterized by containing one or more of V: 0.10 to 5.00%.
質量%で
Ti:0.005〜0.500%、
Nb:0.005〜0.500%、
B:0.0003〜0.0050%のうち一種または二種以上を含有することを特徴とする、請求項1または請求項2に記載の形状凍結性に優れた高強度複相ステンレス鋼板。
In mass% Ti: 0.005 to 0.500%,
Nb: 0.005 to 0.500%,
B: The high-strength duplex stainless steel sheet excellent in shape freezing property according to claim 1 or 2, characterized by containing one or more of 0.0003 to 0.0050%.
質量%で、
Al:0.003〜0.500%、
Mg:0.00001〜0.0050%、
Ca:0.00001〜0.0050%のうち一種または二種以上を含有することを特徴とする、請求項1乃至請求項3のいずれか一項に記載の形状凍結性に優れた高強度複相ステンレス鋼板。
% By mass
Al: 0.003 to 0.500%,
Mg: 0.00001 to 0.0050%,
The high-strength compound excellent in shape freezing property according to any one of claims 1 to 3, characterized by containing one or more of Ca: 0.00001 to 0.0050%. Phase stainless steel sheet.
請求項1乃至請求項4のいずれか一項に記載のステンレス鋼板を製造するに際し、熱間圧延後に最高到達温度900℃以上1050℃未満で保持時間が1s以上600s未満の熱処理を施した後の冷却過程において、900℃から600℃の範囲における平均冷却速度を5℃/s以上として冷却した後に圧延率30%以上90%未満の冷間圧延を実施し、しかる後に最高到達温度900℃以上1050℃未満で保持時間が1s以上600s未満の熱処理を施した後の冷却過程において900℃から600℃の範囲における平均冷却速度を5℃/s以上として冷却することを特徴とする、形状凍結性に優れた高強度複相ステンレス鋼板の製造方法。   In producing the stainless steel plate according to any one of claims 1 to 4, after the hot rolling, a heat treatment having a maximum ultimate temperature of 900 ° C or more and less than 1050 ° C and a holding time of 1s or more and less than 600s is performed. In the cooling process, after cooling with an average cooling rate in the range of 900 ° C. to 600 ° C. being 5 ° C./s or more, cold rolling is performed at a rolling rate of 30% or more and less than 90%, and then the maximum temperature reached 900 ° C. or more and 1050 ° C. It is cooled to an average cooling rate in the range of 900 ° C. to 600 ° C. at 5 ° C./s or higher in the cooling process after performing a heat treatment with a holding time of 1 s or more and less than 600 s at a temperature below 5 ° C. A method for producing excellent high-strength duplex stainless steel sheets.
JP2007135088A 2007-05-22 2007-05-22 High strength duplex stainless steel sheet with excellent shape freezing property and method for producing the same Active JP4949124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007135088A JP4949124B2 (en) 2007-05-22 2007-05-22 High strength duplex stainless steel sheet with excellent shape freezing property and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007135088A JP4949124B2 (en) 2007-05-22 2007-05-22 High strength duplex stainless steel sheet with excellent shape freezing property and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008291282A JP2008291282A (en) 2008-12-04
JP4949124B2 true JP4949124B2 (en) 2012-06-06

Family

ID=40166320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007135088A Active JP4949124B2 (en) 2007-05-22 2007-05-22 High strength duplex stainless steel sheet with excellent shape freezing property and method for producing the same

Country Status (1)

Country Link
JP (1) JP4949124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636944A (en) * 2016-12-27 2017-05-10 柳州市金岭汽车配件厂 Vehicle door sill pedal and preparation method thereof

