JP4285843B2 - Ferritic stainless steel with excellent shape freezing property during bending and its manufacturing method - Google Patents

Ferritic stainless steel with excellent shape freezing property during bending and its manufacturing method Download PDF

Info

Publication number
JP4285843B2
JP4285843B2 JP20573999A JP20573999A JP4285843B2 JP 4285843 B2 JP4285843 B2 JP 4285843B2 JP 20573999 A JP20573999 A JP 20573999A JP 20573999 A JP20573999 A JP 20573999A JP 4285843 B2 JP4285843 B2 JP 4285843B2
Authority
JP
Japan
Prior art keywords
less
rolling
bending
steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20573999A
Other languages
Japanese (ja)
Other versions
JP2001032050A (en
Inventor
雅之 天藤
亨 吉田
正夫 菊池
治 秋末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP20573999A priority Critical patent/JP4285843B2/en
Publication of JP2001032050A publication Critical patent/JP2001032050A/en
Application granted granted Critical
Publication of JP4285843B2 publication Critical patent/JP4285843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は戸建て住宅、集合住宅、大型建築物、ビルディングや橋梁等の建造物の構造部材あるいは車両構造用に適した曲げ加工性を有し、曲げ加工時の形状凍結性に優れる、すなわちスプリングバックの少ない溶接構造用フェライト系ステンレス鋼及びその製造方法に関するものである。
【0002】
【従来の技術】
建築物の安全基準の厳格化や機能性の追求等により、柱や梁用などの鋼材には一層の高機能化が求められている。
特に耐食性は構造物の耐用年数を左右する重要な因子であり、その向上が求められている。その究極の例が、さびの発生を解消した建築構造用ステンレス鋼である。構造用としては、耐食性や靱性に優れるSUS304(18Cr−8Ni)の使用実績が多い。
【0003】
しかし、ステンレス鋼はCrやNiなどの高価な元素を多量に必要とするため素材コストや製造コストは高価であり、機能的には優れるものの、その経済性には問題がある。一方、Crを10%を超えて添加させたフェライト系ステンレス鋼、例えばSUS430鋼は耐食性には優れているが、熱延鋼板の金属組織は圧延方向に長く伸びた粗大フェライト粒組織であり、曲げ加工性が悪く、さらに溶接熱影響部のフェライト組織が粗大化し、溶接部靱性が著しく低下する。
構造用等に使用される厚手材では溶接部の靱性低下が重大な問題であり、さらに溶接後の冷却時に割れを生じる場合もあるため、溶接を必要とする一般建築構造用にフェライト系ステンレス鋼は使用されなかった。
【0004】
また、11%CrのSUS410L鋼は、高温でγ相が析出するため溶接熱影響部の組織粗大化が生じ難く、さらにC含有量を低減することにより溶接割れ、溶接部靱性も改善されており、コンテナー骨材等の構造用途に一部使用されている。しかし、その熱延鋼板は降伏強度が高いため、曲げ加工時のスプリングバックが大きい、すなわち曲げ加工時の形状凍結性が悪いという欠点を有している。
【0005】
【発明が解決しようとする課題】
本発明は、建築構造用あるいは車両構造用として、曲げ加工時のスプリングバックが少なく、形状凍結性に優れた熱延鋼板およびその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、成分バランス調整により熱延域での相変態を制御し、熱延条件およびその後の熱処理条件を最適化することにより、曲げ加工性に優れスプリングバックの少ない金属組織ならびに集合組織の実現を目指した。
そこで本発明者らは上記課題に対して、曲げ加工性に優れ、スプリングバックの少ない集合組織(ランダム結晶方位に対する比率、以下同様に記載する)を検討した。各種集合組織を有するステンレス鋼板の曲げ特性を調べた結果、鋼板板面と平行に{100}面が集積した場合にスプリングバックが小さくなり、さらに曲げ方向と平行に<011>方向が集積した場合にその効果が著しくなることが明らかとなった。
【0007】
鋼板の曲げ加工は、一般的に圧延方向或いはそれに直角方向であることから、鋼板板面と平行に{100}面を集積させ、圧延方向または板幅方向と平行に<011>方向を集積させることにより、圧延方向或いは板幅方向に曲げ加工した場合にスプリングバックの小さい鋼板を製造できるものと期待できる。
【0008】
一般的に、熱延後或いは冷延後の展伸した加工組織ではこのような集合組織は認められるものの、スプリングバックを大きくする{111}面がより多く集積するために、形状凍結性は十分に改善されなかった。また圧延後の焼鈍による再結晶により{100}面を集積させる集合組織は得られず、上記のような集合組織を有するステンレス鋼板は製造されていない。
【0009】
本発明者らは、各種成分のステンレス鋼を種々の条件で熱延し、その金属組織、集合組織および機械的性質を調査した結果、熱延時に導入される歪とその後のγ→α相変態を適切に利用する限られた条件で上記のような集合組織が得られ、優れた形状凍結性が得られることを見いだした。
すなわち、γ相域で圧延し、圧延後直ちに再結晶を生じない温度で仕上げ熱延を行い、熱延により導入された歪を残した状態で熱延後にγ相からα相に変態させると、上記のような変態集合組織が形成される。さらに仕上げ圧延後の捲取り温度を適正化することにより、変態を完了させると共に結晶粒度を調整し、構造材として必要な強度と曲げ加工時に必要な延性を付与することができる。
【0010】
本発明の主旨は、以下の通りである。
Cr量およびその他の成分量を調整し、850℃以上の熱延域温度域でγ相となるようにする。高温域で生成するオーステナイト相の量は成分含有量から予測することができ、下式を満足するように成分調整すれば熱延温度域で十分な量のオーステナイト相を生成させることができる。
Cr(%)+Mo(%)+1.5Si(%)+6Ti(%)+3Nb(%)
−Mn(%)−2Ni(%)−0.5Cu(%)−30C(%)−20N
(%)≦11.5
【0011】
そして、熱間圧延は主にオーステナイト域で実施し、熱間圧延後の冷却時にフェライト相へ変態せしめ、上記のような集合組織を形成させると共に適度なフェライト粒径および降伏強度を有する熱延鋼板を製造することができる。この時にフェライト相への変態が不十分でオーステナイト相の一部がマルテンサイト相に変態したり、フェライト変態後の粒成長が不十分で平均粒径が5μm未満になると、降伏強度が500MPaを超え、形状凍結性も悪化すると共に曲げ加工時に割れが発生する場合がある。
【0012】
上式を満足せず、高温で十分な量のオーステナイト相が生成しないと、上記集合組織の形成が阻害されると共にフェライト結晶粒が粗大化する。フェライト結晶粒が平均50μm超になると、曲げ加工時に外表面にフェライト粒に対応した肌荒れ状の凹凸が発生し、美観を損なうばかりでなく、局所的な変形により割れを生じる場合がある。また、フェライト粒の粗大化により降伏強度が235MPa未満となると、一般構造用鋼材より低耐力となり、特別な設計を要することになり、一般構造用鋼材として不適切である。
上記のように成分および熱延鋼板の金属組織を最適化することにより、一般構造用フェライト系ステンレス鋼が実現可能となった。
【0013】
本発明の具体的構成は以下のとおりである。
(1)質量%で、
C :0.1%以下、 Si:1.5%以下、
Mn:1.5%以下、 Cr:8〜18%、
