JPH08197102A - Manufacture of extremely thick wide-flange steel excellent in toughness and weldabitlity - Google Patents

Manufacture of extremely thick wide-flange steel excellent in toughness and weldabitlity

Info

Publication number
JPH08197102A
JPH08197102A JP724595A JP724595A JPH08197102A JP H08197102 A JPH08197102 A JP H08197102A JP 724595 A JP724595 A JP 724595A JP 724595 A JP724595 A JP 724595A JP H08197102 A JPH08197102 A JP H08197102A
Authority
JP
Japan
Prior art keywords
weight
toughness
steel
strength
extremely thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP724595A
Other languages
Japanese (ja)
Inventor
Kiyoshi Uchida
清 内田
Masanori Nishimori
正徳 西森
Akihiro Matsuzaki
明博 松崎
Kenichi Amano
虔一 天野
Takafumi Hashimoto
隆文 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP724595A priority Critical patent/JPH08197102A/en
Publication of JPH08197102A publication Critical patent/JPH08197102A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To obtain an extremely thick wide-flange steel excellent in impact toughness and weldability by executing air cooling after applying reduction to flange parts in a specified temp. range to the steel whose chemical composition and C-equivalent are specified. CONSTITUTION: A steel base stock which consists of, by weight, 0.05-0.15% C, <=0.20% Si, 1.00-1.80% Mn, 0.0020-0.0070% N, <=0.050% Al, 0.010-0.15% V, 0.003-0.20% Nb, one or more kinds of 0.05-0.60% Cu, 0.05-0.6% Ni, 0.05-0.5% Cr, 0.02-0.30% Mo and the balance Fe and whose C-equivalent which is expressed by the equation is <=0.40% is used. After heating this base stock to 1200-1350 deg.C, the reduction of <=40% in cumulative draft is applied to the flange parts at the temp. range of 1200-1000 deg.C. Next, the base stock is air-cooled to the room temp. As necessary, 0.002-0.005% B is incorporated in the composition of the base stock. In this way, the high-strength, extremely thick wide- flange steel having small variations in strength in the thickness direction is easily manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建築、土木構造物など
に用いられる衝撃靭性と溶接性に優れた所謂極厚H形鋼
(板厚 40mm以上)の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing so-called extra-thick H-section steel (sheet thickness of 40 mm or more) excellent in impact toughness and weldability, which is used in construction, civil engineering structures and the like.

【0002】[0002]

【従来の技術】建築や土木などの分野では、JIS G
3101で規定される一般構造用圧延鋼材やJIS
G 3106で規定される溶接構造用圧延鋼材を熱間圧
延したH形鋼が広く利用されている。一方、近年の構造
物大型化の要請に伴い、大型構造物に使用されるH形鋼
は、厚肉化及び高強度化の傾向にある。
2. Description of the Related Art In the fields of architecture and civil engineering, JIS G
General structural rolled steel and JIS specified in 3101
The H-section steel obtained by hot-rolling the rolled steel material for welded structure specified by G 3106 is widely used. On the other hand, with the recent demand for larger structures, H-section steels used for large structures tend to be thicker and stronger.

【0003】しかしながら、板厚が40mmを超える極
厚H形鋼を、素材に引張強度(TS)が490MPa以
上の高張力鋼を用いて従来通りの熱間圧延法で製造しよ
うとすると、その製品の目標強度を確保するには、素材
のC当量を通常より高くせざるを得なかった。その結
果、該製品H形鋼を溶接する際には、溶接割れが発生し
やすくなったり、溶接熱影響部(所謂、HAZ部)の靭
性が低くなる等の問題が生じた。また、一般に、H形鋼
の圧延工程においては、造形上の寸法精度の制約から、
変形が容易なように高温で且つ軽圧下するのが望まし
い。特に、板厚の厚い上記極厚H形鋼の製造に際して
は、圧延での変形抵抗が大きいため、素材を1250℃
以上の高温度に加熱し、且つ変形の比較的容易な130
0〜1000℃の高温域で圧延するのが好ましい。しか
しながら、かかる条件で極厚H形鋼を製造するのでは、
高温加熱で一旦粗大化した素材中の結晶粒が、圧延で微
細化せず、良好な靭性を有する製品が得られないという
別の問題もあった。
However, when an extremely thick H-section steel having a plate thickness of more than 40 mm is manufactured by a conventional hot rolling method using a high-strength steel having a tensile strength (TS) of 490 MPa or more as a raw material, the product is produced. In order to secure the target strength of, the C equivalent of the material had to be higher than usual. As a result, when the product H-section steel is welded, problems such as easy occurrence of weld cracks and low toughness of the weld heat affected zone (so-called HAZ portion) have occurred. In addition, in general, in the rolling process of H-section steel, due to the constraint of dimensional accuracy in shaping,
It is desirable that the temperature is high and the pressure is light so as to facilitate the deformation. In particular, when manufacturing the above-mentioned thick H-section steel with a large plate thickness, the material is 1250 ° C because the deformation resistance during rolling is large.
130 which is heated to the above high temperature and is relatively easy to deform
Rolling is preferably performed in a high temperature range of 0 to 1000 ° C. However, if an extremely thick H-section steel is manufactured under such conditions,
There is another problem that the crystal grains in the material once coarsened by heating at a high temperature are not refined by rolling and a product having good toughness cannot be obtained.

