JPH11302795A - Stainless steel for building construction - Google Patents
Stainless steel for building constructionInfo
- Publication number
- JPH11302795A JPH11302795A JP10835198A JP10835198A JPH11302795A JP H11302795 A JPH11302795 A JP H11302795A JP 10835198 A JP10835198 A JP 10835198A JP 10835198 A JP10835198 A JP 10835198A JP H11302795 A JPH11302795 A JP H11302795A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- stainless steel
- affected zone
- heat affected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は戸建て住宅、集合住
宅、大型建築物、ビルディングや橋梁等の建造物の構造
部材として用いられる耐食性に優れた鋼材に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material having excellent corrosion resistance used as a structural member of a detached house, an apartment house, a large building, a building such as a building or a bridge.
【0002】[0002]
【従来の技術】建築物の安全基準の厳格化や機能性の追
求等により、柱や梁用などの鋼材には、一層の高機能化
が求められている。特に耐食性は、構造物の耐用年数を
左右する重要な因子であり、その向上が求められてい
る。その究極の例が、さびの発生を解消した建築構造用
ステンレス鋼である。構造用としては、耐食性や靱性に
優れるSUS304(18Cr−8Ni)の使用実績が
多い。2. Description of the Related Art Steel materials for pillars and beams are required to have higher functions due to stricter safety standards and pursuit of functionality of buildings. In particular, corrosion resistance is an important factor affecting the service life of a structure, and its improvement is required. The ultimate example is rust-free stainless steel for building structures. SUS304 (18Cr-8Ni), which is excellent in corrosion resistance and toughness, is often used for structural purposes.
【0003】しかし、ステンレス鋼はCrやNiなどの
高価な元素を多量に必要とするため素材コストや製造コ
ストは高価であり、機能的には優れるもののその経済性
には問題がある。そこでさびや腐食の発生は不可避であ
るものの安価でかつ腐食の進行を抑制し、腐食量を最小
限に抑えた鋼材が開発されている。例えば、特開昭60
−162507号公報等には密着性と耐食性に優れた黒
皮スケール皮膜を製造する方法が開示されているが、製
造工程が複雑で経済性に問題がある。[0003] However, stainless steel requires a large amount of expensive elements such as Cr and Ni, so that the material cost and the manufacturing cost are high. Although it is excellent in function, there is a problem in economical efficiency. Thus, although rust and corrosion are inevitable, steel materials that are inexpensive, suppress the progress of corrosion, and minimize the amount of corrosion have been developed. For example, JP
JP-A-162507 and the like disclose a method for producing a black scale coating film having excellent adhesion and corrosion resistance, but the production process is complicated and there is a problem in economy.
【0004】また、特開平8−199289号公報に
は、0.50〜1.50%のCrを含有した鋼を熱間圧
延工程で製造する厚さ10μm以下の酸化スケールを有
するH形鋼が開示されている。しかし、酸化物層を貫通
して腐食が進行するようになると耐食性向上の効果が失
われ、建築物の長期耐久性を向上させることは不可能で
あると考えられる。Japanese Unexamined Patent Publication (Kokai) No. 8-199289 discloses an H-shaped steel having an oxide scale of 10 μm or less, which is produced by hot rolling a steel containing 0.50 to 1.50% of Cr. It has been disclosed. However, when corrosion progresses through the oxide layer, the effect of improving corrosion resistance is lost, and it is considered impossible to improve the long-term durability of the building.
【0005】一方、Crを16%を越えて添加させたフ
ェライト系ステンレス鋼、例えばSUS430鋼は耐食
性には優れているが、熱延鋼板の金属組織は圧延方向に
長く伸びた粗大フェライト粒組織であり、曲げ加工性が
悪く、さらに溶接熱影響部のフェライト組織が粗大化
し、溶接部靱性が著しく低下する。構造用等に使用され
る厚手材では溶接部の靱性低下が重大な問題であり、さ
らに溶接後の冷却時に割れを生じる場合もあるため、溶
接を必要とする一般建築構造用にフェライト系ステンレ
ス鋼は使用されなかった。On the other hand, a ferritic stainless steel to which Cr is added in excess of 16%, for example, SUS430 steel is excellent in corrosion resistance, but the metal structure of a hot-rolled steel sheet is a coarse ferrite grain structure elongated long in the rolling direction. In addition, the bending workability is poor, and the ferrite structure of the heat affected zone is coarsened, and the toughness of the weld is significantly reduced. For thick materials used for structures, etc., the toughness of the welded parts is a serious problem, and cracks may occur during cooling after welding, so ferritic stainless steels are required for general building structures that require welding. Was not used.
