JPH0673450A - Production of high strength steel sheet excellent in hydrogen induced cracking resistance - Google Patents

Production of high strength steel sheet excellent in hydrogen induced cracking resistance

Info

Publication number
JPH0673450A
JPH0673450A JP14116693A JP14116693A JPH0673450A JP H0673450 A JPH0673450 A JP H0673450A JP 14116693 A JP14116693 A JP 14116693A JP 14116693 A JP14116693 A JP 14116693A JP H0673450 A JPH0673450 A JP H0673450A
Authority
JP
Japan
Prior art keywords
less
steel
rolling
steel sheet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14116693A
Other languages
Japanese (ja)
Inventor
Shinichi Kakihara
真一 柿原
Shigeru Endo
茂 遠藤
Moriyasu Nagae
守康 長江
Osamu Hirano
攻 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14116693A priority Critical patent/JPH0673450A/en
Publication of JPH0673450A publication Critical patent/JPH0673450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To obtain a high strength steel sheet excellent in hydrogen induced cracking resistance by heating the slab of steel contg. specified amounts of C, Si, Mn, S and Ca and thereafter rolling it under specified conditions to form its structure into a one of polygonal bainite. CONSTITUTION:The slab of steel contg., by weight, 0.02 to 0.06% C, 0.03 to 0.50% Si, 0.5 to 2.5% Mn <=0.001% S and 0.0005 to 0.008% Ca, and the balance Fe is heated. The subsequent rolling is executed under the conditions in which the finishing temp, is regulated to the recrystallization lower limit temp. of austenite or above, and after that, cooling is executed to form its structure into a one of polygonal bainite. Furthermore, the same steel may be incorporated with one or more kinds among each 0.5% Cu, Ni and Cr and/or one or more kinds among <=0.5% Mo, <=0.10% Nb, <=0.15% V and 0.005 to 0.10% Ti.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐水素誘起割れ性に優
れた高強度鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high strength steel sheet having excellent resistance to hydrogen induced cracking.

【0002】[0002]

【従来の技術】近年、エネルギー事情の変化に伴い、硫
化水素(H2S)を含む原油および天然ガスの採掘が盛んに
行われるようになり、これらの輸送に用いられるライン
パイプの需要も増加している。しかし、これら湿潤硫化
水素環境下(以下サワー環境下と呼ぶ)では、硫化水素
の影響により水素誘起割れ(HIC)や硫化物応力腐食
割れ(SSC) が発生する場合があり、破壊事故につな
がる危険性を有している。そのため、サワー環境下で
は、耐HIC性および耐SSC性の高い鋼材が要求され
ている。
2. Description of the Related Art In recent years, along with the change in energy situation, mining of crude oil and natural gas containing hydrogen sulfide (H 2 S) has been actively conducted, and the demand for line pipes used for transporting them has also increased. is doing. However, under these wet hydrogen sulfide environment (hereinafter referred to as sour environment), hydrogen-induced sulfide (HIC) and sulfide stress corrosion cracking (SSC) may occur under the influence of hydrogen sulfide, which may lead to a destruction accident. Have sex. Therefore, steel materials having high HIC resistance and SSC resistance are required under the sour environment.

【0003】ところでHICは、腐食反応により鋼の表
面で発生した原子状の水素が鋼中に侵入し、MnS 等の介
在物の界面に集積し、その内圧により発生する割れであ
り、マルテンサイトやベイナイトといった硬い低温変態
生成物に沿って伝播することが知られている。そして、
そのHICの発生を防ぐためには以下に述べる方法が採
られている。 CaやREM の添加により、MnS 等の介在物の形状を制
御する方法〔特開昭54−110119〕 Cuの添加により表面に保護皮膜を形成させて、鋼中
への侵入水素量を低減する方法 低温変態生成物の制御、熱処理(QT,T)などに
より組織を均一にする方法〔特開昭54−12782
1〕 圧延条件(加熱温度、圧延終了温度、圧下率)や冷
却条件(冷却速度、冷却停止温度)を制御することによ
り、組織の制御を行う方法〔特開昭61−16520
7、特開平3−236420〕
By the way, HIC is a crack that is generated by the internal pressure of atomic hydrogen generated on the surface of the steel due to the corrosion reaction invading the steel and accumulating at the interface of inclusions such as MnS. It is known to propagate along hard low temperature transformation products such as bainite. And
The following method is adopted to prevent the occurrence of HIC. Method of controlling the shape of inclusions such as MnS by adding Ca or REM [JP-A-54-110119] Method of forming a protective film on the surface by adding Cu to reduce the amount of hydrogen penetrating into steel A method for homogenizing the structure by controlling low-temperature transformation products, heat treatment (QT, T), etc. [JP-A-54-12782]
1] A method for controlling the structure by controlling rolling conditions (heating temperature, rolling end temperature, reduction rate) and cooling conditions (cooling rate, cooling stop temperature) [JP-A-61-16520]
7, JP-A-3-236420]

【0004】[0004]

【発明が解決しようとする課題】上記のように、従来技
術において様々な水素誘起割れ防止策が講じられている
が、完全に割れを防止することは困難であり、例えば、
は鋼にCaなどの稀土類元素を添加し、HICの起点と
なる介在物の形態を制御する方法であるが、この方法に
よってもHICを完全に除去できず、また添加量が過多
になると、B系介在物が生成し、耐HIC性能に劣化を
きたすようになる不利がある。
As described above, various hydrogen-induced cracking preventive measures have been taken in the prior art, but it is difficult to completely prevent cracking. For example,
Is a method of adding rare earth elements such as Ca to the steel to control the morphology of inclusions that are the starting point of HIC. However, even with this method, HIC cannot be completely removed, and if the addition amount becomes excessive, There is a disadvantage that B-type inclusions are generated, and the HIC resistance performance is deteriorated.