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235572A (en) * 2008-03-07 2009-10-15 Jfe Steel Corp Ferritic stainless steel having excellent heat resistance and shape-fixability
FI121340B (en) * 2008-12-19 2010-10-15 Outokumpu Oy Duplex stainless steel
JP2010236560A (en) * 2009-03-30 2010-10-21 Nisshin Steel Co Ltd Method of manufacturing structural member having improved impact absorbing characteristics
JP5703608B2 (en) * 2009-07-30 2015-04-22 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5656435B2 (en) * 2010-03-30 2015-01-21 新日鐵住金ステンレス株式会社 Ferrite-austenitic stainless steel sheet for press molding with small earrings and method for producing the same
CN102719733B (en) * 2011-03-29 2014-06-04 鞍钢股份有限公司 Manufacturing method for high-nickel steel
CN103958717B (en) * 2011-11-30 2016-05-18 杰富意钢铁株式会社 Ferrite-group stainless steel
JP6071608B2 (en) 2012-03-09 2017-02-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent oxidation resistance
JP5793459B2 (en) 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
MX2015013765A (en) 2013-03-27 2016-02-26 Nippon Steel & Sumikin Sst Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip.
WO2015190422A1 (en) 2014-06-11 2015-12-17 新日鐵住金ステンレス株式会社 High strength duplex stainless steel wire rod, high strength duplex stainless steel wire and manufacturing method therefor as well as spring component
FI126577B (en) * 2014-06-17 2017-02-28 Outokumpu Oy DOUBLE STAINLESS STEEL
US10954578B2 (en) * 2014-10-30 2021-03-23 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
CN104561830B (en) * 2015-01-05 2017-06-13 张建利 A kind of adjustable austenite martensite two-phase clad steel of thermal coefficient of expansion and preparation method thereof
JP6245386B2 (en) 2015-08-11 2017-12-13 Jfeスチール株式会社 High-strength steel sheet material, hot-rolled steel sheet for high-strength steel sheet, hot-rolled annealed material for high-strength steel sheet, high-strength steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength electroplated steel sheet, and production methods thereof
JP6628561B2 (en) * 2015-11-09 2020-01-08 日鉄ステンレス株式会社 Stainless steel sheet for structural member excellent in workability and method for producing the same
KR20170075034A (en) * 2015-12-21 2017-07-03 주식회사 포스코 Lean duplex stainless steel and method of manufacturing the same
KR101990922B1 (en) * 2015-12-23 2019-06-20 주식회사 포스코 Lean duplex stainless steel having excellent yield ratio
US10793930B2 (en) 2016-02-17 2020-10-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic-austenitic two-phase stainless steel material and method for manufacturing same
JP6372633B1 (en) 2016-11-16 2018-08-15 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP6811112B2 (en) * 2017-02-09 2021-01-13 日鉄ステンレス株式会社 Ferrite Duplex Stainless Steel Sheet and Its Manufacturing Method
KR102268906B1 (en) * 2019-07-17 2021-06-25 주식회사 포스코 Austenitic stainless steel with imporoved strength and method for manufacturing the same
CN111647808B (en) * 2020-05-20 2021-11-23 樟树市兴隆高新材料有限公司 Heat-resistant steel and preparation method thereof
CN117089761A (en) * 2023-05-30 2023-11-21 宝山钢铁股份有限公司 Variable-strength dual-phase steel plate with normalized components and flexible manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723024A (en) * 1980-07-15 1982-02-06 Nippon Steel Corp Manufacture of ferrite stainless steel plate
JP3709709B2 (en) * 1998-04-30 2005-10-26 Jfeスチール株式会社 Ferritic stainless steel with excellent formability and manufacturing method thereof
JP4285843B2 (en) * 1999-07-21 2009-06-24 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent shape freezing property during bending and its manufacturing method
JP3814134B2 (en) * 2000-09-21 2006-08-23 新日本製鐵株式会社 High formability, high strength cold-rolled steel sheet excellent in shape freezing property and impact energy absorption ability during processing and its manufacturing method
JP4760031B2 (en) * 2004-01-29 2011-08-31 Jfeスチール株式会社 Austenitic ferritic stainless steel with excellent formability
JP4760032B2 (en) * 2004-01-29 2011-08-31 Jfeスチール株式会社 Austenitic ferritic stainless steel with excellent formability
JP4852857B2 (en) * 2004-03-16 2012-01-11 Jfeスチール株式会社 Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance
JP4432725B2 (en) * 2004-10-25 2010-03-17 Jfeスチール株式会社 Cr-containing high-strength cold-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP4302678B2 (en) * 2005-09-01 2009-07-29 日新製鋼株式会社 Ferritic stainless steel sheet for fuel tanks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636944A (en) * 2016-12-27 2017-05-10 柳州市金岭汽车配件厂 Vehicle door sill pedal and preparation method thereof

Also Published As

Publication number Publication date
JP2008291282A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP4949124B2 (en) High strength duplex stainless steel sheet with excellent shape freezing property and method for producing the same
JP5355905B2 (en) Structural member for automobile, two-wheeled vehicle or railway vehicle having excellent shock absorption characteristics, shape freezing property and flange section cutting ability, and method for producing the same
JP5206244B2 (en) Cold rolled steel sheet
KR101814949B1 (en) Hot-formed steel sheet member, and method for producing same
JP6043801B2 (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
KR101530835B1 (en) High-strength cold-rolled steel sheet and process for manufacturing same
JP5000281B2 (en) High-strength stainless steel sheet with excellent workability and method for producing the same
CN110042321B9 (en) HPF molded member having bendability and method for producing same
JP5598157B2 (en) Steel sheet for hot press excellent in delayed fracture resistance and collision safety and method for producing the same
EP2880189B1 (en) A process for producing hot-rolled steel strip and a steel strip produced therewith
JP5597006B2 (en) High strength and high ductility austenitic stainless steel sheet for structural members and method for producing the same
KR20120023804A (en) High-strength hot-dip galvannealed steel shhet with excellent workability and fatigue characteristics and process for production thereof
TW201945554A (en) Steel member and manufacturing method thereof
JP2005139485A (en) Steel sheet to be hot-formed
JP6402460B2 (en) High strength steel sheet, high strength hot dip galvanized steel sheet, and high strength alloyed hot dip galvanized steel sheet with excellent impact properties having a maximum tensile strength of 780 MPa or more
JP6237364B2 (en) High strength steel plate with excellent impact characteristics and method for producing the same
JP4983082B2 (en) High-strength steel and manufacturing method thereof
JP4427462B2 (en) Steel member for vehicle and method for manufacturing the same
JP2009173959A (en) High-strength steel sheet and producing method therefor
JP4466352B2 (en) Hot rolled steel sheet suitable for warm forming and manufacturing method thereof
JPWO2019069938A1 (en) Hot stamping molded article, hot stamping steel plate and method for producing them
JP5092481B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6003837B2 (en) Manufacturing method of high strength pressed parts
JP5402869B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP5228963B2 (en) Cold rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4949124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250