P :0.04%以下、 S :0.05%以下、
N :0.05%以下、 C+N:0.1%以下
さらに、
Mo:0.1〜2.5%、 Cu:0.1〜2.5%、
Ni:0.1〜2.5%、 Ti:0.01〜0.5%、
Nb:0.01〜0.5%、 V :0.05〜0.5%
の1種または2種以上
を含有し、残部がFeおよび不可避不純物からなる鋼であって、母材部の金属組織が5〜50μmの平均結晶粒径を有するフェライト組織で、板厚中央部の集合組織において板面に平行な{100}面の反射X線強度比が2以上であり、さらに圧延方向または板幅方向と垂直な{011}面の反射X線強度比が1.2以上であることを特徴とする曲げ加工時の形状凍結性に優れたフェライト系ステンレス鋼。
【0014】
)下式を満足し、降伏強度あるいは0.2%耐力が235〜500MPaであることを特徴とする、前記(1)記載の曲げ加工時の形状凍結性に優れたフェライト系ステンレス鋼。
Cr(%)+Mo(%)+1.5Si(%)+6Ti(%)+3Nb(%)
−Mn(%)−2Ni(%)−0.5Cu(%)−30C(%)−20N(%)
≦11.5
【0015】
前記(1)または(2)に記載の鋼を得るために同項記載の成分を有する鋼を熱間圧延するに際し、850〜950℃のオーステナイト域で全圧下量が30%以上となるような仕上げ圧延を行い、600〜800℃の温度域で捲取ることを特徴とする、曲げ加工時の形状凍結性に優れたフェライト系ステンレス鋼の製造方法。
)熱延終了後に、600〜850℃の温度域で0.1〜10時間の熱処理を行うことを特徴とする、前記()に記載の曲げ加工時の形状凍結性に優れたフェライト系ステンレス鋼の製造方法。
【0016】
【発明の実施の形態】
以下に、本発明の鋼の成分範囲などの限定理由について述べる。
Cは、鋼の強度を向上させる元素ために有効な元素である。ただし、0.1%を超える過剰の添加は、延性低下による曲げ加工時の割れ、溶接熱影響部の靭性低下による溶接割れを生じるため、上限を0.1%とした。
【0017】
Nは、不可避的不純物元素であり、鋼の強度を向上させるのに有効であるが、Cと同様に加工割れ、溶接割れの原因となるため、その上限を0.05%とし、さらにCとNの合計含有量の上限を0.1%とした。
【0018】
Siは、不可避的不純物元素であり、脱酸剤として鋼中の固溶酸素を低減する効果はあるが、1.5%を超えて添加すると母材と溶接部の靭性を損ない、曲げ加工割れ、溶接割れの原因となるため、上限を1.5%とした。
【0019】
Mnは、不可避的不純物元素であり、鋼の強度を向上させるのに有効であるが、1.5%を超えて添加すると母材と溶接部の靭性を損ない、曲げ加工割れ、溶接割れの原因となるため、上限を1.5%とした。
【0020】
Pは、不可避的不純物元素であるが、多量に存在すると溶接性を害するのみならず、さび発生を促進する現象が現れる。そのため0.04%以下に限定した。
【0021】
Sは、不可避的不純物元素であるが、主にMnSなどの硫黄系介在物として、さびの起点となるだけではなく、腐食速度を高める原因にもなる。さらに、粒界に偏析し熱間加工性を害する。そのため、0.05%以下に規制する必要がある。Sは不純物として少ないほど好ましい。
【0022】
Crは、大気環境において腐食の発生抑制と腐食速度を低減させるために重要不可欠な添加元素であり、その効果発現のためには8%以上の添加量が必要である。しかし18%を超えて添加すると、熱延域で十分な量のγ相を得るためにはNi等を多量に添加しなければならず、熱延後にγ相からフェライト相への変態が著しく抑制され、熱延後焼鈍を施してもフェライト相にならず、マルテンサイト相或いは一部オーステナイト相のまま残留し、加工性等が著しく劣化する。従ってCr含有量の上限を18%とした。
【0023】
本発明は以上の成分含有量を必須とするが、さらに必要に応じて以下の成分を添加する。
Ni、CuおよびMoは、Crと同様に大気環境において腐食の発生抑制と腐食速度を低減する効果を有すると共に、形状凍結性に優れた請求項1に記載の集合組織を発達させる効果も有する。但し、その量が少ないと効果が弱く、過度に添加すると、熱延後にγ相からフェライト相への変態が著しく抑制され、熱延後焼鈍を施してもフェライト相にならず、マルテンサイト相或いは一部オーステナイト相のまま残留し、加工性等が著しく劣化する。従って、いずれも下限を0.1%、上限を2.5%とした。
【0024】
Ti,NbおよびVは、C或いはNを固定し曲げ加工時の延性を向上させる効果を有するが、その量が少ないと効果が弱く、TiおよびNbで0.01%以上、Vで0.05%以上の添加が必要である。ただし、過度に添加すると逆に延性低下を招くため、その上限をいずれも0.5%とした。
【0025】
上記のような個々の成分範囲の規定の他に、熱延温度域で十分な量のγ相を析出させ、γ相の析出温度域で熱間圧延を実施するために、請求項1で示す各成分の含有量から計算される値を11.5以下に満足させる必要がある。11.5を超えると熱延域に存在するフェライト相の量が増加し、形状凍結性を向上させる集合組織が十分発達しない。
【0026】
優れた形状凍結性を発揮させるためには、上記成分範囲を満足する鋼を請求項3,4に記載した条件で製造することにより、その集合組織において板面に平行な{100}面の集積度を上げる必要がある。板厚中央部の集合組織において板面に平行な{100}面の反射X線強度比を2以上としないと、従来鋼或いは同程度の強度を有する構造用普通鋼に対して優位性のある形状凍結性を得られない。
【0027】
ここで示す反射X線強度比(または極点密度ともいう)とは、当該試料で測定されたX線回折強度と、無方向性標準試料(ランダム試料)で測定された回折強度の比である。この強度比が1の場合はその結晶方位が集積しておらず、ランダム試料と同じ頻度で存在することを示す。
【0028】
さらに、圧延方向または板幅方向と垂直な{011}面のX線強度比を1.2以上とすることにより、さらに優れた形状凍結性が得られる。圧延方向と垂直に{011}面を集積させると、結晶対称性から必然的に板幅方向と垂直にも{011}面が集積するため、X線強度比の測定はいずれの方向にて測定しても有効である。圧延方向或いは板幅方向と垂直な面のX線強度比を直接測定することが難しい場合は、板面と平行な面で測定した結果から計算する方法、或いは電子線回折を用いた測定方法を採用しても良い。
【0029】
板面に平行な{100}面のX線反射強度比を2以上、圧延方向または板幅方向と垂直な面に平行な{011}面のX線反射強度比を1.2以上とする集合組織、すなわち板面に{100}、圧延方向に<011>方位の発達した集合組織を実現することにより、曲げ加工時の形状凍結性、特に圧延方向或いは板幅方向に曲げた場合の形状凍結性に優れた鋼板を製造することができる。
【0030】
一般建築構造用として使用するためには、さらに母材部の金属組織を実質フェライト相とし、5〜50μmの平均結晶粒径に調整し、降伏強度或いは0.2%耐力が235MPa以上、500MPa以下としなければならない。結晶粒径が5μm未満では、強度は上昇するが曲げ加工に必要な伸びが低下する。また、50μmを超える結晶粒径とすると、強度が低下すると共に曲げ加工時に表面凹凸が発生し、美観を損ねるだけでなく靱性が低下し、曲げ加工時に割れを生じる場合がある。
降伏強度或いは0.2%耐力が235MPa未満では、一般構造用炭素鋼と同様な仕様で設計することができなくなり、汎用の構造材料として使用できなくなる。一方、500MPaを超えると曲げ加工が難しくなり、加工時に割れが発生する場合が生じる。
【0031】
上記フェライト系ステンレス鋼は、熱間圧延工程或いは熱間圧延後の熱処理により製造することができる。その製造時、形状凍結性に優れた集合組織を得るために、850℃以上950℃以下のオーステナイト域で全圧下量が30%以上となるような仕上げ圧延を行い、600℃以上800℃以下の温度域で捲取る熱間圧延を行うことが必要である。
【0032】
850℃以上950℃以下で仕上げ熱延を実施する理由は、γ相の温度域で熱延による歪を蓄積し、その状態でフェライト相に変態させるためであり、変態前に存在する歪によって変態後の集合組織において上述のような{100}<011>方位が発達する。850℃未満で仕上げ熱延を行うと熱延前にフェライト相に変態し、また950℃を超えて仕上げ熱延を行うと、変態前に回復或いは再結晶現象によりγ相中の歪が減少・消失する。
【0033】