【0006】[0006]
【発明が解決しようとする課題】ところで、建築物の柱
や梁などの構造材を考えた場合、腐食環境は、外装材が
できあがるまでとその後の2つの期間に大別される。後
者は外気の自由な流入が外装材や内装材により規制され
るため腐食環境としてはあまり厳しくない。むしろ、時
間は短いものの風雨や埃などに直接曝される前者の期間
の方が環境の腐食性は厳しい。また、外装材の施工が終
了するまでに、鋼材表面にさびが発生すると、その後外
装材が形成された後も、さび層下で腐食が進行しやすい
という問題が生じる。すなわち、実質的に構造材の耐久
性を支配しているのは、さび発生に対する耐食性であ
り、それに必要なCr量を鋼材に含有することで十分で
ある。When considering structural materials such as pillars and beams of a building, the corrosive environment is roughly divided into a period until the exterior material is completed and a period thereafter. The latter is not so severe as a corrosive environment because the free inflow of outside air is regulated by exterior and interior materials. Rather, the corrosiveness of the environment is more severe in the former period, although the time is short, but the period is directly exposed to the elements such as wind and rain. In addition, if rust is generated on the surface of the steel material by the time the construction of the exterior material is completed, there is a problem that the corrosion easily progresses under the rust layer even after the exterior material is formed. That is, it is the corrosion resistance against rust generation that substantially governs the durability of the structural material, and it is sufficient to include the necessary amount of Cr in the steel material.
【0007】さらに、Cr量を必要最小限とすることと
し、その他の成分を調整することにより、高温で十分な
量のオーステナイト相を生成させ、溶接部フェライト組
織の粗大化を防止させるとともに、オーステナイト/フ
ェライト相の相変態を利用し、熱延ままでフェライト組
織を微細化することも可能と考えられる。すなわち、成
分のバランスおよび相変態を有効に利用し、フェライト
系熱延鋼板のフェライト組織を適度に細かくし、さらに
は溶接熱影響部でのフェライト組織の粗大化を防止する
ことにより、一般建築構造用として使用できる機械的性
質を具備させることができる。Further, by controlling the amount of Cr to a necessary minimum and adjusting other components, a sufficient amount of austenite phase is generated at a high temperature to prevent the ferrite microstructure of the welded portion from being coarsened. It is also considered possible to use the phase transformation of the ferrite phase to refine the ferrite structure while hot rolling. In other words, by effectively utilizing the balance of components and phase transformation, making the ferrite microstructure of a ferritic hot-rolled steel sheet moderately fine, and preventing the ferrite microstructure in the weld heat affected zone from becoming coarse, the general building structure It can have mechanical properties that can be used for applications.
【0008】[0008]
【課題を解決するための手段】上記課題に対して、本発
明者らは各種成分鋼を製造した。そして、その変態挙動
を調査し、一般建築構造用として使用でき、住宅環境で
の耐食性に優れたフェライト系ステンレス鋼を生み出し
た。すなわち、本発明の主旨は、以下の通りである。C
r量およびその他の成分バランスを調整し、1000℃
〜1200℃近傍の高温域でオーステナイト相を生成さ
せる。その量は成分含有量から予測することができ、下
式を満足するように成分調整すれば高温で十分な量のオ
ーステナイト相を生成し、溶接熱影響部で最低限必要な
50%のマルテンサイト相を残すことが可能となる。 Cr(%) +Mo(%) +1.5Si(%)−Mn(%) −2Ni(%)−0.5Cu(%)
−30C(%)−20N(%)≦12In order to solve the above problems, the present inventors have produced various component steels. By investigating the transformation behavior, they produced ferritic stainless steel that can be used for general building structures and has excellent corrosion resistance in residential environments. That is, the gist of the present invention is as follows. C
Adjust the amount of r and the balance of other components, 1000 ℃
An austenite phase is formed in a high temperature range around -1200 ° C. The amount can be predicted from the component content. If the component is adjusted so as to satisfy the following formula, a sufficient amount of austenite phase is generated at a high temperature, and the minimum required 50% martensite in the weld heat affected zone is obtained. It is possible to leave a phase. Cr (%) + Mo (%) + 1.5Si (%)-Mn (%)-2Ni (%)-0.5Cu (%)
−30C (%) − 20N (%) ≦ 12
【0009】熱間圧延は主にオーステナイト域で実施
し、熱延圧延後の冷却時にフェライト相へ変態せしめ、
適度なフェライト粒径および0.1%耐力を有する熱延
鋼板を製造することができる。この時にフェライト相へ
の変態が不十分でオーステナイト相の一部がマルテンサ
イト相に変態したり、フェライト変態後の粒成長が不十
分で平均粒径が5μm以下になると、0.1%耐力が4
40MPa を越え、鋼板の曲げ加工性、延性が低下する。[0009] Hot rolling is mainly performed in the austenite region, and is transformed into a ferrite phase upon cooling after hot rolling,
A hot-rolled steel sheet having an appropriate ferrite grain size and 0.1% proof stress can be manufactured. At this time, if the transformation into the ferrite phase is insufficient and a part of the austenite phase is transformed into the martensite phase, or if the grain growth after the ferrite transformation is insufficient and the average grain size becomes 5 μm or less, the 0.1% proof stress is reduced. 4
If it exceeds 40 MPa, the bending workability and ductility of the steel sheet decrease.