【0005】また、前記したのCu添加による侵入水素
量の抑制についても、Cu皮膜が形成されるのはpHが5以
上のマイルドなサワー環境についてであり、最近要求さ
れている苛酷な環境下(pH4以下のサワー環境)ではCu
皮膜は溶解してしまうため、水素の侵入抑制に対し十分
な効果が得られない。
Regarding the suppression of the amount of invading hydrogen by the addition of Cu as described above, the Cu film is formed only in a mild sour environment having a pH of 5 or more, and under the severe environment which is required recently ( Cu in a pH 4 or less sour environment)
Since the film dissolves, a sufficient effect cannot be obtained for suppressing the intrusion of hydrogen.

【0006】更に前述したは、組織の均一にする方法
であり、鋼の強度が高くなるにつれ、割れ感受性は大き
くなり、特にMn、P等の偏析が生じる中央部では極めて
感受性は大となる。そのため、焼入れ焼戻し等の熱処理
により割れ感受性を小さくし、耐HIC性能を改善する
方法であるが、生産能率の低下、コストの上昇といった
デメリットを避け得ないことになる。
Further, the above-mentioned method is a method of making the structure uniform, and as the strength of the steel becomes higher, the susceptibility to cracking becomes greater, and the susceptibility becomes extremely large especially in the central portion where segregation of Mn, P, etc. occurs. Therefore, it is a method of reducing the cracking susceptibility by heat treatment such as quenching and tempering and improving the HIC resistance performance, but the disadvantages such as the reduction of production efficiency and the increase of cost cannot be avoided.

【0007】なお、上記したは制御圧延、制御冷却、
即ち、TMCP技術により組織の均一化、微細化を図る
方法であり、例えば、Ar3 変態点以上の温度で仕上圧延
を行い、350〜550℃の温度域まで30℃以上の冷
却速度で制御冷却を行う〔特開昭61−165207〕
等の方法が採られているが、鋼材の高強度化にともない
水素誘起割れ感受性が高くなり、これらの圧延方法では
HICを完全に防ぐことは困難となっている。
The above-mentioned controlled rolling, controlled cooling,
That is, it is a method for making the structure uniform and fine by TMCP technology. For example, finish rolling is performed at a temperature of Ar 3 transformation point or higher, and controlled cooling is performed at a cooling rate of 30 ° C. or higher to a temperature range of 350 to 550 ° C. [JP-A-61-165207]
However, the susceptibility to hydrogen-induced cracking increases as the strength of the steel material increases, and it is difficult to completely prevent HIC by these rolling methods.

【0008】[0008]

【課題を解決するための手段】本発明は上記したような
従来技術の問題点を踏まえて、高強度かつ良好な耐HI
C特性を得ることについて検討を重ね、再結晶オーステ
ナイト域で仕上圧延を行うことにより、ポリゴナルなベ
イナイト組織にすることが有効であることを知見し、本
発明を完成したものであって、以下の如くである。
In view of the above-mentioned problems of the prior art, the present invention has high strength and good HI resistance.
The inventors have found that it is effective to form a polygonal bainite structure by performing finish rolling in a recrystallized austenite region, and have completed the present invention. It seems that.

【0009】(1) C:0.02〜0.06wt.%, Si:0.03〜0.50wt.%, Mn:0.5〜2.5wt.%, S:0.001wt.%以下, Ca:0.0005〜0.008wt.%, を含有し、残部はFeおよび不可避不純物である鋼のスラ
ブを加熱後、続く圧延を圧延仕上がり温度がオーステナ
イトの再結晶下限温度以上となる条件で行った後冷却
し、鋼の組織をポリゴナルなベイナイトとしたことを特
徴とする耐水素誘起割れ性に優れた高強度鋼板の製造方
法。
(1) C: 0.02 to 0.06 wt.%, Si: 0.03 to 0.50 wt.%, Mn: 0.5 to 2.5 wt.%, S: 0.001 wt.% Or less , Ca: 0.0005 to 0.008 wt.%, With the balance being Fe and unavoidable impurities, after heating a slab of steel, the subsequent rolling is performed under the condition that the rolling finish temperature is the recrystallization lower limit temperature of austenite or higher. A method for producing a high-strength steel sheet having excellent resistance to hydrogen-induced cracking, characterized in that the steel structure is made into a polygonal bainite after being cooled.