【0004】そこで、極厚H形鋼の靭性と溶接性を確保
する研究が以前より行われ、そのためには所謂TMCP
(Thermo Mechanical Contro
lled Process)を活用してC当量を低減す
るのが有効であると言われていた。例えば、特公昭56
−35734号公報は、C 0.01〜0.30%、M
n 0.30〜1.50% を含有する鋼材をオーステ
ナイト域でH形鋼に熱間加工後、そのフランジを外表面
からAr1 点〜Ms点の温度範囲に急冷した後、空冷し
て微細な低温変態生成物を形成せしめるフランジ強化H
形鋼の製造方法を開示した。また、特開昭58−104
42号公報は、C 0.005〜0.2%、Mn 0.
3〜2.5%、Si 1.0%以下、Nb,Vの1種又
は2種を0.005〜0.2%含有し、残部が鉄又は不
可避不純物よりなる鋼材を1000〜1300℃に加熱
し、少なくとも980℃〜Ar3 点の温度範囲で減面率
30%以上に加工して、フェライトを析出させた後、急
冷してフェライトとマルテンサイトの2相層状組織とす
る加工性に優れた高靭性高張力鋼の製造方法を開示し
た。
Therefore, research has been conducted for a long time to secure the toughness and weldability of the ultra-thick H-section steel.
(Thermo Mechanical Contro
It has been said that it is effective to reduce the C equivalent by utilizing the led process). For example, Japanese Patent Publication Sho 56
-35734 gazette is C 0.01-0.30%, M
After hot working a steel material containing n 0.30 to 1.50% into an H-shaped steel in the austenite region, the flange is rapidly cooled from the outer surface to a temperature range of Ar 1 to Ms points, and then air-cooled to finely Reinforcement H for forming various low-temperature transformation products
A method for manufacturing a shaped steel has been disclosed. In addition, JP-A-58-104
No. 42, C 0.005 to 0.2%, Mn 0.
Steel material containing 3 to 2.5%, Si 1.0% or less, 0.005 to 0.2% of one or two of Nb and V, and the balance of iron or inevitable impurities at 1000 to 1300 ° C. It is heated and processed in a temperature range of at least 980 ° C to Ar 3 to reduce the surface area by 30% or more, and then ferrite is precipitated, followed by rapid cooling to form a two-phase layered structure of ferrite and martensite. A method of manufacturing high toughness and high strength steel is disclosed.

【0005】しかしながら、これらの公報に記載の技術
は、熱間圧延後にフランジ外面側から急冷するため、フ
ランジの板厚断面で強度や靭性に差が生じたり、急冷に
より残留応力、歪が発生するなど、極厚H形鋼の製造に
適用した場合には、多くの問題が発生した。
However, since the techniques described in these publications are rapidly cooled from the flange outer surface side after hot rolling, differences in strength and toughness occur in the flange thickness section, and rapid cooling causes residual stress and strain. When applied to the production of extra-thick H-section steel, many problems have occurred.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる事情
を鑑み、通常板厚のH形鋼を圧延すると同等の条件で熱
間圧延を施しても、フランジの強度や靭性のばらつき、
あるいは残留応力、歪等を発生させることがなく、靭性
と溶接性に優れた極厚H形鋼の製造方法を提供すること
を目的としてる。
SUMMARY OF THE INVENTION In view of such circumstances, the present invention has a variation in the strength and toughness of the flange even when hot rolling is performed under the same conditions as when rolling an H-section steel having a normal plate thickness.
Alternatively, it is an object of the present invention to provide a method for producing an extremely thick H-section steel which is excellent in toughness and weldability without generating residual stress, strain, and the like.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記目的を
達成するため、種々の実験、研究を鋭意行い、以下の新
しい知見を得た。 1.素材にNb、V,Cu、Ni等の合金元素を添加す
ることによって、極厚H形鋼に熱間圧延しても、その後
空冷のままで所定の強度が確保できる。つまり、空冷で
製造しても、フランジ板厚断面での強度や靭性のばらつ
きおよび残留応力、歪みは発生しない。 2.素材のC当量が0.40%以下になるよう合金成分
を調整することによって、良好な溶接性が確保できる。 3.素材にREM及びTi、Nを添加することにより、
その素材の加熱時にγ結晶粒が粗大化するのを抑制し、
さらに圧延中には素材中にBNを析出させ、これを核と
してフェライトを析出させると、靭性の良い極厚H形鋼
が得られる。 4.溶接熱影響部もREM、TiN,BNによる結晶粒
の微細化作用によって靭性が向上できる。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventor earnestly conducted various experiments and researches and obtained the following new findings. 1. By adding alloy elements such as Nb, V, Cu, and Ni to the material, even if hot-rolled into an extremely thick H-section steel, a predetermined strength can be ensured with air cooling thereafter. In other words, even when manufactured by air cooling, variations in strength and toughness, residual stress, and strain do not occur in the flange plate thickness section. 2. Good weldability can be ensured by adjusting the alloy components so that the C equivalent of the material is 0.40% or less. 3. By adding REM, Ti, and N to the material,
Suppresses coarsening of γ crystal grains when the material is heated,
Further, by precipitating BN in the material during rolling and precipitating ferrite by using this as a nucleus, an extremely thick H-section steel with good toughness can be obtained. 4. The weld heat affected zone can also have improved toughness due to the grain refining action of REM, TiN, and BN.