また、仕上げ熱延時の全圧下量は30%以上としなければ、蓄積される歪量が不十分であり、請求項1に記載した集合組織が発達しない。さらに、仕上げ熱延後、600℃以上800℃未満で捲取ることにより、歪の蓄積したオーステナイト相をフェライト相に変態させる必要がある。600℃未満で捲取ると大部分のオーステナイト相がマルテンサイト相に変態し、その後の焼鈍でフェライト相に変態させても上記集合組織の発達は阻害される。また800℃超で捲取ると、変態前に回復或いは再結晶現象によりγ相中の歪が減少し、集合組織の発達が抑制される。また仕上げ熱延温度域を確保するためには、熱延前の加熱を1100℃以上1250℃以下とすることが望ましい。
【0034】
上記熱延条件を満足することにより、形状凍結性に有利な集合組織を発達させることはできるが、熱延後の焼鈍を実施することにより、一部未変態のγ相(マルテンサイト相)の消失、最適な結晶粒度への調整を行うことができる。この焼鈍により一般構造用として最適な強度、延性、曲げ加工性を有する熱延鋼板を安定して製造することが可能となる。
【0035】
その焼鈍条件は600℃以上、850以下の温度範囲で、0.1時間以上10時間以下としなければならない。600℃未満或いは0.1時間未満の焼鈍では上記効果は発現せず、850℃を超える焼鈍ではフェライト相が再度γ相に変態し、発達した上記集合組織を崩すことになる。また、10時間を超えて焼鈍してもその効果は飽和し、コスト上昇を招く。
なお、熱延後或いは熱処理後の鋼板に耐食性或いは表面の意匠性から酸洗或いは研磨等の処理を施してもよく、また、焼鈍後に鋼板の形状矯正或いは表面性状調整のため軽度の冷間圧延をすることは、本発明の効果に何ら影響を与えない。
【0036】
【実施例】
以下、実施例に基づいて本発明を詳細に説明する。
表1に示した種々の組成の鋼を溶解し、250mm厚のスラブに鋳造した。1200℃に加熱後、熱間圧延にて厚さ2〜6mmの熱延板を作製した。一部の熱延板について、750℃で熱延後焼鈍を実施した。熱延板の集合組織をX線にて測定し、その金属組織からフェライト相の平均結晶粒径を測定した。
【0037】
さらに、熱延板の圧延方向と平行にJIS5号の引張試験片を作製し、降伏強度(降伏点が出ない場合は0.2%耐力)、引張強度、破断伸びを測定した。各熱延鋼板の熱延条件と集合組織、フェライト結晶粒径の測定結果、および引張試験結果を表2に示す。
本発明で記載された成分、熱延条件を満足した熱延鋼板は、いずれも5〜50μmの平均結晶粒径であり、{100}<011>方位の発達した集合組織を示すことがわかる。
【0038】
次に、上記熱延鋼板の中で厚さ2mmの鋼板より圧延方向(L)或いはその直角方向(C)に幅500mmの試験片を切り出し、角形ポンチを使用し、図1に示すような形状に曲げ試験を行った。曲げ加工試験時のしわ押さえ力は10トンとし、室温で曲げ加工後に割れ発生の有無、加工後形状を測定した。
図1中で示すL1およびL2の長さの差ΔLの測定結果から形状凍結性を評価した。ΔLが小さいものほど形状凍結性に優れていることになる。曲げ加工試験結果を表3に示す。{100}<011>方位の発達した集合組織を有する本発明鋼はΔLが著しく小さく、曲げ加工時の形状凍結性に優れており、また曲げ加工割れを発生していない。
【0039】
【表1】

Figure 0004285843
【0040】
【表2】
Figure 0004285843
【0041】
【表3】
Figure 0004285843
【0042】
【発明の効果】
本発明により、建築構造用或いは車両構造用として、曲げ加工時のスプリングバックが少なく、形状凍結性に優れたフェライト系ステンレス鋼板を安価に供給することが可能となり、工業的に極めて高い価値がある。
【図面の簡単な説明】
【図1】形状凍結性を評価するために実施した曲げ試験、および形状測定方法の概念図である。[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention has bending workability suitable for a structural member of a building such as a detached house, an apartment house, a large building, a building or a bridge, or a vehicle structure, and has excellent shape freezing property during bending, that is, a springback The present invention relates to a ferritic stainless steel for welded structures and a method for producing the same.
[0002]
[Prior art]
Due to stricter safety standards for buildings and the pursuit of functionality, steel materials for pillars and beams are required to have higher functionality.
In particular, corrosion resistance is an important factor that affects the service life of a structure, and its improvement is required. The ultimate example is stainless steel for building structures that eliminates rust. For structural use, SUS304 (18Cr-8Ni), which has excellent corrosion resistance and toughness, has many uses.
[0003]
However, since stainless steel requires a large amount of expensive elements such as Cr and Ni, the material cost and manufacturing cost are high, and although it is functionally superior, there is a problem in its economic efficiency. On the other hand, ferritic stainless steel added with Cr exceeding 10%, such as SUS430 steel, is excellent in corrosion resistance, but the metal structure of the hot-rolled steel sheet is a coarse ferrite grain structure elongated in the rolling direction. The workability is poor, and the ferrite structure of the weld heat affected zone is coarsened, and the weld toughness is significantly reduced.
Ferritic stainless steel for general building structures that require welding, because the toughness of the welded part is a serious problem with thick materials used for structures, etc., and cracks may occur during cooling after welding. Was not used.
[0004]