【0010】(2) C:0.02〜0.06wt.%, Si:0.03〜0.50wt.%, Mn:0.5〜2.5wt.%, S:0.001wt.%以下, Ca:0.0005〜0.008wt.%, 及びCu, Ni, Crからなる群のうち少なくとも1つの元
素、 Cu:0.5wt.%以下, Ni:0.5wt.%以下, Cr:0.5wt.%以下, を含有し、残部はFeおよび不可避不純物である鋼のスラ
ブを加熱後、続く圧延を圧延仕上がり温度がオーステナ
イトの再結晶下限温度以上となる条件で行った後冷却
し、鋼の組織をポリゴナルなベイナイトとしたことを特
徴とする耐水素誘起割れ性に優れた高強度鋼板の製造方
法。
(2) C: 0.02 to 0.06 wt.%, Si: 0.03 to 0.50 wt.%, Mn: 0.5 to 2.5 wt.%, S: 0.001 wt.% Or less , Ca: 0.0005 to 0.008 wt.%, And at least one element from the group consisting of Cu, Ni, Cr, Cu: 0.5 wt.% Or less, Ni: 0.5 wt.% Or less, Cr: 0 After heating the slab of steel containing 0.5 wt.% Or less, and the balance being Fe and unavoidable impurities, the subsequent rolling is performed under the condition that the rolling finish temperature is the recrystallization lower limit temperature of austenite or higher, and then the steel is cooled. A method for producing a high-strength steel sheet excellent in hydrogen-induced cracking resistance, characterized in that the structure of No. 2 is a polygonal bainite.

【0011】(3) C:0.02〜0.06wt.%, Si:0.03〜0.50wt.%, Mn:0.5〜2.5wt.%, S:0.001wt.%以下, Ca:0.0005〜0.008wt.%, 及びMo, Nb, V, Ti,からなる群のうち少なくとも1つの
元素、 Mo:0.5wt.%以下, Nb:0.10wt.%以下, V :0.15wt.%以下, Ti:0.005〜0.10wt.% を含有し、残部はFeおよび不可避不純物である鋼のスラ
ブを加熱後、続く圧延を圧延仕上がり温度がオーステナ
イトの再結晶下限温度以上となる条件で行った後冷却
し、鋼の組織をポリゴナルなベイナイトとしたことを特
徴とする耐水素誘起割れ性に優れた高強度鋼板の製造方
法。
(3) C: 0.02 to 0.06 wt.%, Si: 0.03 to 0.50 wt.%, Mn: 0.5 to 2.5 wt.%, S: 0.001 wt.% Or less , Ca: 0.0005 to 0.008 wt.%, And at least one element from the group consisting of Mo, Nb, V, and Ti, Mo: 0.5 wt.% Or less, Nb: 0.10 wt.% Or less, V: 0.15 wt.% Or less, Ti: 0.005 to 0.10 wt.%, The balance being Fe and unavoidable impurities, after heating a steel slab, the subsequent rolling is recrystallization of rolling austenite A method for producing a high-strength steel sheet excellent in hydrogen-induced cracking resistance, characterized in that the steel structure is made into a polygonal bainite after being cooled under a condition of a lower limit temperature or more and then cooled.

【0012】(4) C:0.02〜0.06wt.%, Si:0.03〜0.50wt.%, Mn:0.5〜2.5wt.%, S:0.001wt.%以下, Ca:0.0005〜0.008wt.%, 及びCu, Ni, Cr, Mo, Nb, V, Ti からなる群のうち少な
くとも1つの元素、 Cu:0.5wt.%以下, Ni:0.5wt.%以下, Cr:0.5wt.%以下, Mo:0.5wt.%以下, Nb:0.10wt.%以下, V :0.15wt.%以下, Ti:0.005〜0.10wt.% を含有し、残部はFeおよび不可避不純物である鋼のスラ
ブを加熱後、続く圧延を圧延仕上がり温度がオーステナ
イトの再結晶下限温度以上となる条件で行った後冷却
し、鋼の組織をポリゴナルなベイナイトとしたことを特
徴とする耐水素誘起割れ性に優れた高強度鋼板の製造方
法。
(4) C: 0.02 to 0.06 wt.%, Si: 0.03 to 0.50 wt.%, Mn: 0.5 to 2.5 wt.%, S: 0.001 wt.% Or less , Ca: 0.0005 to 0.008 wt.%, And at least one element from the group consisting of Cu, Ni, Cr, Mo, Nb, V, and Ti, Cu: 0.5 wt.% Or less, Ni: 0. 5 wt.% Or less, Cr: 0.5 wt.% Or less, Mo: 0.5 wt.% Or less, Nb: 0.10 wt.% Or less, V: 0.15 wt.% Or less, Ti: 0.005 to 0.10 wt. After heating the slab of steel containing 0.1% and the balance of Fe and unavoidable impurities, the subsequent rolling is performed under conditions where the rolling finish temperature is at or above the lower limit of recrystallization of austenite, and then the steel structure is cooled to the polygonal structure. Of high strength steel sheet excellent in hydrogen-induced cracking resistance, characterized in that it is made of bainite.