【0008】本発明は、これらの知見に基づきなされた
もので、具体的には、C:0.05〜0.15重量%、
Si:0.20重量%以下、Mn:1.00〜1.80
重量%、N:0.0020〜0.0070重量%、A
l:0.050重量%以下、V:0.010〜0.15
重量%、Nb:0.003〜0.020重量%を含有
し、且つCu:0.05〜0.6重量%、Ni:0.0
5〜0.6重量%、Cr:0.05〜0.5重量%、M
o:0.02〜0.3重量%の1種又は2種以上を含有
し、残部Fe及び不可避的不純物で、下式で規定するC
当量が0.40%以下である素材を、1200〜135
0℃に加熱した後、1200〜1000℃の温度範囲で
フランジ部に累積圧下で40%以上の圧下を施した後、
室温まで空冷することを特徴とする靭性と溶接性に優れ
た極厚H形鋼の製造方法である。また、本発明は、上記
素材に、B:0.0002〜0.005重量%を追加し
たり、さらに、Ti:0.005〜0.02重量%、R
EM:0.001〜0.02重量%、Ca:0.001
〜0.01重量%の1種又は2種以上を追加したことを
特徴とする靭性と溶接性に優れた極厚H形鋼の製造方法
でもある。
The present invention has been made based on these findings, and specifically, C: 0.05 to 0.15% by weight,
Si: 0.20 wt% or less, Mn: 1.00 to 1.80
% By weight, N: 0.0020 to 0.0070% by weight, A
1: 0.050% by weight or less, V: 0.010 to 0.15
% By weight, Nb: 0.003 to 0.020% by weight, and Cu: 0.05 to 0.6% by weight, Ni: 0.0
5 to 0.6% by weight, Cr: 0.05 to 0.5% by weight, M
o: 0.02 to 0.3% by weight of one kind or two or more kinds, and the balance Fe and inevitable impurities, and C defined by the following formula.
The material whose equivalent weight is 0.40% or less is 1200-135
After heating to 0 ° C., the flange portion is subjected to cumulative reduction of 40% or more in the temperature range of 1200 to 1000 ° C.,
It is a method for producing an extremely thick H-section steel having excellent toughness and weldability, which is characterized by cooling to room temperature. Further, in the present invention, B: 0.0002 to 0.005 wt% is added to the above material, and Ti: 0.005 to 0.02 wt%, R
EM: 0.001 to 0.02% by weight, Ca: 0.001
It is also a method for producing an extra-thick H-section steel excellent in toughness and weldability, characterized in that one kind or two kinds or more of 0.01 wt% is added.

【0009】この場合、素材中のSiが0.1重量%以
下であるとより好ましい効果が得られる。 C当量(%)=C(%)+Si(%)/24+Mn
(%)/6+Ni(%)/40+Cr(%)/5+Mo
(%)/4+V(%)/14・・・・(1)式
In this case, a more preferable effect can be obtained when the Si content in the material is 0.1% by weight or less. C equivalent (%) = C (%) + Si (%) / 24 + Mn
(%) / 6 + Ni (%) / 40 + Cr (%) / 5 + Mo
(%) / 4 + V (%) / 14 ... (1) formula

【0010】[0010]

【作用】本発明では、C:0.05〜0.15重量%、
Si:0.20重量%以下、Mn:1.00〜1.80
重量%、N:0.01重量%以下、Al:0.05重量
%以下、V:0.010〜0.15重量%、Nb:0.
003〜0.020重量%を含有し、且つCu:0.0
5〜0.6重量%、Ni:0.05〜0.6重量%、C
r:0.05〜0.5重量%、Mo:0.02〜0.3
0重量%の1種又は2種以上を含有し、残部Fe及び不
可避的不純物で、C当量((1)式)が0.40%以下
である素材を、1200〜1350℃に加熱した後、1
200〜1000℃の温度範囲でフランジ部に累積圧下
で40%以上の圧下を施した後、室温まで空冷するよう
にしたので、フランジの強度や靭性のばらつき、あるい
は残留応力、歪等を発生させることがなくなり、靭性と
溶接性に優れた極厚H形鋼の製造が可能となった。ま
た、本発明では、上記素材に、B:0.0002〜0.
0050重量%を追加したり、さらに、Ti:0.00
5〜0.020重量%、REM:0.001〜0.02
重量%、Ca:0.001〜0.01重量%の1種又は
2種以上を追加するようにしたので、上記効果は一層明
確になった。
In the present invention, C: 0.05 to 0.15% by weight,
Si: 0.20 wt% or less, Mn: 1.00 to 1.80
% By weight, N: 0.01% by weight or less, Al: 0.05% by weight or less, V: 0.010 to 0.15% by weight, Nb: 0.
003 to 0.020 wt% and contains Cu: 0.0
5 to 0.6% by weight, Ni: 0.05 to 0.6% by weight, C
r: 0.05 to 0.5% by weight, Mo: 0.02 to 0.3
After containing 0% by weight of one or more of the materials, the balance Fe and unavoidable impurities, and the C equivalent ((1) formula) is 0.40% or less, after heating to 1200 ~ 1350 ℃, 1
Since the flange portion is subjected to a cumulative reduction of 40% or more in the temperature range of 200 to 1000 ° C. and then air-cooled to room temperature, variations in the strength and toughness of the flange, residual stress, strain, etc. occur. It has become possible to manufacture extremely thick H-section steel with excellent toughness and weldability. Further, in the present invention, B: 0.0002 to 0.
Addition of 0050% by weight or Ti: 0.00
5 to 0.020% by weight, REM: 0.001 to 0.02
The above effect is further clarified because one kind or two kinds or more of wt% and Ca: 0.001 to 0.01 wt% is added.