In addition, 11% Cr SUS410L steel precipitates the γ phase at high temperatures, so it is difficult for the weld heat-affected zone to become coarse, and by reducing the C content, weld cracking and weld toughness are also improved. It is partly used for structural applications such as container aggregates. However, since the hot-rolled steel sheet has a high yield strength, it has a drawback that the spring back during bending is large, that is, the shape freezing property during bending is poor.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a hot-rolled steel sheet and a method for producing the same, which have less spring back at the time of bending and have excellent shape freezing properties for use in building structures or vehicle structures.
[0006]
[Means for Solving the Problems]
The present inventors control the phase transformation in the hot-rolled zone by adjusting the component balance, and optimize the hot-rolling conditions and the subsequent heat treatment conditions, so that the metal structure and the texture are excellent in bending workability and less spring back. Aimed to realize.
In view of the above problems, the present inventors studied a texture (ratio to random crystal orientation, which will be described below) having excellent bending workability and less spring back. As a result of examining the bending characteristics of stainless steel plates having various textures, when the {100} planes are accumulated parallel to the steel plate surface, the springback is reduced, and the <011> direction is accumulated parallel to the bending direction. It became clear that the effect became remarkable.
[0007]
Since the bending of the steel sheet is generally in the rolling direction or a direction perpendicular thereto, the {100} planes are accumulated in parallel with the steel sheet surface, and the <011> direction is accumulated in parallel with the rolling direction or the sheet width direction. Therefore, it can be expected that a steel plate having a small spring back can be produced when it is bent in the rolling direction or the plate width direction.
[0008]
In general, such a texture is observed in a stretched processed structure after hot rolling or cold rolling, but the shape freezing property is sufficient because more {111} faces that increase the spring back accumulate. It was not improved. Further, a texture that accumulates {100} faces cannot be obtained by recrystallization by annealing after rolling, and a stainless steel sheet having the texture as described above is not manufactured.
[0009]
The present inventors have hot rolled various components of stainless steel under various conditions, and as a result of investigating the metal structure, texture and mechanical properties, the strain introduced during hot rolling and the subsequent γ → α phase transformation It has been found that the texture as described above can be obtained under the limited conditions of properly using the material, and excellent shape freezing property can be obtained.
That is, rolling in the γ phase region, finish hot rolling at a temperature that does not cause recrystallization immediately after rolling, and transforming from the γ phase to the α phase after hot rolling with the strain introduced by hot rolling left, The transformation texture as described above is formed. Furthermore, by optimizing the wetting temperature after finish rolling, the transformation can be completed and the crystal grain size can be adjusted to give the strength required as a structural material and the ductility required during bending.
[0010]
The gist of the present invention is as follows.
The amount of Cr and the amount of other components are adjusted so that a γ phase is obtained in a hot rolling region temperature range of 850 ° C. or higher. The amount of austenite phase generated in the high temperature range can be predicted from the component content, and if the components are adjusted so as to satisfy the following formula, a sufficient amount of austenite phase can be generated in the hot rolling temperature range.