【0013】[0013]

【作用】上記したような本発明による鋼板の化学成分組
成限定理由は以下の如くである。 (1)C(炭素) C含有量は、強度の確保およびNb、V、Ti等の析出硬化
を有効に利用するために0.02%以上が必要である。し
かし、このC含有量が0.06%を越えると、加速冷却時
に生じる低温変態生成物により、HIC特性の劣化が生
じるようになる。従って、C含有量は0.02〜0.06%
とした。
The reasons for limiting the chemical composition of the steel sheet according to the present invention as described above are as follows. (1) C (carbon) The C content must be 0.02% or more in order to secure the strength and effectively utilize the precipitation hardening of Nb, V, Ti and the like. However, if the C content exceeds 0.06%, the low temperature transformation product generated during accelerated cooling causes deterioration of HIC characteristics. Therefore, the C content is 0.02 to 0.06%
And

【0014】(2)Si(シリコン) Siは、脱酸のため添加され、Si含有量が0.03%未満で
は充分な脱酸効果が得られず、また、このSi含有量が0.
5%を越えると靭性の劣化が生じる。従って、Si含有量
は0.03〜0.5%の範囲とした。
(2) Si (Si) Si is added for deoxidation. If the Si content is less than 0.03%, a sufficient deoxidizing effect cannot be obtained, and the Si content is less than 0.03%.
If it exceeds 5%, the toughness deteriorates. Therefore, the Si content is set to the range of 0.03 to 0.5%.

【0015】(3)Mn(マンガン) Mnも、Siと同様に脱酸元素として添加され、Mn含有量が
0.5%未満では充分な脱酸効果が得られず、また、Mn含
有量が2.5%を越えると溶接性が劣化する。従って、Mn
含有量は0.5〜2.5%の範囲とした。
(3) Mn (manganese) Mn is also added as a deoxidizing element like Si, and the Mn content is
If it is less than 0.5%, a sufficient deoxidizing effect cannot be obtained, and if the Mn content exceeds 2.5%, the weldability deteriorates. Therefore, Mn
The content was in the range of 0.5 to 2.5%.

【0016】(4)S(硫黄) Sは、不純物として不可避な合金元素であるが、このS
含有量が0.001%以下であれば実害はない。しかし、
このS含有量が0.001%を越えるとHICの起点とな
る硫化物介在物が増加し、耐HIC特性を劣化させる。
従って、S含有量は0.001%以下とした。
(4) S (Sulfur) S is an alloy element inevitable as an impurity.
If the content is 0.001% or less, there is no actual harm. But,
If this S content exceeds 0.001%, the sulfide inclusions that are the starting points of HIC increase, and the HIC resistance is deteriorated.
Therefore, the S content is set to 0.001% or less.

【0017】(5)Cu(銅) Cuは、耐食性を向上させる元素であるが、このCu含有量
が0.5%を越えると溶接部の靭性が劣化する。従って、
Cu含有量は0.5%以下とすべきである。
(5) Cu (Copper) Cu is an element that improves the corrosion resistance, but if the Cu content exceeds 0.5%, the toughness of the welded portion deteriorates. Therefore,
The Cu content should be below 0.5%.

【0018】(6)Ni(ニッケル) Niは、耐食性に有効な元素であり、また強度および靭性
を向上する作用を有する元素でもある。しかし、このNi
含有量が0.5%を越えると経済的に不利であるため、Ni
含有量は0.5%とする。
(6) Ni (Nickel) Ni is an element effective in corrosion resistance and also an element having an action of improving strength and toughness. But this Ni
If the content exceeds 0.5%, it is economically disadvantageous, so Ni
The content is 0.5%.

【0019】(7)Cr(クロム) Crは、耐食性を向上させる元素であるが、このCr含有量
が0.5%を越えると、溶接部の靭性が劣化するので、Cr
含有量は0.5%以下とした。
(7) Cr (Chromium) Cr is an element that improves the corrosion resistance, but if the Cr content exceeds 0.5%, the toughness of the welded portion deteriorates, so Cr
The content was 0.5% or less.

【0020】(8)Mo(モリブデン) Moは、強度および靭性を向上させる元素であるが、Mo含
有量が0.5%を越えると経済的に不利であるため、Mo含
有量は0.5%以下とした。
(8) Mo (Molybdenum) Mo is an element that improves strength and toughness, but if the Mo content exceeds 0.5%, it is economically disadvantageous, so the Mo content is 0.5. % Or less.

【0021】(9)Nb(ニオブ) Nbは、強度を向上させる元素であるが、このNb含有量が
0.1%を越えると溶接部および母材の靭性が劣化するた
め、上限を0.1%とした。
(9) Nb (niobium) Nb is an element that improves the strength, but the Nb content is
If it exceeds 0.1%, the toughness of the weld and the base metal deteriorates, so the upper limit was made 0.1%.

【0022】(10)V(バナジウム) Vは、強度および靭性を向上させる元素である。然しこ
のV含有量が0.15%を越えると母材および溶接部の靭
性が劣化するので、V含有量は0.15%以下とした。
(10) V (Vanadium) V is an element that improves strength and toughness. However, if the V content exceeds 0.15%, the toughness of the base metal and the welded portion deteriorates, so the V content was set to 0.15% or less.

【0023】(11)Ti(チタン) Tiは、スラブ加熱時のオーステナイトの粗大化を防止す
る作用を有し、強度および靭性を向上させる元素である
が、Ti含有量が0.005%未満ではこれらの作用が不充
分である。また、Ti含有量が0.1%を越えると溶接部の
靭性を劣化する。従って、Ti含有量は0.005〜0.1%
とすべきである。
(11) Ti (Titanium) Ti has the function of preventing coarsening of austenite during heating of the slab and is an element that improves strength and toughness, but if the Ti content is less than 0.005%. These actions are insufficient. Further, if the Ti content exceeds 0.1%, the toughness of the welded portion deteriorates. Therefore, the Ti content is 0.005-0.1%
Should be.