【0011】以下に、本発明での素材の化学組成及び圧
延条件の限定理由を説明する。まず、化学組成である
が、Cは、母材部及び溶接部に必要な強度を確保するた
め最低で0.05重量%以上必要であるが、0.15重
量%を超えると母材靭性及び溶接性が劣化するので、
0.05〜0.15重量%に限定した。Siは、その量
が多くなると母材及びHAZ部の靭性が悪くなると共
に、1200℃以上の圧延加熱において酸化が顕著とな
り、圧延後のH形鋼の表面性状が悪くなるので、0.2
0重量%を上限とした。なお、Siは、0.10重量%
以下であると、一層良い結果が得られる。
The reasons for limiting the chemical composition of the material and the rolling conditions in the present invention will be explained below. First, regarding the chemical composition, C must be at least 0.05 wt% or more in order to secure the strength required for the base metal portion and the welded portion, but if it exceeds 0.15 wt%, the base metal toughness and Since the weldability deteriorates,
It was limited to 0.05 to 0.15% by weight. If the amount of Si increases, the toughness of the base material and the HAZ part deteriorates, and the oxidation becomes remarkable in the rolling heating at 1200 ° C. or higher, and the surface quality of the H-section steel after rolling deteriorates.
The upper limit was 0% by weight. Si is 0.10% by weight
Better results are obtained with the following.

【0012】Mnは、鋼材の強度を確保する上で不可決
の元素であり、その下限は1.00重量%とした。しか
し、Mn量が1.8重量%を超えると溶接性、HAZ部
の靭性劣化が大きくなるので、その上限を1.8重量%
とした。Alは、脱酸のために0.005重量%以上必
要であるが、0.05重量%を超えて必要以上添加して
も脱酸効果は向上できないので、上限を0.05重量%
とした。
Mn is an indeterminate element for ensuring the strength of the steel material, and its lower limit is 1.00% by weight. However, if the Mn content exceeds 1.8% by weight, the weldability and the toughness of the HAZ part deteriorate significantly, so the upper limit is 1.8% by weight.
And Al needs to be 0.005% by weight or more for deoxidation, but the deoxidation effect cannot be improved even if more than 0.05% by weight is added, so the upper limit is 0.05% by weight.
And

【0013】Nbは、強度確保に有効な元素であるが、
熱間圧延の再結晶細粒化を抑制し、圧延空冷後に粗大ベ
イナイトを生成して靭性を低下させる。従って、Nbは
強度確保のために0.003重量%以上必要であるが、
0.02重量%を超えて添加すると極厚H形鋼の軽圧下
圧延では再結晶細粒化が図れず靭性が低下するととも
に、溶接性が徐々に劣化するので0.02重量%を上限
とした。
Nb is an element effective in securing strength,
It suppresses recrystallization and grain refinement in hot rolling, and forms coarse bainite after rolling air cooling to reduce toughness. Therefore, Nb needs to be 0.003 wt% or more to secure the strength,
If added in excess of 0.02% by weight, recrystallization grain refinement cannot be achieved in light reduction rolling of extra-thick H-section steel and toughness decreases, and weldability gradually deteriorates. did.

【0014】Cu、Ni、Cr、Moは、いずれも焼入
性向上に有効な元素であり、熱間圧延後の空冷での強度
を高める。強度向上のためには、それぞれ0.0.5重
量%、0.05重量%、0.05重量%、0.02重量
%以上が必要である。また、Cu、Niは、溶接性をほ
とんど劣化させないが、Cuには熱間加工性を劣化させ
る欠点がある。Cuの熱間加工性を抑制するためにはほ
ぼ当量のNi添加を必要とするが、Niは0.6重量%
を超えて添加すると、製造コストが高価になりすぎるた
め、Cu、Niの上限は0.6重量%とした。Cr、M
oは、それぞれ0.5重量%、0.3重量%を超える
と、溶接性や低温靭性を損なうなどの弊害をもたらすの
で、これを上限とした。
Cu, Ni, Cr and Mo are all effective elements for improving the hardenability and enhance the strength in air cooling after hot rolling. In order to improve strength, 0.05% by weight, 0.05% by weight, 0.05% by weight, 0.02% by weight or more are required, respectively. Further, Cu and Ni hardly deteriorate the weldability, but Cu has a drawback that the hot workability is deteriorated. In order to suppress the hot workability of Cu, it is necessary to add almost the same amount of Ni, but Ni is 0.6% by weight.
If added in excess, the manufacturing cost becomes too high, so the upper limits of Cu and Ni were made 0.6 wt%. Cr, M
If o exceeds 0.5% by weight and 0.3% by weight, respectively, the weldability and the low temperature toughness are impaired.