【0010】また、上式を満足せず高温で十分な量のオ
ーステナイト相が生成しなかったり、熱延後の冷却時あ
るいは熱処理時にフェライト粒を平均50μm以上に粒
成長させると、曲げ加工時に外表面にフェライト粒に対
応した肌荒れ状の凹凸が発生し、美観を損なうばかりで
なく、局所的な変形により割れを生じる場合がある。☆
また、フェライト粒の粗大化により0.1%耐力が23
5MPa 未満となると一般構造用鋼材より低耐力となり、
特別な設計を要することになり、一般構造用鋼材として
不適切である。In addition, if the above formula is not satisfied and a sufficient amount of austenite phase is not formed at a high temperature, or if ferrite grains are grown to an average of 50 μm or more during cooling or heat treatment after hot rolling, external ferrite grains may not be formed during bending. Rough surface irregularities corresponding to ferrite grains are generated on the surface, which not only impairs aesthetic appearance but also may cause cracks due to local deformation. ☆
Further, the 0.1% proof stress is 23 due to the coarse ferrite grains.
If it is less than 5MPa, it will have lower yield strength than general structural steel,
It requires special design and is unsuitable for general structural steel.
【0011】上記のように成分および熱延鋼板の金属組
織を最適化するこにより、一般構造用フェライト系ステ
ンレス鋼が実現可能となった。すなわち、本願発明の構
成は以下のとおりである。 (1) 重量%で、 C :0.005%〜0.1%、 Si:0.05%〜1.5%、 Mn:0.05%〜1.5%、 P :0.04%以下、 S :0.05%以下、 N :0.05%以下、 (C+N):0.1%以下、 Cr:8〜16% を含有し、残部がFeおよび不可避不純物からなる鋼で
あって、母材部の金属組織が5〜50μmの平均結晶粒
径を有するフェライト相であり、0.1%耐力が235
MPa 以上、440MPa 以下を満足し、さらに下式を満足
することにより溶接熱影響部に体積率で50%以上のマ
ルテンサイト相を析出させ、溶接熱影響部の0℃におけ
るシャルピー衝撃値を2kgm/cm2 以上となるようにした
ことを特徴とする住宅環境での耐食性、溶接性および溶
接部特性に優れた建築構造用ステンレス鋼。 Cr(%)+Mo(%)+1.5Si(%)-Mn(%)-2Ni(%)-0.5Cu(%)-30C(%)-
20N(%)≦12 (2) 重量%で、 Mo:0.1〜2.5%、 Cu:0.1〜2.5%、 Ni:0.1〜2.5% の1種以上を、さらに含有することを特徴とする前記
(1)記載の建築構造用ステンレス鋼。 (3) 前記(1)又は(2)記載の鋼を、熱間圧延あ
るいは熱間圧延後に熱処理、酸洗することにより製造し
たことを特徴とする建築構造用ステンレス鋼熱延鋼帯。By optimizing the components and the metal structure of the hot-rolled steel sheet as described above, a ferritic stainless steel for general structure can be realized. That is, the configuration of the present invention is as follows. (1) By weight%, C: 0.005% to 0.1%, Si: 0.05% to 1.5%, Mn: 0.05% to 1.5%, P: 0.04% or less , S: 0.05% or less, N: 0.05% or less, (C + N): 0.1% or less, Cr: 8 to 16%, the balance being Fe and inevitable impurities, The metal structure of the base metal part is a ferrite phase having an average crystal grain size of 5 to 50 μm, and the 0.1% proof stress is 235.
Not less than MPa and not more than 440 MPa, and by satisfying the following formula, a martensite phase having a volume ratio of not less than 50% is precipitated in the weld heat affected zone, and the Charpy impact value at 0 ° C of the weld heat affected zone is 2 kgm / A stainless steel for building structures that is excellent in corrosion resistance, weldability and weld characteristics in a residential environment, characterized in that the thickness is at least 2 cm2. Cr (%) + Mo (%) + 1.5Si (%)-Mn (%)-2Ni (%)-0.5Cu (%)-30C (%)-
20N (%) ≦ 12 (2) Mo: 0.1 to 2.5%, Cu: 0.1 to 2.5%, Ni: 0.1 to 2.5% The stainless steel for building structures according to the above (1), further comprising: (3) A hot-rolled stainless steel strip for a building structure, wherein the steel according to (1) or (2) is manufactured by hot rolling or heat-treating and then pickling after hot rolling.