【0024】(12)Ca(カルシウム) Caは、硫化物系介在物の形態を変化させ、HICの起点
を減少させる作用を有する。しかしCa含有量が0.000
5%未満では、この効果が得られず、また、0.008%
を越えると逆に介在物の量の増加をもたらし、耐HIC
性の劣化を招くようになる。これらのことから、Ca含有
量は0.0005〜0.008%とした。
(12) Ca (Calcium) Ca has the action of changing the morphology of sulfide inclusions and reducing the origin of HIC. However, the Ca content is 0.000
If it is less than 5%, this effect cannot be obtained, and 0.008%
On the contrary, if the value exceeds the limit, the amount of inclusions is increased and the HIC resistance is increased.
It causes deterioration of sex. From these, the Ca content was set to 0.0005 to 0.008%.

【0025】上記したような成分組成の鋼に対する鋼板
製造条件についてその限定理由を述べると、先ず圧延条
件に関する本発明のポイントは、圧延終了温度(TR )
を再結晶下限温度以上に限定したことであり、本発明者
らは圧延終了温度(加速冷却開始温度)がHIC特性に
及ぼす影響について、本発明範囲内の化学成分組成を有
する種々の供試鋼について下記に示す実験を行ったとこ
ろ、再結晶下限温度として数式(1)に示す値を用い、
それ以上で圧延を終了した場合、水素誘起割れが生じな
いことを知見した。
The reason for limiting the steel plate manufacturing conditions for the steel having the above-described composition is as follows. First, the point of the present invention regarding the rolling conditions is the rolling end temperature (T R ).
Is limited to the recrystallization lower limit temperature or more, and the inventors of the present invention have investigated the influence of the rolling end temperature (accelerated cooling start temperature) on the HIC characteristics by using various test steels having chemical composition within the range of the present invention. When the experiment shown below was conducted, the value shown in Formula (1) was used as the lower limit temperature for recrystallization,
It has been found that hydrogen-induced cracking does not occur when rolling is completed after that.

【0026】即ち、次の表1に示す本発明範囲内の化学
成分組成を有する供試鋼(スラブ)を1150℃に加熱
し、次いで圧延終了温度750〜950℃の条件で圧延
を施し、次いでその圧延終了温度から200℃まで冷却
速度20℃/sec で加速冷却を行った。そして、得られ
た供試鋼板をNACE規格(TMO177−90)に準
じた硫化水素を飽和させた5wt%食塩−0.5%酢酸から
なる溶液に応力無負荷状態で96時間浸漬した後試験片
を4等分し、各断面のCLR(Clack Length Ratio :
(Σa)/(W)×100(%)により測定)を求め
た。
That is, a sample steel (slab) having a chemical composition within the scope of the present invention shown in Table 1 below was heated to 1150 ° C., then rolled at a rolling end temperature of 750 to 950 ° C., and then rolled. Accelerated cooling was performed from the rolling end temperature to 200 ° C at a cooling rate of 20 ° C / sec. Then, the obtained test steel sheet was immersed in a solution of 5 wt% sodium chloride-0.5% acetic acid saturated with hydrogen sulfide according to NACE standard (TMO177-90) under stress-free condition for 96 hours, and then the test piece CLR (Clack Length Ratio:
(Σa) / (W) × 100 (%) was measured).

【0027】[0027]

【表1】 [Table 1]

【0028】上記のようにして求められた3断面のCL
Rの平均値をもって、その試験片のCLRとした。その
ようにして求めたCLRと圧延終了温度の関係について
図2に示す。これから分かるように、再結晶域で仕上圧
延を行った鋼板は良好な耐HIC性能を示したおり、そ
れゆえ圧延終了温度は再結晶下限温度以上とした。
CL of three cross sections obtained as described above
The average value of R was used as the CLR of the test piece. FIG. 2 shows the relationship between the CLR thus obtained and the rolling end temperature. As can be seen from the above, the steel sheet finish-rolled in the recrystallization region exhibited good HIC resistance, and therefore the rolling end temperature was set to the recrystallization lower limit temperature or higher.

【0029】再結晶下限温度について種々検討した結
果、下記の式で求められる下限温度とすれば再結晶域で
仕上圧延を行った場合に良好な耐HIC性能が得られ
た。図3には圧延終了温度を再結晶温度域、未再結晶温
度域とした場合のミクロ組織を示す。
As a result of various studies on the lower limit temperature of recrystallization, good HIC resistance was obtained when the finish rolling was performed in the recrystallization region if the lower limit temperature was calculated by the following formula. FIG. 3 shows the microstructures when the rolling end temperature is in the recrystallization temperature range and the non-recrystallization temperature range.