【0015】Vは、析出強化元素であり、空冷材の強度
を向上させる。特に、Nbを0.003%以上含有する
鋼にVを添加した場合の強化が大きい。そして、その添
加量が0.010重量%以下では効果がなく、0.15
重量%を超えるとHAZ部の靭性を劣化させるので、
0.005〜0.15重量%に制限した。Caは、素材
中に生じたMnSの形態を制御し、とくに板厚方向の延
性、靭性を向上させる。しかし、0.001重量%以下
では実用上効果がなく、0.01重量%を超えると、C
aOあるいはCaSが多く生成し、かえって鋼の清浄
性、靭性を劣化させるので、Caの添加範囲は0.00
1〜0.01重量%とした。
V is a precipitation strengthening element and improves the strength of the air-cooled material. In particular, the strengthening is large when V is added to steel containing 0.003% or more of Nb. And, when the addition amount is 0.010% by weight or less, there is no effect, and
If it exceeds the weight%, the toughness of the HAZ part deteriorates, so
It was limited to 0.005 to 0.15% by weight. Ca controls the morphology of MnS generated in the material, and particularly improves the ductility and toughness in the plate thickness direction. However, if it is less than 0.001% by weight, there is no practical effect, and if it exceeds 0.01% by weight, C
A large amount of aO or CaS is generated, which rather deteriorates the cleanliness and toughness of steel, so the range of addition of Ca is 0.00
It was set to 1 to 0.01% by weight.

【0016】Tiは、素材中にTiNを形成して、12
00〜1350℃に加熱した時にγ結晶粒の粗大化を抑
制すると共に、Bとの共有で圧延後のフェライト粒を細
かくする効果がある。そのためには、Tiは0.005
重量%以上の添加が必要であるが、0.02重量%を超
えて添加すると、かえって母材及び溶接HAZ部の靭性
を劣化させる。
Ti is formed by forming TiN in the material,
When heated to 00 to 1350 ° C., it has an effect of suppressing the coarsening of the γ crystal grains and, in common with B, has an effect of making the ferrite grains after rolling fine. Therefore, Ti is 0.005
It is necessary to add more than wt%, but if added over 0.02 wt%, the toughness of the base metal and the welded HAZ part is rather deteriorated.

【0017】REMは、高温においても安定でTiNと
同様に、高温でのγ結晶粒の粗大化を抑制すると共に、
圧延急冷後のフェライト粒を細かくする効果がある。こ
の効果を十分発揮させるには、0.001重量%以上の
添加が必要であるが、0.02重量%を超えると、鋼の
清浄性及び靭性が劣化する。Bは、圧延中にBNとして
析出し、圧延空冷後のフェライト粒を細かくするが、そ
の効果は0.0002重量%以上で得られる。しかし、
0.005重量%を超えると、微細化の効果が小さくな
り、鋼の靭性が低下するので、0.0002〜0.00
5重量%の範囲に添加量を限定した。
REM is stable even at high temperatures and, like TiN, suppresses the coarsening of γ crystal grains at high temperatures, and
It has an effect of making ferrite grains fine after the rolling and quenching. To fully exert this effect, addition of 0.001% by weight or more is necessary, but if it exceeds 0.02% by weight, the cleanliness and toughness of steel deteriorate. B precipitates as BN during rolling and makes ferrite grains fine after rolling and air cooling, and the effect is obtained at 0.0002% by weight or more. But,
If it exceeds 0.005% by weight, the effect of refining becomes small and the toughness of the steel decreases, so 0.0002 to 0.00
The amount added was limited to the range of 5% by weight.

【0018】Nは、素材中にTiN及びBNを形成させ
るのに必要で、上記フェライト粒微細化の効果を得るた
めには、0.002重量%以上が必要であるが、0.0
07重量%を超えると、母材及び溶接HAZ部の靭性が
劣化するので、0.002〜0.007重量%の範囲に
限定した。なお、Tiの存在下でBNを形成させるため
には、Ti(TiN)に対し過剰のNが必要であり、T
i/Nの比は、Tiの化学量論理的組み合わせよりもN
が若干過剰に存在する組み合わせ、すなわち、2〜3で
あることが望ましい。
N is necessary to form TiN and BN in the material, and 0.002% by weight or more is necessary to obtain the effect of refining the ferrite grains, but 0.0
If it exceeds 07% by weight, the toughness of the base material and the welded HAZ part deteriorates, so the range was limited to 0.002 to 0.007% by weight. In addition, in order to form BN in the presence of Ti, an excess amount of N with respect to Ti (TiN) is required.
The i / N ratio is N rather than the stoichiometric combination of Ti.
Is preferably in a slightly excessive combination, that is, a combination of 2 to 3 is desirable.