【0012】[0012]
【発明の実施の形態】以下に、本発明の鋼の成分範囲な
どの限定理由について述べる。Cは、鋼の強度を向上さ
せる元素ために有効な元素である。しかし、0.005
%未満では、構造用鋼として必要な強度を得ることがで
きない。また、0.1%を超える過剰の添加は、マルテ
ンサイト相を硬質化し、溶接熱影響部の靭性を著しく低
下させ、溶接時に割れを生じることもある。このため、
下限を0.005%、上限を0.1%とした。BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the composition range of the steel of the present invention will be described below. C is an element effective for improving the strength of steel. However, 0.005
If it is less than 10%, the strength required for structural steel cannot be obtained. Further, an excessive addition exceeding 0.1% hardens the martensite phase, significantly lowers the toughness of the weld heat affected zone, and may cause cracking during welding. For this reason,
The lower limit was 0.005% and the upper limit was 0.1%.
【0013】Nは、不可避的不純物元素であり、鋼の強
度を向上させるのに有効であるが、0.05%を超える
過剰の添加は、マルテンサイト相を硬質化し、溶接熱影
響部の靭性を著しく低下させ、溶接時に割れを生じるこ
ともある。上限を0.05%とした。[0013] N is an unavoidable impurity element and is effective in improving the strength of steel. However, an excessive addition exceeding 0.05% hardens the martensite phase and causes the toughness of the weld heat affected zone. , And cracking may occur during welding. The upper limit was set to 0.05%.
【0014】CおよびNはいずれも溶接熱影響部に出現
するマルテンサイト相を硬質化させる効果があり、過度
に硬質化するとマルテンサイト相が割れの起点となり、
溶接熱影響部の靱性を逆に低下させ、マルテンサイト相
によるフェライト相の粗大化効果を減じる。従って、
(C+N)の上限を0.1%以下とした。Both C and N have the effect of hardening the martensite phase appearing in the heat affected zone, and if the hardness is excessively hardened, the martensite phase becomes the starting point of cracking.
Conversely, the toughness of the heat affected zone is reduced, and the effect of the ferrite phase coarsening by the martensite phase is reduced. Therefore,
The upper limit of (C + N) was set to 0.1% or less.
【0015】Siは、脱酸剤として鋼中の固溶酸素を低
減し熱間加工性を確保するため溶鋼に添加する必要があ
る。0.05%未満では脱酸効果が弱い。一方、1.5
%を越えて添加すると母材と溶接部の靭性を損なうた
め、下限を0.05%、上限を1.5%とした。Si must be added to the molten steel as a deoxidizing agent in order to reduce dissolved oxygen in the steel and ensure hot workability. If it is less than 0.05%, the deoxidizing effect is weak. On the other hand, 1.5
%, The lower limit is set to 0.05% and the upper limit is set to 1.5%.
【0016】Mnは、脱酸剤および脱硫剤として溶鋼に
添加する必要がある。0.05%未満では所定の効果が
得られない。一方、1.5%を越えて添加すると母材と
溶接部の靭性や割れ性を損なうため、下限を0.05
%、上限を1.5%とした。Mn needs to be added to molten steel as a deoxidizing agent and a desulfurizing agent. If it is less than 0.05%, the desired effect cannot be obtained. On the other hand, if added in excess of 1.5%, the toughness and cracking properties of the base metal and the weld are impaired.
% And the upper limit was 1.5%.
【0017】Pは、多量に存在すると溶接性を害するの
みならず、さび発生を促進する現象が現れる。そのた
め、0.04%以下に限定した。When P is present in a large amount, it not only impairs the weldability but also promotes the generation of rust. Therefore, it was limited to 0.04% or less.
【0018】Sは、主にMnSなどの硫黄系介在物とし
て、さびの起点となるだけではなく、腐食速度を高める
原因にもなる。さらに、粒界に偏析し熱間加工性を害す
る。そのため、0.05%以下に規制する必要がある。
Sは不純物として少ないほど好ましい。[0018] S mainly as a sulfur-based inclusion such as MnS not only serves as a starting point of rust, but also causes an increase in corrosion rate. Further, they segregate at grain boundaries and impair hot workability. Therefore, it is necessary to regulate to 0.05% or less.
S is preferably as small as an impurity.
【0019】Crは、大気環境において、腐食の発生抑
制と腐食速度を低減する効果を有する。また、一旦腐食
が起こり、さび層か形成された際にも、さび層下での鋼
材の全面腐食の速度を低減する作用がある。しかし、C
r添加量が少ないと、すなわち8%未満であると、さび
発生抑制と腐食速度低減に関して、その効果が急激に減
ずる。一方16%を超える量を添加すると上記成分範囲
内で溶接熱影響部にマルテンサイト相を50%以上生成
させることは実質不可能となるため、下限を8%、上限
を16%とした。Cr has the effect of suppressing the occurrence of corrosion and reducing the corrosion rate in an atmospheric environment. In addition, even when corrosion occurs once and a rust layer is formed, there is an effect of reducing the rate of overall corrosion of the steel material under the rust layer. But C
If the amount of r is small, that is, if it is less than 8%, the effect of suppressing the generation of rust and reducing the corrosion rate sharply decreases. On the other hand, if an amount exceeding 16% is added, it becomes virtually impossible to generate a martensite phase in the weld heat affected zone of 50% or more within the above component range.