【0030】[0030]

【数1】 TR =2.3×103[Nb]%+7.1 ×102[Ti]%+1.5 ×102[Mo]%+1.2 ×102[V]% +825( ℃) ・・・(1)[Formula 1] T R = 2.3 × 10 3 [Nb]% + 7.1 × 10 2 [Ti]% + 1.5 × 10 2 [Mo]% + 1.2 × 10 2 [V]% +825 (℃) ・.. (1)

【0031】上述したような圧延終了温度からの冷却速
度は、ベイナイト組織とするため、5〜30℃/sとす
るのが望ましい。これは5℃以下の冷却速度では組織が
フェライトとパーライトの混合組織となり、耐HIC性
が劣化するためであり、また30℃/s以上の冷却速度
では島状マルテンサイト(MA)の増加により強度が上昇
し、やはり耐HIC性能に劣化をきたすようになるため
である。
The cooling rate from the rolling end temperature as described above is preferably 5 to 30 ° C./s in order to form a bainite structure. This is because the structure becomes a mixed structure of ferrite and pearlite at a cooling rate of 5 ° C or less, and the HIC resistance deteriorates. At a cooling rate of 30 ° C / s or more, strength increases due to the increase of island martensite (MA). This is because the HIC resistance increases and the HIC resistance performance deteriorates.

【0032】[0032]

【実施例】次の表2、表3には本発明者等の採用した本
発明鋼(1〜28)および比較鋼(29〜33)(とも
スラブ)の化学成分および(1)式により求めた再結晶
下限温度を示した。
EXAMPLES Tables 2 and 3 below show the chemical compositions of the steels (1-28) of the present invention and the comparative steels (29-33) (both slabs) adopted by the present inventors and determined by the formula (1). The minimum recrystallization temperature was shown.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】また前記したような各鋼のスラブに対して
行われた製造方法、即ち、加熱温度:1000〜120
0℃、圧延仕上温度:再結晶温度域、圧延終了後の冷却
速度:5〜30℃/sec で板厚25mmに仕上げた鋼板の
機械的性質、HIC特性は次の表4、表5、表6、表7
に示す如くである。
The manufacturing method carried out on the slab of each steel as described above, that is, the heating temperature: 1000 to 120
0 ° C., rolling finishing temperature: recrystallization temperature range, cooling rate after rolling: 5 to 30 ° C./sec. 6, Table 7
As shown in.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【表7】 [Table 7]

【0040】更に次の表8には、前記表3の本発明鋼N
o. 26について、本発明による製造方法および、本発
明外による製造方法のそれぞれの方法で板厚25mmに仕
上げた鋼板の機械的性質、HIC特性について示した。
Further, Table 8 below shows the steel N of the present invention of Table 3 above.
No. 26, the mechanical properties and HIC characteristics of a steel plate finished to a plate thickness of 25 mm by the manufacturing method according to the present invention and the manufacturing method according to the present invention are shown.

【0041】[0041]

【表8】 [Table 8]

【0042】前述した表4、表5、表6、表7によれ
ば、本発明範囲内の化学成分組成を有し且つ製造条件も
本発明に従ったものは表4、表5における本発明例のよ
うに強度、耐HIC性能ともに良好でる。これに対し、
化学成分組成が本発明から外れた供試鋼29〜33によ
るものは、製造条件が本発明に従ったものであっても表
5の比較例のように引張強度500N/mm2 以上または
耐HIC性能の何れかに劣り、また、化学成分組成が本
発明範囲内であっても製造条件が本発明の条件から外れ
た表6、表7の比較例によるものでは何れも耐HIC性
能において劣っている。
According to the above-mentioned Tables 4, 5, 6 and 7, those having the chemical composition within the scope of the present invention and the manufacturing conditions according to the present invention are shown in Tables 4 and 5. As in the example, both strength and HIC resistance are good. In contrast,
The steels 29 to 33 having chemical compositions different from those of the present invention have tensile strength of 500 N / mm 2 or more or HIC resistance as shown in the comparative example of Table 5 even if the manufacturing conditions are according to the present invention. The performance is inferior, and even if the chemical composition is within the range of the present invention, the production conditions deviate from the conditions of the present invention. There is.

【0043】また、前記表8によるときは、本発明で規
定する化学成分組成を有する鋼であっても、製造条件が
本発明の製造方法から外れていれば、良好な強度および
耐HIC性能が得られていないことがわかる。即ち、比
較材B,Cは仕上温度が、D,Eは冷却速度が本発明の
好ましい製造方法から外れているため、本発明材Aと比
較して、強度又は耐HIC性で劣っている。即ち鋼成分
と製造条件の何れもが本発明条件を満足することによっ
て、初めて好ましい製品を得ることができる。
Further, according to Table 8 above, even if the steel has the chemical composition defined by the present invention, good strength and HIC resistance can be obtained if the production conditions deviate from the production method of the present invention. It turns out that it has not been obtained. That is, the comparative materials B and C have a finishing temperature which is out of the preferred production method of the present invention, and the cooling rates of D and E are out of the preferred production method of the present invention, and thus are inferior in strength or HIC resistance to the inventive material A. That is, a preferable product can be obtained only when both the steel composition and the manufacturing conditions satisfy the conditions of the present invention.

【0044】[0044]

【発明の効果】以上説明したようなこの発明によるとき
は、高強度でかつ、耐HIC性能に優れた鋼板の製造が
可能となり、これによって鋼材量の削減によるコストの
低減化、および高圧操業化が可能となるなどの効果を得
しめることは明かであって、工業的にその効果の大きい
発明である。
As described above, according to the present invention, it is possible to manufacture a steel sheet having high strength and excellent HIC resistance, which leads to cost reduction due to reduction of the amount of steel material and high pressure operation. It is obvious that the above effects can be obtained, and it is an invention that has a large effect industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】割れ長さ率(CLR)の測定要領を示した説明
図である。
FIG. 1 is an explanatory diagram showing a measurement procedure of a crack length ratio (CLR).