【0019】素材のC当量((1)式)が0.40%を
超えると、熱間圧延後の空冷ではベイナイト主体の組織
となり、フェライト析出による細粒化が図れなくなる。
その結果、母材の靭性が低下すると共に、溶接HAZ部
に島状マルテンサイトが生成しやすくなり、靭性が劣化
するので、C当量は0.40%以下に限定する。次に、
上記素材を圧延する条件の限定理由を述べる。熱間圧延
のための加熱温度は、通常の極厚でないH形鋼の圧延に
適用する1200〜1350℃あれば十分である。そし
て、熱間圧延中では、1200〜1000℃の温度範囲
で累積圧下率を40%以上とするが、その理由は、粗大
な結晶粒を圧延で再結晶微細化し、高い靭性を確保する
ためである。なお、圧延では、7%以上の圧下率/パス
を4パス以上繰り返すと、再結晶細粒化に一層良い結果
が得られる。以下、実施例において、本発明に係る製造
方法で得た極厚H形鋼の機械的性質の優秀さを確認す
る。
When the C equivalent (formula (1)) of the material exceeds 0.40%, the structure mainly of bainite becomes air-cooled after hot rolling, and it becomes impossible to reduce the grain size due to ferrite precipitation.
As a result, the toughness of the base material is reduced, island martensite is likely to be generated in the welded HAZ portion, and the toughness is deteriorated. Therefore, the C equivalent is limited to 0.40% or less. next,
The reasons for limiting the conditions for rolling the above material will be described. It is sufficient that the heating temperature for hot rolling is 1200 to 1350 ° C., which is applied to the rolling of ordinary H-section steel that is not extremely thick. Then, during hot rolling, the cumulative rolling reduction is set to 40% or more in the temperature range of 1200 to 1000 ° C. The reason is that coarse crystal grains are recrystallized into fine grains by rolling to ensure high toughness. is there. In rolling, if a rolling reduction / pass of 7% or more is repeated for 4 passes or more, a better result can be obtained for recrystallization grain refinement. In the following examples, the excellent mechanical properties of the extra-thick H-section steel obtained by the manufacturing method according to the present invention will be confirmed.

【0020】[0020]

【実施例】表1及び表2に化学組成を示すように、本発
明の対象とする素材A〜F及び比較例用素材G〜Iから
なる鋼片を、1250〜1350℃に加熱した後、表3
及び表4に示す種々の圧延条件及び冷却条件でフランジ
板厚65〜100mmの極厚H形鋼を製造した。そし
て、各極厚H形鋼のフランジ幅の1/4の位置におい
て、その表面下8mmの部分と1/2板厚の部分とよ
り、日本工業規格で規定する4号引張試験片及び4号衝
撃試験片を採取し、それぞれの機械的性質(降伏強度
(YS)、引張強度(TS)、降伏比(YR)及び衝撃
値(vE0 ))を調査した。その調査結果は、上記表3
及び4に同時に示してある。
EXAMPLE As shown in Table 1 and Table 2, the steel pieces made of the materials A to F of the present invention and the materials G to I for comparative examples were heated to 1250 to 1350 ° C., Table 3
Further, under various rolling conditions and cooling conditions shown in Table 4, an extremely thick H-section steel having a flange plate thickness of 65 to 100 mm was manufactured. Then, at the position of 1/4 of the flange width of each extra-thick H-section steel, the No. 4 tensile test piece and No. 4 specified by the Japanese Industrial Standard are defined from the portion 8 mm below the surface and the portion 1/2 thickness. Impact test pieces were sampled and their mechanical properties (yield strength (YS), tensile strength (TS), yield ratio (YR) and impact value (vE 0 )) were investigated. The survey results are shown in Table 3 above.
And 4 simultaneously.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】表3に示すように、本発明に係る製造方法
で得た極圧H形鋼では、フランジ板厚75mm以上でも
表層と中心との強度、靭性の差が小さく、TSで530
MPa以上の高強度と、vEoで90J以上の高靭性が
得られる。しかしながら、表2及び4から明らかなよう
に、比較例のG鋼はC量及びC当量が高いため、衝撃靭
性がvEoで62J以下と低い。また、比較例のH鋼
は、Nb及びVを含まないため、強度はTSで460〜
480MPa程度と低く、TSで490MPa以上の高
強度が得られない。さらに、比較例のI鋼は、Nb含有
量が高いため,細粒が得られず、良好な母材靭性が確保
できない。
As shown in Table 3, in the extreme-pressure H-section steel obtained by the manufacturing method according to the present invention, even if the flange plate thickness is 75 mm or more, the difference in strength and toughness between the surface layer and the center is small, and TS is 530.
High strength of MPa or more and high toughness of 90 J or more can be obtained with vEo. However, as is clear from Tables 2 and 4, the G steel of the comparative example has a high C content and a C equivalent, and therefore has a low impact toughness of 62 J or less in vEo. Further, since the H steel of the comparative example does not contain Nb and V, the strength is 460 in TS.
It is as low as 480 MPa, and high strength of 490 MPa or more cannot be obtained with TS. Furthermore, since the steel I of Comparative Example has a high Nb content, fine grains cannot be obtained and good base material toughness cannot be secured.