【0020】Mo、Cu、およびNiは、Crと同様に
大気環境において、腐食の発生抑制と腐食速度を低減す
る効果を有する。但し、その量が少ないと効果が弱く、
過度に添加すると原材料費や製造費用などが増し経済性
が低下する。そこで、下限を0.1%、上限を2.5%
とした。Mo, Cu, and Ni, like Cr, have the effect of suppressing the occurrence of corrosion and reducing the corrosion rate in an atmospheric environment. However, if the amount is small, the effect is weak,
Excessive addition increases raw material costs, production costs, etc., and reduces economic efficiency. Therefore, the lower limit is 0.1% and the upper limit is 2.5%
And
【0021】一般建築構造用として使用するためには、
母材部の金属組織を実質フェライト相とし、5〜50μ
mの平均結晶粒径に調整し、0.1%耐力が235MPa
以上、440MPa 以下としなければならない。結晶粒径
が5μm未満では強度は上昇するが曲げ加工に必要な伸
びが低下する。また、50μmを超える結晶粒径とする
と強度が低下するとともに曲げ加工時に表面凹凸が発生
し、美観を損ねるだけでなく、靱性が低下し、曲げ加工
時に割れを生じる場合がある。0.1%耐力が235MP
a 未満では一般構造用炭素鋼と同様な仕様で設計するこ
とができなくなり、汎用の建築構造材料として使用でき
なくなる。一方、440MPa を超える0.1%耐力では
曲げ加工が難しくなり、スプリングバック等により加工
性あるいは施工性の悪化を招く。For use in general building structures,
The metal structure of the base metal part is substantially a ferrite phase,
m, the average grain size is adjusted to 235MPa
Must be 440 MPa or less. If the crystal grain size is less than 5 μm, the strength increases but the elongation required for bending decreases. On the other hand, if the crystal grain size exceeds 50 μm, the strength is reduced and surface irregularities are generated during bending, which not only impairs aesthetic appearance but also decreases toughness and may cause cracking during bending. 235MP with 0.1% proof stress
If it is less than a, it cannot be designed with the same specifications as general structural carbon steel, and cannot be used as a general-purpose building structural material. On the other hand, with a 0.1% proof stress exceeding 440 MPa, bending becomes difficult, and workability or workability deteriorates due to springback or the like.
【0022】上記母材部の金属組織、特性を生み出し、
一般構造用として必要な溶接性および溶接部特性を満足
させるためには、成分バランスを調整し、高温で生成す
るオーステナイト相を制御しなくてはならない。すなわ
ち、下式を満足させることにより溶接熱影響部に体積率
で50%以上のマルテンサイト相を析出させ、溶接熱影
響部の0℃におけるシャルピー衝撃値を2kgm/cm2 以上
とする。Cr(%)+Mo(%)+1.5Si(%)-Mn(%)-2Ni(%)-0.5Cu(%)
-30C(%)-20N(%)≦12The metal structure and characteristics of the base material are produced,
In order to satisfy the weldability and weld characteristics required for general structures, the balance of components must be adjusted and the austenite phase formed at high temperatures must be controlled. That is, by satisfying the following expression, a martensite phase having a volume ratio of 50% or more is precipitated in the weld heat affected zone, and the Charpy impact value at 0 ° C. of the weld heat affected zone is set to 2 kgm / cm 2 or more. Cr (%) + Mo (%) + 1.5Si (%)-Mn (%)-2Ni (%)-0.5Cu (%)
-30C (%)-20N (%) ≦ 12
【0023】上記式の左辺が12を超えると溶接熱影響
部に体積率で50%以上のマルテンサイト相(高温でオ
ーステナイト相)を析出させることは難しく、熱延鋼板
のフェライト組織を細かくし、溶接熱影響部のフェライ
ト粒の粗大化を防ぐことはできない。一般建築構造用と
しての溶接部靱性を確保し、溶接施工時の割れを防止す
るためには、上記成分範囲を満足しつつ、上記式範囲内
に成分バランスを調整し、溶接熱影響部に50%以上の
比較的軟質なマルテンサイト相を析出させることによ
り、0℃におけるシャルピー衝撃値を2kgm/cm2 以上と
しなければならない。シャルピー衝撃値が2kgm/cm2 以
下では、溶接後に低温割れを起こす場合があり、また構
造材が荷重負荷時に脆性破壊する危険性も生じる。本発
明の範囲は、一般建築構造用として必要な母材の特性を
発現させるのみならず、溶接性および溶接部特性も具備
させるために必要な範囲である。If the left side of the above equation exceeds 12, it is difficult to precipitate a martensite phase (austenite phase at a high temperature) of 50% or more by volume in the heat-affected zone of the weld, making the ferrite structure of the hot-rolled steel sheet finer. It is not possible to prevent the ferrite grains in the heat affected zone from becoming coarse. In order to secure the weld toughness for general building structures and prevent cracking during welding, the component balance is adjusted within the above formula range while satisfying the above component range, and 50 % Or more of the relatively soft martensite phase, so that the Charpy impact value at 0 ° C. must be 2 kgm / cm 2 or more. If the Charpy impact value is less than 2 kgm / cm 2 , low-temperature cracking may occur after welding, and there is a risk that the structural material may be brittlely broken under load. The scope of the present invention is a range necessary for not only expressing the characteristics of the base material necessary for general building structures but also providing the weldability and the welded portion characteristics.