【図2】前記CLRに及ぼす圧延終了温度の影響につい
て示した図表である。
FIG. 2 is a chart showing an influence of a rolling end temperature on the CLR.

【図3】表1の供試鋼について、再結晶域および未再結
晶域で仕上圧延を行った鋼板のミクロ組織をそれぞれ示
した顕微鏡写真である。
FIG. 3 is a micrograph showing a microstructure of a steel sheet subjected to finish rolling in a recrystallized region and a non-recrystallized region of each of the sample steels shown in Table 1.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年8月5日[Submission date] August 5, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】割れ長さ率(CLR)の測定要領を示した説明
図である。
FIG. 1 is an explanatory diagram showing a measurement procedure of a crack length ratio (CLR).

【図2】前記CLRに及ぼす圧延終了温度の影響につい
て示した図表である。
FIG. 2 is a chart showing an influence of a rolling end temperature on the CLR.

【図3】表1の供試鋼について、再結晶域および未再結
晶域で仕上圧延を行った鋼板の金属組織をそれぞれ示し
た顕微鏡写真である。
FIG. 3 is a photomicrograph showing the metallurgical structure of a steel sheet subjected to finish rolling in the recrystallized region and the non-recrystallized region of the sample steels shown in Table 1.

フロントページの続き (72)発明者 平野 攻 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内Front Page Continuation (72) Inventor Osamu Hirano 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.02〜0.06wt.%, Si:0.03〜0.50wt.%, Mn:0.5〜2.5wt.%, S:0.001wt.%以下, Ca:0.0005〜0.008wt.%, を含有し、残部はFeおよび不可避不純物である鋼のスラ
ブを加熱後、続く圧延を圧延仕上がり温度がオーステナ
イトの再結晶下限温度以上となる条件で行った後冷却
し、鋼の組織をポリゴナルなベイナイトとしたことを特
徴とする耐水素誘起割れ性に優れた高強度鋼板の製造方
法。
1. C: 0.02 to 0.06 wt.%, Si: 0.03 to 0.50 wt.%, Mn: 0.5 to 2.5 wt.%, S: 0.001 wt.% Or less, After heating a slab of steel containing Ca: 0.0005 to 0.008 wt.% And the balance being Fe and inevitable impurities, the subsequent rolling is performed under the condition that the rolling finish temperature is equal to or higher than the recrystallization lower limit temperature of austenite. A method for producing a high-strength steel sheet having excellent resistance to hydrogen-induced cracking, characterized in that the steel structure is changed to polygonal bainite after cooling.
【請求項2】 C:0.02〜0.06wt.%, Si:0.03〜0.50wt.%, Mn:0.5〜2.5wt.%, S:0.001wt.%以下, Ca:0.0005〜0.008wt.%, 及びCu, Ni, Crからなる群のうち少なくとも1つの元
素、 Cu:0.5wt.%以下, Ni:0.5wt.%以下, Cr:0.5wt.%以下, を含有し、残部はFeおよび不可避不純物である鋼のスラ
ブを加熱後、続く圧延を圧延仕上がり温度がオーステナ
イトの再結晶下限温度以上となる条件で行った後冷却
し、鋼の組織をポリゴナルなベイナイトとしたことを特
徴とする耐水素誘起割れ性に優れた高強度鋼板の製造方
法。
2. C: 0.02 to 0.06 wt.%, Si: 0.03 to 0.50 wt.%, Mn: 0.5 to 2.5 wt.%, S: 0.001 wt.% Or less, Ca: 0.0005 to 0.008 wt.%, And at least one element from the group consisting of Cu, Ni, and Cr, Cu: 0.5 wt.% Or less, Ni: 0.5 wt.% Or less, Cr: 0. After heating the slab of steel containing 5 wt.% Or less and the balance being Fe and unavoidable impurities, the subsequent rolling is performed under the condition that the rolling finish temperature is the recrystallization lower limit temperature of austenite or higher, and then cooled. A method for producing a high-strength steel sheet excellent in hydrogen-induced cracking resistance, characterized in that the structure is polygonal bainite.
【請求項3】 C:0.02〜0.06wt.%, Si:0.03〜0.50wt.%, Mn:0.5〜2.5wt.%, S:0.001wt.%以下, Ca:0.0005〜0.008wt.%, 及びMo, Nb, V, Ti,からなる群のうち少なくとも1つの
元素、 Mo:0.5wt.%以下, Nb:0.10wt.%以下, V :0.15wt.%以下, Ti:0.005〜0.10wt.% を含有し、残部はFeおよび不可避不純物である鋼のスラ
ブを加熱後、続く圧延を圧延仕上がり温度がオーステナ
イトの再結晶下限温度以上となる条件で行った後冷却
し、鋼の組織をポリゴナルなベイナイトとしたことを特
徴とする耐水素誘起割れ性に優れた高強度鋼板の製造方
法。
3. C: 0.02 to 0.06 wt.%, Si: 0.03 to 0.50 wt.%, Mn: 0.5 to 2.5 wt.%, S: 0.001 wt.% Or less, Ca: 0.0005 to 0.008 wt.%, And at least one element from the group consisting of Mo, Nb, V, and Ti, Mo: 0.5 wt.% Or less, Nb: 0.10 wt.% Or less, V : 0.15 wt.% Or less, Ti: 0.005 to 0.10 wt.% And the balance is Fe and unavoidable impurities. After heating a steel slab, the subsequent rolling is performed. A method for producing a high-strength steel sheet excellent in hydrogen-induced cracking resistance, characterized in that the steel structure is made into a polygonal bainite after being cooled under a condition of temperature or higher.
【請求項4】 C:0.02〜0.06wt.%, Si:0.03〜0.50wt.%, Mn:0.5〜2.5wt.%, S:0.001wt.%以下, Ca:0.0005〜0.008wt.%, 及びCu, Ni, Cr, Mo, Nb, V, Ti からなる群のうち少な
くとも1つの元素、 Cu:0.5wt.%以下, Ni:0.5wt.%以下, Cr:0.5wt.%以下, Mo:0.5wt.%以下, Nb:0.10wt.%以下, V :0.15wt.%以下, Ti:0.005〜0.10wt.% を含有し、残部はFeおよび不可避不純物である鋼のスラ
ブを加熱後、続く圧延を圧延仕上がり温度がオーステナ
イトの再結晶下限温度以上となる条件で行った後冷却
し、鋼の組織をポリゴナルなベイナイトとしたことを特
徴とする耐水素誘起割れ性に優れた高強度鋼板の製造方
法。
4. C: 0.02 to 0.06 wt.%, Si: 0.03 to 0.50 wt.%, Mn: 0.5 to 2.5 wt.%, S: 0.001 wt.% Or less, Ca: 0.0005 to 0.008 wt.%, And at least one element from the group consisting of Cu, Ni, Cr, Mo, Nb, V, and Ti, Cu: 0.5 wt.% Or less, Ni: 0.5 wt. % Or less, Cr: 0.5 wt.% Or less, Mo: 0.5 wt.% Or less, Nb: 0.10 wt.% Or less, V: 0.15 wt.% Or less, Ti: 0.005 to 0.10 wt. %, The balance is Fe and the slab of steel that is an unavoidable impurity is heated, and then the subsequent rolling is performed under the condition that the rolling finish temperature is at or above the recrystallization lower limit temperature of austenite, and then cooled to make the steel structure polygonal. A method for producing a high-strength steel sheet excellent in hydrogen-induced cracking resistance, characterized by using bainite.
JP14116693A 1992-05-22 1993-05-21 Production of high strength steel sheet excellent in hydrogen induced cracking resistance Pending JPH0673450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14116693A JPH0673450A (en) 1992-05-22 1993-05-21 Production of high strength steel sheet excellent in hydrogen induced cracking resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15421892 1992-05-22
JP4-154218 1992-05-22
JP14116693A JPH0673450A (en) 1992-05-22 1993-05-21 Production of high strength steel sheet excellent in hydrogen induced cracking resistance