【0026】表4中の比較鋼、A−3鋼は、素材の化学
組成は本発明に係るA鋼と同じであるが、圧延時の累積
圧下率が小さいため細粒が得られず靭性が低い。また、
圧延後の冷却を水冷したため、表層と中心との強度の差
が著しくなっている。次に、溶接割れ感受性を評価する
ため、JIS Z 3158に規定する「斜めy形溶接
割れ試験」を行った。本発明鋼の中でC当量の比較的高
いC、D、E鋼及び比較鋼Gについて、フランジから板
厚50×長さ200×幅150mmの試験片を切り出
し、高張力鋼用被覆アーク溶接棒を用い170アンペ
ア、24ボルト150mm/minの条件で試験した。
その際、溶接の予熱温度は50℃とした。比較鋼のG鋼
には、同一の溶接条件で割れが発生したが、本発明に係
る製造方法で得たC、D、E鋼からの試験片ではいずれ
も割れが発生しなかった。
The comparative steels and the A-3 steels in Table 4 have the same chemical composition as the raw material of the A steel according to the present invention, but since the cumulative rolling reduction during rolling is small, fine grains cannot be obtained and the toughness is high. Low. Also,
Since the cooling after rolling was water cooling, the difference in strength between the surface layer and the center was significant. Next, in order to evaluate the weld crack susceptibility, the “oblique y-type weld crack test” defined in JIS Z 3158 was performed. Among the steels of the present invention, for C, D, E steels and comparative steel G having relatively high C equivalents, test pieces of 50 mm in thickness, 200 mm in length and 150 mm in width were cut out from a flange, and a coated arc welding rod for high strength steel was obtained. Was tested at 170 amps and 24 volts at 150 mm / min.
At that time, the preheating temperature of welding was set to 50 ° C. Cracks occurred in the comparative steel G under the same welding conditions, but no cracks occurred in the test pieces made of the C, D, and E steels obtained by the manufacturing method according to the present invention.

【0027】[0027]

【発明の効果】以上述べたように、本発明により、建
築、土木構造物用鋼材として衝撃靭性と溶接性に優れ、
板厚方向の強度ばらつきが小さい高強度の極厚H形鋼が
容易に製造できるようになった。
As described above, according to the present invention, a steel material for construction and civil engineering structures is excellent in impact toughness and weldability,
It has become possible to easily manufacture a high-strength ultra-thick H-section steel with a small strength variation in the plate thickness direction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 B 38/48 38/54 38/58 (72)発明者 松崎 明博 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 (72)発明者 天野 虔一 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 (72)発明者 橋本 隆文 倉敷市水島川崎通1丁目(番地なし) 川 崎製鉄株式会社水島製鉄所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C22C 38/00 B 38/48 38/54 38/58 (72) Inventor Akihiro Matsuzaki Chuo-ku, Chiba City 1st Kawasaki-cho Inside the Technical Research Institute of Kawasaki Steel Co., Ltd. (72) Inventor Shinichi Amano 1st Kawasaki-cho Chuo-ku, Chiba City Inside the Technical Research Institute of Kawasaki Steel Co., Ltd. None) Inside Kawashima Steel Works Mizushima Steel Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.05〜0.15重量%、Si:
0.20重量%以下、Mn:1.00〜1.80重量
%、N:0.0020〜0.0070重量%、Al:
0.050重量%以下、V:0.010〜0.15重量
%、Nb:0.003〜0.02重量%を含有し、且つ
Cu:0.05〜0.60重量%、Ni:0.05〜
0.6重量%、Cr:0.05〜0.5重量%、Mo:
0.02〜0.3重量%の1種又は2種以上を含有し、
残部Fe及び不可避的不純物で、下式で規定するC当量
が0.40%以下である素材を、1200〜1350℃
に加熱した後、1200〜1000℃の温度範囲でフラ
ンジ部に累積圧下で40%以上の圧下を施した後、室温
まで空冷することを特徴とする靭性と溶接性に優れた極
厚H形鋼の製造方法。 C当量(%)=C(%)+Si(%)/24+Mn
(%)/6+Ni(%)/40+Cr(%)/5+Mo
(%)/4+V(%)/14・・・・(1)式
1. C: 0.05 to 0.15% by weight, Si:
0.20% by weight or less, Mn: 1.00 to 1.80% by weight, N: 0.0020 to 0.0070% by weight, Al:
It contains 0.050% by weight or less, V: 0.010 to 0.15% by weight, Nb: 0.003 to 0.02% by weight, and Cu: 0.05 to 0.60% by weight, Ni: 0. .05
0.6% by weight, Cr: 0.05 to 0.5% by weight, Mo:
Containing 0.02 to 0.3% by weight of one or more of
The balance of Fe and unavoidable impurities, the material having a C equivalent of 0.40% or less defined by the following formula is 1200 to 1350 ° C.
After heating to 100 ° C., the flange portion is subjected to a cumulative reduction of 40% or more in the temperature range of 1200 to 1000 ° C., and then air-cooled to room temperature, which is an extremely thick H-section steel excellent in toughness and weldability. Manufacturing method. C equivalent (%) = C (%) + Si (%) / 24 + Mn
(%) / 6 + Ni (%) / 40 + Cr (%) / 5 + Mo
(%) / 4 + V (%) / 14 ... (1) Formula
【請求項2】 上記素材に、B:0.002〜0.00
5重量%を追加したことを特徴とする請求項1記載の極
厚H形鋼の製造方法。
2. The above material, B: 0.002-0.00
The method for producing an extremely thick H-section steel according to claim 1, characterized in that 5% by weight is added.
【請求項3】 前記素材に、さらに、Ti:0.005
〜0.02重量%、REM:0.001〜0.02重量
%、Ca:0.001〜0.01重量%の1種又は2種
以上を追加したことを特徴とする請求項1又は2記載の
靭性と溶接性に優れた極厚H形鋼の製造方法。
3. The material further comprises Ti: 0.005
.About.0.02% by weight, REM: 0.001 to 0.02% by weight, Ca: 0.001 to 0.01% by weight, or one or more kinds thereof are added. A method for producing an extremely thick H-section steel excellent in the described toughness and weldability.
JP724595A 1995-01-20 1995-01-20 Manufacture of extremely thick wide-flange steel excellent in toughness and weldabitlity Withdrawn JPH08197102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP724595A JPH08197102A (en) 1995-01-20 1995-01-20 Manufacture of extremely thick wide-flange steel excellent in toughness and weldabitlity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP724595A JPH08197102A (en) 1995-01-20 1995-01-20 Manufacture of extremely thick wide-flange steel excellent in toughness and weldabitlity