【0024】また、本発明鋼は一般建築構造用として使
用されることから、製造コストおよび生産性の点から、
熱延工程によって上記鋼を所定の厚みに製造することが
望ましい。但し、表面の意匠性あるいは機械的性質の安
定性を確保するための熱処理工程あるいは酸洗工程を付
与させても本願発明の効果は維持される。In addition, since the steel of the present invention is used for general building structures, from the viewpoint of manufacturing cost and productivity,
It is desirable to produce the steel to a predetermined thickness by a hot rolling process. However, the effects of the present invention can be maintained even if a heat treatment step or a pickling step for ensuring the stability of the surface design or mechanical properties is provided.
【0025】[0025]
【実施例】以下、実施例に基づいて本発明を詳細に説明
する。表1に示した種々の組成の鋼を溶解し、200mm
厚のインゴットを鋳造した。これを1200℃に加熱
後、熱間圧延にて厚さ6mmの熱延板を作製した。一部に
ついては、熱延後焼鈍を実施した。熱延板の金属組織を
観察し、フェライト相の平均結晶粒径を測定した。さら
に、熱延板の圧延方向と平行にJIS5号の引張試験片
を作製し、0.1%耐力、引張強度、破断伸びを測定し
た。また、幅500mmの試験片を切り出し、圧延方向と
平行に曲げ半径12mmで室温曲げ加工を行い、割れ発生
の有無、曲げ加工表面の観察を行った。熱延および熱延
後焼鈍の条件、金属組織の観察結果、引張試験の結果、
曲げ試験結果を表2に示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on embodiments. Melting steels of various compositions shown in Table 1
Thick ingots were cast. After heating this to 1200 ° C., a hot-rolled sheet having a thickness of 6 mm was produced by hot rolling. About a part, annealing after hot rolling was implemented. The metal structure of the hot rolled sheet was observed, and the average crystal grain size of the ferrite phase was measured. Further, JIS No. 5 tensile test pieces were prepared in parallel with the rolling direction of the hot-rolled sheet, and 0.1% proof stress, tensile strength, and elongation at break were measured. In addition, a test piece having a width of 500 mm was cut out, bent at room temperature with a bending radius of 12 mm in parallel with the rolling direction, and the occurrence of cracks and the surface of the bent portion were observed. The conditions of hot rolling and annealing after hot rolling, observation results of the metal structure, results of the tensile test,
Table 2 shows the bending test results.
【0026】次に、上記熱延板から圧延方向とは平行に
溶接するように溶接試験用試験片を切り出した。開先加
工した同じ素材から切り出した2枚の試験片をTIGで
溶接した。溶接にはSUS410系あるいはSUS30
8系のワイヤーを使用し、溶接台に固定した試験片を予
熱無しで溶接した。溶接方向とは直角に金属組織観察用
の試験片を作製し、溶接熱影響部に生成しているマルテ
ンサイト相の面積率を測定した。Next, a test piece for welding test was cut out from the hot-rolled sheet so as to be welded in parallel with the rolling direction. Two test pieces cut out from the same grooved material were welded by TIG. SUS410 or SUS30 for welding
A test piece fixed to a welding table was welded without preheating using an 8 series wire. A test piece for observing the metal structure was prepared at right angles to the welding direction, and the area ratio of the martensite phase generated in the heat affected zone was measured.