Publications (1)

Publication Number Publication Date
JPH0673450A true JPH0673450A (en) 1994-03-15

Family

ID=26473455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14116693A Pending JPH0673450A (en) 1992-05-22 1993-05-21 Production of high strength steel sheet excellent in hydrogen induced cracking resistance

Country Status (1)

Country Link
JP (1) JPH0673450A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7874733B2 (en) 2006-01-05 2011-01-25 Ntn Corporation Rolling bearing
US7918606B2 (en) 2004-10-08 2011-04-05 Ntn Corporation Rolling bearing
US8746982B2 (en) 2010-03-30 2014-06-10 Ntn Corporation Rolling bearing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7918606B2 (en) 2004-10-08 2011-04-05 Ntn Corporation Rolling bearing
US7874733B2 (en) 2006-01-05 2011-01-25 Ntn Corporation Rolling bearing
US8746982B2 (en) 2010-03-30 2014-06-10 Ntn Corporation Rolling bearing device

Similar Documents

Publication Publication Date Title
JP4470701B2 (en) High-strength thin steel sheet with excellent workability and surface properties and method for producing the same
JP7134230B2 (en) Steel for low yield ratio, ultra-high strength coiled tubing and its manufacturing method
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
KR20090098909A (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
JP5692305B2 (en) Thick steel plate with excellent heat input welding characteristics and material homogeneity, and its manufacturing method
JP5194572B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP2017197787A (en) High tensile strength thick steel sheet excellent in ductility and manufacturing method therefor
JP2005139517A (en) Method for producing high strength and high toughness thick steel plate
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP3247908B2 (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
CN113637925B (en) Steel for quenched and tempered continuous oil pipe, hot-rolled steel strip, steel pipe and manufacturing method thereof
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP2005281842A (en) Production method of low temperature service low yield ratio steel material having excellent weld zone toughness
JP2870830B2 (en) Method for producing high tensile strength and high toughness steel sheet excellent in HIC resistance
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JP2003293075A (en) High strength steel pipe stock having low surface hardness and yield ratio after pipe making and production method thereof
JPH0673450A (en) Production of high strength steel sheet excellent in hydrogen induced cracking resistance
JP3622246B2 (en) Method for producing extremely thick H-section steel with excellent strength, toughness and weldability
JP2003293076A (en) High strength steel pipe stock having low yield ratio after pipe making and production method thereof