Publications (1)

Publication Number Publication Date
JPH08197102A true JPH08197102A (en) 1996-08-06

Family

ID=11660637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP724595A Withdrawn JPH08197102A (en) 1995-01-20 1995-01-20 Manufacture of extremely thick wide-flange steel excellent in toughness and weldabitlity

Country Status (1)

Country Link
JP (1) JPH08197102A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761824A2 (en) * 1995-08-29 1997-03-12 Kawasaki Steel Corporation Heavy-wall structural steel and method
EP1035222A1 (en) * 1999-03-10 2000-09-13 Kawasaki Steel Corporation Continuous casting slab suitable for the production of non-tempered high tensile steel material
KR101298699B1 (en) * 2011-04-27 2013-08-21 현대제철 주식회사 High strength steel and method for manufacturing the same
CN105018861A (en) * 2015-08-10 2015-11-04 山东钢铁股份有限公司 Low-cost normalizing rolling hot rolling H type steel and preparation method thereof
JP2017186594A (en) * 2016-04-04 2017-10-12 新日鐵住金株式会社 H-shaped steel for low temperature and manufacturing method therefor
CN111349853A (en) * 2020-03-02 2020-06-30 河北津西钢铁集团股份有限公司 Microalloy-treated hot-rolled H-shaped steel and rolling method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761824A2 (en) * 1995-08-29 1997-03-12 Kawasaki Steel Corporation Heavy-wall structural steel and method
EP0761824A3 (en) * 1995-08-29 1998-04-22 Kawasaki Steel Corporation Heavy-wall structural steel and method
EP1035222A1 (en) * 1999-03-10 2000-09-13 Kawasaki Steel Corporation Continuous casting slab suitable for the production of non-tempered high tensile steel material
US6358335B1 (en) 1999-03-10 2002-03-19 Kawasaki Steel Corporation Continuous casting slab suitable for the production of non-tempered high tensile steel material
KR101298699B1 (en) * 2011-04-27 2013-08-21 현대제철 주식회사 High strength steel and method for manufacturing the same
CN105018861A (en) * 2015-08-10 2015-11-04 山东钢铁股份有限公司 Low-cost normalizing rolling hot rolling H type steel and preparation method thereof
JP2017186594A (en) * 2016-04-04 2017-10-12 新日鐵住金株式会社 H-shaped steel for low temperature and manufacturing method therefor
CN111349853A (en) * 2020-03-02 2020-06-30 河北津西钢铁集团股份有限公司 Microalloy-treated hot-rolled H-shaped steel and rolling method thereof

Similar Documents

Publication Publication Date Title
JP4470701B2 (en) High-strength thin steel sheet with excellent workability and surface properties and method for producing the same
JP3509603B2 (en) Extra-thick H-section steel with excellent toughness and yield strength of 325 MPa or more
JP4874434B1 (en) Thick steel plate manufacturing method
JPWO2011096456A1 (en) Thick steel plate manufacturing method
JP4811288B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6645107B2 (en) H-section steel and manufacturing method thereof
EP1375694B1 (en) Hot-rolled steel strip and method for manufacturing the same
EP0761824B1 (en) Heavy-wall structural steel and method
JP3433614B2 (en) Extra-thick H-section steel excellent in strength, toughness, weldability and earthquake resistance and method for producing the same
JP5092481B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2005213566A (en) High strength thin sheet steel excellent in workability, surface property and plate flatness and its manufacturing method
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JP3410241B2 (en) Method for producing ultra-thick H-section steel excellent in strength, toughness and weldability
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JPH08197102A (en) Manufacture of extremely thick wide-flange steel excellent in toughness and weldabitlity
JPH1068016A (en) Production of extra thick wide flange shape
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP3622246B2 (en) Method for producing extremely thick H-section steel with excellent strength, toughness and weldability
JPH1060576A (en) H steel excellent in toughness in fillet part and its production
JP2020204091A (en) High strength steel sheet for high heat input welding
JPH08197104A (en) Manufacture of extremely thick wide-flange steel excellent in strength and toughness
JP2020015969A (en) Ferrite and austenite two-phase stainless steel sheet excellent in strength and corrosion resistance of spot weld zone, and manufacturing method therefor
JPH08176660A (en) Production of high strength extremely thick rolled wide flange shape steel for construction use, having fire resistance and excellent weldability and reduced in change in strength in plate thickness direction
WO2022149365A1 (en) Steel sheet pile and manufacturing method therefor
JP3229527B2 (en) Method for producing high toughness, high tensile strength, extremely thick H-section steel with excellent weldability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402