Cr (%) + Mo (%) + 1.5 Si (%) + 6 Ti (%) + 3 Nb (%)
-Mn (%)-2Ni (%)-0.5Cu (%)-30C (%)-20N
(%) ≦ 11.5
[0011]
And hot rolling is mainly carried out in the austenite region, transformed into a ferrite phase during cooling after hot rolling, forming a texture as described above, and a hot rolled steel sheet having an appropriate ferrite grain size and yield strength Can be manufactured. At this time, if the transformation to ferrite phase is insufficient and part of the austenite phase is transformed to martensite phase, or if the grain growth after ferrite transformation is insufficient and the average grain size is less than 5 μm, the yield strength exceeds 500 MPa. In addition, the shape freezing property is deteriorated and cracking may occur during bending.
[0012]
If the above formula is not satisfied and a sufficient amount of austenite phase is not formed at a high temperature, formation of the texture is inhibited and ferrite crystal grains are coarsened. If the ferrite crystal grains exceed 50 μm on average, rough skin irregularities corresponding to the ferrite grains are generated on the outer surface during bending, which not only impairs the appearance but also causes cracks due to local deformation. Further, when the yield strength is less than 235 MPa due to the coarsening of ferrite grains, the yield strength is lower than that of general structural steel materials, and a special design is required, which is inappropriate as a general structural steel material.
More in particular to optimize the metal structure of the component and the hot-rolled steel sheet as described above, for general structural ferritic stainless steel can be realized.
[0013]
The specific configuration of the present invention is as follows.
(1) In mass %,
C: 0.1% or less, Si: 1.5% or less,
Mn: 1.5% or less, Cr: 8-18%,
P: 0.04% or less, S: 0.05% or less,
N: 0.05% or less, C + N: 0.1% or less ,
further,
Mo: 0.1-2.5%, Cu: 0.1-2.5%,
Ni: 0.1-2.5%, Ti : 0.01-0.5 %,
Nb: 0.01 to 0.5%, V: 0.05 to 0.5%
A ferrite structure containing one or more of the following , with the balance being Fe and unavoidable impurities, wherein the metal structure of the base metal part has an average crystal grain size of 5 to 50 μm, der reflected X-ray intensity ratio of parallel to the plate plane {100} plane is 2 or more in the texture of the thick central portion is, further reflected X-ray intensity ratio in the rolling direction or the plate and the vertical width direction {011} plane characterized in that it is 1.2 or more, bending excellent shape fixability at the time of processing ferritic stainless steels.
[0014]
( 2 ) Ferritic stainless steel excellent in shape freezing property during bending as described in (1) above , wherein the following formula is satisfied and the yield strength or 0.2% proof stress is 235 to 500 MPa.
Cr (%) + Mo (%) + 1.5 Si (%) + 6 Ti (%) + 3 Nb (%)
-Mn (%)-2Ni (%)-0.5Cu (%)-30C (%)-20N (%)
≦ 11.5
[0015]
( 3 ) When hot-rolling a steel having the components described in (1) or (2) above , the total reduction amount is 30% or more in the austenite region of 850 to 950 ° C. A method for producing a ferritic stainless steel having excellent shape freezing property during bending , characterized by performing finish rolling as described above , and cutting in a temperature range of 600 to 800 ° C.
(4) after hot rolling finished, and performing a heat treatment of from 0.1 to 10 hours at a temperature range of 600 to 850 ° C., ferrite with excellent bending when the shape fixability according to (3) Of manufacturing stainless steel.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The reasons for limiting the component range of the steel of the present invention will be described below.
C is an effective element for improving the strength of steel. However, excessive addition exceeding 0.1% causes cracking during bending due to ductility reduction and weld cracking due to reduction in toughness of the weld heat affected zone, so the upper limit was made 0.1%.
[0017]
N is an unavoidable impurity element and is effective in improving the strength of steel, but it causes work cracks and weld cracks in the same manner as C, so its upper limit is set to 0.05%. The upper limit of the total content of N was set to 0.1%.
[0018]
Si is an unavoidable impurity element and has the effect of reducing dissolved oxygen in steel as a deoxidizer, but if added over 1.5%, the toughness of the base metal and the welded part is impaired, and bending cracking occurs. In order to cause weld cracking, the upper limit was set to 1.5%.
[0019]
Mn is an inevitable impurity element and is effective in improving the strength of steel, but if added over 1.5%, the toughness of the base metal and the welded part is impaired, causing bending cracks and weld cracks. Therefore, the upper limit was made 1.5%.
[0020]
P is an unavoidable impurity element, but if present in a large amount, P not only impairs weldability but also a phenomenon of promoting rust generation. Therefore, it was limited to 0.04% or less.
[0021]
S is an unavoidable impurity element, but mainly as a sulfur-based inclusion such as MnS, it not only serves as a starting point for rust but also increases the corrosion rate. Furthermore, it segregates at the grain boundaries and harms hot workability. Therefore, it is necessary to regulate to 0.05% or less. S is more preferable as an impurity.
[0022]
Cr is an additive element that is indispensable for suppressing the occurrence of corrosion and reducing the corrosion rate in the atmospheric environment, and an addition amount of 8% or more is necessary to achieve its effect. However, if added over 18%, a large amount of Ni or the like must be added in order to obtain a sufficient amount of γ phase in the hot rolling region, and the transformation from the γ phase to the ferrite phase is significantly suppressed after hot rolling. Even if annealing is performed after hot rolling, it does not become a ferrite phase but remains as a martensite phase or a part of austenite phase, and the workability and the like are significantly deteriorated. Therefore, the upper limit of the Cr content is 18%.
[0023]
In the present invention, the content of the above components is essential, but the following components are further added as necessary.
Ni, Cu and Mo have the effect of suppressing the occurrence of corrosion and reducing the corrosion rate in the atmospheric environment, as well as Cr, and also have the effect of developing the texture according to claim 1 which is excellent in shape freezing property. However, if the amount is small, the effect is weak, and if added excessively, the transformation from the γ phase to the ferrite phase after hot rolling is remarkably suppressed, and even after annealing after hot rolling, the ferrite phase does not become a martensite phase or A part of the austenite phase remains and the workability and the like are remarkably deteriorated. Accordingly, in both cases, the lower limit is set to 0.1% and the upper limit is set to 2.5%.