【0027】金属組織を観察した部位の近傍から溶接方
向とは直角に板厚5mmのシャルピー試験片(JIS4号
試験片のサブサイズ)を切り出し、ノッチの位置が溶接
金属と母材部の境界から0.5mm母材部よりの溶接熱影
響部となるように加工した。その試験片を用いて0℃に
てシャルピー試験を行い、その吸収エネルギーからシャ
ルピー衝撃値を測定した。A 5 mm thick Charpy test piece (sub-size of JIS No. 4 test piece) was cut out from the vicinity of the portion where the metallographic structure was observed at a right angle to the welding direction, and the notch was located at the boundary between the weld metal and the base metal. It was processed so as to be a welding heat affected zone from a 0.5 mm base material. A Charpy test was performed at 0 ° C. using the test piece, and a Charpy impact value was measured from the absorbed energy.
【0028】溶接に使用したワイヤーおよびマルテンサ
イト相の面積率、シャルピー衝撃値の測定結果を表3に
示す。さらに、溶接した試験片の一部をそのまま屋外に
3週間曝した後に錆の状況を観察したが、本願発明鋼に
は明確な錆は生じていなかった。Table 3 shows the measurement results of the area ratio of the wire and martensite phase used for welding and the Charpy impact value. Further, after a part of the welded test piece was exposed to the outdoors outdoors for 3 weeks, the state of rust was observed, but no clear rust was formed on the steel of the present invention.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【表3】 [Table 3]
【0032】以上の結果から、本願発明鋼は、母材部に
おいては建築構造用として十分な機械的性質を有し、曲
げ加工性に優れ、さらには溶接熱影響部の靱性にも優れ
ていることが確認された。短時間であるが屋外暴露にお
いて錆の発生も無いことから、住宅内での比較的錆にく
い環境においては長期間錆発生しないと予測され、住宅
環境での建築構造用鋼材として最適な鋼材であるといえ
る。From the above results, the steel of the present invention has sufficient mechanical properties in the base metal part for building structures, excellent bending workability, and also excellent toughness of the weld heat affected zone. It was confirmed that. Although it is a short time, there is no rust during outdoor exposure, so it is predicted that rust will not occur for a long time in a relatively rust-resistant environment in a house. It can be said that.
【0033】[0033]
【発明の効果】本願発明により、戸建て住宅、集合住
宅、大型建築物、ビルディングや橋梁等の建造物の構造
部材として用いられる耐食性に優れた一般鋼材を安価に
供給することが可能となる。According to the present invention, it is possible to supply inexpensively general steel materials having excellent corrosion resistance, which are used as structural members of detached houses, apartment houses, large buildings, buildings and bridges.
Claims (3)
あって、母材部の金属組織が5〜50μmの平均結晶粒
径を有するフェライト相であり、0.1%耐力が235
MPa 以上、440MPa 以下を満足し、さらに下式を満足
することにより溶接熱影響部に体積率で50%以上のマ
ルテンサイト相を析出させ、溶接熱影響部の0℃におけ
るシャルピー衝撃値を2kgm/cm2 以上となるようにした
ことを特徴とする住宅環境での耐食性、溶接性および溶
接部特性に優れた建築構造用ステンレス鋼。 Cr(%)+Mo(%)+1.5Si(%)-Mn(%)-2Ni(%)-0.5Cu(%)-30C(%)-
20N(%)≦12C: 0.005% to 0.1%, Si: 0.05% to 1.5%, Mn: 0.05% to 1.5%, P: 0.04% by weight. %, S: 0.05% or less, N: 0.05% or less, (C + N): 0.1% or less, Cr: 8 to 16%, the balance being Fe and unavoidable impurities. Is a ferrite phase having a metal structure of a base material having an average crystal grain size of 5 to 50 μm, and a 0.1% proof stress of 235
Not less than MPa and not more than 440 MPa, and by satisfying the following formula, a martensite phase having a volume ratio of 50% or more is precipitated in the heat affected zone, and the Charpy impact value at 0 ° C. of the heat affected zone is 2 kgm / A stainless steel for building structures that is excellent in corrosion resistance, weldability and weld characteristics in a residential environment, characterized in that the thickness is at least 2 cm2. Cr (%) + Mo (%) + 1.5Si (%)-Mn (%)-2Ni (%)-0.5Cu (%)-30C (%)-
20N (%) ≦ 12
1記載の建築構造用ステンレス鋼。2. The composition further contains at least one of Mo: 0.1 to 2.5%, Cu: 0.1 to 2.5%, and Ni: 0.1 to 2.5% by weight. The stainless steel for a building structure according to claim 1, wherein:
るいは熱間圧延後に熱処理、酸洗することにより製造し
たことを特徴とする建築構造用ステンレス鋼熱延鋼帯。3. A hot-rolled stainless steel strip for a building structure, wherein the steel according to claim 1 or 2 is manufactured by hot rolling or heat-treating after hot rolling and pickling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10835198A JPH11302795A (en) | 1998-04-17 | 1998-04-17 | Stainless steel for building construction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10835198A JPH11302795A (en) | 1998-04-17 | 1998-04-17 | Stainless steel for building construction |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11302795A true JPH11302795A (en) | 1999-11-02 |
Family
ID=14482518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10835198A Pending JPH11302795A (en) | 1998-04-17 | 1998-04-17 | Stainless steel for building construction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11302795A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002285294A (en) * | 2001-03-27 | 2002-10-03 | Kawasaki Steel Corp | Martensitic stainless steel having excellent blanking workability |