[0024]
Ti, Nb and V have the effect of fixing C or N and improving the ductility during bending, but if the amount is small, the effect is weak, 0.01% or more for Ti and Nb, 0.05 for V % Or more must be added. However, if added excessively, ductility is adversely reduced, so the upper limit was 0.5%.
[0025]
Other provisions of the individual components within the above range, the hot rolling temperature range in to precipitate a sufficient amount of γ-phase, in order to implement the hot rolling at a precipitation temperature zone of γ phase, shown in claim 1 It is necessary to satisfy the value calculated from the content of each component at 11.5 or less. If it exceeds 11.5, the amount of the ferrite phase present in the hot-rolled zone increases, and the texture that improves the shape freezing property does not sufficiently develop.
[0026]
In order to exhibit excellent shape freezing properties, by producing a steel satisfying the above component range under the conditions described in claims 3 and 4 , accumulation of {100} planes parallel to the plate surface in the texture Need to increase the degree. If the reflected X-ray intensity ratio of the {100} plane parallel to the plate surface is not 2 or more in the texture at the center of the plate thickness, it has an advantage over conventional steel or structural steel with similar strength. The shape freezing property cannot be obtained.
[0027]
The reflected X-ray intensity ratio (also referred to as pole density) shown here is the ratio between the X-ray diffraction intensity measured on the sample and the diffraction intensity measured on the non-directional standard sample (random sample). When the intensity ratio is 1, it indicates that the crystal orientation is not accumulated and exists at the same frequency as the random sample.
[0028]
Furthermore, by setting the X-ray intensity ratio of the {011} plane perpendicular to the rolling direction or the sheet width direction to 1.2 or more, further excellent shape freezing property can be obtained. When the {011} plane is accumulated perpendicular to the rolling direction, the {011} plane is necessarily accumulated perpendicular to the plate width direction due to crystal symmetry, so the X-ray intensity ratio is measured in any direction. Even it is effective. If it is difficult to directly measure the X-ray intensity ratio of the surface perpendicular to the rolling direction or the plate width direction, a method of calculating from the results measured on a surface parallel to the plate surface, or a measuring method using electron beam diffraction It may be adopted.
[0029]
Assembly in which the X-ray reflection intensity ratio of the {100} plane parallel to the plate surface is 2 or more, and the X-ray reflection intensity ratio of the {011} plane parallel to the plane perpendicular to the rolling direction or the plate width direction is 1.2 or more By realizing a texture, that is, a texture with {100} on the plate surface and a developed <011> orientation in the rolling direction, the shape freezing property during bending, particularly the shape freezing when bent in the rolling direction or the plate width direction It is possible to manufacture a steel sheet having excellent properties.
[0030]
In order to use it for a general building structure, the metal structure of the base material portion is further made into a substantially ferrite phase, adjusted to an average crystal grain size of 5 to 50 μm, and yield strength or 0.2% proof stress is 235 MPa or more and 500 MPa or less. And shall be. When the crystal grain size is less than 5 μm, the strength is increased, but the elongation required for bending is reduced. On the other hand, if the crystal grain size exceeds 50 μm, the strength decreases and surface irregularities occur during bending, which not only impairs the appearance but also decreases toughness and may cause cracks during bending.
If the yield strength or 0.2% proof stress is less than 235 MPa, it cannot be designed with the same specifications as general structural carbon steel, and cannot be used as a general-purpose structural material. On the other hand, if it exceeds 500 MPa, bending becomes difficult, and cracks may occur during processing.
[0031]
The ferritic stainless steel can be produced by a hot rolling process or a heat treatment after hot rolling. During the production, in order to obtain a texture having excellent shape freezing property, finish rolling is performed such that the total reduction amount is 30% or more in an austenite region of 850 ° C. or more and 950 ° C. or less, and 600 ° C. or more and 800 ° C. or less. It is necessary to perform hot rolling that takes up in the temperature range.
[0032]
The reason why finish hot rolling is performed at 850 ° C. or more and 950 ° C. or less is to accumulate strain due to hot rolling in the temperature range of the γ phase and to transform into the ferrite phase in that state. In the subsequent texture, the {100} <011> orientation as described above develops. When finish hot rolling is performed at less than 850 ° C, it transforms into a ferrite phase before hot rolling, and when finish hot rolling is performed at over 950 ° C, strain in the γ phase decreases due to recovery or recrystallization before transformation. Disappear.
[0033]
Further, unless the total reduction amount during finish hot rolling is 30% or more, the accumulated strain amount is insufficient, and the texture described in claim 1 does not develop. Furthermore, after finishing hot rolling, it is necessary to transform the austenite phase in which strain is accumulated into a ferrite phase by cutting at 600 ° C. or more and less than 800 ° C. When the temperature is reduced below 600 ° C., most of the austenite phase is transformed into a martensite phase, and the development of the texture is inhibited even if the annealing is transformed into a ferrite phase. Further, when the temperature is higher than 800 ° C., the strain in the γ phase is reduced by the recovery or recrystallization phenomenon before transformation, and the development of the texture is suppressed. Moreover, in order to ensure a finishing hot rolling temperature range, it is desirable that the heating before hot rolling be 1100 ° C. or higher and 1250 ° C. or lower.
[0034]
By satisfying the above hot rolling conditions, it is possible to develop a texture that is advantageous for shape freezing, but by carrying out annealing after hot rolling, a partially untransformed γ phase (martensitic phase) Disappearance can be adjusted to the optimum crystal grain size. This annealing makes it possible to stably manufacture a hot-rolled steel sheet having optimum strength, ductility, and bending workability for general structures.
[0035]
The annealing conditions must be not less than 0.1 hours and not more than 10 hours in a temperature range of not less than 600 ° C. and not more than 850. If the annealing is less than 600 ° C. or less than 0.1 hour, the above effect is not exhibited, and if the annealing exceeds 850 ° C., the ferrite phase is transformed again into the γ phase and the developed texture is destroyed. Moreover, even if it anneals over 10 hours, the effect will be saturated and a cost rise will be caused.
In addition, the steel sheet after hot rolling or heat treatment may be subjected to a treatment such as pickling or polishing from the viewpoint of corrosion resistance or surface design, and after cold annealing, it may be mild cold rolled to correct the shape of the steel sheet or adjust the surface properties. Doing so does not affect the effects of the present invention.
[0036]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
Steels having various compositions shown in Table 1 were melted and cast into slabs having a thickness of 250 mm. After heating to 1200 ° C., a hot-rolled sheet having a thickness of 2 to 6 mm was produced by hot rolling. Some hot-rolled sheets were annealed after hot rolling at 750 ° C. The texture of the hot-rolled sheet was measured by X-ray, and the average crystal grain size of the ferrite phase was measured from the metal structure.
[0037]
Furthermore, a JIS No. 5 tensile test piece was produced in parallel with the rolling direction of the hot-rolled sheet, and the yield strength (0.2% proof stress when no yield point was produced), tensile strength, and elongation at break were measured. Table 2 shows the hot rolling conditions and texture of each hot-rolled steel sheet, the measurement results of the ferrite crystal grain size, and the tensile test results.
It can be seen that the hot-rolled steel sheets satisfying the components and hot-rolling conditions described in the present invention all have an average crystal grain size of 5 to 50 μm and exhibit a texture with developed {100} <011> orientation.
[0038]
Next, a test piece having a width of 500 mm is cut out from the steel sheet having a thickness of 2 mm in the hot rolled steel sheet in the rolling direction (L) or the perpendicular direction (C), and the shape as shown in FIG. A bending test was conducted. The wrinkle holding force during the bending test was 10 tons, and the presence or absence of cracking and the shape after processing were measured after bending at room temperature.
The shape freezing property was evaluated from the measurement result of the difference ΔL in length between L1 and L2 shown in FIG. The smaller ΔL, the better the shape freezing property. Table 3 shows the bending test results. The steel of the present invention having a texture with developed {100} <011> orientation has an extremely small ΔL, excellent shape freezing property during bending, and no bending cracks.
[0039]
[Table 1]
Figure 0004285843
[0040]
[Table 2]
Figure 0004285843
[0041]
[Table 3]
Figure 0004285843
[0042]
【The invention's effect】
According to the present invention, it is possible to supply a ferritic stainless steel sheet having a low spring back at the time of bending and having an excellent shape freezing property for an architectural structure or a vehicle structure at a low cost, which is extremely valuable industrially. .
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a bending test and a shape measuring method performed for evaluating shape freezing property.

Claims (4)

質量%で、
C :0.1%以下、 Si:1.5%以下、
Mn:1.5%以下、 Cr:8〜18%、
P :0.04%以下、 S :0.05%以下、
N :0.05%以下、 C+N:0.1%以下
さらに、
Mo:0.1〜2.5%、 Cu:0.1〜2.5%、
Ni:0.1〜2.5%、 Ti:0.01〜0.5%、
Nb:0.01〜0.5%、 V :0.05〜0.5%
の1種または2種以上
を含有し、残部がFeおよび不可避不純物からなる鋼であって、母材部の金属組織が5〜50μmの平均結晶粒径を有するフェライト組織で、板厚中央部の集合組織において板面に平行な{100}面の反射X線強度比が2以上であり、さらに圧延方向または板幅方向と垂直な{011}面の反射X線強度比が1.2以上であることを特徴とする曲げ加工時の形状凍結性に優れたフェライト系ステンレス鋼。
% By mass
C: 0.1% or less, Si: 1.5% or less,
Mn: 1.5% or less, Cr: 8-18%,
P: 0.04% or less, S: 0.05% or less,
N: 0.05% or less, C + N: 0.1% or less ,
further,
Mo: 0.1-2.5%, Cu: 0.1-2.5%,
Ni: 0.1 to 2.5%, Ti: 0.01 to 0.5%,
Nb: 0.01 to 0.5%, V: 0.05 to 0.5%
Containing <br/> 1 or two or more, the balance being a steel comprising Fe and unavoidable impurities, in ferritic structure where the metal structure of the base metal has an average grain size of 5 to 50 [mu] m, the plate der reflected X-ray intensity ratio of parallel to the plate plane {100} plane is 2 or more in the texture of the thick central portion is, further reflected X-ray intensity ratio in the rolling direction or the plate and the vertical width direction {011} plane characterized in that it is 1.2 or more, bending excellent shape fixability at the time of processing ferritic stainless steels.
下式を満足し、降伏強度あるいは0.2%耐力が235〜500MPaであることを特徴とする、請求項1記載の曲げ加工時の形状凍結性に優れたフェライト系ステンレス鋼。
Cr(%)+Mo(%)+1.5Si(%)+6Ti(%)+3Nb(%)
−Mn(%)−2Ni(%)−0.5Cu(%)−30C(%)−20N(%)
≦11.5
Satisfies the following formula, yield strength or 0.2% proof stress, characterized in that a 235~500MPa, claim 1, wherein bending during shape fixability excellent ferritic stainless steel.
Cr (%) + Mo (%) + 1.5 Si (%) + 6 Ti (%) + 3 Nb (%)
-Mn (%)-2Ni (%)-0.5Cu (%)-30C (%)-20N (%)
≦ 11.5
請求項1または2に記載の鋼を得るために同項記載の成分を有する鋼を熱間圧延するに際し、850〜950℃のオーステナイト域で全圧下量が30%以上となるような仕上げ圧延を行い、600〜800℃の温度域で捲取ることを特徴とする、曲げ加工時の形状凍結性に優れたフェライト系ステンレス鋼の製造方法。 When hot-rolling a steel having the components described in claim 1 in order to obtain the steel according to claim 1 or 2, finish rolling is performed so that the total reduction amount is 30% or more in an austenite region of 850 to 950 ° C. A method for producing a ferritic stainless steel having excellent shape freezing property during bending , characterized in that the method is performed at a temperature range of 600 to 800 ° C. 熱延終了後に、600〜850℃の温度域で0.1〜10時間の熱処理を行うことを特徴とする、請求項に記載の曲げ加工時の形状凍結性に優れたフェライト系ステンレス鋼の製造方法。The ferritic stainless steel excellent in shape freezing property during bending according to claim 3 , wherein heat treatment is performed at a temperature range of 600 to 850 ° C for 0.1 to 10 hours after the end of hot rolling. Production method.