JP2003293095A (en) * | 2002-04-04 | 2003-10-15 | Walsin Lihwa Corp | High-strength martensitic stainless steel material |
JP2008266708A (en) * | 2007-04-19 | 2008-11-06 | Nippon Steel & Sumikin Stainless Steel Corp | Reinforcing stainless-steel bar and manufacturing method therefor |
JP2012158798A (en) * | 2011-01-31 | 2012-08-23 | Jfe Steel Corp | Cr-CONTAINING STEEL PIPE FOR LINE PIPE EXCELLENT IN INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE OF WELD HEAT-AFFECTED ZONE |
CN104254625A (en) * | 2012-04-26 | 2014-12-31 | 杰富意钢铁株式会社 | Cr-containing steel pipe for linepipe excellent in intergranular stress corrosion cracking resistance of welded heat affected zone |
-
1998
- 1998-04-17 JP JP10835198A patent/JPH11302795A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002285294A (en) * | 2001-03-27 | 2002-10-03 | Kawasaki Steel Corp | Martensitic stainless steel having excellent blanking workability |
JP2003293095A (en) * | 2002-04-04 | 2003-10-15 | Walsin Lihwa Corp | High-strength martensitic stainless steel material |
JP2008266708A (en) * | 2007-04-19 | 2008-11-06 | Nippon Steel & Sumikin Stainless Steel Corp | Reinforcing stainless-steel bar and manufacturing method therefor |
JP2012158798A (en) * | 2011-01-31 | 2012-08-23 | Jfe Steel Corp | Cr-CONTAINING STEEL PIPE FOR LINE PIPE EXCELLENT IN INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE OF WELD HEAT-AFFECTED ZONE |
CN104254625A (en) * | 2012-04-26 | 2014-12-31 | 杰富意钢铁株式会社 | Cr-containing steel pipe for linepipe excellent in intergranular stress corrosion cracking resistance of welded heat affected zone |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4285843B2 (en) | Ferritic stainless steel with excellent shape freezing property during bending and its manufacturing method | |
JP4811288B2 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
JP3863818B2 (en) | Low yield ratio steel pipe | |
JP5194572B2 (en) | Method for producing high-tensile steel material with excellent weld crack resistance | |
JPH11302795A (en) | Stainless steel for building construction | |
JP3839953B2 (en) | Manufacturing method of stainless steel strip for building structure | |
JP4457492B2 (en) | Stainless steel with excellent workability and weldability | |
JP3440710B2 (en) | H-section steel excellent in toughness of fillet portion and method for producing the same | |
JPH06316723A (en) | Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability | |
JP4317517B2 (en) | High corrosion resistance hot rolled steel sheet with excellent workability and weld heat affected zone toughness and its manufacturing method | |
JPH08197102A (en) | Manufacture of extremely thick wide-flange steel excellent in toughness and weldabitlity | |
JP2001247930A (en) | Rolled shape steel excellent in earthquake resistance and fire resistance and its producing method | |
JP2003268498A (en) | H-type steel excellent in fillet section toughness and its production method | |
JP3491625B2 (en) | Fe-Cr alloy with excellent initial rust resistance, workability and weldability | |
KR20040004137A (en) | STRUCTURAL Fe-Cr STEEL SHEET, MANUFACTURING METHOD THEREOF, AND STRUCTURAL SHAPED STEEL | |
JP4560994B2 (en) | Cr-containing steel sheet for building / civil engineering structure and its manufacturing method | |
JPH1121622A (en) | Manufacture of steel product for welded structure, having excellent atmospheric corrosion resistance and low yield ratio | |
JP2001247935A (en) | Rolled shape steel excellent in earthquake resistance and weather resistance and its producing method | |
JP7281314B2 (en) | Base material for clad steel, clad steel and method for producing clad steel | |
EP1160347A1 (en) | Fe-Cr alloy having excellent initial rust resistance, workability and weldability | |
JP3939025B2 (en) | Method of assembling stainless hot-rolled steel sheets for building structures with excellent corrosion resistance | |
JPH0611902B2 (en) | Stainless steel section and its manufacturing method | |
JP4483089B2 (en) | Cr-containing heat-resistant and corrosion-resistant steel sheet excellent in both formability and workability in the heat affected zone and its manufacturing method | |
JPH0673450A (en) | Production of high strength steel sheet excellent in hydrogen induced cracking resistance | |
JP2024522170A (en) | Austenitic stainless steel and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031028 |