JP20573999A 1999-07-21 1999-07-21 Ferritic stainless steel with excellent shape freezing property during bending and its manufacturing method Expired - Lifetime JP4285843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20573999A JP4285843B2 (en) 1999-07-21 1999-07-21 Ferritic stainless steel with excellent shape freezing property during bending and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20573999A JP4285843B2 (en) 1999-07-21 1999-07-21 Ferritic stainless steel with excellent shape freezing property during bending and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2001032050A JP2001032050A (en) 2001-02-06
JP4285843B2 true JP4285843B2 (en) 2009-06-24

Family

ID=16511868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20573999A Expired - Lifetime JP4285843B2 (en) 1999-07-21 1999-07-21 Ferritic stainless steel with excellent shape freezing property during bending and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4285843B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023106B2 (en) * 2001-05-09 2007-12-19 住友金属工業株式会社 Ferritic heat resistant steel with low softening of heat affected zone
JP2002332549A (en) * 2001-05-10 2002-11-22 Nisshin Steel Co Ltd Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
JP4752619B2 (en) * 2005-06-09 2011-08-17 Jfeスチール株式会社 Ferritic stainless steel sheet for bellows tube
JP4752621B2 (en) * 2005-06-09 2011-08-17 Jfeスチール株式会社 Ferritic stainless steel sheet for bellows tube
JP4752620B2 (en) * 2005-06-09 2011-08-17 Jfeスチール株式会社 Ferritic stainless steel sheet for bellows tube
JP4682805B2 (en) * 2005-10-27 2011-05-11 Jfeスチール株式会社 Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof
JP5408598B2 (en) * 2007-04-19 2014-02-05 新日鐵住金ステンレス株式会社 Stainless steel rebar and manufacturing method thereof
JP4949124B2 (en) * 2007-05-22 2012-06-06 新日鐵住金ステンレス株式会社 High strength duplex stainless steel sheet with excellent shape freezing property and method for producing the same
CN103060712B (en) * 2012-12-26 2015-06-03 宁波市瑞通新材料科技有限公司 Stainless acid-resistant steel for boiler
JP6112064B2 (en) * 2014-05-21 2017-04-12 Jfeスチール株式会社 High-strength 13Cr stainless steel plate with excellent toughness and workability and manufacturing method thereof
JP6112065B2 (en) * 2014-05-21 2017-04-12 Jfeスチール株式会社 Method for producing high strength 13Cr stainless steel plate with excellent toughness and workability
JP6311633B2 (en) * 2015-03-24 2018-04-18 Jfeスチール株式会社 Stainless steel and manufacturing method thereof
JP6791646B2 (en) * 2015-03-30 2020-11-25 日鉄ステンレス株式会社 Stainless steel sheet with excellent toughness and its manufacturing method
CN105886960B (en) * 2016-04-28 2018-04-20 武汉钢铁有限公司 The high-strength steel and its manufacture method of low rebound high formability
KR101903182B1 (en) 2016-12-23 2018-10-01 주식회사 포스코 Ferritic stainless steel having excellent strength and corrosion resistance to acid and method of manufacturing the same
PL3591084T3 (en) * 2017-02-28 2021-11-15 Nippon Steel Corporation Ferritic stainless steel sheet, hot coil, and flange member for motor vehicle exhaust system
US10425080B1 (en) 2018-11-06 2019-09-24 Crane Electronics, Inc. Magnetic peak current mode control for radiation tolerant active driven synchronous power converters
CN113767181B (en) * 2019-05-29 2023-05-09 杰富意钢铁株式会社 Ferritic stainless steel sheet and method for producing same
KR102279909B1 (en) * 2019-11-19 2021-07-22 주식회사 포스코 Ferritic stainless steel having high magnetic permeability

Also Published As

Publication number Publication date
JP2001032050A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
JP4285843B2 (en) Ferritic stainless steel with excellent shape freezing property during bending and its manufacturing method
KR20180099876A (en) High strength steel sheet and manufacturing method thereof
JP4751137B2 (en) Steel plate manufacturing method that can be easily bent by linear heating
KR102119332B1 (en) High-strength steel sheet and its manufacturing method
US20230107809A1 (en) Hot-rolled steel sheet
KR20110018457A (en) Cold-rolled steel sheet, process for production of same, and backlight chassis
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
US11718887B2 (en) Ferrite-based stainless steel having excellent impact toughness, and method for producing same
JP6825751B1 (en) Hot-rolled steel strip for cold roll-formed square steel pipe and its manufacturing method, and cold roll-formed square steel pipe manufacturing method
JP3370441B2 (en) Duplex stainless steel sheet with excellent elongation characteristics and method for producing the same
JP3422277B2 (en) Method of manufacturing martensitic stainless steel cold-rolled steel strip for leaf spring and leaf spring
JP3839953B2 (en) Manufacturing method of stainless steel strip for building structure
JP2002167653A (en) Stainless steel having excellent workability and weldability
JP3852279B2 (en) Manufacturing method of rolled H-section steel with excellent earthquake resistance
JPH11302795A (en) Stainless steel for building construction
JPH08197102A (en) Manufacture of extremely thick wide-flange steel excellent in toughness and weldabitlity
JP4026443B2 (en) High strength and high toughness steel pipe material excellent in weldability and manufacturing method thereof
JP2001247935A (en) Rolled shape steel excellent in earthquake resistance and weather resistance and its producing method
JP4560994B2 (en) Cr-containing steel sheet for building / civil engineering structure and its manufacturing method
US11505855B2 (en) High-strength steel sheet
JP7034861B2 (en) Steel sheets and pipes for circular steel pipes with high strength, low yield ratio and excellent weldability, and their manufacturing methods
JPH07268561A (en) High strength stainless steel excellent in hot workability and free from welding softening
JP3831057B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent workability
JP4483089B2 (en) Cr-containing heat-resistant and corrosion-resistant steel sheet excellent in both formability and workability in the heat affected zone and its manufacturing method
JP3606135B2 (en) Ferritic stainless steel sheet for spring and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4285843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term